Quectel Wireless Solutions 201708EC25E User Manual

C
M
S
a
_
w
_
r
D
s
w
n
c
E
LTE
Date:
25
EC25_H
2017-01
odule
Ha
eries
rdware
-24
rd
Design
a
V1.3
e
e
ig
w
w.quectel.
om
LTE Module Series
EC25Hardware Design
Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd.
Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233
Tel: +86 21 5108 6236
Email:info@quectel.com
Or our local office.For more information, please visit:
http://www.quectel.com/support/salesupport.aspx
For technical support, or to report documentation errors, please visit:
http://www.quectel.com/support/techsupport.aspx
Or email to: Support@quectel.com
GENERAL NOTES
QUECTEL OFFERS THEINFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION
PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT
TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT
MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT
ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR
RELIANCE UPON THE INFORMATION. THE INFORMATION SUPPLIED HEREIN IS SUBJECT TO
CHANGE WITHOUT PRIOR NOTICE.
COPYRIGHT
THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF
QUECTEL CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS
DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT
PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS
ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL
OR DESIGN.
Copyright © Quectel Wireless Solutions Co., Ltd. 2017. All rights reserved.
EC25_Hardware_DesignConfidential / Released 1 / 90
EC25Hardware Design
About the Document
History
Revision Date Author Description
1.0 2016-04-01 Woody WU Initial
LTE Module Series
1.1 2016-09-22
1.2 2016-11-04
Lyndon LIU/
Frank WANG
Lyndon LIU/
Michael ZHANG
1. Updated EC25 series frequency bands in Table 1.
2. Updated transmitting power, supported maximum
baud rate of main UART/internal protocols/USB
drivers of USB interface, firmware upgrade and
temperature range in Table 2.
3. Updated timing of turning on module in Figure 12.
4. Updated timing of turning off module in Figure 13.
5. Updated timing of resetting module in Figure 16.
6. Updated supported baud rates of main UART in
Chapter 3.11.
7. Added notes for ADC interface in Chapter 3.13.
8. Updated GNSS performance in Table 21.
9. Updated operating frequencies of module in Table 23.
10. Added current consumption in Chapter 6.4.
11. Updated RF output power in Chapter 6.5.
12. Added RF receiving sensitivity in Chapter 6.6.
1. Added SGMII and WLAN interfaces in Table 2.
2. Updated function diagram in Figure 1.
3. Updated pin assignment (Top View) in Figure 2.
4. Added description of SGMII and WLAN interfaces in
Table 4.
5. Added SGMII interface in Chapter 3.17.
6. Added WLAN interface in Chapter 3.18.
7. Added USB_BOOT interface in Chapter 3.19.
8. Added reference design of RF layout in Chapter 5.1.4.
9. Added note about SIMO in Chapter 6.6.
1.3 2017-01-24
EC25_Hardware_DesignConfidential / Released 2 / 90
Lyndon LIU/
Frank WANG
1. Updated function diagram in Figure 1.
2. Updated pin assignment (top view) in Figure 2.
LTE Module Series
EC25Hardware Design
3. Added BT interface in Chapter 3.18.2.
4. Updated GNSS performance in Table 24.
5. Updated reference circuit of wireless connectivity
interfaces with FC20 module in Figure 29.
6. Updated current consumption of EC25-E module in
Table 33.
7. Updated EC25-A conducted RF receiving sensitivity
in Table 38.
8. AddedEC25-J conducted RF receiving sensitivity in
Table 40.
EC25_Hardware_DesignConfidential / Released 3 / 90
LTE Module Series
EC25Hardware Design
Contents
About the Document ................................................................................................................................ 2
Contents .................................................................................................................................................... 4
Table Index ............................................................................................................................................... 6
Figure Index .............................................................................................................................................. 8
1 Introduction ..................................................................................................................................... 10
1.1. Safety Information ..................................................................................................................11
2 Product Concept ............................................................................................................................. 12
2.1. General Description .............................................................................................................. 12
2.2. Key Features ......................................................................................................................... 13
2.3. Functional Diagram ............................................................................................................... 15
2.4. Evaluation Board ................................................................................................................... 16
3 Application Interface ....................................................................................................................... 17
3.1. General Description .............................................................................................................. 17
3.2. Pin Assignment ..................................................................................................................... 18
3.3. Pin Description ...................................................................................................................... 19
3.4. Operating Modes .................................................................................................................. 28
3.5. Power Saving ........................................................................................................................ 28
3.5.1.
Sleep Mode.................................................................................................................. 28
3.5.1.1. UART Application ............................................................................................... 28
3.5.1.2. USB Application with USB Remote Wakeup Function ....................................... 29
3.5.1.3. USB Application with USB Suspend/Resume and RI Function .......................... 30
3.5.1.4. USB Application without USB Suspend Function ............................................... 31
3.5.2. Airplane Mode .............................................................................................................. 31
3.6. Power Supply ........................................................................................................................ 32
3.6.1. Power Supply Pins ....................................................................................................... 32
3.6.2. Decrease Voltage Drop ................................................................................................ 33
3.6.3. Reference Design for Power Supply ............................................................................ 34
3.6.4. Monitor the Power Supply ............................................................................................ 34
3.7. Turn on and off Scenarios ..................................................................................................... 34
3.7.1. Turn on Module Using the PWRKEY ........................................................................... 34
3.7.2. Turn off Module ............................................................................................................ 36
3.7.2.1. Turn off Module Using the PWRKEY Pin ........................................................... 36
3.7.2.2. Turn off Module Using AT Command ................................................................. 37
3.8. Reset the Module .................................................................................................................. 37
3.9. USIM Card Interface ............................................................................................................. 39
3.10. USB Interface ........................................................................................................................ 41
3.11. UART Interfaces .................................................................................................................... 43
3.12. PCM and I2C Interfaces ........................................................................................................ 45
3.13. ADC Function ........................................................................................................................ 47
3.14. Network Status Indication ..................................................................................................... 48
EC25_Hardware_DesignConfidential / Released 4 / 90
LTE Module Series
EC25Hardware Design
3.15. STATUS ................................................................................................................................ 49
3.16. Behavior of the RI ................................................................................................................. 50
3.17. SGMII Interface ..................................................................................................................... 51
3.18. Wireless Connectivity Interfaces ........................................................................................... 53
3.18.1. WLAN Interface ........................................................................................................... 55
3.18.2. BT Interface* ................................................................................................................ 56
3.19. USB_BOOT Interface ............................................................................................................ 56
4 GNSS Receiver ................................................................................................................................ 58
4.1. General Description .............................................................................................................. 58
4.2. GNSS Performance .............................................................................................................. 58
4.3. Layout Guidelines ................................................................................................................. 59
5 Antenna Interfaces .......................................................................................................................... 60
5.1. Main/Rx-diversity Antenna Interface ..................................................................................... 60
5.1.1. Pin Definition ................................................................................................................ 60
5.1.2. Operating Frequency ................................................................................................... 60
5.1.3. Reference Design of RF Antenna Interface ................................................................. 61
5.1.4. Reference Design of RF Layout ................................................................................... 62
5.2. GNSS Antenna Interface ....................................................................................................... 64
5.3. Antenna Installation .............................................................................................................. 65
5.3.1. Antenna Requirement .................................................................................................. 65
5.3.2. Recommended RF Connector for Antenna Installation ................................................ 66
6 Electrical, Reliability and Radio Characteristics .......................................................................... 68
6.1. Absolute Maximum Ratings .................................................................................................. 68
6.2. Power Supply Ratings ........................................................................................................... 69
6.3. Operating Temperature ......................................................................................................... 69
6.4. Current Consumption ............................................................................................................ 70
6.5. RF Output Power .................................................................................................................. 73
6.6. RF Receiving Sensitivity ....................................................................................................... 74
6.7. Electrostatic Discharge ......................................................................................................... 76
7 Mechanical Dimensions.................................................................................................................. 77
7.1. Mechanical Dimensions of the Module.................................................................................. 77
7.2. Recommended Footprint ....................................................................................................... 79
7.3. Design Effect Drawings of the Module .................................................................................. 80
8 Storage, Manufacturing and Packaging ........................................................................................ 81
8.1. Storage ................................................................................................................................. 81
8.2. Manufacturing and Soldering ................................................................................................ 82
8.3. Packaging ............................................................................................................................. 83
9 Appendix A References .................................................................................................................. 84
10 Appendix B GPRS Coding Schemes ............................................................................................. 88
11 Appendix C GPRS Multi-slot Classes ............................................................................................ 89
12 Appendix D EDGE Modulation and Coding Schemes .................................................................. 90
EC25_Hardware_DesignConfidential / Released 5 / 90
LTE Module Series
EC25Hardware Design
Table Index
TABLE 1: FREQUENCY BANDS OF EC25 SERIES MODULE ........................................................................ 12
TABLE 2: KEY FEATURES OF EC25 MODULE ............................................................................................... 13
TABLE 3: I/O PARAMETERS DEFINITION ....................................................................................................... 19
TABLE 4: PIN DESCRIPTION ........................................................................................................................... 19
TABLE 5: OVERVIEW OF OPERATING MODES ............................................................................................. 28
TABLE 6: VBAT AND GND PINS ....................................................................................................................... 32
TABLE 7: PWRKEY PIN DESCRIPTION .......................................................................................................... 35
TABLE 8: RESET_N PIN DESCRIPTION ......................................................................................................... 37
TABLE 9: PIN DEFINITION OF THE USIM CARD INTERFACE ...................................................................... 39
TABLE 10: PIN DESCRIPTION OF USB INTERFACE ..................................................................................... 41
TABLE 11: PIN DEFINITION OF THE MAIN UART INTERFACE ..................................................................... 43
TABLE 12: PIN DEFINITION OF THE DEBUG UART INTERFACE ................................................................. 43
TABLE 13:LOGIC LEVELS OF DIGITAL I/O ..................................................................................................... 44
TABLE 14: PIN DEFINITION OF PCM AND I2C INTERFACES ....................................................................... 46
TABLE 15: PIN DEFINITION OF THE ADC ...................................................................................................... 48
TABLE 16: CHARACTERISTIC OF THE ADC .................................................................................................. 48
TABLE 17: PIN DEFINITION OF NETWORK CONNECTION STATUS/ACTIVITY INDICATOR ...................... 48
TABLE 18: WORKING STATE OF THE NETWORK CONNECTION STATUS/ACTIVITY INDICATOR ........... 49
TABLE 19: PIN DEFINITION OF STATUS ........................................................................................................ 50
TABLE 20: BEHAVIOR OF THE RI ................................................................................................................... 50
TABLE 21: PIN DEFINITION OF THE SGMII INTERFACE .............................................................................. 51
TABLE 22: PIN DEFINITION OF WIRELESS CONNECTIVITY INTERFACES ................................................ 53
TABLE 23: PIN DEFINITION OF USB_BOOT INTERFACE ............................................................................. 56
TABLE 24: GNSS PERFORMANCE ................................................................................................................. 58
TABLE 25: PIN DEFINITION OF THE RF ANTENNA ....................................................................................... 60
TABLE 26: MODULE OPERATING FREQUENCIES ........................................................................................ 60
TABLE 27: PIN DEFINITION OF GNSS ANTENNA INTERFACE ..................................................................... 64
TABLE 28: GNSS FREQUENCY ....................................................................................................................... 64
TABLE 29: ANTENNA REQUIREMENTS .......................................................................................................... 65
TABLE 30: ABSOLUTE MAXIMUM RATINGS .................................................................................................. 68
TABLE 31: THE MODULE POWER SUPPLY RATINGS .................................................................................. 69
TABLE 32: OPERATING TEMPERATURE ........................................................................................................ 69
TABLE 33: EC25-E CURRENT CONSUMPTION ............................................................................................. 70
TABLE 34: EC25-A CURRENT CONSUMPTION ............................................................................................. 72
TABLE 35: GNSS CURRENT CONSUMPTION OF EC25 SERIES MODULE ................................................. 73
TABLE 36: RF OUTPUT POWER ..................................................................................................................... 73
TABLE 37: EC25-E CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 74
TABLE 38: EC25-A CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 74
TABLE 39: EC25-V CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 75
TABLE 40: EC25-J CONDUCTED RF RECEIVING SENSITIVITY................................................................... 75
TABLE 41: ELECTROSTATICS DISCHARGE CHARACTERISTICS ............................................................... 76
EC25_Hardware_DesignConfidential / Released 6 / 90
LTE Module Series
EC25Hardware Design
TABLE 42: RELATED DOCUMENTS ................................................................................................................ 84
TABLE 43: TERMS AND ABBREVIATIONS ...................................................................................................... 84
TABLE 44: DESCRIPTION OF DIFFERENT CODING SCHEMES .................................................................. 88
TABLE 45: GPRS MULTI-SLOT CLASSES ...................................................................................................... 89
TABLE 46: EDGE MODULATION AND CODING SCHEMES ........................................................................... 90
EC25_Hardware_DesignConfidential / Released 7 / 90
LTE Module Series
EC25Hardware Design
Figure Index
FIGURE 1: FUNCTIONAL DIAGRAM ............................................................................................................... 16
FIGURE 2: PIN ASSIGNMENT (TOP VIEW) .................................................................................................... 18
FIGURE 3: SLEEP MODE APPLICATION VIA UART ....................................................................................... 29
FIGURE 4: SLEEP MODE APPLICATION WITH USB REMOTE WAKEUP .................................................... 30
FIGURE 5: SLEEP MODE APPLICATION WITH RI ......................................................................................... 30
FIGURE 6: SLEEP MODE APPLICATION WITHOUT SUSPEND FUNCTION ................................................ 31
FIGURE 7: POWER SUPPLY LIMITS DURING BURST TRANSMISSION ...................................................... 33
FIGURE 8: STAR STRUCTURE OF THE POWER SUPPLY ............................................................................ 33
FIGURE 9: REFERENCE CIRCUIT OF POWER SUPPLY .............................................................................. 34
FIGURE 10: TURN ON THE MODULE USING DRIVING CIRCUIT ................................................................. 35
FIGURE 11: TURN ON THE MODULE USING KEYSTROKE .......................................................................... 35
FIGURE 12: TIMING OF TURNING ON MODULE ........................................................................................... 36
FIGURE 13: TIMING OF TURNING OFF MODULE ......................................................................................... 37
FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT ...................................... 38
FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON ...................................................... 38
FIGURE 16: TIMING OF RESETTING MODULE ............................................................................................. 38
FIGURE 17: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH AN 8-PIN USIM CARD
CONNECTOR .................................................................................................................................................... 40
FIGURE 18: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH A 6-PIN USIM CARD CONNECTOR
........................................................................................................................................................................... 40
FIGURE 19: REFERENCE CIRCUIT OF USB APPLICATION ......................................................................... 42
FIGURE 20: REFERENCE CIRCUIT WITH TRANSLATOR CHIP ................................................................... 44
FIGURE 21: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT .............................................................. 45
FIGURE 22: PRIMARY MODE TIMING ............................................................................................................ 46
FIGURE 23: AUXILIARY MODE TIMING .......................................................................................................... 46
FIGURE 24: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC .................................... 47
FIGURE 25: REFERENCE CIRCUIT OF THE NETWORK INDICATOR .......................................................... 49
FIGURE 26: REFERENCE CIRCUITS OF STATUS ......................................................................................... 50
FIGURE 27: SIMPLIFIED BLOCK DIAGRAM FOR ETHERNET APPLICATION ............................................. 52
FIGURE 28: REFERENCE CIRCUIT OF SGMII INTERFACE WITH PHY AR8033 APPLICATION ................. 52
FIGURE 29: REFERENCE CIRCUIT OF WIRELESS CONNECTIVITY INTERFACES WITH FC20 MODULE
........................................................................................................................................................................... 55
FIGURE 30: REFERENCE CIRCUIT OF USB_BOOT INTERFACE ................................................................ 57
FIGURE 31: REFERENCE CIRCUIT OF RF ANTENNA INTERFACE ............................................................. 61
FIGURE 32: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB ...................................................................... 62
FIGURE 33: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB .................................................. 62
FIGURE 34: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE
GROUND) .......................................................................................................................................................... 63
FIGURE 35: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE
GROUND) .......................................................................................................................................................... 63
FIGURE 36: REFERENCE CIRCUIT OF GNSS ANTENNA ............................................................................. 64
EC25_Hardware_DesignConfidential / Released 8 / 90
LTE Module Series
EC25Hardware Design
FIGURE 37: DIMENSIONS OF THE UF.L-R-SMT CONNECTOR (UNIT: MM) ................................................ 66
FIGURE 38: MECHANICALS OF UF.L-LP CONNECTORS ............................................................................. 66
FIGURE 39: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM) ........................................................... 67
FIGURE 40: MODULE TOP AND SIDE DIMENSIONS ..................................................................................... 77
FIGURE 41: MODULE BOTTOM DIMENSIONS (BOTTOM VIEW) ................................................................. 78
FIGURE 42: RECOMMENDED FOOTPRINT (TOP VIEW) .............................................................................. 79
FIGURE 43: TOP VIEW OF THE MODULE ...................................................................................................... 80
FIGURE 44: BOTTOM VIEW OF THE MODULE .............................................................................................. 80
FIGURE 45: REFLOW SOLDERING THERMAL PROFILE .............................................................................. 82
FIGURE 46: TAPE AND REEL SPECIFICATIONS ........................................................................................... 83
EC25_Hardware_DesignConfidential / Released 9 / 90
LTE Module Series
EC25Hardware Design
1 Introduction
This document defines the EC25module and describes its air interface and hardware interface which are
connected with your application.
