Collector to base voltageV
Collector to emitter voltageV
Emitter to base voltageV
Collector currentI
Total power dissipationP
Junction temperatureT
Storage temperatureT
Note
110 mW must not be exceeded for 1 element.
(1) Q1
CBO
CEO
EBO
C
T
j
stg
ELECTRICAL CHARACTERISTICS
°°°°
C)
RATING
Q1Q2
2020V
1012V
1.53V
65100mA
150 in 1 element150 in 1 elementmW
200 in 2 elements
Note
150150
−
65 to +150
UNITSYMBOLPARAMETER
°
C
°
C
PARAMETERSYMBOLCONDITIONMIN.TYP.MAX.UNIT
Collector cutoff currentI
Emitter cutoff currentI
DC current gainh
Gain bandwidth productf
Feedback capacitanceC
Insertion power gain
CBO
EBO
FE
T
|
21e
S
VCB = 10 V, IE = 00.8
VEB = 1 V, IC = 00.8
VCE = 3 V, IC = 7 mA
Note 1
70150
VCE = 3 V, IC = 7 mA, f = 1 GHz4.57.0GHz
VCB = 3 V, IE = 0, f = 1 MHz
re
2
|
VCE = 3 V, IC = 7 mA, f = 1 GHz1012dB
Note 2
0.450.9pF
Noise figureNFVCE = 3 V, IC = 7 mA, f = 1 GHz1.42.7dB
Notes 1.
Pulse measurement: PW ≤ 350
Collector to base capacitance when measured with capacitance meter (automatic balanced bridge
2.
s, Duty cycle ≤ 2%
µ
method), with emitter connected to guard pin of capacitance meter.
µ
A
µ
A
2
µµµµ
PA834TF
(2) Q2
ELECTRICAL CHARACTERISTICS
PARAMETERSYMBOLCONDITIONMIN.TYP.MAX.UNIT
Collector cutoff currentI
Emitter cutoff currentI
DC current gainh
Gain bandwidth productf
Feedback capacitanceC
Insertion power gain
Noise figureNFVCE = 3 V, IC = 7 mA, f = 1 GHz1.22.5dB
CBO
EBO
FE
T
|
21e
S
VCB = 10 V, IE = 01
VEB = 1 V, IC = 01
VCE = 3 V, IC = 7 mA
Note 1
100145
VCE = 3 V, IC = 7 mA, f = 1 GHz3.04.5GHz
VCB = 3 V, IE = 0, f = 1 MHz
re
2
|
VCE = 3 V, IC = 7 mA, f = 1 GHz79dB
Note 2
0.71.5pF
µ
A
µ
A
Notes 1.
Pulse measurement: PW ≤ 350
Collector to base capacitance when measured with capacitance meter (automatic balanced bridge
2.
method), with emitter connected to guard pin of capacitance meter.
hFE CLASSIFICATION
RankFB
MarkingV27
hFE value of Q170 to 150
hFE value of Q2100 to 145
s, Duty cycle ≤ 2%
µ
3
µµµµ
PA834TF
TYPICAL CHARACTERISTICS (TA = 25
°°°°
C)
Q1Q2
Total Power Dissipation vs. Ambient Temperature
Total Power Dissipation vs. Ambient Temperature
Free AirFree Air
200
(mW)
T
Q1 + Q2 total
100
Total power dissipation P
050100
Ambient temperature T
Q1 when using
1 element
Q1 when using
2 elements
A
(°C)
150
200
(mW)
T
100
Total power dissipation P
050100150
Ambient temperature T
Q1 + Q2 total
Q2 when using
1 element
Q2 when using
2 elements
A
Collector Current vs. Collector to Emitter VoltageCollector Current vs. Collector to Emitter Voltage
25
25
I
B =
µ
160 A
140 A
20
(mA)
C
15
10
5
Collector current I
160 A
140
120
100
80
60
40
I
B =
20
µ
A
µ
A
µ
µ
A
µ
A
µ
A
µ
A
µ
A
20
(mA)
C
15
10
5
Collector current I
(°C)
µ
120 A
µ
100 A
µ
80 A
µ
60 A
µ
40 A
µ
µ
20 A
0
Collector to emitter voltage VCE (V)
Collector Current vs. DC Base VoltageCollector Current vs. DC Base Voltage
20
V
CE
= 3 V
(mA)
C
10
Collector current I
0
0.51.0
0.51.0
DC base voltage V
0
510
Collector to emitter voltage VCE (V)
20
V
CE
= 3 V
(mA)
C
10
Collector current I
0
BE
(V)
DC base voltage VBE (V)
0.51.0
4
Loading...
+ 8 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.