MC60 Hardware Design
GSM/GPRS/GNSS Module Series
Rev. MC60_Hardware_Design_V1.0
Date: 2016-06-28
www.quectel.com
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd.
Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233
Tel: +86 21 5108 6236
Email: info@quectel.com
Or our local office. For more information, please visit:
http://www.quectel.com/support/salesupport.aspx
For technical support, or to report documentation errors, please visit: http://www.quectel.com/support/techsupport.aspx
Or email to: Support@quectel.com
GENERAL NOTES
QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.
COPYRIGHT
THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.
Copyright © Quectel Wireless Solutions Co., Ltd. 2016. All rights reserved.
MC60_Hardware_Design |
Confidential / Released |
1 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
About the Document
History
Revision |
Date |
Author |
Description |
|
|
|
|
1.0 |
2016-06-28 |
Tiger CHENG |
Initial |
|
|
|
|
MC60_Hardware_Design |
Confidential / Released |
2 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
Contents
About the Document ................................................................................................................................ |
|
|
2 |
|||
Contents.................................................................................................................................................... |
|
|
|
3 |
||
Table Index ............................................................................................................................................... |
|
|
|
6 |
||
Figure Index.............................................................................................................................................. |
|
|
|
8 |
||
1 |
Introduction |
..................................................................................................................................... |
|
|
10 |
|
|
1.1. |
Safety Information................................................................................................................. |
|
10 |
||
2 |
Product Concept ............................................................................................................................. |
|
|
12 |
||
|
2.1. |
General Description .............................................................................................................. |
|
12 |
||
|
2.2. |
Directives and Standards ...................................................................................................... |
|
13 |
||
|
|
2.2.1. |
2.2.1. FCC Statement .................................................................................................. |
|
13 |
|
|
|
2.2.2. FCC Radiation Exposure Statement ............................................................................ |
13 |
|||
|
2.3. |
Key Features......................................................................................................................... |
|
|
13 |
|
|
2.4. |
Functional Diagram............................................................................................................... |
|
17 |
||
|
2.5. |
Evaluation Board................................................................................................................... |
|
18 |
||
3 |
Application Functions..................................................................................................................... |
|
19 |
|||
|
3.1. |
Pin of Module ........................................................................................................................ |
|
20 |
||
|
|
3.1.1. |
Pin Assignment ............................................................................................................ |
|
20 |
|
|
|
3.1.2. |
Pin Description............................................................................................................. |
|
21 |
|
|
3.2. |
Application Modes Introduction ............................................................................................. |
|
25 |
||
|
3.3. |
Power Supply........................................................................................................................ |
|
27 |
||
|
|
3.3.1. |
Power Features ........................................................................................................... |
|
27 |
|
|
|
3.3.2. Decrease Supply Voltage Drop |
.................................................................................... |
28 |
||
|
|
3.3.2.1. |
Decrease Supply Voltage Drop for GSM Part.................................................. |
28 |
||
|
|
3.3.2.2. |
Decrease Supply Voltage Drop for GNSS Part................................................ |
29 |
||
|
|
3.3.3. Reference Design for Power Supply............................................................................ |
29 |
|||
|
|
3.3.3.1. |
Reference Design for Power Supply of GSM Part........................................... |
29 |
||
|
|
3.3.3.2. |
Reference Design for Power Supply of GNSS Part in All-in-one Solution |
....... 30 |
||
|
|
3.3.3.3. |
Reference Design for Power Supply of GNSS Part in Stand-alone Solution ... 31 |
|||
|
|
3.3.4. |
Monitor Power Supply.................................................................................................. |
|
32 |
|
|
|
3.3.5. Backup Domain of GNSS ............................................................................................ |
|
32 |
||
|
|
3.3.5.1. |
Use VBAT as the Backup Power Source of GNSS.......................................... |
32 |
||
|
|
3.3.5.2. |
Use VRTC as Backup Power of GNSS ........................................................... |
32 |
||
|
3.4. |
Operating Modes .................................................................................................................. |
|
34 |
||
|
|
3.4.1. Operating Modes of GSM Part..................................................................................... |
|
34 |
||
|
|
3.4.1.1. |
Minimum Functionality Mode........................................................................... |
35 |
||
|
|
3.4.1.2. |
SLEEP Mode................................................................................................... |
|
35 |
|
|
|
3.4.1.3. |
Wake up GSM Part from SLEEP Mode ........................................................... |
36 |
||
|
|
3.4.2. Operating Modes of GNSS Part................................................................................... |
36 |
|||
|
|
|
||||
MC60_Hardware_Design |
Confidential / Released |
3 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
|
3.4.2.1. |
Full on Mode .................................................................................................... |
|
36 |
|
3.4.2.2. |
Standby Mode ................................................................................................. |
|
37 |
|
3.4.2.3. |
Backup Mode .................................................................................................. |
|
38 |
3.4.3. Summary of GSM and GNSS Parts’ State in All-in-one Solution.................................. |
38 |
|||
3.4.4. Summary of GSM and GNSS Parts’ State in Stand-alone Solution ............................. |
39 |
|||
3.5. Power on and down Scenarios in All-in-one Solution............................................................ |
39 |
|||
3.5.1. |
Power on ..................................................................................................................... |
|
39 |
|
3.5.2. |
Power down ................................................................................................................. |
|
41 |
|
|
3.5.2.1. |
Power down Module Using the PWRKEY Pin ................................................. |
41 |
|
|
3.5.2.2. |
Power down Module Using AT Command ....................................................... |
43 |
|
|
3.5.2.3. |
Power down GNSS Part Alone Using AT Command ....................................... |
43 |
|
|
3.5.2.4. |
Under - voltage Automatic Shutdown ................................................................ |
44 |
|
3.5.3. |
......................................................................................................................... |
|
44 |
|
3.6. Power on and down Scenarios in Stand-alone Solution........................................................ |
44 |
|||
3.6.1. Power on GSM Part..................................................................................................... |
|
44 |
||
3.6.2. Power down ................................................................................................GSM Part |
|
46 |
||
|
3.6.2.1. ............................................. |
Power down GSM Part Using the PWRKEY Pin |
46 |
|
|
3.6.2.2. ......................................................... |
Power down GSM Part using Command |
47 |
|
3.7. |
Serial Interfaces .................................................................................................................... |
|
47 |
|
3.7.1. |
UART Port ................................................................................................................... |
|
50 |
|
|
3.7.1.1. .................................................................................... |
Features of UART Port |
|
50 |
|
3.7.1.2. ................................................................................ |
The Connection of UART |
51 |
|
|
3.7.1.3. ........................................................................................... |
Firmware Upgrade |
|
52 |
3.7.2. |
Debug ................................................................................................................... Port |
|
53 |
|
3.7.3. Auxiliary .................................................................UART Port and GNSS UART Port |
54 |
|||
|
3.7.3.1. ..................................................................... |