This document can help you quickly understand module interface specifications, electrical and
mechanical details, as well as other related information of EC25 module. Associated with application note
and user guide, you can use EC25 module to design and set up mobile applications easily.
EC25_Hardware_DesignConfidential / Released 10 / 90
LTE Module Series
EC25Hardware Design
1.1. Safety Information
The following safety precautions must be observed during all phases of the operation, such as usage,
service or repair of any cellular terminal or mobile incorporating EC25 module. Manufacturers of the cellular
terminal should send the following safety information to users and operating personnel, and incorporate
these guidelines into all manuals supplied with the product. If not so, Quectelassumes no liability for the
customer’s failure to comply with these precautions.
Full attention must be given to driving at all times in order to reduce the risk of an
accident. Using a mobile while driving (even with a handsfree kit) causes
distraction and can lead to an accident. You must comply with laws and regulations
restricting the use of wireless devices while driving.
Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is
switched off. The operation of wireless appliances in an aircraft is forbidden, so as
to prevent interference with communication systems. Consult the airline staff about
the use of wireless devices on boarding the aircraft, if your device offers an
Airplane Mode which must be enabled prior to boarding an aircraft.
Switch off your wireless device when in hospitals,clinics or other health care facilities. These requests are desinged to prevent possible interference with sensitive medical equipment.
Cellular terminals or mobiles operatingover radio frequency signal and cellular
network cannot be guaranteed to connect in all conditions, for example no mobile
fee or with an invalid USIM/SIM card. While you are in this condition and need
emergent help, please remember using emergency call. In order to make or
receive a call, the cellular terminal or mobile must be switched on and in a service
area with adequate cellular signal strength.
Your cellular terminal or mobile contains a transmitter and receiver. When it is ON,
it receives and transmits radio frequency energy. RF interference can occur if it is
used close to TV set, radio, computer or other electric equipment.
In locations with potentially explosive atmospheres, obey all posted signs to turn
off wireless devices such as your phone or other cellular terminals. Areas with
potentially explosive atmospheres include fuelling areas, below decks on boats,
fuel or chemical transfer or storage facilities, areas where the air contains
chemicals or particles such as grain, dust or metal powders, etc.
EC25_Hardware_DesignConfidential / Released 11 / 90
LTE Module Series
EC25Hardware Design
2 Product Concept
2.1. General Description
EC25 is a series of LTE-FDD/LTE-TDD/WCDMA/GSM wireless communication module with receive
diversity, which provides data connectivity on LTE-FDD,LTE-TDD,DC-HSPA+, HSPA+, HSDPA, HSUPA,
WCDMA,EDGE andGPRSnetworks. It also provides GNSS
application.EC25 contains fivevariants:EC25-E, EC25-A, EC25-V, EC25-Jand EC25-AU. You can choose
a dedicated type based on the region or operator. The following table shows the frequency bands of EC25
series module.
1)
and voice functionality2) for your specific
Table 1: Frequency Bands of EC25 Series Module
Modules2) LTE Bands 3G Bands GSM
EC25-E
EC25-A
EC25-V
EC25-J
EC25-AU3)
NOTES
FDD:B1/B3/B5/B7/B8/
B20
TDD: B38/B40/B41
FDD: B2/B4/B12
FDD: B4/B13 Not supported Not supported Supported
FDD: B1/B3/B8/B18/B19/
B26
TDD: B41
FDD: B1/B2/B3/B4/B5/B7/
B8/B28
TDD: B40
WCDMA:
B1/B5/B8
WCDMA:
B2/B4/B5
WCDMA:
B1/B6/B8/
B19
WCDMA:
B1/B2/B5/B8
900/1800 Supported
Not supported Supported
Not supported Supported
850/900/
1800/1900
Rx­diversity
Supported
GNSS1)
GPS,
GLONASS,
BeiDou/
Compass,
Galileo,
QZSS
1)
1.
GNSS function is optional.
2)
2.
3.
EC25_Hardware_DesignConfidential / Released 12 / 90
EC25 series module (EC25-E/EC25-A/EC25-V/EC25-J/EC25-AU) includes Data-only and
Telematics versions. Data-only version does not support voice function, while Telematics version
supports it.
3)
B2 band on EC25-AU module does not support Rx-diversity.
LTE Module Series
EC25Hardware Design
With a tiny profile of 32.0mm ×29.0mm ×2.4mm, EC25 can meet almost all requirements for M2M
applications such as automotive, metering, tracking system, security, router, wireless POS, mobile
computing device, PDA phone, tablet PC, etc.
EC25 is an SMD type module which can be embedded in applications through its 144-pin pads, including
80 LCC signal pads and 64 other pads.
2.2. Key Features
The following table describes the detailed features of EC25 module.
Table 2: Key Features of EC25 Module
Feature Details
Power Supply Supply voltage: 3.3V~4.3VTypical supply voltage: 3.8V
Class 4 (33dBm±2dB) for GSM900
Class 1 (30dBm±2dB) for DCS1800
Class E2 (27dBm±3dB) for GSM900 8-PSK
Transmitting Power
Class E2 (26dBm±3dB) for DCS1800 8-PSK
Class 3 (23dBm+1/-3dB) for WCDMA bands
Class 3 (23dBm+1/-3dB) for LTE-FDD band5
Class 3 (22.5dBm+1/-3dB) for LTE-FDD band7
Class 3 (23dBm+1/-3dB) for LTE-TDD bands
Support up to non-CA CAT4
Support 1.4 to 20MHz RF bandwidth
LTE Features
Support MIMO in DL direction
FDD: Max 50Mbps (UL), 150Mbps (DL)
TDD: Max 35Mbps (UL), 130Mbps (DL)
Support 3GPP R8 DC-HSPA+
WCDMA Features
Support 16-QAM, 64-QAM and QPSKmodulation
3GPP R6 CAT6 HSUPA: Max 5.76Mbps (UL)
3GPP R8 CAT24 DC-HSPA+: Max 42Mbps (DL)
R99:
CSD: 9.6kbps, 14.4kbps
GPRS:
GSMFeatures
Support GPRS multi-slot class 12 (12 by default)
Coding scheme: CS-1, CS-2, CS-3 and CS-4
Maximum of four Rx time slots per frame
EDGE:
Support EDGE multi-slot class 12 (12 by default)
EC25_Hardware_DesignConfidential / Released 13 / 90
EC25Hardware Design
Support GMSK and 8-PSK for different MCS (Modulation and Coding
Scheme)
Downlink coding schemes: CS 1-4 and MCS 1-9
Uplink coding schemes: CS 1-4 and MCS 1-9
SupportTCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/HTTPS*/SMTP*/MMS*
/FTPS*/SMTPS*/SSL*protocols
Internet Protocol Features
Support the protocols PAP (Password Authentication Protocol) and CHAP
(Challenge Handshake Authentication Protocol) usually used for PPP
connections
Text and PDU mode
SMS
Point to point MO and MT
SMS cell broadcast
SMS storage: ME by default
USIM Interface Support USIM/SIM card: 1.8V, 3.0V
Support one digital audio interface: PCM interface
GSM: HR/FR/EFR/AMR/AMR-WB
Audio Features
WCDMA: AMR/AMR-WB
LTE: AMR/AMR-WB
Support echo cancellation and noise suppression
LTE Module Series
PCM Interface
USB Interface
UART Interface
Used for audio function with external codec
Support 8-bit A-law*, μ-law*and 16-bit linear data formats
Support long frame synchronization and short frame synchronization
Support master and slave modes, but must be the master in long frame
synchronization
Compliant with USB 2.0 specification (slave only);the data transfer rate can
reach up to 480Mbps
Used for AT command communication, data transmission, GNSS NMEA
output, software debugging, firmware upgrade and voiceover USB*
Support USB drivers for: Windows XP, Windows Vista, Windows 7,
Windows 8/8.1, Windows 10, Linux 2.6 or later, Android
4.0/4.2/4.4/5.0/5.1/6.0
Main UART:
Used for AT command communication and data transmission
Baud rate reach up to 3000000bps, 115200bps by default
Support RTS and CTS hardware flow control
Debug UART:
Used for Linux console, log output
115200bps baud rate
SGMII Interface Support 10/100/1000Mbps Ethernet connectivity
Wireless Connectivity
Interfaces
Support a low-power SDIO 3.0 interface for WLAN and UART/PCM
interface for Bluetooth*
EC25_Hardware_DesignConfidential / Released 14 / 90
EC25Hardware Design
Rx-diversity Support LTE/WCDMA Rx-diversity
LTE Module Series
GNSS Features
AT Commands
Network Indication
Antenna Interface
Physical Characteristics
Temperature Range
Gen8CLite of Qualcomm
Protocol: NMEA 0183
Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT
commands
Two pins including NET_MODE and NET_STATUS to indicate network
connectivity status
Including main antenna interface (ANT_MAIN), Rx-diversityantenna
interface (ANT_DIV) and GNSS antenna interface (ANT_GNSS)
Size: 32.0±0.15×29.0±0.15×2.4±0.2mm
Weight: approx. 4.9g
Operation temperature range: -35°C ~ +75°C
Extended temperature range: -40°C ~ +85°C
1)
2)
Firmware Upgrade USB interface and DFOTA*
RoHS All hardware components are fully compliant with EU RoHS directive
NOTES
1)
1.
Within operation temperature range, the module is 3GPP compliant.
2)
2.
Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There
are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like
P
might reduce in their value and exceed the specified tolerances. When the temperature returns to
out
the normal operating temperature levels, the module will meet 3GPP compliant again.
3. “*” means under development.
2.3. Functional Diagram
The following figure shows a block diagram of EC25 and illustrates the major functional parts.
