DATA SHEET
NPN SILICON RF TWIN T RANSISTOR
PA835TC
µµµµ
NPN SILICON EPITAXIAL TRANSISTOR (WITH 2 DIFFERENT ELEMENTS)
IN A FLAT-LEAD 6-PIN THIN-TYPE ULTRA SUPER MINIMOLD PACKAGE
DESCRIPTION
The µPA835TC has built-in two different transistors (Q1 and Q2) for low noise amplification in the VHF band to
UHF band.
FEATURES
• Low noise
CE
Q1 : NF = 1.5 dB TYP. @ f = 2 GHz, V
Q2 : NF = 1.2 dB TYP. @ f = 1 GHz, VCE = 3 V, IC = 7 mA
• High gain
Q1 : |S
Q2 : |S
• Flat-lead 6-pin thin-type ultra super minimold package
• Built-in 2 different transistors (2SC5010, 2SC5006)
2
21e
= 8.5 dB TYP. @ f = 2 GHz, VCE = 3 V, IC = 10 mA
|
2
21e
= 9.0 dB TYP. @ f = 1 GHz, VCE = 3 V, IC = 7 mA
|
= 3 V, IC = 3 mA
BUILT-IN TRANSISTORS
Q1 Q2
3-pin ultra super minimold part No. 2SC5010 2SC5006
ORDERING INFORMATION
Part Number Package Quantity Supplying Form
µ
PA835TC Loose products
µ
PA835TC-T1
Remark
Flat-lead 6-pin
thin-type ultra
super minimold
To order evaluation samples, please contact your local NEC sales office. (Part number for sample order:
PA835TC.)
µ
(50 pcs)
Taping products
(3 kp/reel)
Caution Electro-static sensitive devices
8 mm wide embossed tape.
Pin 6 (Q1 Base), pin 5 (Q2 Emitter), pin 4 (Q2 Base) face to perforation
side of the tape.
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for
availability and additional information.
Document No. P14555EJ1V0DS00 (1st edition)
Date Published November 1999 N CP(K)
Printed in Japan
1999©
µµµµ
PA835TC
ABSOLUTE MAXIMUM RATINGS (TA = +25
Parameter Symbol
Collector to Base Voltage V
Collector to Emitter Voltage V
Emitter to Base Voltage V
Collector Current I
Total Power Dissipat i on
Junction Temperature T
Storage Temperature T
2
Mounted on 1.08 cm
Note
× 1.0 mm glass epoxy substrate.
CBO
CEO
EBO
C
Note
T
P
j
stg
ELECTRICAL CHARACTERISTICS (TA = +25
(1) Q1
C)
°°°°
Ratings
Q1 Q2
920V
612V
23V
30 100 mA
180 in 1 element 200 in 1 element mW
230 in 2 elements
150 150
65 to +150
−
C)
°°°°
Unit
C
°
C
°
Parameter Symbol Conditions MIN. TYP. MAX. Unit
Collector Cutoff Current I
Emitter Cutoff Current I
DC Current Gain h
Gain Bandwidth Product f
Feedback Capacitance C
Insertion Power Gain
CBO
EBO
FE
T
21e
S
|
VCB = 5 V, IE = 0
VEB = 1 V, IC = 0
VCE = 3 V, IC = 10 mA
Note 1
VCE = 3 V, IC = 10 mA, f = 2 GHz 10.0 12.0
VCB = 3 V, IE = 0, f = 1 MHz
re
2
VCE = 3 V, IC = 10 mA, f = 2 GHz 7.0 8.5
|
Noise Figure NF VCE = 3 V, IC = 3 mA, f = 2 GHz
Notes 1.
Pulse Measurement: PW ≤ 350
Collector to base capacitance when measured with capacitance meter (automatic balanced bridge
2.
s, Duty Cycle ≤ 2%
µ
method), with emitter connected to guard pin of capacitance meter.
Note 2
−−
−−
75
−
−
−
0.4 0.7 pF
1.5 2.5 dB
0.1
0.1
150
−
−
A
µ
A
µ
GHz
dB
2
Data Sheet P14555EJ1V0DS00
(2) Q2
µµµµ
PA835TC
Parameter Symbol Conditions MIN. TYP. MAX. Unit
Collector Cutoff Current I
Emitter Cutoff Current I
DC Current Gain h
Gain Bandwidth Product f
Feedback Capacitance C
Insertion Power Gain
CBO
EBO
FE
T
21e
S
|
VCB = 10 V, IE = 0
VEB = 1 V, IC = 0
VCE = 3 V, IC = 7 mA
Note 1
VCE = 3 V, IC = 7 mA, f = 1 GHz 3.0 4.5
VCB = 3 V, IE = 0, f = 1 MHz
re
2
VCE = 3 V, IC = 7 mA, f = 1 GHz 7.0 9.0
|
Noise Figure NF VCE = 3 V, IC = 7 mA, f = 1 GHz
Notes 1.
Pulse Measurement: PW ≤ 350
Collector to base capacitance when measured with capacitance meter (automatic balanced bridge
2.
s, Duty Cycle ≤ 2%
µ
method), with emitter connected to guard pin of capacitance meter.
hFE CLASSIFICATION
Rank FB
Marking 37
hFE Value of Q1 75 to 150
hFE Value of Q2 70 to 140
Note 2
−−
−−
70
−
−
−
0.7 1.5 pF
1.2 2.5 dB
1.0
1.0
140
−
−
A
µ
A
µ
GHz
dB
Data Sheet P14555EJ1V0DS00
3
µµµµ
PA835TC
TYPICAL CHARACTERISTICS (TA = +25
Q1 Q2
TOTAL POWER DISSIPATION vs.
AMBIENT TEMPERATURE
2 Elements in total Free Air Free Air
230
200
(mW)
T
180
Per
Element (Q1)
100
Total Power Dissipation P
0
0 50 100 150
Ambient Temperature TA (°C)
COLLECTOR CURRENT vs.
BASE TO EMITTER VOLTAGE
50
VCE = 3 V
40
(mA)
C
30
20
C)
°°°°
TOTAL POWER DISSIPATION vs.
AMBIENT TEMPERATURE
2 Elements in total
230
200
(mW)
T
Per
Element (Q2)
100
Total Power Dissipation P
0
0 50 100 150
Ambient Temperature TA (°C)
COLLECTOR CURRENT vs.
BASE TO EMITTER VOLTAGE
20
VCE = 3 V
(mA)
C
10
Collector Current I
10
00
00
Base to Emitter Voltage VBE (V)
COLLECTOR CURRENT vs.
COLLECTOR TO EMITTER VOLTAGE
20
18
16
14
(mA)
C
12
10
8
6
Collector Current I
4
2
0
123456
0
Collector to Emitter Voltage VCE (V)
0.5 1.0
IB = 160 A
µ
IB = 140 A
µ
IB = 120 A
µ
IB = 100 A
µ
IB = 80 A
µ
IB = 60 A
µ
IB = 40 A
µ
IB = 20 A
µ
Collector Current I
Base to Emitter Voltage VBE (V)
COLLECTOR CURRENT vs.
COLLECTOR TO EMITTER VOLTAGE
18
16
14
(mA)
C
12
10
8
6
4
Collector Current I
2
0
0
123456
Collector to Emitter Voltage VCE (V)
0.5 1.0
I
B
= 160 A
µ
IB = 140 A
µ
IB = 120 A
µ
IB = 100 A
µ
IB = 80 A
µ
IB = 60 A
µ
IB = 40 A
µ
IB = 20 A
µ
4
Data Sheet P14555EJ1V0DS00