Connection in All - in - one Solution |
54 |
|
|
3.7.3.2. ................................................................ |
Connection in Stand - alone Solution |
54 |
|
3.7.4. |
UART Application ......................................................................................................... |
|
55 |
|
3.8. |
Audio Interfaces .................................................................................................................... |
|
56 |
|
3.8.1. Decrease ........................................................................TDD Noise and Other Noise |
58 |
|||
3.8.2. |
Microphone ..................................................................................... Interfaces Design |
|
58 |
|
3.8.3. Receiver ......................................................................and Speaker Interface Design |
59 |
|||
3.8.4. |
Earphone .......................................................................................... Interface Design |
|
60 |
|
3.8.5. Loud Speaker ....................................................................................Interface Design |
60 |
|||
3.8.6. |
Audio Characteristics ................................................................................................... |
|
61 |
|
3.9. |
SIM Card Interface............................................................................................................ .... |
|
61 |
|
3.10. |
ADC |
|
|
65 |
3.11. |
Behaviors of ...............................................................................................................the RI |
|
65 |
|
3.12. |
Network Status ......................................................................................................Indication |
|
67 |
|
3.13. EASY .................................................................................Autonomous AGPS Technology |
68 |
|||
3.14. |
EPO .............................................................................................Offline AGPS Technology |
|
68 |
|
3.15. |
Multi .......................................................................................................................-tone AIC |
|
69 |
|
4 Antenna Interface............................................................................................................................ |
|
|
70 |
|
4.1. |
GSM .........................................................................................................Antenna Interface |
|
70 |
|
|
|
|
||
MC60_Hardware_Design |
Confidential / Released |
4 / 99 |
|
|
|
|
|
|
GSM/GPRS/GNSS Module Series |
|
|
|
|
|
|
MC60 Hardware Design |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.1.1. |
Reference Design ........................................................................................................ |
70 |
||
|
|
4.1.2. |
RF Output Power ......................................................................................................... |
71 |
||
|
|
4.1.3. |
RF Receiving Sensitivity .............................................................................................. |
72 |
||
|
|
4.1.4. |
Operating Frequencies ................................................................................................ |
72 |
||
|
|
4.1.5. |
RF Cable Soldering ..................................................................................................... |
72 |
||
|
4.2. |
|
GNSS Antenna Interface....................................................................................................... |
73 |
||
|
|
4.2.1. |
Antenna Specifications ................................................................................................ |
73 |
||
|
|
4.2.2. |
Active Antenna............................................................................................................. |
74 |
||
|
|
4.2.3. |
Passive Antenna .......................................................................................................... |
75 |
||
|
4.3. |
|
Bluetooth Antenna Interface.................................................................................................. |
75 |
||
5 |
Electrical, Reliability and Radio Characteristics .......................................................................... |
78 |
||||
|
5.1. |
|
Absolute Maximum Ratings .................................................................................................. |
78 |
||
|
5.2. |
|
Operating Temperature ......................................................................................................... |
78 |
||
|
5.3. |
|
Power Supply Ratings........................................................................................................... |
79 |
||
|
5.4. |
|
Current Consumption............................................................................................................ |
81 |
||
|
5.5. |
|
Electrostatic Discharge ......................................................................................................... |
83 |
||
6 |
Mechanical Dimensions.......................................................................................................... |
........ 85 |
||||
|
6.1. Mechanical Dimensions of Module ....................................................................................... |
85 |
||||
|
6.2. |
|
Recommended Footprint....................................................................................................... |
87 |
||
|
6.3. Top and Bottom View of the Module...................................................................................... |
88 |
||||
7 |
Storage and Manufacturing............................................................................................................ |
89 |
||||
|
7.1. |
|
Storage.................................................................................................................................. |
89 |
||
|
7.2. |
|
Soldering............................................................................................................................... |
89 |
||
|
7.3. |
|
Packaging ............................................................................................................................. |
90 |
||
|
|
7.3.1. Tape and Reel Packaging............................................................................................ |
91 |
|||
8 |
Appendix A References.................................................................................................................. |
92 |
||||
9 |
Appendix B GPRS Coding Schemes ............................................................................................. |
97 |
||||
10 |
Appendix C GPRS Multi-slot Classes............................................................................................ |
99 |
MC60_Hardware_Design |
Confidential / Released |
5 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
Table Index |
|
TABLE 1: KEY FEATURES (GMS/GPRS PART OF MC60) .................................................................... |
13 |
TABLE 2: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTERFACE ............... |
15 |
TABLE 3: KEY FEATURES (GNSS PART OF MC60) ............................................................................. |
15 |
TABLE 4: PROTOCOLS SUPPORTED BY THE MODULE..................................................................... |
17 |
TABLE 5: I/O PARAMETERS DEFINITION............................................................................................. |
21 |
TABLE 6: PIN DESCRIPTION................................................................................................................. |
21 |
TABLE 7: MULTIPLEXED FUNCTIONS.................................................................................................. |
25 |
TABLE 8: COMPARISON BETWEEN ALL-IN-ONE AND STAND-ALONE SOLUTION........................... |
27 |
TABLE 9: OPERATING MODES OVERVIEW OF GSM PART................................................................ |
34 |
TABLE 10: DEFAULT CONFIGURATION OF FULL ON MODE (GNSS PART) ...................................... |
36 |
TABLE 11: COMBINATION STATES OF GSM AND GNSS PARTS IN ALL-IN-ONE SOLUTION ........... |
38 |
TABLE 12: COMBINATION STATES OF GSM AND GNSS PARTS IN STAND-ALONE SOLUTION...... |
39 |
TABLE 13: LOGIC LEVELS OF THE UART INTERFACE....................................................................... |
49 |
TABLE 14: PIN DEFINITION OF THE UART INTERFACES ................................................................... |
49 |
TABLE 15: PIN DEFINITION OF AUDIO INTERFACE............................................................................ |
56 |
TABLE 16: AOUT2 OUTPUT CHARACTERISTICS ................................................................................ |
57 |
TABLE 17: TYPICAL ELECTRET MICROPHONE CHARACTERISTICS................................................ |
61 |
TABLE 18: TYPICAL SPEAKER CHARACTERISTICS........................................................................... |
61 |
TABLE 19: PIN DEFINITION OF THE SIM INTERFACE......................................................................... |
62 |
TABLE 20: PIN DEFINITION OF THE ADC............................................................................................. |
65 |
TABLE 21: CHARACTERISTICS OF THE ADC ...................................................................................... |
65 |
TABLE 22: BEHAVIORS OF THE RI ....................................................................................................... |
65 |
TABLE 23: WORKING STATE OF THE NETLIGHT ................................................................................ |
67 |
TABLE 24: PIN DEFINITION OF THE RF_ANT ...................................................................................... |
70 |
TABLE 25: ANTENNA CABLE REQUIREMENTS ................................................................................... |