EC25_Hardware_DesignConfidential / Released 15 / 90
EC25Hardware Design
Power management
Baseband
DDR+NAND flash
Radio frequency
Peripheral interfaces
LTE Module Series
ANT_MAIN ANT_DIVANT_GNSS
VBAT_RF
VBAT_BB
PWRKEY
RESET_N
ADCs
STATUS
APT
PMIC
Tx
Control
19.2M
PA
XO
Switch
Duplex
PRx DRx
SAW
LNA
Transceiver
IQ Control
Baseband
Switch
SAW
NAND DDR2
SDRAM
VDD_EXT
USB
USIM
PCM
SGMII
WLAN
I2C
UART
GPIOs
BT
Figure 1: Functional Diagram
2.4. Evaluation Board
In order to help youto develop applications with EC25, Quectel supplies an evaluation board (EVB), USB
data cable, earphone, antenna and other peripherals to control or test the module.
EC25_Hardware_DesignConfidential / Released 16 / 90
LTE Module Series
EC25Hardware Design
3 Application Interface
3.1. General Description
EC25 is equipped with 80-pin SMT pads plus 64-pin ground pads and reserved pads that can
beconnected to cellular application platform. Sub-interfaces included in these pads are described in detail
in the following chapters:
Power supply
USIM interface
USB interface
UART interfaces
PCM interface
ADC interface
Status indication
SGMII interface
Wireless connectivityinterfaces
USB_BOOT interface
EC25_Hardware_DesignConfidential / Released 17 / 90
EC25Hardware Design
3.2. Pin Assignment
The following figure shows the pin assignment of EC25 module.
LTE Module Series
WAKEUP_IN
AP_READY
RESERVED
W_DISABLE#
NET_MODE
NET_STATUS
VDD_EXT
RESERVED
RESERVED
GND
GND
USIM_GND
DBG_RXD
DBG_TXD
USIM_PRESENCE
USIM_VDD
USIM_DATA
USIM_CLK
USIM_RST
RESERVED
1)
1
2
3
4
1)
5
6
7
141
142
8
9
10
11
12
13
129
130
131
132
133
134
135
136
137
138
117
118
119
120
121
122
123
124
125
126
108
109
110
111
103
104
105
106
99
100
82
83
84
101
79
80
81
76
77
78
95
96
97
73
74
75
90
91
92
93
85
86
87
88
14
139
15
16
17
140
127
128
112
107
102
98
94
89
18
54
53
52
51
50
49
48
144
143
47
46
45
44
43
42
41
40
39
38
37
GND
GND
GND
GND
GND
ANT_MAIN
GND
RESERVED
RESERVED
ANT_GNSS
GND
ADC0
ADC1
RESERVED
I2C_SDA
I2C_SCL
BT_CTS
BT_RXD
BT_TXD
BT_RTS
GND Pins
WLAN Pins Bluetooth Pins
Signal Pins RESERVED Pins
Power Pins
SGMII Pins
Figure 2: Pin Assignment (Top View)
NOTES
1. 1)meansthat these pins cannot be pulled up before startup.
2)
2.
PWRKEY output voltage is 0.8V because of the diode drop in the Qualcomm chipset.
3. Pads 119~126 are SGMII function pins.
4. Pads 37~40, 118, 127 and 129~139 are wireless connectivity interfaces, among which pads 127 and
129~138 are WLAN function pins, and others are Bluetooth (BT) function pins. BT function is under
development.
EC25_Hardware_DesignConfidential / Released 18 / 90
LTE Module Series
EC25Hardware Design
5. Pads 24~27 are multiplexing pins used for audio design on EC25 module and BT function on FC20
module.
6. Keep all RESERVEDpins and unused pins unconnected.
7. GND pads 85~112 should be connected to ground in the design, and RESERVED pads 73~84should
not be designed in schematic and PCB decal.
8. “
”means these interface functions are only supported on Telematics version.
3.3. Pin Description
The following tables show the pin definition of EC25 modules.
Table 3: I/O Parameters Definition
Type Description
IO Bidirectional
DI Digital input
DO Digital output
PI Power input
PO Power output
AI Analog input
AO Analog output
OD Open drain
Table 4: Pin Description
Power Supply Pin Name Pin No. I/O Description DC Characteristics Comment
VBAT_BB 59,60 PI
VBAT_RF 57,58 PI
Power supply for
module baseband
part
Power supply for
module RF part
Vmax=4.3V
Vmin=3.3V
Vnorm=3.8V
Vmax=4.3V
Vmin=3.3V
Vnorm=3.8V
It must be able to
provide sufficient
current up to 0.8A.
It must be able to
provide sufficient
current up to 1.8A in a
EC25_Hardware_DesignConfidential / Released 19 / 90
LTE Module Series
EC25Hardware Design
bursttransmission.
Power supply for
external GPIO’s pull up
circuits.
VDD_EXT 7 PO
Provide 1.8V for
external circuit
Vnorm=1.8V
I
max=50mA
O
8,9,19,22,3
GND
6,46,48,50
~54,56,72,
Ground
85~112
Turn on/off
Pin Name Pin No. I/O Description DC Characteristics Comment
The output voltage is
0.8V because of the
diode drop in the
Qualcomm chipset.
PWRKEY 21 DI
Turnon/off the
module
RESET_N 20 DI Reset the module
V
max=2.1V
IH
V
min=1.3V
IH
V
max=0.5V
IL
max=2.1V
V
IH
V
min=1.3V
IH
V
max=0.5V
IL
Status Indication
Pin Name Pin No. I/O Description DC Characteristics Comment
STATUS 61 OD
Indicate the module
operating status
The drive current
should be less than
0.9mA.
Require external
pull-up. If unused,
keep it open.
1.8V power domain.
Cannot be pulled up
before startup.
If unused, keep it
NET_MODE 5 DO
Indicate the module
network registration
mode
V
min=1.35V
OH
V
max=0.45V
OL
open.
NET_
STATUS
Indicate the module
6 DO
network activity
status
V
min=1.35V
OH
V
max=0.45V
OL
1.8V power domain.
If unused, keep it
open.
USB Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
Vmax=5.25V
USB_VBUS 71 PI USB detection
Vmin=3.0V
Vnorm=5.0V
USB_DP 69 IO
USB differential data
bus
Compliant with USB
2.0 standard
specification.
EC25_Hardware_DesignConfidential / Released 20 / 90
Require differential
impedance of 90ohm.
LTE Module Series
EC25Hardware Design
USB_DM 70 IO
USB differential data
bus
Compliant with USB
2.0 standard
specification.
Require differential
impedance of 90ohm.
USIM Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
USIM_GND 10
Specified ground for
USIM card
For 1.8V USIM:
Vmax=1.9V
USIM_VDD 14 PO
Power supply for
USIM card
Vmin=1.7V
For 3.0V USIM:
Vmax=3.05V
Either 1.8V or 3.0V is
supported by the
module automatically.
Vmin=2.7V
I
max=50mA
O
For 1.8V USIM:
V
max=0.6V
IL
V
min=1.2V
IH
V
max=0.45V
OL
V
min=1.35V
OH
For 3.0V USIM:
V
max=1.0V
IL
V
min=1.95V
IH
V
max=0.45V
OL
V
min=2.55V
OH
USIM_DATA 15 IO
Data signal of USIM
card
For 1.8V USIM:
V
max=0.45V
OL
V
min=1.35V
OH
For 3.0V USIM:
V
max=0.45V
OL
V
min=2.55V
OH
USIM_CLK 16 DO
Clock signal of USIM
card
For 1.8V USIM:
V
max=0.45V
OL
V
min=1.35V
OH
For 3.0V USIM:
V
max=0.45V
OL
V
min=2.55V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
1.8V power domain.
If unused, keep it
USIM_RST 17 DO
USIM_
PRESENCE
13 DI
Reset signal of
USIM card
USIM card insertion
detection
EC25_Hardware_DesignConfidential / Released 21 / 90
LTE Module Series
EC25Hardware Design
VIHmin=1.2V
open.
VIHmax=2.0V
UART Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
V
RI 62 DO Ring indicator
DCD 63 DO
Data carrier
detection
CTS 64 DO Clear to send
RTS 65 DI Request to send
OL
V
OH
V
OL
V
OH
V
OL
V
OH
V
IL
V
IL
V
IH
V
IH
max=0.45V
min=1.35V
max=0.45V
min=1.35V
max=0.45V
min=1.35V
min=-0.3V
max=0.6V
min=1.2V
max=2.0V
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
Data terminal
DTR 66 DI
ready,sleep mode
control
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
Pull-up by default.
Low level wakes up
the module.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
TXD 67 DO Transmit data
RXD 68 DI Receive data
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
Debug UART Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
DBG_TXD 12 DO Transmit data
DBG_RXD 11 DI Receive data
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
EC25_Hardware_DesignConfidential / Released 22 / 90
LTE Module Series
EC25Hardware Design
ADC Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
General purpose
ADC0 45 AI
analog to digital
converter
General purpose
ADC1 44 AI
analog to digital
converter
Voltage range:
0.3V to VBAT_BB
Voltage range:
0.3V to VBAT_BB
If unused, keep it
open.
If unused, keep it
open.
PCM Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
V
min=-0.3V
PCM_IN 24 DI PCM data input
PCM_OUT 25 DO PCM data output
PCM data frame
PCM_SYNC 26 IO
synchronization signal
PCM_CLK 27 IO PCM clock
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
VOLmax=0.45V
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open.
1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal.
If unused, keep it
open.
I2C Interface Pin Name Pin No. I/O Description DC Characteristics Comment
I2C serial clock
I2C_SCL 41 OD
Used for external
codec.
External pull-up
resistor is required.
1.8V only. If unused,
keep it open.
External pull-up
I2C_SDA 42 OD
I2C serial dataUsed
for external codec.
resistor is required.
1.8V only. If unused,
keep it open.
EC25_Hardware_DesignConfidential / Released 23 / 90
LTE Module Series
EC25Hardware Design
SGMII Interface Pin Name Pin No. I/O Description DC Characteristics Comment
For 1.8V:
V
max=0.45V
EPHY_RST_
N
119 DO Ethernet PHY reset
EPHY_INT_N 120 DI
Ethernet PHY
interrupt
OL
VOHmin=1.4V
For 2.85V:
V
max=0.35V
OL
V
min=2.14V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
1.8V/2.85V power
domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
For 1.8V:
V
max=0.45V
OL
V
min=1.4V
OH
V
max=0.58V
SGMII_
MDATA
SGMII MDIO
121 IO
(Management Data
Input/Output) data
IL
V
min=1.27V
IH
For 2.85V:
V
max=0.35V
OL
V
min=2.14V
OH
V
max=0.71V
IL
V
min=1.78V
IH
1.8V/2.85V power
domain.
If unused, keep it
open.
For 1.8V:
V
max=0.45V
SGMII_
MCLK
SGMII MDIO
122 DO
(Management Data
Input/Output) clock
OL
V
min=1.4V
OH
For2.85V:
V
max=0.35V
OL
V
min=2.14V
OH
1.8V/2.85V power
domain.
If unused, keep it
open.
Configurable power
source.
1.8V/2.85V power
USIM2_VDD 128 PO
SGMII MDIO pull-up
power source
domain.
External pull-up for
SGMII MDIO pins.
If unused, keep it
open.
SGMII_TX_M 123 AO
SGMII transmission
- minus
If unused, keep it
open.
SGMII_TX_P 124 AO SGMII transmission If unused, keep it
EC25_Hardware_DesignConfidential / Released 24 / 90
LTE Module Series
EC25Hardware Design
- plus open.
SGMII_RX_P 125 AI
SGMII_RX_M 126 AI
SGMII receiving
- plus
SGMII receiving
-minus
If unused, keep it
open.
If unused, keep it
open.
Wireless Connectivity Interfaces Pin Name Pin No. I/O Description DC Characteristics Comment
V
max=0.45V
OL
V
min=1.35V
SDC1_
DATA3
SDC1_
DATA2
SDC1_
DATA1
SDC1_
DATA0
129 IO SDIO data bus D3
130 IO SDIO data bus D2
131 IO SDIO data bus D1
132 IO SDIO data bus D0
SDC1_CLK 133 DO SDIO clock
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
V
max=0.45V
SDC1_CMD 134 DO SDIO command
PM_ENABLE 127 DO
WAKE_ON_
WIRELESS
135 DI
External power
control
Wake up the host
(EC25 module) by
OL
V
OH
V
max=0.45V
OL
V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
EC25_Hardware_DesignConfidential / Released 25 / 90
min=1.35V
min=1.35V
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
Active low.
LTE Module Series
EC25Hardware Design
FC20 module. VIHmin=1.2V
WLAN function
WLAN_EN 136 DO
control via FC20
module
COEX_UART
_RX
COEX_UART
_TX
WLAN_SLP_
CLK
137 DI
138 DO
118 DO WLAN sleep clock
BT_RTS* 37 DI
BT_TXD* 38 DO
LTE/WLAN&BT
coexistence signal
LTE/WLAN&BT
coexistence signal
BT UART request to
send
BT UART transmit
data
VIHmax=2.0V
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
If unused, keep it
open.
1.8V power domain.
Active high.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
V
min=-0.3V
BT_RXD* 39 DI
BT_CTS* 40 DO
BT_EN* 139 DO
BT UART receive
data
BT UART clear to
send
BT function control
via FC20 module
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
V
max=0.45V
OL
V
min=1.35V
OH
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
RF Interface Pin Name Pin No. I/O Description DC Characteristics Comment
ANT_DIV 35 AI Diversity antenna 50ohm impedance
If unused, keep it
open.
ANT_MAIN 49 IO Main antenna 50ohm impedance
ANT_GNSS 47 AI GNSS antenna 50 ohm impedance
If unused, keep it
open.
GPIO Pins
EC25_Hardware_DesignConfidential / Released 26 / 90
LTE Module Series
EC25Hardware Design
Pin Name Pin No. I/O Description DC Characteristics Comment
1.8V power domain.
Cannot be pulled up
before startup.
Low level wakes up
the module.
If unused, keep it
WAKEUP_IN 1 DI Sleep mode control
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
open.
1.8V power domain.
Pull-up by default.
In low voltage level,
module can enter into
airplane mode.
If unused, keep it
open.
W_DISABLE# 4 DI
Airplane mode
control
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
min=-0.3V
AP_READY 2 DI
Application
processor sleep
state detection
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
1.8V power domain.
If unused, keep it
open.
USB_BOOT Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
V
min=-0.3V
USB_BOOT 115 DI
Force the module to
boot from USB port
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
1.8V power domain.
If unused, keep it
open.
RESERVED Pins
Pin Name Pin No. I/O Description DC Characteristics Comment
3, 18, 23,
28~34, 43,
RESERVED
55, 73~84,
113, 114,
Reserved
Keep these pins
unconnected.
116, 117,
140~144
NOTES
1. “*” means under development.
2. Pads 24~27 are multiplexing pins used for audio design on EC25 module and BT function on FC20
module.
EC25_Hardware_DesignConfidential / Released 27 / 90
LTE Module Series
EC25Hardware Design
3.4. Operating Modes
The table below briefly summarizes the various operating modes referred in the following chapters.
Table 5: Overview of Operating Modes
Mode Details
Normal
Idle
Operation
Talk/Data
Minimum
Functionality
Mode
Airplane Mode
AT+CFUN command can set the module to a minimum functionality mode without
removing the power supply. In this case, both RF function and USIM card will be
invalid.
AT+CFUN command or W_DISABLE# pin can set the module to airplane mode. In
this case, RF function will be invalid.
In this mode, the current consumption of the module will be reduced to the minimal
Sleep Mode
level. During this mode, the module can still receive paging message, SMS, voice call
and TCP/UDP data from the network normally.
Power Down
Mode
In this mode, the power management unit shuts down the power supply. Software is
not active. The serial interface is not accessible. Operating voltage (connected to
VBAT_RF and VBAT_BB) remains applied.
3.5. Power Saving
Software is active. The module hasregistered onthe network, and it is
ready to send and receive data.
Network connection is ongoing. In this mode, the power consumption is
decided by network settingand data transfer rate.
3.5.1. Sleep Mode
EC25 is able to reduce its current consumption to a minimum value during the sleep mode. The following
section describes power saving procedure of EC25 module.
3.5.1.1. UART Application
If the host communicates with module via UART interface, the following preconditions can let the module
enter into sleep mode.
Execute AT+QSCLK=1command to enable sleep mode.
Drive DTR to high level.
EC25_Hardware_DesignConfidential / Released 28 / 90
LTE Module Series
EC25Hardware Design
The following figure shows the connection between the module and the host.
Figure 3: Sleep Mode Application via UART
Driving the host DTR to low level will wake up the module.
When EC25 has URC to report, RI signal will wake up the host. Refer to Chapter 3.16 for details
about RI behavior.
AP_READY will detect the sleep state of the host (can be configured to high level or low level
detection). Please refer to AT+QCFG=“apready”command for details.
NOTE
AT+QCFG=“apready”commandis under development.
3.5.1.2. USB Application with USB Remote Wakeup Function
If the host supports USB suspend/resume and remote wakeup function, the followingthreepreconditions
must be met tolet the module enter into the sleep mode.
Execute AT+QSCLK=1command to enable the sleep mode.
Ensure the DTR is held in high level or keep it open.
The host’s USB bus, which is connected with the module’s USB interface, enters into suspended
state.
EC25_Hardware_DesignConfidential / Released 29 / 90
LTE Module Series
EC25Hardware Design
The following figure shows the connection between the module and the host.
Figure 4: Sleep ModeApplication with USB Remote Wakeup
Sending data to EC25through USB will wake up the module.
When EC25has URC to report, the module will send remote wake-up signals viaUSB bus so as to
wake up the host.
3.5.1.3. USB Application with USB Suspend/Resume and RI Function
If the host supports USB suspend/resume, but does not support remote wake-up function, the RI signal is
needed to wake up the host.
There are threepreconditions to let the module enter into the sleep mode.
Execute AT+QSCLK=1command to enable the sleep mode.
Ensure the DTR is held in high level or keep it open.
The host’s USB bus, which is connected with the module’s USB interface, enters into suspended
state.
The following figure shows the connection between the module and the host.
Figure 5: Sleep Mode Application with RI
EC25_Hardware_DesignConfidential / Released 30 / 90
LTE Module Series
EC25Hardware Design
Sending data to EC25through USB will wake up the module.
When EC25has URC to report, RI signal will wake up the host.
3.5.1.4. USB Application without USB Suspend Function
If the host does not support USB suspend function, you should disconnect USB_VBUS with additional
control circuit to let the module enter into sleep mode.
Execute AT+QSCLK=1commandto enable the sleep mode.
Ensure the DTR is held in high level or keep it open.
Disconnect USB_VBUS.
The following figure shows the connection between the module and the host.
Module Host
GPIO
USB_VBUS
USB_DP
USB_DM
RI
AP_READY
GND
Power
Switch
Figure 6: Sleep Mode Application without Suspend Function
Switching on the power switch to supply power to USB_VBUS will wake up the module.
NOTE
Please pay attention to the level match shown in dotted line between the module and the host.Refer to
document [1] for more details about EC25 power management application.
VDD
USB_DP
USB_DM
EINT
GPIO
GND
3.5.2. Airplane Mode
When the module enters into airplane mode, the RF function does not work, and all AT commands
correlative with RF function will be inaccessible. This mode can be set via the following ways.
EC25_Hardware_DesignConfidential / Released 31 / 90
LTE Module Series
EC25Hardware Design
Hardware:
The W_DISABLE# pin is pulled up by default; driving it to low level will let the module enter into airplane
mode.
Software: AT+CFUNcommand provides the choice of the functionality level.
AT+CFUN=0: Minimum functionality mode; both USIM and RF functions are disabled.  AT+CFUN=1: Full functionality mode (by default).  AT+CFUN=4: Airplane mode. RF function is disabled.
NOTES
1. The W_DISABLE# control function is disabled in firmware by default. It can be enabled
byAT+QCFG=“airplanecontrol”command. This commandis under development.
2. The execution of AT+CFUN command will not affect GNSS function.
3.6. Power Supply
3.6.1. Power Supply Pins
EC25 provides four VBAT pins dedicated to connect with the external power supply. There are two
separate voltage domains for VBAT.
Two VBAT_RF pins for module RF part
Two VBAT_BB pins for module baseband part
The following table shows the details of VBAT pins and ground pins.
Table 6: VBAT and GND Pins
Pin Name Pin No. Description Min. Typ. Max. Unit
VBAT_RF 57,58
VBAT_BB 59,60
8,9,19,22,
GND
EC25_Hardware_DesignConfidential / Released 32 / 90
36,46,
48,50~54,56,
Power supply for module RF
part
Power supply for module
baseband part
Ground - 0 - V
3.3 3.8 4.3 V
3.3 3.8 4.3 V
LTE Module Series
EC25Hardware Design
72, 85~112
3.6.2. Decrease Voltage Drop
The power supply range of the module is from 3.3Vto4.3V. Please make sure that the input voltage will
never drop below 3.3V. The following figure shows the voltage drop during burst transmission in 2G
network. The voltage drop will be less in 3G and 4G networks.
Burst
Transmission
VBAT
Drop
Min.3.3V
Burst
Transmission
Ripple
Figure 7: Power Supply Limits during Burst Transmission
To decrease voltage drop, a bypass capacitor of about 100µF with low ESR should be used, and a
multi-layer ceramic chip (MLCC) capacitor array should also be used toprovide the low ESR. The main
power supply from an external application has to be a single voltage source and can be expanded to two
sub paths with star structure. The width of VBAT_BB trace should be no less than 1mm; andthe width of
VBAT_RF trace should be no less than 2mm.In principle, the longer the VBAT trace is, the wider it will be.
Three ceramic capacitors (100nF, 33pF, 10pF) are recommended to be applied to the VBAT pins. These
capacitors should be placed close to the VBAT pins. In addition, in order to get a stable power source, it is
suggested that you should use a zener diode of which reverse zener voltage is 5.1V and dissipation
power is more than 0.5W. The following figure shows the star structure of the power supply.
Figure 8: Star Structure of the Power Supply
EC25_Hardware_DesignConfidential / Released 33 / 90
LTE Module Series
EC25Hardware Design
3.6.3. Reference Design for Power Supply
Power design for the module is very important, asthe performance of the module largely depends on the
power source. The power supply is capable of providing sufficient current up to 2A at least. If the voltage
drop between the input and output is not too high, it is suggested that you shoulduse an LDO to supply
power for the module. If there is a big voltage difference between the input source and the desired output
(VBAT), a buck converter is preferred to be used as thepower supply.
The following figure shows a reference design for +5V input power source. The typical output of the power
supplyis about 3.8V and the maximum load current is 3A.
Figure 9: Reference Circuit of Power Supply
NOTE
In order to avoid damaging internal flash, please do not switch off the power supply when the module
works normally. Only after the module is shutdown by PWRKEY or AT command, the power supply can be
cut off.
3.6.4. Monitor the Power Supply
AT+CBC command can be used to monitor the VBAT_BB voltage value. For more details, please refer to
document [2].
3.7. Turn on and off Scenarios
3.7.1. Turn on Module Using the PWRKEY
The following table shows the pin definition of PWRKEY.
EC25_Hardware_DesignConfidential / Released 34 / 90
LTE Module Series
EC25Hardware Design
Table 7: PWRKEY Pin Description
Pin Name Pin No. Description DC Characteristics Comment
max=2.1V
PWRKEY 21 Turn on/off the module
V
IH
V
min=1.3V
IH
V
max=0.5V
IL
The output voltage is 0.8V
because of the diode drop in
the Qualcomm chipset.
When EC25 is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a
low level for at least 100ms. It is recommended to use an open drain/collector driver to control the
PWRKEY.After STATUS pin (require external pull-up) outputting a low level, PWRKEY pin can be
released. A simple reference circuit is illustrated in the following figure.
Figure 10: Turn on the Module Using Driving Circuit
The other way to control the PWRKEY is using a button directly. When pressing the key, electrostatic
strike may generate from finger. Therefore, aTVS component is indispensable to be placed nearby the
button for ESD protection. A reference circuit is shownin the following figure.
Figure 11: Turn on the Module Using Keystroke
EC25_Hardware_DesignConfidential / Released 35 / 90
EC25Hardware Design
The turn on scenario is illustrated in the following figure.
LTE Module Series
Figure 12: Timing of Turning on Module
NOTE
Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is no
less than 30ms.
3.7.2. Turn off Module
The following procedures can be used to turn off the module:
Normal power down procedure: Turn off the module using the PWRKEY pin.
Normal power down procedure: Turn off the module using AT+QPOWDcommand.
3.7.2.1. Turn off Module Using the PWRKEY Pin
Driving the PWRKEY pin to a low level voltage for at least 650ms, the module will execute power-down
procedure after the PWRKEY is released. The power-down scenario is illustrated inthe following figure.
EC25_Hardware_DesignConfidential / Released 36 / 90
LTE Module Series
EC25Hardware Design
Figure 13: Timing of Turning off Module
3.7.2.2. Turn off Module Using AT Command
It is also a safe way to use AT+QPOWDcommand to turn off the module, which is similar to turning off the
module via PWRKEY pin.
Please refer todocument [2] for details about AT+QPOWD command.
NOTE
Inorder to avoid damaging internal flash, please do not switch off the power supply when the module
works normally. Only after the module is shutdown by PWRKEY or AT command, the power supply can be
cut off.
3.8. Reset the Module
The RESET_N pin can be used to reset the module.The module can be reset by driving RESET_N to a
low level voltage for time between 150ms and 460ms.
Table 8: RESET_N Pin Description
Pin Name Pin No. Description DC Characteristics Comment
max=2.1V
V
IH
RESET_N 20 Reset the module
V
min=1.3V
IH
V
max=0.5V
IL
EC25_Hardware_DesignConfidential / Released 37 / 90
LTE Module Series
EC25Hardware Design
The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button
can be used to control the RESET_N.
Figure 14: Reference Circuit of RESET_N by Using Driving Circuit
Figure 15: Reference Circuit of RESET_N by Using Button
The reset scenario is illustrated inthe following figure.
Figure 16: Timing of Resetting Module
EC25_Hardware_DesignConfidential / Released 38 / 90
LTE Module Series
EC25Hardware Design
NOTES
1. Use RESET_N only when turning off the module by AT+QPOWDcommand and PWRKEY pin failed.
2. Ensure that there is no large capacitance on PWRKEY and RESET_N pins.
3.9. USIM Card Interface
The USIM card interface circuitrymeets ETSI and IMT-2000 SIM interface requirements. Both 1.8V and
3.0V USIM cards are supported.
Table 9: Pin Definition of the USIM Card Interface
Pin Name Pin No. I/O Description Comment
USIM_VDD 14 PO Power supply for USIM card
Either 1.8V or 3.0V is supported
by the module automatically.