71 |
TABLE 26: ANTENNA REQUIREMENTS................................................................................................ |
71 |
TABLE 27: RF OUTPUT POWER ........................................................................................................... |
71 |
TABLE 28: RF RECEIVING SENSITIVITY.............................................................................................. |
72 |
TABLE 29: OPERATING FREQUENCIES............................................................................................... |
72 |
TABLE 30: RECOMMENDED ANTENNA SPECIFICATIONS ................................................................. |
73 |
TABLE 31: ABSOLUTE MAXIMUM RATINGS ........................................................................................ |
78 |
TABLE 32: OPERATING TEMPERATURE.............................................................................................. |
79 |
TABLE 33: POWER SUPPLY RATINGS OF GSM PART (GNSS IS POWERED OFF)........................... |
79 |
TABLE 34: POWER SUPPLY RATINGS OF GNSS PART ...................................................................... |
80 |
TABLE 35: CURRENT CONSUMPTION OF GSM AND GNSS PARTS.................................................. |
81 |
TABLE 36: CURRENT CONSUMPTION OF GSM PART (GNSS IS POWERED OFF) .......................... |
81 |
TABLE 37: CURRENT CONSUMPTION OF THE GNSS PART.............................................................. |
83 |
TABLE 38: ESD ENDURANCE (TEMPERATURE: 25ºC, HUMIDITY: 45%) ........................................... |
84 |
TABLE 39: REEL PACKAGING ............................................................................................................... |
91 |
TABLE 40: RELATED DOCUMENTS ...................................................................................................... |
92 |
TABLE 41: TERMS AND ABBREVIATIONS ............................................................................................ |
93 |
MC60_Hardware_Design |
Confidential / Released |
6 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
TABLE 42: DESCRIPTION OF DIFFERENT CODING SCHEMES......................................................... |
97 |
TABLE 43: GPRS MULTI-SLOT CLASSES............................................................................................. |
99 |
MC60_Hardware_Design |
Confidential / Released |
7 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
Figure Index |
|
FIGURE 1: MODULE FUNCTIONAL DIAGRAM............................................................................................... |
18 |
FIGURE 2: PIN ASSIGNMENT ......................................................................................................................... |
20 |
FIGURE 3: ALL-IN-ONE SOLUTION SCHEMATIC DIAGRAM......................................................................... |
26 |
FIGURE 4: STAND-ALONE SOLUTION SCHEMATIC DIAGRAM ................................................................... |
26 |
FIGURE 5: VOLTAGE RIPPLE DURING TRANSMITTING .............................................................................. |
28 |
FIGURE 6: REFERENCE CIRCUIT FOR THE VBAT INPUT ........................................................................... |
28 |
FIGURE 7: REFERENCE CIRCUIT FOR THE GNSS_VCC INPUT................................................................. |
29 |
FIGURE 8: REFERENCE CIRCUIT FOR POWER SUPPLY OF THE GSM PART .......................................... |
30 |
FIGURE 9: REFERENCE CIRCUIT DESIGN FOR GNSS PART IN ALL-IN-ONE SOLUTION........................ |
31 |
FIGURE 10: REFERENCE CIRCUIT DESIGN FOR GNSS PART IN STAND-ALONE SOLUTION ................ |
31 |
FIGURE 11: INTERNAL GNSS’S BACKUP DOMAIN POWER CONSTRUCTION .......................................... |
32 |
FIGURE 12: VRTC IS POWERED BY A RECHARGEABLE BATTERY ........................................................... |
33 |
FIGURE 13: VRTC IS POWERED BY A CAPACITOR...................................................................................... |
33 |
FIGURE 14: TURN ON THE MODULE WITH AN OPEN-COLLECTOR DRIVER............................................ |
39 |
FIGURE 15: TURN ON THE MODULE WITH A BUTTON................................................................................ |
40 |
FIGURE 16: TURN-ON TIMING........................................................................................................................ |
41 |
FIGURE 17: TURN-OFF TIMING BY USING THE PWRKEY PIN .................................................................... |
42 |
FIGURE 18: TURN-OFF TIMING OF GNSS PART BY USING AT COMMAND ............................................... |
43 |
FIGURE 19: TURN-ON TIMING OF GSM PART .............................................................................................. |
45 |
FIGURE 20: TURN-OFF TIMING OF GSM PART BY USING THE PWRKEY PIN .......................................... |
47 |
FIGURE 21: REFERENCE DESIGN FOR FULL-FUNCTION UART................................................................ |
51 |
FIGURE 22: REFERENCE DESIGN FOR UART PORT (THREE LINE CONNECTION)................................. |
52 |
FIGURE 23: REFERENCE DESIGN FOR UART PORT WITH HARDWARE FLOW CONTROL .................... |
52 |
FIGURE 24: REFERENCE DESIGN FOR FIRMWARE UPGRADE................................................................. |
53 |
FIGURE 25: REFERENCE DESIGN FOR DEBUG PORT ............................................................................... |
53 |
FIGURE 26: AUXILIARY AND GNSS UART PORT CONNECTION IN ALL-IN-ONE SOLUTION.................... |
54 |
FIGURE 27: AUXILIARY AND GNSS UART PORT CONNECTION IN STAND-ALONE SOLUTION .............. |
55 |
FIGURE 28: LEVEL MATCH DESIGN FOR 3.3V SYSTEM.............................................................................. |
55 |
FIGURE 29: SKETCH MAP FOR RS-232 INTERFACE MATCH...................................................................... |
56 |
FIGURE 30: REFERENCE DESIGN FOR AIN ................................................................................................. |
58 |
FIGURE 31: HANDSET INTERFACE DESIGN FOR AOUT1 ........................................................................... |
59 |
FIGURE 32: SPEAKER INTERFACE DESIGN WITH AN AMPLIFIER FOR AOUT1 ....................................... |
59 |
FIGURE 33: EARPHONE INTERFACE DESIGN.............................................................................................. |
60 |
FIGURE 34: LOUD SPEAKER INTERFACE DESIGN...................................................................................... |
60 |
FIGURE 35: REFERENCE CIRCUIT FOR SIM1 INTERFACE WITH AN 8-PIN SIM CARD HOLDER............ |
63 |
FIGURE 36: REFERENCE CIRCUIT FOR SIM1 INTERFACE WITH A 6-PIN SIM CARD HOLDER .............. |
63 |
FIGURE 37: REFERENCE CIRCUIT FOR SIM2 INTERFACE WITH A 6-PIN SIM CARD HOLDER .............. |
64 |
FIGURE 38: RI BEHAVIOR AS A RECEIVER WHEN VOICE CALLING .......................................................... |
66 |
FIGURE 39: RI BEHAVIOR AS A CALLER ....................................................................................................... |
66 |
FIGURE 40: RI BEHAVIOR WHEN URC OR SMS RECEIVED ....................................................................... |
66 |
FIGURE 41: REFERENCE DESIGN FOR NETLIGHT ..................................................................................... |
67 |
MC60_Hardware_Design |
Confidential / Released |
8 / 99 |
|
GSM/GPRS/GNSS Module Series |
|
MC60 Hardware Design |
FIGURE 42: REFERENCE DESIGN FOR GSM ANTENNA............................................................................. |
70 |
FIGURE 43: RF SOLDERING SAMPLE ........................................................................................................... |
73 |
FIGURE 44: REFERENCE DESIGN WITH ACTIVE ANTENNA....................................................................... |
74 |
FIGURE 45: REFERENCE DESIGN WITH PASSIVE ANTENNA .................................................................... |
75 |
FIGURE 46: REFERENCE DESIGN FOR BLUETOOTH ANTENNA ............................................................... |
76 |
FIGURE 47: MC60 TOP AND SIDE DIMENSIONS (UNIT: MM)....................................................................... |
85 |
FIGURE 48: MC60 BOTTOM DIMENSIONS (UNIT: MM)................................................................................. |
86 |
FIGURE 49: RECOMMENDED FOOTPRINT (UNIT: MM)................................................................................ |
87 |
FIGURE 50: TOP VIEW OF THE MODULE...................................................................................................... |
88 |
FIGURE 51: BOTTOM VIEW OF THE MODULE.............................................................................................. |
88 |
FIGURE 52: REFLOW SOLDERING THERMAL PROFILE.............................................................................. |
90 |
FIGURE 53: TAPE AND REEL SPECIFICATION.............................................................................................. |
91 |
FIGURE 54: DIMENSIONS OF REEL............................................................................................................... |
91 |
FIGURE 54: RADIO BLOCK STRUCTURE OF CS-1, CS-2 AND CS-3........................................................... |
97 |
FIGURE 56: RADIO BLOCK STRUCTURE OF CS-4....................................................................................... |
98 |
MC60_Hardware_Design |
Confidential / Released |
9 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
1 Introduction
This document defines the MC60 module and describes its hardware interface which is connected with the customer application as well as its air interface.