USIM_DATA 15 IO Data signal of USIM card
USIM_CLK 16 DO Clock signal of USIM card
USIM_RST 17 DO Reset signal of USIM card
USIM_
PRESENCE
13 DI USIM card insertion detection
USIM_GND 10 Specified ground for USIM card
EC25 supports USIM card hot-plug via the USIM_PRESENCE pin. The function supports low level and
high level detections, and isdisabled by default. Please refer to document [2] about AT+QSIMDET
command for details.
EC25_Hardware_DesignConfidential / Released 39 / 90
LTE Module Series
EC25Hardware Design
The following figure shows a reference design for USIM card interface with an 8-pin USIM card connector.
Figure 17: Reference Circuit of USIM Card Interface with an 8-Pin USIM Card Connector
If USIM card detection function is not needed, please keep USIM_PRESENCE unconnected. Areference
circuit for USIM card interface witha 6-pin USIM card connector is illustrated inthe following figure.
Figure 18: Reference Circuit of USIM Card Interface with a 6-Pin USIM Card Connector
EC25_Hardware_DesignConfidential / Released 40 / 90
LTE Module Series
EC25Hardware Design
In order to enhance the reliability and availability of the USIM card in your application, please follow the
criteria below in USIM circuit design:
Keep layout of USIM card as close to the module as possible. Keep the trace length as less than
200mm as possible.
Keep USIM card signals away from RF and VBAT traces.
Assure the ground between the module and the USIM card connector short and wide. Keep thetrace
width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential.
To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away fromeach other and
shield them with surrounded ground.
In order to offer good ESD protection, it is recommended to add a TVS diode array whose parasitic
capacitance should not be more than 50pF. The 22ohmresistors should be added in series between
the module and the USIM card so as to suppress EMI spurious transmission and enhance ESD
protection. The 33pFcapacitors are used for filtering interference of GSM900.Please note that the
USIM peripheral circuit should be close to the USIM card connector.
The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace
and sensitive occasion areapplied, and should be placed close to the USIM card connector.
3.10. USB Interface
EC25 contains one integrated Universal Serial Bus (USB) transceiver which complies with the USB 2.0
specification and supports high-speed (480Mbps) and full-speed (12Mbps)modes. The USB interface is
used for AT command communication, data transmission, GNSS NMEA sentences output, software
debugging, firmware upgrade and voice over USB*. The following table shows the pin definition of USB
interface.
Table 10: Pin Description of USB Interface
Pin Name Pin No. I/O Description Comment
USB Signal Part
USB_DP 69 IO USB differential data bus (positive)
USB_DM 70 IO USB differential data bus (minus)
Require differential
impedance of 90
Require differential
impedance of 90
USB_VBUS 71 PI Used for detecting the USB connection Typical 5.0V
GND 72 Ground
For more details about the USB 2.0 specifications, please visithttp://www.usb.org/home
.
EC25_Hardware_DesignConfidential / Released 41 / 90
LTE Module Series
EC25Hardware Design
The USB interface is recommended to be reserved for firmware upgrade in your design. The following
figure shows areference circuit of USB interface.
Figure 19: Reference Circuit of USB Application
In order to ensurethe integrity of USB data line signal, components R1, R2, R3 and R4 must be placed
close to the module, and also these resistors should be placed close to each other. The extra stubs of
trace must be as short as possible.
In order to ensure the USB interface design corresponding with the USB 2.0 specification, please comply
with the following principles:
It is important to route the USB signal traces as differential pairs with total grounding. The impedance
of USB differential trace is 90ohm.
Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is
important to route the USB differential traces in inner-layer with ground shielding onnot only upper
and lower layers but also right and left sides.
Pay attention to the influence of junction capacitance of ESD protection components on USB data
lines. Typically, the capacitance value should be less than 2pF.
Keep the ESD protection components to the USB connector as close as possible.
NOTES
1. EC25 module can only be used as a slave device.
2. “*” means under development.
EC25_Hardware_DesignConfidential / Released 42 / 90
LTE Module Series
EC25Hardware Design
3.11. UART Interfaces
The module provides two UART interfaces: the main UART interface and the debug UART interface. The
following shows their features.
The main UART interface supports4800, 9600, 19200,38400,57600,115200,230400,460800,921600
and3000000bps baud rates, and the default is 115200bps. This interface is used for data
transmission and AT command communication.
The debug UART interface supports 115200bps baud rate. It is used forLinux console and log output.
The following tables show the pin definition.
Table 11: Pin Definition of the Main UART Interface
Pin Name Pin No. I/O Description Comment
RI 62 DO Ring indicator 1.8V power domain
DCD 63 DO Data carrier detection 1.8V power domain
CTS 64 DO Clear to send 1.8V power domain
RTS 65 DI Request to send 1.8V power domain
DTR 66 DI Sleep mode control 1.8V power domain
TXD 67 DO Transmit data 1.8V power domain
RXD 68 DI Receive data 1.8V power domain
Table 12: Pin Definition of the Debug UART Interface
Pin Name Pin No. I/O Description Comment
DBG_TXD 12 DO Transmit data 1.8V power domain
DBG_RXD 11 DI Receive data 1.8V power domain
The logic levels are described in the following table.
EC25_Hardware_DesignConfidential / Released 43 / 90
LTE Module Series
EC25Hardware Design
Table 13:Logic Levels of Digital I/O
Parameter Min. Max. Unit
VIL -0.3 0.6 V
VIH 1.2 2.0 V
VOL 0 0.45 V
VOH 1.35 1.8 V
The module provides 1.8V UART interface. A level translator should be used if your application is
equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by Texas Instrument is
recommended. The following figure shows a reference design.
Figure 20: Reference Circuit with Translator Chip
Please visit http://www.ti.com
for more information.
Another example with transistor translation circuit is shown as below. Thecircuit design of dotted line
section can refer to the design of solid line section, in terms of both module input and output circuit
designs, but please pay attention to the direction of connection.
EC25_Hardware_DesignConfidential / Released 44 / 90
LTE Module Series
EC25Hardware Design
Figure 21: Reference Circuit with Transistor Circuit
NOTE
Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps.
3.12. PCM and I2C Interfaces
EC25 provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the
following modes:
Primary mode (short frame synchronization, works as both master and slave)
Auxiliary mode (long frame synchronization, works as master only)
In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising
edge. The PCM_SYNC falling edge represents the MSB. In this mode, PCM_CLK supports
128,256,512,1024 and2048kHz for different speech codecs.
In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising
edge.The PCM_SYNC rising edge represents the MSB. In this mode, PCM interface operates with a
128kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC only.
EC25 supports 8-bit A-law* andμ-law*, and also 16-bit linear data formats. The following figures show
theprimary mode’s timing relationship with 8kHz PCM_SYNC and 2048kHz PCM_CLK, as well asthe
auxiliary mode’s timing relationship with 8kHz PCM_SYNC and 128kHz PCM_CLK.
EC25_Hardware_DesignConfidential / Released 45 / 90
LTE Module Series
EC25Hardware Design
Figure 22: Primary Mode Timing
Figure 23: Auxiliary Mode Timing
The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio
codec design.
Table 14: Pin Definition of PCM and I2C Interfaces
Pin Name Pin No. I/O Description Comment
PCM_IN 24 DI PCM data input 1.8V power domain
PCM_OUT 25 DO PCM data output 1.8V power domain
PCM_SYNC 26 IO PCM data frame sync signal 1.8V power domain
EC25_Hardware_DesignConfidential / Released 46 / 90
LTE Module Series
EC25Hardware Design
PCM_CLK 27 IO PCM data bit clock 1.8V power domain
I2C_SCL 41 OD I2C serial clock Require external pull-up to 1.8V
I2C_SDA 42 OD I2C serial data Require external pull-up to 1.8V
Clock and mode can be configured by AT command, and the default configuration is master mode using
short frame synchronization format with 2048kHzPCM_CLK and 8kHz PCM_SYNC.Please refer to
document [2] about AT+QDAIcommand for details.
The following figure shows areference design of PCM interface with external codec IC.
Figure 24: Reference Circuit of PCM Application with Audio Codec
NOTES
1. “*” means under development.
2. It is recommended to reserve RC (R=22ohm, C=22pF) circuit on the PCM lines, especially for
PCM_CLK.
3. EC25 works as a master device pertaining to I2C interface.
3.13. ADC Function
The module provides two analog-to-digital converters (ADC).AT+QADC=0command can be used toread the voltage value on ADC0 pin. AT+QADC=1command can be used to read the voltage value on ADC1 pin. For more details about these AT commands, please refer todocument [2].
In order to improve the accuracy of ADC, the trace of ADC should be surrounded by ground.
EC25_Hardware_DesignConfidential / Released 47 / 90
LTE Module Series
EC25Hardware Design
Table 15: Pin Definition of the ADC
Pin Name Pin No. Description
ADC0 45 General purpose analog to digital converter
ADC1 44 General purpose analog to digital converter
The following table describes the characteristic of the ADC function.
Table 16: Characteristic of the ADC
Parameter Min. Typ. Max. Unit
ADC0 Voltage Range 0.3 VBAT_BB V
ADC1 Voltage Range 0.3 VBAT_BB V
ADC Resolution 15 bits
NOTES
1. ADC input voltage must not exceed VBAT_BB.
2. It is prohibited to supply any voltage to ADC pinswhen VBAT is removed.
3. It is recommended to use resistor divider circuit for ADC application.
3.14. Network Status Indication
The network indication pins can be used to drive network status indication LEDs. The module provides
two pins which are NET_MODE and NET_STATUS. The following tables describe pin definition and logic
level changes in different network status.
Table 17: Pin Definition of Network Connection Status/Activity Indicator
Pin Name Pin No. I/O Description Comment
NET_MODE1) 5 DO
NET_STATUS 6 DO
Indicate the module network
registration mode.
Indicate the module network activity
status.
1.8V power domain
1.8V power domain
EC25_Hardware_DesignConfidential / Released 48 / 90
NOTE
LTE Module Series
EC25Hardware Design
1)
meansthat this pin cannot be pulled up before startup.
Table 18: Working State of the Network Connection Status/Activity Indicator
Pin Name Logic Level Changes Network Status
Always High Registered on LTE network
NET_MODE
Always Low Others
Flicker slowly (200ms High/1800ms Low) Network searching
Flicker slowly (1800ms High/200ms Low) Idle
NET_STATUS
Flicker quickly (125ms High/125ms Low) Data transfer is ongoing
Always High Voice calling
A reference circuit is shown in the following figure.
Figure 25: Reference Circuit of the Network Indicator
3.15. STATUS
The STATUS pin is an open drain output for indicating the module’s operation status. You can connect it
to a GPIO of DTE with a pulled up resistor, or as LED indication circuit as below. When the module is
turned on normally, the STATUS will present the low state. Otherwise, the STATUS will present
high-impedance state.
EC25_Hardware_DesignConfidential / Released 49 / 90
LTE Module Series
EC25Hardware Design
Table 19: Pin Definition of STATUS
Pin Name Pin No. I/O Description Comment
STATUS 61 OD Indicate the module operation status Require external pull-up
The following figure shows different circuitdesigns of STATUS, and you can choose either one according
to your application demands.
Figure 26: Reference Circuits of STATUS
3.16. Behavior of the RI
AT+QCFG=“risignaltype”,“physical”command can be used to configure RI behavior.
No matter on which port URC is presented, URC will trigger the behavior of RI pin.
NOTE
URC can be output from UART port, USB AT port and USB modem port by AT+QURCCFG command.
The default port is USB AT port.
In addition, RI behavior can be configured flexibly. The default behavior of the RI is shown as below.
Table 20: Behavior of the RI
State Response
Idle RI keeps in high level
URC RI outputs 120ms low pulse when new URC returns
EC25_Hardware_DesignConfidential / Released 50 / 90
LTE Module Series
EC25Hardware Design
The RI behavior can be changed by AT+QCFG=“urc/ri/ring” command. Please refer to document [2]
for details.
3.17. SGMII Interface
EC25 includes an integrated Ethernet MAC with an SGMII interface and twomanagement interfaces,key
features of the SGMII interface are shown below:
IEEE802.3 compliance
Full duplex at 1000Mbps
Half/full duplex for 10/100Mbps
Support VLAN tagging
Support IEEE1588 and Precision Time Protocol(PTP)
Can be used to connect toexternal Ethernet PHY like AR8033, or to an external switch
Management interfaces support dual voltage 1.8V/2.85V
The following table shows the pin definition of SGMII interface.
Table 21: Pin Definition of the SGMII Interface
Pin Name Pin No. I/O Description Comment
Control Signal Part
EPHY_RST_N 119 DO Ethernet PHY reset 1.8V/2.85V power domain
EPHY_INT_N 120 DI Ethernet PHY interrupt 1.8V power domain
SGMII_MDATA 121 IO
SGMII_MCLK 122 DO
SGMII MDIO(Management Data
Input/Output) data
SGMII MDIO (Management Data
Input/Output) clock
1.8V/2.85V power domain
1.8V/2.85V power domain
Configurable power source.
USIM2_VDD 128 PO
SGMII MDIO pull-up power
source
1.8V/2.85V power domain.
External pull-up power source for
SGMII MDIO pins.
SGMII Signal Part
SGMII_TX_M 123 AO SGMII transmission-minus
Connect with a 0.1uF capacitor,
close to the PHY side.
SGMII_TX_P 124 AO SGMII transmission-plus
EC25_Hardware_DesignConfidential / Released 51 / 90
Connect with a 0.1uF capacitor,
close to the PHY side.
LTE Module Series
EC25Hardware Design
SGMII_RX_P 125 AI SGMII receiving-plus
SGMII_RX_M 126 AI SGMII receiving-minus
Connect with a 0.1uF capacitor,
close to EC25 module.
Connect with a 0.1uF capacitor,
close to EC25 module.