The document can help you quickly understand module interface specifications, as well as the electrical and mechanical details. Associated with application note and user guide, you can use MC60 module to design and set up mobile applications easily.
1.1. Safety Information
The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating MC60 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for the customer’s failure to comply with these precautions.
Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving.
Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers a Airplane Mode which must be enabled prior to boarding an aircraft.
Switch off your wireless device when in hospitals, clinics or other health care facilities. These requests are desinged to prevent possible interference with sentitive medical equipment.
MC60_Hardware_Design |
Confidential / Released |
10 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
Cellular terminals or mobiles operating over radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.
Your cellular terminal or mobile contains a transmitter and receiver. When it is ON , it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.
In locations with potencially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potencially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.
MC60_Hardware_Design |
Confidential / Released |
11 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
2 Product Concept
2.1. General Description
MC60 is a multi-purpose module which integrates a high performance GNSS engine and a dual-band GSM/GPRS engine. It can work as all-in-one solution or stand-alone solution according to customers' application demands.
The dual-band GSM/GPRS engine can work at frequencies of EGSM900MHz and DCS1800MHz. MC60 features GPRS multi-slot class 12 and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4. For more details about GPRS multi-slot classes and coding schemes, please refer to the Appendix B &
C.
The GNSS engine is a single receiver integrating GLONASS and GPS systems. It supports multiple positioning and navigation systems including autonomous GPS, GLONASS, SBAS (including WAAS, EGNOS, MSAS and GAGAN), and QZSS. It is able to achieve the industry’s highest level of sensitivity, accuracy and TTFF with the lowest power consumption. The embedded flash memory provides capacity for storing user-specific configurations and allows for future updates.
MC60 is an SMD type module with 54 LCC pads and 14 LGA pads which can be easily embedded into applications. With a compact profile of 18.7mm × 16.0mm × 2.1mm, the module can meet almost all the requirements for M2M applications, including vehicle and personal tracking, wearable devices, security systems, wireless POS, industrial PDA, smart metering, remote maintenance & control, etc.
Designed with power saving technique, the current consumption of MC60 is as low as 1.2mA in SLEEP mode when DRX is 5 and the GNSS part is powered off. The GNSS engine also has many advanced power saving modes including standby and backup modes which can fit the requirement of low-power consumption in different scenes.
GSM part of MC60 is integrated with Internet service protocols such as TCP/UDP, PPP, HTTP and FTP. Extended AT commands have been developed for you to use these Internet service protocols easily.
EASY technology as a key feature of GNSS part of MC60 module is one kind of AGPS. Capable of collecting and processing all internal aiding information like GNSS time, ephemeris, last position, etc., the GNSS part will have a fast TTFF in either Hot or Warm start.
The module fully complies with the RoHS directive of the European Union.
MC60_Hardware_Design |
Confidential / Released |
12 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
2.2. Directives and Standards
The MC60module is designed to comply with the FCC statements. FCC ID: XMR201609MC60
The Host system using MC60 should have label “contains FCC ID: XMR201609MC60”.
2.2.1. 2.2.1. FCC Statement
Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.
2.2.2. FCC Radiation Exposure Statement
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator and your body as well as kept minimum 20cm from radio antenna depending on the Mobile status of this module usage. This module should NOT be installed and operating simultaneously with other radio. The manual of the host system, which uses MC60, must include RF exposure warning statement to advice user should keep minimum 20cm from the radio antenna of MC60 module depending on the Mobile status. Note: If a portable device (such as PDA) uses MC60 module, the device needs to do permissive change and SAR testing.
The following list indicates the performance of antenna gain in certificate testing.
Part |
Frequency Range (MHz) |
Peak Gain |
Average |
VSWR |
Impedance |
|
Number |
(XZ-V) |
Gain(XZ-V) |
||||
|
|
|
||||
3R007 |
GSM850:824 894MHz |
1 dBi typ. |
1 dBi typ. |
2 max |
50Ω |
|
PCS1900: 1850 1990MHz |
||||||
|
|
|
|
|
2.3. Key Features
The following table describes the detailed features of MC60 module.
Table 1: Key Features (GMS/GPRS Part of MC60)
|
Features |
|
Implementation |
|
|
|
|
|
Power Supply |
|
Single supply voltage: 3.3V ~ 4.6V |
|
|
Typical supply voltage: 4V |
|
|
|
|
MC60_Hardware_Design |
Confidential / Released |
13 / 99 |
|
|
|
|
GSM/GPRS/GNSS Module Series |
|
|
|
|
|
MC60 Hardware Design |
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Typical power consumption in SLEEP mode (GNSS is powered off): |
||
|
Power Saving |
|
1.2mA@DRX=5 |
||
|
|
|
|
0.8mA@DRX=9 |
|
|
|
|
|
|
|
|
|
|
|
Dual-band: EGSM900, DCS1800. |
|
|
Frequency Bands |
The module can search these frequency bands automatically |
|||
|
|
The frequency bands can be set by AT commands |
|||
|
|
|
|||
|
|
|
Compliant to GSM Phase 2/2+ |
|
|
|
GSM Class |
Small MS |
|||
|
|
|
|
|
|
|
Transmitting Power |
Class 4 (2W) at EGSM900 |
|||
|
|
Class 1 (1W) at DCS1800 |
|||
|
|
|
|||
|
|
|
|
|
|
|
|
|
GPRS multi-slot class 12 (default) |
||
|
GPRS Connectivity |
|
GPRS multi-slot class 1~12 (configurable) |
||
|
|
|
GPRS mobile station class B |
||
|
|
|
|
|
|
|
|
|
GPRS data downlink transfer: max. 85.6kbps |
||
|
|
|
GPRS data uplink transfer: max. 85.6kbps |
||
|
|
|
Coding scheme: CS-1, CS-2, CS-3 and CS-4 |
||
|
DATA GPRS |
Support the protocols PAP (Password Authentication Protocol) |
|||
|
|
usually used for PPP connections |
|||
|
|
|
|
||
|
|
|
Internet service protocols TCP/UDP, FTP, PPP, HTTP, NTP, PING |
||
|
|
|
Support Packet Broadcast Control Channel (PBCCH) |
||
|
|
|
Support Unstructured Supplementary Service Data (USSD) |
|
|
|
Temperature Range |
Operation temperature range: -35°C ~ +75°C 1) |
|||
|
|
Extended temperature range: -40°C ~ +85°C 2) |
|
||
|
|
|
|||
|
SMS |
Text and PDU mode |
|||
|
|
SMS storage: SIM card |
|||
|
|
|
|||
|
|
|
|
|
|
|
SIM Interface |
Support SIM card: 1.8V, 3.0V |
|||
|
|
Support Dual SIM Single Standby |
|
||
|
|
|
|||
|
|
|
Speech codec modes: |
||
|
|
|
Half Rate (ETS 06.20) |
||
|
|
|
Full Rate (ETS 06.10) |
||
|
|
|
Enhanced Full Rate (ETS 06.50/06.60/06.80) |
||
|
Audio Features |
|
Adaptive Multi-Rate (AMR) |
||
|
|
|
|
Echo Suppression |
|
|
|
|
|
Noise Reduction |
|
|
|
|
Embedded one amplifier of class AB with maximum driving power up |
||
|
|
|
|
to 870mW |
|
|
|
|
|
|
|
|
|
|
UART Port: |
||
|
|
|
Seven lines on UART port interface |
||
|
UART Interfaces |
Used for AT command and GPRS data |
|||
|
|
Used for NMEA output in all-in-one solution |
|||
|
|
|
|||
|
|
|
|
Multiplexing function |
|
|
|
|
Support autobauding from 4800bps to 115200bps |
||
|
|
|
|
|
|
MC60_Hardware_Design |
Confidential / Released |
14 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
|
Debug Port: |
|
|
Two lines on debug port interface DBG_TXD and DBG_RXD |
|
|
Debug port only used for firmware debugging |
|
|
Auxiliary Port: |
|
|
Two lines on auxiliary port interface: TXD_AUX and RXD_AUX |
|
|
Used for communication with the GNSS Part in all-in-one solution |
|
Phonebook Management |
Support phonebook types: SM, ME, ON, MC, RC, DC, LD, LA |
|
|
|
|
SIM Application Toolkit |
Support SAT class 3, GSM 11.14 Release 99 |
|
|
|
|
Physical Characteristics |
Size: (18.7±0.15) × (16±0.15) × (2.1±0.2)mm |
|
Weight: Approx. 1.3g |
||
|
||
Firmware Upgrade |
Firmware upgrade via UART port |
|
|
|
|
Antenna Interface |
Connected to antenna pad with 50 Ohm impedance control |
|
|
|
NOTES
1. 1) Within operation temperature range, the module is 3GPP compliant.
2. 2) Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP compliant again.
Table 2: Coding Schemes and Maximum Net Data Rates over Air Interface |
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
Coding Scheme |
1 Timeslot |
2 Timeslot |
|
4 Timeslot |
|
|
|
|
|
|
|
CS-1 |
9.05kbps |
18.1kbps |
36.2kbps |
|
|
|
|
|
|
|
|
CS-2 |
13.4kbps |
26.8kbps |
53.6kbps |
|
|
|
|
|
|
|
|
CS-3 |
15.6kbps |
31.2kbps |
62.4kbps |
|
|
|
|
|
|
|
|
CS-4 |
21.4kbps |
42.8kbps |
85.6kbps |
|
|
|
|
|
|
|
|
Table 3: Key Features (GNSS Part of MC60)
|
|
|
Features |
|
Implementation |
|
|
|
GNSS |
|
GPS+GLONASS |
|
|
|
MC60_Hardware_Design |
Confidential / Released |
15 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
Power Supply
Power Consumption
Receiver Type
Sensitivity
GPS+GLONASS
Time-to-First-Fix
(EASY Enabled) 1)
Time-to-First-Fix
(EASY Disabled)
Horizontal Position
Accuracy (Autonomous)
Update Rate
Velocity Accuracy
Acceleration Accuracy
Dynamic Performance
GNSS UART Port
NOTE
Supply voltage: 2.8V~4.3V |
Typical: 3.3V |
Acquisition: 25mA @-130dBm (GPS)
Tracking: 19mA @-130dBm (GPS)
Acquisition: 29mA @-130dBm (GPS+GLONASS)
Tracking: 22mA @-130dBm (GPS+GLONASS)
Standby: 500uA @VCC=3.3V
Backup: 14uA @V_BCKP=3.3V
GPS L1 1575.42MHz C/A Code
GLONASS L1 1598.0625~1605.375MHz C/A Code
Acquisition: -149dBm
Reacquisition: -161dBm
Tracking: -167dBm
Cold Start: <15s average @-130dBm
Warm Start: <5s average @-130dBm
Hot Start: 1s @-130dBm
Cold Start (Autonomous): <35s average @-130dBm
Warm Start (Autonomous): <30s average @-130dBm
Hot Start (Autonomous): 1s @-130dBm
<2.5 m CEP @-130dBm
Up to 10Hz, 1Hz by default
Without aid: 0.1m/s
Without aid: 0.1m/s²
Maximum Altitude: 18,000m
Maximum Velocity: 515m/s
Acceleration: 4G
GNSS UART port: GNSS_TXD and GNSS_ RXD
Support baud rate from 4800bps to 115200bps; 115200bps by default
Used for communication with the GSM Part in all-in-one solution
Used for communication with peripherals in stand-alone solution
1) In this mode, GNSS part’s backup domain should be valid.
MC60_Hardware_Design |
Confidential / Released |
16 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
Table 4: Protocols Supported by the Module
|
|
|
Protocol |
|
Type |
|
|
|
NMEA |
Input/output, ASCII, 0183, 3.01 |
|
|
|
|
PMTK |
Input, MTK proprietary protocol |
|
|
|
|
NOTE
Please refer to document [2] for details of NMEA standard protocol and MTK proprietary protocol.
2.4. Functional Diagram
The following figure shows a block diagram of MC60 and illustrates the major functional parts.
Radio frequency part
Power management
Peripheral interfaces —Power supply —Turn-on/off interface —UART interface —Audio interface —SIM interface
|
|
—ADC |
|
|
interface |
|
|
—RF |
|
|
interface |
|
|
—PCM |
|
|
interface |
|
|
—BT |
|
|
interface |
|
|
—SD |
|
|
interface |
MC60_Hardware_Design |
Confidential / Released |
17 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
Figure 1: Module Functional Diagram
2.5. Evaluation Board
In order to help you develop applications with MC60, Quectel supplies an evaluation board (EVB), RS-232 to USB cable, power adapter, earphone, antenna and other peripherals to control or test the module. For details, please refer to document [11].