The following figure shows the simplified block diagram for Ethernet application.
Figure 27: Simplified Block Diagram for Ethernet Application
The following figure shows a reference design ofSGMII interface with PHY AR8033 application.
10K
1.5K
Close to Module
VDD_EXT
USIM2_VDD
AR8033
INT
RSTN
MDIO
MDC
SOP
SON
Control
Module
EPHY_RST_N
SGMII_MDATA
EPHY_INT_N
SGMII_MCLK
USIM2_VDD
SGMII_RX_P
SGMII_RX_M
C1
C2
R1
R2
USIM2_VDD
0.1uF
0.1uF
SGMII Data
SGMII_TX_P
SGMII_TX_M
0.1uF
0.1uF
C3
C4
SIP
SIN
Close to AR8033
Figure 28: Reference Circuit of SGMII Interface with PHY AR8033 Application
In order to enhance the reliability and availability in your application, please follow the criteria below in the
Ethernet PHY circuit design:
Keep SGMII data and control signals away from RF and VBAT trace.
Keep the maximum trace length less than 10inch and keep skew on the differential pairs less than
EC25_Hardware_DesignConfidential / Released 52 / 90
LTE Module Series
EC25Hardware Design
20mil.
The differential impedance of SGMII data trace is 100ohm±10%.
To minimize crosstalk, the distance between separate adjacent pairs that are on the same layer must
be equal to or larger than 40mil.
NOTE
For more information about SGMII application, please refer to document [5]and document [7].
3.18. Wireless Connectivity Interfaces
EC25supports a low-power SDIO 3.0 interface for WLAN and a UART/PCM interface for BT.
The following table shows the pin definition of wireless connectivity interfaces.
Table 22: Pin Definition of Wireless Connectivity Interfaces
Pin Name Pin No. I/O Description Comment
WLAN Part
SDC1_DATA3 129 IO SDIO data bus D3 1.8V power domain
SDC1_DATA2 130 IO SDIO data bus D2 1.8V power domain
SDC1_DATA1 131 IO SDIO data bus D1 1.8V power domain
SDC1_DATA0 132 IO SDIO data bus D0 1.8V power domain
SDC1_CLK 133 DO SDIO clock 1.8V power domain
SDC1_CMD 134 IO SDIO command 1.8V power domain
WLAN_EN 136 DO
Coexistence and Control Part
WLAN function control via FC20
module. Active high.
1.8V power domain
PM_ENABLE 127 DO External power control 1.8V power domain
WAKE_ON_
WIRELESS
COEX_UART_RX 137 DI LTE/WLAN&BT coexistence signal 1.8V power domain
EC25_Hardware_DesignConfidential / Released 53 / 90
135 DI
Wake up the host (EC25 module)
by FC20 module.
1.8V power domain
LTE Module Series
EC25Hardware Design
COEX_UART_TX 138 DO LTE/WLAN&BT coexistence signal 1.8V power domain
WLAN_SLP_CLK 118 DO WLAN sleep clock
BT Part*
BT_RTS* 37 DI BT UART request to send 1.8V power domain
BT_TXD* 38 DO BT UART transmit data 1.8V power domain
BT_RXD* 39 DI BT UART receive data 1.8V power domain
BT_CTS* 40 DO BT UART clear to send 1.8V power domain
PCM_IN1) 24 DI PCM data input 1.8V power domain
PCM_OUT1) 25 DO PCM data output 1.8V power domain
PCM_SYNC1) 26 IO PCM data frame sync signal 1.8V power domain
PCM_CLK1) 27 IO PCM data bit clock 1.8V power domain
BT_EN* 139 DO
BT function control via FC20
module. Active high.
1.8V power domain
NOTES
1. “*” means under development.
1)
2.
Pads 24~27 are multiplexing pins used for audio design on EC25 module and BT function on FC20
module.
The following figure shows a reference design of Wireless Connectivity interfaces with QuectelFC20
module.
EC25_Hardware_DesignConfidential / Released 54 / 90
LTE Module Series
EC25Hardware Design
Module
WLAN
COEX & Control
BT
SDC1_DATA3
SDC1_DATA2
SDC1_DATA1
SDC1_DATA0
SDC1_CLK
SDC1_CMD
WLAN_EN
WLAN_SLP_CLK
WAKE_ON_WIRELESS
COEX_UART_RX
COEX_UART_TX
PM_ENABLE
BT_EN
BT_RTS
BT_CTS
BT_TXD
BT_RXD
PCM_IN
PCM_OUT
PCM_CLK
PCM_SYNC
DCDC/LDO
FC20 Module
SDIO_D3
SDIO_D2
SDIO_D1
SDIO_D0
SDIO_CLK
SDIO_CMD
WLAN_EN
32KHz_IN
WAKE_ON_WIRELESS
LTE_UART_TXD
LTE_UART_RXD
VDD_3V3
BT_EN
BT_UART_RTS
BT_UART_CTS
BT_UART_RXD
BT_UART_TXD
PCM_OUT
PCM_IN
PCM_CLK
PCM_SYNC
Figure 29: Reference Circuit of Wireless Connectivity Interfaces with FC20 Module
NOTES
1. FC20 module can only be used as a slave device,
2. When BT function is enabled on EC25 module, PCM_SYNC and PCM_CLK pins are only used to output signals.
3. For more information about wireless connectivity interfaces application, please refer to document [5].
3.18.1. WLAN Interface
EC25 provides a low power SDIO 3.0 interface and control interface for WLAN design.
SDIO interface supports the following modes:
Single data rate(SDR) mode (up to 200MHz)
Double data rate(DDR) mode (up to 52MHz)
EC25_Hardware_DesignConfidential / Released 55 / 90
LTE Module Series
EC25Hardware Design
As SDIO signals are very high-speed, in order to ensure the SDIO interface design corresponds with the
SDIO 3.0 specification, please comply with the following principles:
It is important to route the SDIO signal traces with total grounding. The impedance of SDIOsignal
trace is 50ohm(±10%).
Protect other sensitive signals/circuits(RF, analog signals, etc.) from SDIO corruption and protect
SDIO signals from noisy signals (clocks, DCDCs, etc.).
It is recommended to keep matching lengthbetween CLK andDATA/CMD less than 1mm and total
routing length less than 50mm.
Keep termination resistorswithin 15~24ohm on clock lines near the module and keep the route
distance from the module clock pins to termination resistorsless than 5mm.
Make sure the adjacent trace spacing is 2x line width and bus capacitance is less than 15pF.
3.18.2. BT Interface*
EC25 supportsa dedicated UART interface and a PCM interface for BT application.
Further information about BT interface will be added in future version of this document.
NOTE
“*” means under development.
3.19. USB_BOOT Interface
EC25 provides a USB_BOOT pin. During development or factory production, USB_BOOT pin can force
the module to boot from USB port for firmware upgrade.
Table 23: Pin Definition of USB_BOOT Interface
Pin Name Pin No. I/O Description Comment
USB_BOOT 115 DI
EC25_Hardware_DesignConfidential / Released 56 / 90
Force the module to boot from USB
port
1.8V power domain.
Active high.
If unused, keep it open.
EC25Hardware Design
The following figure shows a reference circuit of USB_BOOT interface.
LTE Module Series
Figure 30: Reference Circuit of USB_BOOT Interface
EC25_Hardware_DesignConfidential / Released 57 / 90
LTE Module Series
EC25Hardware Design
4 GNSS Receiver
4.1. General Description
EC25 includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of
Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS).
EC25 supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via
USB interface by default.
By default, EC25 GNSS engine is switched off. It has to be switched on via AT command. For more
details about GNSS engine technology and configurations, please refer to document [3].
4.2. GNSS Performance
The following table shows GNSS performance of EC25.
Table 24: GNSS Performance
Parameter Description Conditions Typ. Unit
Cold start Autonomous -146 dBm
Sensitivity
(GNSS)
TTFF
(GNSS)
Reacquisition Autonomous -157 dBm
Tracking Autonomous -157 dBm
Cold start
@open sky
Warm start
@open sky
Autonomous 35 s
XTRA enabled 18 s
Autonomous 26 s
XTRA enabled 2.2 s
Hot start Autonomous 2.5 s
EC25_Hardware_DesignConfidential / Released 58 / 90
LTE Module Series
EC25Hardware Design
Accuracy
(GNSS)
@open sky
CEP-50
XTRA enabled 1.8 s
Autonomous
@open sky
<1.5 m
NOTES
1. Tracking sensitivity: the lowest GNSSsignal value at the antenna port on which the module can keep
on positioning for 3 minutes.
2. Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can
fix position again within 3 minutes after loss of lock.
3. Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes
position within 3 minutes after executing cold start command.
4.3. Layout Guidelines
The following layout guidelines should be taken into account in your design.
Maximize the distance among GNSS antenna, main antenna and Rx-diversity antenna.
Digital circuits such as USIM card, USB interface, camera module, display connector and SD card
should be kept away from the antennas.
Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar
isolation and protection.
Keep 50ohm characteristic impedance for the ANT_GNSS trace.
Please refer to Chapter 5 for GNSS antenna reference design and antenna installation information.
EC25_Hardware_DesignConfidential / Released 59 / 90
LTE Module Series
EC25Hardware Design
5 Antenna Interfaces
EC25 antenna interfaces include a main antenna interface,anRx-diversity antennainterface which is used
toresist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna
interface. The antenna interfaces have an impedance of 50ohm.
5.1. Main/Rx-diversityAntenna Interface
5.1.1. Pin Definition
The pin definition of main antenna and Rx-diversityantenna interfaces are shown below.
Table 25: Pin Definition of the RF Antenna
Pin Name Pin No. I/O Description Comment
ANT_MAIN 49 IO Main antenna pad 50ohmimpedance
ANT_DIV 35 AI Receive diversityantenna pad 50ohm impedance
5.1.2. Operating Frequency
Table 26: Module Operating Frequencies
3GPP Band Transmit Receive Unit
B1 1920~1980 2110~2170 MHz
B2 (1900) 1850~1910 1930~1990 MHz
B3 (1800) 1710~1785 1805~1880 MHz
B4 1710~1755 2110~2155 MHz
B5 (850) 824~849 869~894 MHz
B6 830~840 875~885 MHz
EC25_Hardware_DesignConfidential / Released 60 / 90
LTE Module Series
EC25Hardware Design
B7 2500~2570 2620~2690 MHz
B8 (900) 880~915 925~960 MHz
B12 699~716 729~746 MHz
B13 777~787 746~756 MHz
B18 815~830 860~875 MHz
B19 830~845 875~890 MHz
B20 832~862 791~821 MHz
B26 814~849 859~894 MHz
B28 703~748 758~803 MHz
B38 2570~2620 2570~2620 MHz
B40 2300~2400 2300~2400 MHz
B41 2555~2655 2555~2655 MHz
5.1.3. Reference Design of RF Antenna Interface
Areference design of ANT_MAIN and ANT_DIVantenna pads is shown as below. It should reserve a
π-type matching circuit for better RF performance. The capacitors are not mounted by default.
Figure 31: Reference Circuit of RF Antenna Interface
EC25_Hardware_DesignConfidential / Released 61 / 90
LTE Module Series
EC25Hardware Design
NOTES
1. Keep a proper distance between the main antenna and theRx-diversityantenna to improve the
receiving sensitivity.
2. ANT_DIV function is enabledby default.
3. Place theπ-type matching components (R1, C1, C2, R2, C3, C4) as close to the antenna as possible.
5.1.4. Reference Design of RF Layout
For user’s PCB, the characteristic impedance of all RF traces should be controlled as 50 ohm. The
impedance of the RF traces is usually determined by the trace width (W), the materials’ dielectric constant,
the distance between signal layer and reference ground (H), and the clearance between RF trace and
ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic
impedance control. The following are reference designs of microstrip line or coplanar waveguide line with
different PCB structures
.
Figure 32: Microstrip Line Design on a 2-layer PCB
Figure 33: Coplanar Waveguide Line Design on a 2-layer PCB
EC25_Hardware_DesignConfidential / Released 62 / 90
LTE Module Series
EC25Hardware Design
Figure 34: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)
Figure 35: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)
In order to ensure RF performance and reliability, the following principles should be complied with in RF
layout design:
Use impedance simulation tool to control the characteristic impedanceof RF tracesas 50ohm.
The GND pins adjacent to RF pins should not be hot welded, and should be fully connected to
ground.
The distance between the RF pinsand the RFconnector should be as short as possible, and all the
right angle traces should be changed to curved ones.
There should be clearance area under the signal pin of the antenna connector or solder joint.
The reference ground of RF traces should be complete. Meanwhile, adding some ground viasaround
RF traces and the reference ground could help to improve RF performance. The distance between
the ground viasand RF traces should be no less than two times the width of RF signal traces (2*W).
For more details about RF layout, please refer to document [6].
EC25_Hardware_DesignConfidential / Released 63 / 90
LTE Module Series
EC25Hardware Design
5.2. GNSS Antenna Interface
The following tables show pin definition and frequency specification of GNSS antenna interface.
Table 27: Pin Definition of GNSS Antenna Interface
Pin Name Pin No. I/O Description Comment
ANT_GNSS 47 AI GNSS antenna 50ohmimpedance
Table 28: GNSS Frequency
Type Frequency Unit
GPS/Galileo/QZSS 1575.42±1.023 MHz
GLONASS 1597.5~1605.8 MHz
BeiDou 1561.098±2.046 MHz
A reference design of GNSS antenna is shown as below.