MC60_Hardware_Design |
Confidential / Released |
18 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
3 Application Functions
MC60 is an SMD type module with 54 LCC pads and 14 LGA pads. The following chapters provide detailed descriptions about these pins.
Pin of module
Power supply
Operating modes
Power on/down
Power saving
Backup domain of GNSS
Serial interfaces
Audio interfaces
SIM card interface
ADC
Behaviors of the RI
Network status indication
RF transmitting signal indication
EASY autonomous AGPS technology
EPO offline AGPS technology
Multi-tone AIC
MC60_Hardware_Design |
Confidential / Released |
19 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
3.1. Pin of Module
3.1.1. Pin Assignment
Figure 2: Pin Assignment
NOTE
Keep all reserved pins open.
MC60_Hardware_Design |
Confidential / Released |
20 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
3.1.2. Pin Description
Table 5: I/O Parameters Definition
Type |
Description |
|
|
IO |
Bidirectional input/output |
|
|
DI |
Digital input |
|
|
DO |
Digital output |
|
|
PI |
Power input |
|
|
PO |
Power output |
|
|
AI |
Analog input |
|
|
AO |
Analog output |
|
|
Table 6: Pin Description
Power Supply
|
PIN Name |
PIN No. |
I/O |
Description |
DC Characteristics |
Comment |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
It must be able to |
|
|
|
|
|
Power supply of |
VImax=4.6V |
provide sufficient |
|
|
VBAT |
50, 51 |
PI |
GSM/GPRS part: |
VImin=3.3V |
current up to 1.6A |
|
|
|
|
|
VBAT=3.3V~4.6V |
VInorm=4.0V |
in a transmitting |
|
|
|
|
|
|
|
burst. |
|
|
|
|
|
|
|
|
|
|
GNSS_ |
|
|
Power supply of GNSS |
VImax=4.3V |
Assure load |
|
|
26 |
PI |
part: |
VImin=2.8V |
current no less |
||
|
VCC |
||||||
|
|
|
VBAT=2.8V~4.3V |
VInorm=3.3V |
than 150mA. |
||
|
|
|
|
||||
|
|
|
|
Power supply for GNSS’s |
VImax=3.3V |
|
|
|
|
|
|
VImin=1.5V |
|
|
|
|
|
|
|
backup domain |
|
|
|
|
|
|
|
VInorm=2.8V |
|
|
|
|
|
|
|
|
|
|
|
|
VRTC |
52 |
IO |
Charging for backup |
VOmax=3V |
Refer to Section |
|
|
VOmin=2V |
3.3.5 |
|
||||
|
|
|
|
battery or golden |
|
||
|
|
|
|
VOnorm=2.8V |
|
|
|
|
|
|
|
capacitor when the VBAT |
|
|
|
|
|
|
|
IOmax=2mA |
|
|
|
|
|
|
|
is applied. |
|
|
|
|
|
|
|
Iin≈14uA |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VOmax=2.9V |
1. If unused, keep |
|
|
VDD_ |
43 |
PO |
Supply 2.8V voltage for |
VOmin=2.7V |
this pin open. |
|
|
EXT |
external circuit. |
VOnorm=2.8V |
2. Recommend |
|||
|
|
|
|||||
|
|
|
|
|
IOmax=20mA |
adding a |
|
|
|
|
|
|
|
|
|
|
MC60_Hardware_Design |
Confidential / Released |
21 / 99 |
|
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
|
|
|
|
|
|
|
2.2~4.7uF bypass |
|
|
|
|
|
|
|
capacitor, when |
|
|
|
|
|
|
|
using this pin for |
|
|
|
|
|
|
|
power supply. |
|
|
|
|
|
|
|
|
|
|
14,27, |
|
|
|
|
|
|
|
31,40, |
|
|
|
|
|
|
GND |
42,44, |
|
Ground |
|
|
|
|
|
45,48, |
|
|
|
|
|
|
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Turn on/off |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PIN Name |
PIN No. |
I/O |
Description |
DC Characteristics |
Comment |
|
|
|
|
|
|
|
|
|
|
|
|
|
Power on/off key. |
VILmax= |
|
|
|
|
|
|
PWRKEY should be |
0.1×VBAT |
|
|
|
PWRKEY |
5 |
DI |
pulled down for a |
VIHmin= |
|
|
|
|
|
|
moment to turn on or |
0.6×VBAT |
|
|
|
|
|
|
turn off the system. |
VIHmax=3.1V |
|
|
|
Audio Interface |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PIN Name |
PIN No. |
I/O |
Description |
DC Characteristics |
|
Comment |
|
|
|
|
|
|
|
|
|
MICP |
1, |
AI |
Positive and negative |
|
|
If unused, keep |
|
MICN |
2 |
voice input |
|
|
these pins open. |
|
|
|
|
|
||||
|
|
|
|
|
|
|
If unused, keep |
|
SPKP |
3, |
|
Channel 1 positive and |
|
|
these pins open. |
|
AO |
|
|
Support both |
|||
|
SPKN |
4 |
negative voice output |
|
|
||
|
|
|
|
voice and |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ringtone output. |
|
|
|
|
|
Refer to Section 3.8.6 |
|
1. If unused, keep |
|
|
|
|
|
|
these pins open. |
|
|
|
|
|
|
|
|
|
|
LOUD |
|
|
|
|
|
2. Integrate a |
|
|
|
|
|
|
ClassAB |
|
|
SPKP |
54 |
|
Channel 2 positive and |
|
|
|
|
AO |
|
|
amplifier |
|||
|
LOUD |
53 |
negative voice output |
|
|
||
|
|
|
|
internally. |
|||
|
SPKN |
|
|
|
|
|
|
|
|
|
|
|
|
3. Support both |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
voice and |
|
|
|
|
|
|
|
ringtone output. |
|
|
|
|
|
|
||
|
Network Status Indicator |
|
|
|
|
||
|
|
|
|
|
|
|
|
|
PIN Name |
PIN No. |
I/O |
Description |
DC Characteristics |
|
Comment |
|
|
|
|
|
|
|
|
|
|
|
|
|
VOHmin= |
|
|
|
NETLIGHT |
47 |
DO |
Network status |
0.85×VDD_EXT |
|
If unused, keep |
|
indication |
VOLmax= |
|
this pin open. |
|||
|
|
|
|
|
0.15×VDD_EXT
MC60_Hardware_Design |
Confidential / Released |
22 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
UART Port
|
PIN Name |
PIN No. |
I/O |
Description |
DC Characteristics |
Comment |
|
|
|
|
|
|
|
|
TXD |
33 |
DO |
Transmit data |
VILmin=0V |
|
|
|
|
|
|
VILmax= |
|
|
RXD |
34 |
DI |
Receive data |
|
|
|
0.25×VDD_EXT |
If only TXD, RXD |
||||
|
|
|
|
|
VIHmin= |
and GND are |
|
DTR |
37 |
DI |
Data terminal ready |
||
|
0.75×VDD_EXT |
used for |
||||
|
|
|
|
|
||
|
RI |
35 |
DO |
Ring indication |
||
|
VIHmax= |
communication, it |
||||
|
|
|
|
|
VDD_EXT+0.2 |
is recommended |
|
DCD |
36 |
DO |
Data carrier detection |
||
|
VOHmin= |
to keep all other |
||||
|
|