Figure 36: Reference Circuit of GNSS Antenna
NOTES
1. An external LDO can be selected to supply power according to the active antenna requirement.
2. If the module is designed with a passive antenna, then the VDD circuit is not needed.
EC25_Hardware_DesignConfidential / Released 64 / 90
LTE Module Series
EC25Hardware Design
5.3. Antenna Installation
5.3.1. Antenna Requirement
The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna.
Table 29: Antenna Requirements
Type Requirements
Frequency range: 1561~1615MHz
Polarization: RHCP or linear
VSWR: <2 (Typ.)
GNSS
Passive antenna gain: >0dBi
Active antenna noise figure: <1.5dB
Active antenna gain: >-2dBi
Active antenna embedded LNA gain: 20dB (Typ.)
Active antenna total gain: >18dBi (Typ.)
GSM/WCDMA/LTE
VSWR:2
Gain (dBi): 1
Max input power (W): 50
Input impedance (ohm): 50
Polarization type: Vertical
Cable insertion loss: <1dB
( GSM900, WCDMA B5/B6/B8/B19,
LTE B5/B8/B12/B13/B18/B20/B26/B28)
Cable insertion loss: <1.5dB
(GSM1800, WCDMA B1/B2/B4,LTE B1/B2/B3/B4)
Cable insertion loss <2dB
(LTE B7/B38/B40/B41)
EC25_Hardware_DesignConfidential / Released 65 / 90
LTE Module Series
EC25Hardware Design
5.3.2. Recommended RF Connector for Antenna Installation
If RF connector is used for antenna connection, it is recommended to use UF.L-R-SMT connector
provided by HIROSE.
Figure 37: Dimensions of the UF.L-R-SMT Connector (Unit: mm)
U.FL-LP serial connectors listed in the following figure can be used to match the UF.L-R-SMT.
Figure 38:Mechanicals of UF.L-LP Connectors
EC25_Hardware_DesignConfidential / Released 66 / 90
EC25Hardware Design
The following figure describes the space factor of mated connector.
LTE Module Series
Figure 39:Space Factor of Mated Connector (Unit: mm)
For more details, please visithttp://hirose.com
.
EC25_Hardware_DesignConfidential / Released 67 / 90
LTE Module Series
EC25Hardware Design
6 Electrical, Reliability and
RadioCharacteristics
6.1. Absolute Maximum Ratings
Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are
listed in the following table.
Table 30: Absolute Maximum Ratings
Parameter Min. Max. Unit
VBAT_RF/VBAT_BB -0.3 4.7 V
USB_VBUS -0.3 5.5 V
Peak Current of VBAT_BB 0 0.8 A
Peak Current of VBAT_RF 0 1.8 A
Voltage at Digital Pins -0.3 2.3 V
Voltage at ADC0 0 VBAT_BB V
Voltage at ADC1 0 VBAT_BB V
EC25_Hardware_DesignConfidential / Released 68 / 90
LTE Module Series
EC25Hardware Design
6.2. Power Supply Ratings
Table 31: The Module Power Supply Ratings
Parameter Description Conditions Min. Typ. Max. Unit
Voltage must stay within the
VBAT_BB and
VBAT_RF
VBAT
min/max values, including
voltage drop, ripple and
spikes.
3.3 3.8 4.3 V
I
VBAT
Voltage drop during
burst transmission
Peak supply current
(during
transmissionslot)
Maximum power control
level on GSM900.
Maximum power control
level on GSM900.
400 mV
1.8 2.0 A
USB_VBUS USB detection 3.0 5.0 5.25 V
6.3. Operating Temperature
The operating temperature is listed in the following table.
Table 32: Operating Temperature
Parameter Min. Typ. Max. Unit
OperationTemperature Range1) -35 +25 +75 ºC
Extended Operation Range2) -40 +85 ºC
NOTES
1. 1)Within operation temperature range, the module is 3GPP compliant.
2)
2.
Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There
are also no effects on radio spectrum and no harm to radio network. Only one or more parameters
like P
might reduce in their value and exceed the specified tolerances. When the temperature
out
returns to the normal operating temperature levels, the module will meet 3GPP compliant again.
EC25_Hardware_DesignConfidential / Released 69 / 90
LTE Module Series
EC25Hardware Design
6.4. Current Consumption
Table 33: EC25-E Current Consumption
Parameter Description Conditions Typ. Unit
OFF state Power down 20 uA
I
VBAT
Sleep state
AT+CFUN=0 (USB disconnected)
1.4 mA
GSM DRX=2 (USB disconnected) 2.74 mA
GSM DRX=9 (USB disconnected) 2.0 mA
WCDMA PF=64 (USB disconnected) 2.7 mA
WCDMA PF=128 (USB disconnected) 2.3 mA
LTE-FDD PF=64 (USB disconnected) 2.0 mA
LTE-FDD PF=128 (USB disconnected) 1.9 mA
LTE-TDD PF=64 (USB disconnected) 4.2 mA
LTE-TDD PF=128 (USB disconnected) 4.2 mA
GSM DRX=5 (USB disconnected) 22.0 mA
GSM DRX=5 (USB connected) 31.0 mA
WCDMA PF=64 (USB disconnected) 31.0 mA
WCDMA PF=64 (USB connected) 36.0 mA
Idle state
LTE-FDDPF=64 (USB disconnected) 22.0 mA
LTE-FDDPF=64 (USB connected) 32.0 mA
LTE-TDDPF=64 (USB disconnected) 22.0 mA
LTE-TDDPF=64 (USB connected) 32.0 mA
GSM900 4DL/1UL @32.18dBm 236.0 mA
GPRS data
GSM900 3DL/2UL @32dBm 392.9 mA
transfer (GNSS
OFF)
GSM900 2DL/3UL @30.2dBm 466.1 mA
GSM900 1DL/4UL @29.3dBm 554.2 mA
EC25_Hardware_DesignConfidential / Released 70 / 90
LTE Module Series
EC25Hardware Design
DCS1800 4DL/1UL @28.9dBm 181.3 mA
DCS1800 3DL/2UL @28.9dBm 305.3 mA
DCS1800 2DL/3UL @28.8dBm 420.1 mA
DCS1800 1DL/4UL @28.6dBm 531.6 mA
GSM900 4DL/1UL PCL=8 @26.5dBm 156.4 mA
GSM900 3DL/2UL PCL=8 @26.5dBm 248.1 mA
GSM900 2DL/3UL PCL=8 @26.4dBm 340.1 mA
EDGE data
transfer (GNSS
OFF)
WCDMA
datatransfer(GNSS
OFF)
GSM900 1DL/4UL PCL=8 @26.3dBm 438.8 mA
DCS1800 4DL/1UL PCL=2 @24.9dBm 158.1 mA
DCS1800 3DL/2UL PCL=2 @24.8dBm 251.4 mA
DCS1800 2DL/3UL PCL=2 @24.7dBm 340.4 mA
DCS1800 1DL/4UL PCL=2 @24.5dBm 432.8 mA
WCDMA B1 HSDPA@22.1dBm 663.7 mA
WCDMA B1 HSUPA@23.85dBm 662.6 mA
WCDMA B5 HSDPA@22.5dBm 708.6 mA
WCDMA B5 HSUPA@22.3dBm 696.6 mA
WCDMA B8 HSDPA@21.95dBm 595.5 mA
WCDMA B8 HSUPA@21.92dBm 593.5 mA
LTE-FDD B1 @23.25dBm 783.6 mA
LTE-FDD B3 @23.35dBm 845.8 mA
LTE-FDD B5 @23.04dBm 795.3 mA
LTE-FDD B7 @23.37dBm 843 mA
LTE
datatransfer(GNSS
LTE-FDD B8 @23.45dBm 759.9 mA
OFF)
LTE-FDD B20 @23.35dBm 755.8 mA
LTE-TDD B38 @23.41dBm 449.5 mA
LTE-TDD B40 @23.17dBm 431.8 mA
LTE-TDD B41 @23.37dBm 447.2 mA
EC25_Hardware_DesignConfidential / Released 71 / 90
LTE Module Series
EC25Hardware Design
GSM
voice call
GSM900 PCL=5 @32.2dBm 231.7 mA
DCS1800PCL=0 @23.35dBm 188.8 mA
WCDMA B1 @22.89dBm 724.7 mA
WCDMA voice call
WCDMA B5 @22.92dBm 698.2 mA
WCDMA B8 @22.82dBm 628.2 mA
Table 34: EC25-A Current Consumption
Parameter Description Conditions Typ. Unit
OFF state Power down 20 uA
AT+CFUN=0 (USB disconnected)
0.99 mA
WCDMA PF=64 (USB disconnected) 2.0 mA
Sleep state
WCDMA PF=128 (USB disconnected) 1.6 mA
I
VBAT
LTE-FDD PF=64 (USB disconnected) 2.4 mA
LTE-FDD PF=128 (USB disconnected) 1.9 mA
WCDMA PF=64 (USB disconnected) 22.0 mA
WCDMA PF=64 (USB connected) 32.0 mA
Idle state
LTE-FDDPF=64 (USB disconnected) 22.0 mA
LTE-FDDPF=64 (USB connected) 33.0 mA
WCDMA B2 HSDPA@22.86dBm 600.0 mA
WCDMA B2 HSUPA@22.51dBm 584.6 mA
WCDMA
WCDMA B4 HSDPA@22.46dBm 578.7 mA
datatransfer(GNSS
OFF)
WCDMA B4 HSUPA@22.27dBm 576.4 mA
WCDMA B5 HSDPA@22.38dBm 492.0 mA
WCDMA B5 HSUPA@21.07dBm 483.2 mA
LTE-FDD B2 @23.17dBm 781.0 mA
LTE
datatransfer(GNSS
LTE-FDD B4 @23.05dBm 785.7 mA
OFF)
LTE-FDD B12 @23.3dBm 667.3 mA
EC25_Hardware_DesignConfidential / Released 72 / 90
LTE Module Series
EC25Hardware Design
WCDMA B2 @23.61dBm 670.2 mA
WCDMA voice call
WCDMA B4 @23.21dBm 630.3 mA
WCDMA B5 @23.34dBm 536.7 mA
Table 35: GNSS Current Consumption of EC25 Series Module
Parameter Description Conditions Typ. Unit
Cold start @Passive Antenna 54.0 mA
Lost state @Passive Antenna 53.9 mA
Instrument Environment 30.5 mA
Open Sky @Passive Antenna 33.2 mA
I
VBAT
(GNSS)
Searching
(AT+CFUN=0)
Tracking
(AT+CFUN=0)
Open Sky @Active Antenna 40.8 mA
6.5. RF Output Power
The following table shows the RF output power of EC25 module.
Table 36: RF Output Power
Frequency Max. Min.
GSM900 33dBm±2dB 5dBm±5dB
DCS1800 30dBm±2dB 0dBm±5dB
GSM900(8-PSK) 27dBm±3dB 5dBm±5dB
DCS1800 26dBm±3dB 0dBm±5dB
WCDMA bands 23dBm+1/-3dB <-50dBm
LTE-FDD band5 23dBm+1/-3dB <-44dBm
LTE-FDD band7 22.5dBm+1/-3dB <-44dBm
LTE-TDD bands 23dBm+1/-3dB <-44dBm
EC25_Hardware_DesignConfidential / Released 73 / 90
LTE Module Series
EC25Hardware Design
NOTE
In GPRS 4 slots TX mode, the maximum output power is reduced by 3.0dB. The design conforms to the
GSM specification as described in Chapter 13.16of 3GPP TS 51.010-1.
6.6. RF Receiving Sensitivity
The following tables show conducted RF receiving sensitivity of EC25 series module.
Table 37: EC25-E Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO1) 3GPP (SIMO)
GSM900 -109.0dBm / / -102.0dBm
DCS1800 -109.0dBm / / -102.0dbm
WCDMA B1 -110.5dBm / / -106.7dBm
WCDMA B5 -110.5dBm / / -104.7dBm
WCDMA B8 -110.5dBm / / -103.7dBm
LTE-FDD B1(10M) -98.0dBm -98.0dBm -101.5dBm -96.3dBm
LTE-FDD B3(10M) -96.5dBm -98.5dBm -101.5dBm -93.3dBm
LTE-FDD B5(10M) -98.0dBm -98.5dBm -101.0dBm -94.3dBm
LTE-FDD B7(10M) -97.0dBm -94.5dBm -99.5dBm -94.3dBm
LTE-FDD B8(10M) -97.0dBm -97.0dBm -101.0dBm -93.3dBm
LTE-FDD B20(10M) -97.5dBm -99.0dBm -102.5dBm -93.3dBm
LTE-TDD B38 (10M) -96.7dBm -97.0dBm -100.0dBm -96.3dBm
LTE-TDD B40 (10M) -96.3dBm -98.0dBm -101.0dBm -96.3dBm
LTE-TDD B41 (10M) -95.2dBm -95.7dBm -99.0dBm -94.3dBm
Table 38: EC25-A Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO 3GPP (SIMO)
EC25_Hardware_DesignConfidential / Released 74 / 90
LTE Module Series
EC25Hardware Design
WCDMA B2 -110.0dBm / / -104.7dBm
WCDMA B4 -110.0dBm / / -106.7dBm
WCDMA B5 -110.5dBm / / -104.7dBm
LTE-FDD B2 (10M) -98.0dBm -98.0dBm -101.0dBm -94.3dBm
LTE-FDD B4 (10M) -97.5dBm -99.0dBm -101.0dBm -96.3dBm
LTE-FDD B12 (10M) -96.5dBm -98.0dBm -101.0dBm -93.3dBm
Table 39: EC25-V Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO 3GPP (SIMO)
LTE-FDD B4 (10M) -97.5dBm -99.0dBm -101.0dBm -96.3dBm
LTE-FDD B13 (10M) -95.0dBm -97.0dBm -100.0dBm -93.3dBm
Table 40: EC25-J Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO 3GPP (SIMO)
WCDMA B1 -110.0dBm / / -106.7dBm
WCDMA B6 -110.5dBm / / -106.7dBm
WCDMA B8 -110.5dBm / / -106.7dBm
WCDMA B19 -110.5dBm / / -106.7dBm
LTE-FDD B1 (10M) -97.5dBm -98.7dBm -100.2dBm -96.3dBm
LTE-FDD B3 (10M) -96.5dBm -97.1dBm -100.5dBm -93.3dBm
LTE-FDD B8 (10M) -98.4dBm -99.0dBm -101.2dBm -93.3dBm
LTE-FDD B18 (10M) -99.5dBm -99.0dBm -101.7dBm -96.3dBm
LTE-FDD B19 (10M) -99.2dBm -99.0dBm -101.4dBm -96.3dBm
LTE-FDD B26 (10M) -99.5dBm -99.0dBm -101.5dBm -93.8dBm
LTE-TDD B41 (10M) -95.0dBm -95.7dBm -99.0dBm -94.3dBm
EC25_Hardware_DesignConfidential / Released 75 / 90
LTE Module Series
EC25Hardware Design
NOTE
1)
SIMO is a smart antenna technology that uses a single antenna at the transmitter side and two antennas
at the receiver side, which can improve RX performance.
6.7. Electrostatic Discharge
The module is not protected against electrostatics discharge (ESD) in general. Consequently, it is subject
to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and
packaging procedures must be applied throughout the processing, handling and operation of any
application that incorporates the module.
The following table shows the module electrostatics discharge characteristics.
Table 41: Electrostatics Discharge Characteristics
Tested Points Contact Discharge Air Discharge Unit
VBAT, GND ±5 ±10 kV
All Antenna Interfaces ±4 ±8 kV
Other Interfaces ±0.5 ±1 kV
EC25_Hardware_DesignConfidential / Released 76 / 90
LTE Module Series
EC25Hardware Design
7 Mechanical Dimensions
This chapter describes the mechanical dimensions of the module.All dimensions are measured in mm.
7.1. Mechanical Dimensions of the Module
(32+/-0.15)
2.4+/-0.2
(29+/-0.15)
0.8
Figure 40: Module Top and Side Dimensions
EC25_Hardware_DesignConfidential / Released 77 / 90
1.90
LTE Module Series
EC25Hardware Design
32.0
1.30
3.85
2.49
1.8
2.15
5.96
1.6
1.7
6.75
0.82
4.88
4.4
3.2
1.05
1.15
3.4
3.35
3.5
1.30
2.0
2.0
3.0
2.8
1.10
1.10
4.8
3.23.43.2
1.8
29.0
0.8
3.5
1.9
2.4
3.45
1.5
Figure 41: Module Bottom Dimensions (Bottom View)
EC25_Hardware_DesignConfidential / Released 78 / 90
EC25Hardware Design
7.2. Recommended Footprint
LTE Module Series
1.90
7.80
1.80
15.60
3.85
3.00
24.70
1.10
1.10
2.00
2.00
2.00
3.00
3.45
3.40
4.80
1.80
2.80
0.50
0.50
0.50
Keepout area
0.50
4.80
4.80
4.80
3.20 3.40 3.20
3.40
0.80
2.50
1.00
1.90
3.20 3.40
3.50
1.30
32.0
Figure 42: Recommended Footprint (Top View)
NOTES
1. The keepout area should not be designed.
2. For easy maintenance of the module, please keep about 3mm between the module and other
components in thehost PCB.
EC25_Hardware_DesignConfidential / Released 79 / 90
EC25Hardware Design
7.3. Design Effect Drawings of the Module
LTE Module Series
Figure 43: Top View of the Module
Figure 44: Bottom View of the Module
NOTE
These are design effect drawings of EC25 module. For more accurate pictures, please refer to the
module that you get from Quectel.
EC25_Hardware_DesignConfidential / Released 80 / 90
LTE Module Series
EC25Hardware Design
8 Storage, Manufacturing and
Packaging
8.1. Storage
EC25 is stored in a vacuum-sealed bag. The storage restrictionsare shown as below.
1. Shelf life in vacuum-sealed bag: 12 months at <40ºC/90%RH.
2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other
high temperature processes must be:
Mounted within 72 hours at the factory environment of 30ºC/60%RH.
Stored at <10% RH.
3. Devices require bake before mounting, if any circumstances below occurs:
When the ambient temperature is 23ºC±5ºC and the humidity indicator card shows the humidity
is >10% before opening the vacuum-sealed bag.
Device mounting cannot be finished within 72 hours at factory conditions of ≤30ºC/60%RH.
4. If baking is required, devices may be baked for 48 hours at 125ºC±5ºC.
NOTE
As the plastic packagecannot be subjected to high temperature, it should be removed from devices before
high temperature (125ºC) baking. If shorter baking time is desired, please refer to IPC/JEDECJ-STD-033
for baking procedure.
EC25_Hardware_DesignConfidential / Released 81 / 90
LTE Module Series
EC25Hardware Design
8.2. Manufacturing and Soldering
Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the
stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted
properlyso as to produce a clean stencil surface on a single pass. To ensure the module soldering quality,
thethickness of stencil for the module is recommended to be 0.18mm. For more details, please refer
todocument [4].
It is suggested that the peak reflow temperature is 235 ~ 245ºC (for SnAg3.0Cu0.5 alloy). The absolute
max reflow temperature is 260ºC. To avoid damage to the module caused by repeated heating, it is
suggested that the module should be mounted after reflow soldering for the other side of PCB has been
completed. Recommended reflow soldering thermal profile is shown below:
Figure 45: Reflow Soldering Thermal Profile
EC25_Hardware_DesignConfidential / Released 82 / 90
LTE Module Series
EC25Hardware Design
8.3. Packaging
EC25 is packaged in tap andreel carriers. One reel is 11.53m long and contains 250pcs modules. The
figure below shows the package details, measured in mm.
±0.3
44.00
±0.15
20.20
±0.1
1.75
32.5
33.5
±0.15 ±0.15
48.5
2.00
±0.1
44.00
±0.1
4.00
±0.1
32.5± 0.15
33.5± 0.15
1
.
0
±
0
5
.
1
±0.15
29.3
±0.15
30.3
0.35± 0.05
4.2
3.1
±0.15
30.3
±0.15
±0.15
Cover tap
e
13
Direction of feed
100
+0.20
44.5
-0.00
Figure 46: Tape and Reel Specifications
EC25_Hardware_DesignConfidential / Released 83 / 90
EC25Hardware Design
9 Appendix A References
Table 42: Related Documents
SN Document Name Remark
LTE Module Series
[1]
[2] Quectel_EC25&EC21_AT_Commands_Manual EC25 and EC21 AT Commands Manual
[3]
[4] Quectel_Module_Secondary_SMT_User_Guide Module Secondary SMT User Guide
[5] Quectel_EC25_Reference_Design EC25 Reference Design
[6] Quectel_RF_Layout_Application_Note RF Layout Application Note
[7] Quectel_SGMII_Design_Application_Note SGMII Desgin Application Note
Table 43: Terms and Abbreviations
Abbreviation Description
AMR Adaptive Multi-rate
Quectel_EC25_Power_Management_Application_
Note
Quectel_EC25&EC21_GNSS_AT_Commands_
Manual
EC25 Power Management Application
Note
EC25 and EC21 GNSS AT Commands
Manual
bps Bits Per Second
CHAP Challenge Handshake Authentication Protocol
CS Coding Scheme
CSD Circuit Switched Data
CTS Clear To Send
DC-HSPA+ Dual-carrier High Speed Packet Access
DFOTA Delta Firmware Upgrade Over The Air
EC25_Hardware_DesignConfidential / Released 84 / 90
EC25Hardware Design
DL Downlink
DTR Data Terminal Ready
DTX Discontinuous Transmission
EFR Enhanced Full Rate
ESD Electrostatic Discharge
FDD Frequency Division Duplex
FR Full Rate
LTE Module Series
GLONASS
GLObalnaya NAvigatsionnaya Sputnikovaya Sistema, the Russian Global
Navigation Satellite System
GMSK Gaussian Minimum Shift Keying
GNSS Global Navigation Satellite System
GPS Global Positioning System
GSM Global System for Mobile Communications
HR Half Rate
HSPA High Speed Packet Access
HSDPA High Speed Downlink Packet Access
HSUPA High Speed Uplink Packet Access
I/O Input/Output
Inorm Normal Current
LED Light Emitting Diode
LNA Low Noise Amplifier
LTE Long Term Evolution
MIMO Multiple Input Multiple Output
MO Mobile Originated
MS Mobile Station (GSM engine)
MT Mobile Terminated
EC25_Hardware_DesignConfidential / Released 85 / 90
EC25Hardware Design
PAP Password Authentication Protocol
PCB Printed Circuit Board
PDU Protocol Data Unit
PPP Point-to-Point Protocol
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
RF Radio Frequency
RHCP Right Hand Circularly Polarized
Rx Receive
LTE Module Series
SGMII Serial Gigabit Media IndependentInterface
SIM Subscriber Identification Module
SIMO Single Input Multiple Output
SMS Short Message Service
TDD Time Division Duplexing
TDMA Time Division Multiple Access
TD-SCDMA Time Division-Synchronous Code Division Multiple Access
TX Transmitting Direction
UL Uplink
UMTS Universal Mobile Telecommunications System
URC Unsolicited Result Code
USIM Universal Subscriber Identity Module
Vmax Maximum Voltage Value
Vnorm Normal Voltage Value
Vmin Minimum Voltage Value
VIHmax Maximum Input High Level Voltage Value
EC25_Hardware_DesignConfidential / Released 86 / 90
EC25Hardware Design
VIHmin Minimum Input High Level Voltage Value
VILmax Maximum Input Low Level Voltage Value
VILmin Minimum Input Low Level Voltage Value
VImax Absolute Maximum Input Voltage Value
VImin Absolute Minimum Input Voltage Value
VOHmax Maximum Output High Level Voltage Value
VOHmin Minimum Output High Level Voltage Value
VOLmax Maximum Output Low Level Voltage Value
VOLmin Minimum Output Low Level Voltage Value
LTE Module Series
VSWR Voltage Standing Wave Ratio
WCDMA Wideband Code Division Multiple Access
WLAN Wireless Local Area Network
EC25_Hardware_DesignConfidential / Released 87 / 90
LTE Module Series
EC25Hardware Design
10 Appendix B GPRS Coding Schemes
Table 44: Description of Different Coding Schemes
Scheme
Code Rate
USF
Pre-coded USF
Radio Block excl.USF and BCS
BCS
Tail
Coded Bits
Punctured Bits
Data Rate Kb/s
CS-1 CS-2 CS-3 CS-4
1/2 2/3 3/4 1
3 3 3 3
3 6 6 12
181 268 312 428
40 16 16 16
4 4 4 -
456 588 676 456
0 132 220 -
9.05 13.4 15.6 21.4
EC25_Hardware_DesignConfidential / Released 88 / 90
LTE Module Series
EC25Hardware Design
11 Appendix C GPRS Multi-slot Classes
Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot
classes are product dependent, and determine the maximum achievable data rates in both the uplink and
downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots,
while the second number indicates the amount of uplink timeslots. The active slots determine the total
number of slots the GPRS device can use simultaneously for both uplink and downlink communications.
The description of different multi-slot classes is shown in the following table.
Table 45: GPRS Multi-slot Classes
Multislot Class Downlink Slots Uplink Slots Active Slots
1 1 1 2
2 2 1 3
3 2 2 3
4 3 1 4
5 2 2 4
6 3 2 4
7 3 3 4
8 4 1 5
9 3 2 5
10 4 2 5
11 4 3 5
12 4 4 5
EC25_Hardware_DesignConfidential / Released 89 / 90
d
E
h
i
p
d
u
d
S
S
S
S
S
n
x
S
a
E
m
h
E
1
9282245
5
d
E
m
k
k
k
k
0
k
k
k
k
k
k
8
4
o
w
n
s
n
LTE M
C25Hard
dule Sire
are Desig
12
Table 46:
Coding Sc
CS-1:
CS-2:
CS-3:
CS-4:
MCS-1
MCS-2
Ap Co
DGE Mod
eme Mo
GM
GM
GM
GM
GM
GM
endi ing
lation and
ulation
SK
SK
SK
SK
SK
SK
D
che
Coding Sc
Coding
/
/
/
/
C
B
DG
es
emes
Family
Mo
Timeslot
.05kbps
13.4kbps
15.6kbps
1.4kbps
.80kbps
11.2kbps
ulati
2 Ti
18.1
26.8
31.2
42.8
17.6
22.4
ona
eslot
bps
bps
bps
bps
kbps
bps
d
4 Timeslot
36.2kbps
53.6kbps
62.4kbps
85.6kbps
35.20kbps
44.8kbps
MCS-3
MCS-4
MCS-5
MCS-6
MCS-7
MCS-8
MCS-9
GM
GM
8-P
8-P
8-P
8-P
8-P
SK
SK
K
K
K
K
K
A
C
B
A
B
A
A
14.8kbps
17.6kbps
2.4kbps
9.6kbps
4.8kbps
4.4kbps
9.2kbps
29.6
35.2
44.8
59.2
89.6
108.
118.
bps
bps
bps
bps
bps
kbps
kbps
59.2kbps
70.4kbps
89.6kbps
118.4kbps
179.2kbps
217.6kbps
236.8kbps
EC25_Har
ware_Des
gnConfide
tial / Rele
sed 90 /90
Loading...