|
|
|
||
|
|
|
|
|
||
|
CTS |
38 |
DO |
Clear to send |
0.85×VDD_EXT |
pins open. |
|
|
|
|
|
VOLmax= |
|
|
RTS |
39 |
DI |
Request to send |
|
|
|
0.15×VDD_EXT |
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Debug Port |
|
|
|
|
|
|
|
|
|
|
|
|
|
PIN Name PIN No. |
I/O |
Description |
DC Characteristics |
Comment |
|
|
|
|
|
|
|
|
|
DBG_ |
29 |
DO |
Transmit data |
|
|
|
TXD |
The same as UART |
If unused, keep |
|||
|
|
|
|
|||
|
DBG_ |
30 |
DI |
Receive data |
port |
these pins open. |
|
RXD |
|
|
|||
|
|
|
|
|
|
|
|
Auxiliary UART Port |
|
|
|
|
|
|
|
|
|
|
|
|
|
PIN Name PIN No. |
I/O |
Description |
DC Characteristics |
Comment |
||
|
|
|
|
|
|
|
|
|
TXD_ |
25 |
DO |
Transmit data |
|
|
|
|
AUX |
The same as UART |
Refer to Section |
||||
|
|
|
|
||||
|
RXD_ |
24 |
DI |
Receive data |
port |
3.2 |
|
|
AUX |
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GNSS UART Port |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PIN Name PIN No. |
I/O |
Description |
DC Characteristics |
Comment |
||
|
|
|
|
|
|
|
|
|
GNSS_ |
|
|
|
VOLmax=0.42V |
|
|
|
22 |
DO |
Transmit data |
VOHmin=2.4V |
|
|
|
|
TXD |
|
|
||||
|
|
|
|
VOHnom=2.8V |
Refer to Section |
||
|
|
|
|
|
|||
|
|
|
|
|
VILmin=-0.3V |
3.2 |
|
|
GNSS_ |
23 |
DI |
Receive data |
VILmax=0.7V |
|
|
|
RXD |
VIHmin=2.1V |
|
|
|||
|
|
|
|
|
|
||
|
|
|
|
|
VIHmax=3.1V |
|
|
|
SIM Interface |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PIN Name |
PIN No. I/O |
Description |
DC Characteristics |
Comment |
||
|
|
|
|
|
|
|
|
|
SIM1_ VDD |
18 |
PO |
Power supply for SIM |
The voltage can be |
All signals of SIM |
|
|
SIM2_ VDD |
13 |
card |
selected by software |
interface should |
||
|
|
||||||
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
MC60_Hardware_Design |
Confidential / Released |
23 / 99 |
|
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
|
|
|
|
|
automatically. Either |
be protected |
|
|
|
|
|
1.8V or 3.0V. |
against ESD with |
|
|
|
|
|
|
a TVS diode |
|
|
|
|
|
VOLmax= |
|
|
SIM1_ CLK |
19 |
DO |
SIM clock |
0.15×SIM_VDD |
array. |
|
SIM2_ CLK |
10 |
VOHmin= |
Maximum trace |
||
|
|
|
||||
|
|
|
|
|
0.85×SIM_VDD |
length is 200mm |
|
|
|
|
|
VILmax= |
from the module |
|
SIM1_ |
|
|
|
0.25×SIM_VDD |
pad to SIM card |
|
DATA |
21 |
|
|
VIHmin= |
holder. |
|
|
|
0.75×SIM_VDD |
|||
|
SIM2_ |
IO |
SIM data |
|
||
|
11 |
VOLmax= |
|
|||
|
DATA |
|
|
|
||
|
|
|
|
0.15×SIM_VDD |
|
|
|
|
|
|
|
VOHmin= |
|
|
|
|
|
|
0.85×SIM_VDD |
|
|
|
|
|
|
VOLmax= |
|
|
SIM1_ RST |
20 |
DO |
SIM reset |
0.15×SIM_VDD |
|
|
SIM2_ RST |
12 |
VOHmin= |
|
||
|
|
|
|
|||
|
|
|
|
|
0.85×SIM_VDD |
|
|
|
|
|
|
|
|
|
SIM_ |
16 |
|
SIM ground |
|
|
|
GND |
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
VILmin =0V |
|
|
|
|
|
|
VILmax = |
Default DTR |
|
|
|
|
|
0.25×VDD_EXT |
|
|
SIM1_ |
|
|
|
function. Now the |
|
|
37 |
I |
SIM1 card detection |
VIHmin = |
||
|
PRESENCE |
software does not |
||||
|
|
|
|
0.75×VDD_EXT |
||
|
|
|
|
|
support it. |
|
|
|
|
|
|
VIHmax = |
|
|
|
|
|
|
|
|
|
|
|
|
|
VDD_EXT+0.2 |
|
|
ADC |
|
|
|
|
|
|
|
|
|
|
|
|
|
PIN Name |
PIN No. |
I/O |
Description |
DC Characteristics |
Comment |
|
|
|
|
|
|
|
|
|
|
|
General purpose |
Voltage range: |
If unused, keep |
|
ADC |
6 |
AI |
analog to digital |
||
|
0V to 2.8V |
this pin open. |
||||
|
|
|
|
converter. |
||
|
|
|
|
|
|
|
|
|
|
|
|
||
|
Digital Audio Interface (PCM) |
|
|
|
||
|
|
|
|
|
|
|
|
PCM_CLK |
59 |
DO |
PCM clock |
|
|
|
|
|
|
|
|
|
|
PCM_OUT |
60 |
DO |
PCM data output |
|
|
|
|
|
|
|
|
|
|
PCM_SYNC |
61 |
DO |
PCM frame |
|
|
|
synchronization |
|
|
|||
|
|
|
|
|
|
|
|
PCM_IN |
62 |
DI |
PCM data input |
|
|
|
|
|
|
|
|
|
|
SD Card Interface |
|
|
|
|
|
|
|
|
|
|
|
|
|
SD_CMD |
7 |
DO |
SD Command line |
|
|
|
|
|
|
|
|
|
MC60_Hardware_Design |
Confidential / Released |
24 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
|
SD_CLK |
8 |
DO |
SD clock |
|
|
|
|
|
|
|
|
|
|
SD_DATA |
9 |
IO |
SD data line |
|
|
|
|
|
|
|
|
|
|
Antenna Interface |
|
|
|
|
|
|
|
|
|
|
|
|
|
PIN Name |
PIN No. |
I/O |
Description |
DC Characteristics |
Comment |
|
|
|
|
|
|
|
|
RF_ |
41 |
IO |
GSM antenna pad |
Impedance of 50Ω |
|
|
ANT |
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BT_ |
32 |
IO |
BT antenna pad |
|
|
|
ANT |
|
|
|||
|
|
|
|
|
|
|
|
GNSS_ |
15 |
I |
GNSS signal input |
Impedance of 50Ω |
|
|
ANT |
|
||||
|
|
|
|
|
|
|
|
Other Interface |
|
|
|
|
|
|
|
|
|
|
|
|
|
PIN Name |
PIN No. |
I/O |
Description |
DC Characteristics |
Comment |
|
|
|
|
|
|
|
|
|
|
|
|
|
Refer to Section |
|
|
|
|
|
|
3.3.3.2 in |
|
|
|
|
|
VOHmin= |
all-in-one |
|
GNSS_ |
28 |
O |
GNSS power enabled |
0.85×VDD_EXT |
solution. |
|
VCC_EN |
VOLmax= |
Keep this pin |
|||
|
|
|
|
|
0.15×VDD_EXT |
open in |
|
|
|
|
|
|
stand-alone |
|
|
|
|
|
|
solution. |
|
|
17, 46 |
|
|
|
|
|
|
55, 56, |
|
|
|
|
|
RESERVED |
57, 58, |
|
|
|
Keep these pins |
|
63, 64, |
|
|
|
open |
|
|
|
|
|
|
||
|
|
65, 66, |
|
|
|
|
|
|
67, 68, |
|
|
|
|
Table 7: Multiplexed Functions
PIN Name |
PIN No. |
Function After Reset |
Alternate Function |
|
|
|
|
DTR/SIM1_PRESENCE |
37 |
DTR |
SIM1_PRESENCE |
|
|
|
|
3.2. Application Modes Introduction
MC60 module integrates both GSM and GNSS engines which can work as a whole (all-in-one solution) unit or work independently (stand-alone solution) according to customer demands.
MC60_Hardware_Design |
Confidential / Released |
25 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
In all-in-one solution, the MC60 works as a whole unit. The GNSS Part can be regarded as a peripheral of the GSM Part. This allows for convenient communication between GSM and GNSS Parts, such as AT command sending for GNSS control, GNSS part firmware upgrading, and EPO data download.
In stand-alone solution, GSM and GNSS Parts work independently, and thus have to be controlled separately.
All-in-one solution and stand-alone solution schematic diagrams are shown below.
Figure 3: All-in-one Solution Schematic Diagram
Figure 4: Stand-alone Solution Schematic Diagram
MC60_Hardware_Design Confidential / Released 26 / 99
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
Table 8: Comparison between All-in-one and Stand-alone Solution
|
|
All-in-one. |
|
|
Stand-alone |
|
|
|
Remarks |
|
|||
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Firmware upgrade |
via |
Firmware |
upgrade |
via |
|
|
|
||||
|
Firmware upgrade |
UART |
Port |
(GSM |
and |
UART |
Port (GSM |
and |
|
Refer to 3.7.1.3 |
|||
|
GNSS |
Parts |
share |
the |
GNSS |
Parts |
share |
the |
|
for details |
|||
|
|
|
|||||||||||
|
|
same firmware package) |
same firmware package) |
|
|
|
|||||||
|
|
|
|
|
|
GSM |
data |
is |
transmitted |
|
|
|
|
|
|
Both GSM and GNSS data |
through the GSM UART |
|
|
|
|||||||
|
|
Port. |
|
|
|
|
|
|
|
||||
|
Data transmission |
are transmitted through |
GNSS data is transmitted |
|
|
|
|||||||
|
|
the GSM UART Port |
|
through the GNSS UART |
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
Port. |
|
|
|
|
|
|
|
|
GNSS TURN ON/OFF |
By AT command through |
Through |
the |
external |
|
Refer to 3.5 and |
||||||
|
GSM UART Port |
|
switch of MCU |
|
|
|
3.6 for details |
||||||
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|||
|
GNSS wake up GSM |
GNSS can wake up GSM |
N/A |
|
|
|
|
|
|
|
|||
|
|
by interrupts |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MCU |
receives |
the |
EPO |
|
|
|
|
|
GNSS’s EPO data |
EPO data is downloaded |
data which is downloaded |
|
Refer to 3.14 for |
||||||||
|
directly through the GSM |
through the GSM part, and |
|
||||||||||
|
download |
part. |
|
|
|
then |
transmit |
it to |
the |
|
details |
GNSS part.
3.3. Power Supply
3.3.1. Power Features
The power supply of the GSM part is one of the key issues in MC60 module design. Due to the 577us radio burst in GSM part every 4.615ms, the power supply must be able to deliver high current peaks in a burst period. During these peaks, drops on the supply voltage must not exceed the minimum working voltage of the module.
For MC60 module, the maximum current consumption could reach 1.6A during a burst transmission. It will cause a large voltage drop on the VBAT. In order to ensure stable operation of the module, it is recommended that the maximum voltage drop during the burst transmission does not exceed 400mV.
MC60_Hardware_Design |
Confidential / Released |
27 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
Figure 5: Voltage Ripple during Transmitting
3.3.2. Decrease Supply Voltage Drop
3.3.2.1. Decrease Supply Voltage Drop for GSM Part
Power supply range of the GSM part is from 3.3V to 4.6V. Make sure that the input voltage will never drop below 3.3V even in a burst transmission. If the power voltage drops below 3.3V, the module will be turned off automatically. For better power performance, it is recommended to place a 100uF tantalum capacitor with low ESR (ESR=0.7Ω) and ceramic capacitors 100nF, 33pF and 10pF near the VBAT pin. A reference circuit is illustrated in the following figure.
The VBAT trace should be wide enough to ensure that there is not too much voltage drop during burst transmission. The width of trace should be no less than 2mm; and in principle, the longer the VBAT trace, the wider it will be.
Figure 6: Reference Circuit for the VBAT Input
MC60_Hardware_Design |
Confidential / Released |
28 / 99 |
GSM/GPRS/GNSS Module Series
MC60 Hardware Design
3.3.2.2. Decrease Supply Voltage Drop for GNSS Part
The same as VBAT, power supply range of GNSS part is from 2.8 to 4.3V. Typical GNSS_VCC peak current is 40mA during GNSS acquisition after power up. So it is important to supply sufficient current and make the power clean and stable. The decouple combination of 10uF and 100nF capacitor is recommended nearby GNSS_VCC pin. A reference circuit is illustrated in the following figure.
Figure 7: Reference Circuit for the GNSS_VCC Input
3.3.3. Reference Design for Power Supply
3.3.3.1. Reference Design for Power Supply of GSM Part
In all-in-one solution, the GSM part controls the power supply of the GNSS part. Therefore, the GSM part share the same power circuit design in both all-in-one and stand-alone solutions.
The power supply of GSM part is capable of providing sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested to use a LDO as the module’s power supply. If there is a big voltage difference between the input source and the desired output (VBAT), a switcher power converter is recommended to be used as the power supply.
The following figure shows a reference design for +5V input power source for GSM part. The designed output for the power supply is 4.0V and the maximum load current is 3A. In addition, in order to get a stable output voltage, a zener diode is placed close to the pins of VBAT. As to the zener diode, it is suggested to use a zener diode whose reverse zener voltage is 5.1V and dissipation power is more than 1 Watt.
MC60_Hardware_Design |
Confidential / Released |
29 / 99 |