NEC UPA833TF-T1, UPA833TF Datasheet

PRELIMINARY DATA SHEET
Silicon Transistor
µµµµ
PA833TF
NPN SILICON EPITAXIAL TRANSISTOR (WITH 2 DIFFERENT ELEMENTS)
IN A 6-PIN THIN-TYPE SMALL MINI MOLD PACKAGE
DESCRIPTION PACKAGE DRAWINGS (Unit:mm)
The µPA833TF has two different built-in transistors (Q1 and Q2) for low noise amplification in the VHF band to UHF band.
FEATURES
•Low noise
Q1 : NF = 1.7 dB TYP. @ f = 2 GHz, VCE = 1 V, IC = 3 mA
Q2 : NF = 1.5 dB TYP. @ f = 2 GHz, VCE = 3 V, IC = 3 mA
•High gain
Q1 : |S
Q2 : |S
•6-pin thin-type small mini mold package
•2 different transistors on-chip (2SC5193, 2SC4959)
2
21e
|
= 3.5 dB TYP. @ f = 2 GHz, VCE = 1 V, IC = 3 mA
2
21e
|
= 8.5 dB TYP. @ f = 2 GHz, VCE = 3 V, IC = 10 mA
ON-CHIP TRANSISTORS
1.30
2.00±0.2
0.60±0.1
0.65
0.65
0.45
2.10±0.1
1.25±0.1
V44
321
0 to 0.1
456
+0.1
0.05
0.22
0.13±0.05
Q1 Q2
3-pin small mini mold part No. 2SC5193 2SC4959
The µPA836TF features the Q1 and Q2 in inverted positions.
ORDERING INFORMATION
PART NUMBER QUANTITY PACKING STYLE
µ
PA833TF
µ
PA833TF-T1
Caution is required concerning excess input, such as from static electricity, because the high-frequency process is used for this device.
Loose products
(50 pcs)
Taping products
(3 kpcs/reel)
The information in this document is subject to change without notice.
8-mm wide embossed tape. Pin 6 (Q1 Base), pin 5 (Q2 Emitter), and pin 4 (Q2 Base) face perforated side of tape.
PIN CONFIGURATION (Top View)
B1
E2 B2
654
Q1 Q2
321
C1 E1 C2
PIN CONNECTIONS
1. Collector (Q1)
2. Emitter (Q1)
3. Collector (Q2)
4. Base (Q2)
5. Emitter (Q2)
6. Base (Q1)
Document No. P12725EJ1V0DS00 (1st edition) Date Published August 1997 N Printed in Japan
1997©
µµµµ
PA833TF
ABSOLUTE MAXIMUM RATINGS (TA = 25
Collector to base voltage V Collector to emitter voltage V Emitter to base voltage V Collector current I Total power dissipation P
Junction temperature T Storage temperature T
Note
110 mW must not be exceeded for 1 element.
(1) Q1
CBO
CEO
EBO
C
T
j
stg
ELECTRICAL CHARACTERISTICS
°°°°
C)
RATING
Q1 Q2
99V 66V 22V
100 30 mA
150 in 1 element 150 in 1 element mW
200 in 2 elements
Note
150 150
65 to +150
UNITSYMBOLPARAMETER
°
C
°
C
PARAMETER SYMBOL CONDITION MIN. TYP. MAX. UNIT
Collector cutoff current I Emitter cutoff current I DC current gain h Gain bandwidth product (1) f Gain bandwidth product (2) f Feedback capacitance C Insertion power gain (1) Insertion power gain (2)
CBO
EBO
FE
T
T
|
21e
S
|
21e
S
VCB = 5 V, IE = 0 0.1 VEB = 1 V, IC = 0 0.1 VCE = 1 V, IC = 3 mA
Note 1
100 145 VCE = 1 V, IC = 3 mA, f = 2 GHz 4.0 4.5 GHz VCE = 3 V, IC = 20 mA, f = 2 GHz 9.0 GHz VCB = 1 V, IE = 0, f = 1 MHz
re
2
|
VCE = 1 V, IC = 3 mA, f = 2 GHz 2.5 3.5 dB
2
|
VCE = 3 V, IC = 20 mA, f = 2 GHz 6.5 dB
Note 2
0.75 0.85 pF
Noise figure (1) NF VCE = 1 V, IC = 3 mA, f = 2 GHz 1.7 2.5 dB Noise figure (2) NF VCE = 3 V, IC = 7 mA, f = 2 GHz 1.5 dB
Notes 1.
Pulse measurement: PW ≤ 350 Collector to base capacitance when measured with capacitance meter (automatic balanced bridge
2.
s, Duty cycle ≤ 2%
µ
method), with emitter connected to guard pin of capacitance meter.
µ
A
µ
A
2
µµµµ
PA833TF
(2) Q2
ELECTRICAL CHARACTERISTICS
PARAMETER SYMBOL CONDITION MIN. TYP. MAX. UNIT Collector cutoff current I Emitter cutoff current I DC current gain h Gain bandwidth product f Feedback capacitance C Insertion power gain Noise figure NF VCE = 3 V, IC = 3 mA, f = 2 GHz 1.5 2.5 dB
CBO
EBO
FE
T
|
21e
S
VCB = 5 V, IE = 0 0.1 VEB = 1 V, IC = 0 0.1 VCE = 3 V, IC = 10 mA
Note 1
75 150 VCE = 3 V, IC = 10 mA, f = 2 GHz 12 GHz VCB = 3 V, IE = 0, f = 1 MHz
re
2
|
VCE = 3 V, IC = 10 mA, f = 2 GHz 7 8.5 dB
Note 2
0.4 0.7 pF
µ
A
µ
A
Notes 1.
Pulse measurement: PW ≤ 350 Collector to base capacitance when measured with capacitance meter (automatic balanced bridge
2.
method), with emitter connected to guard pin of capacitance meter.
hFE CLASSIFICATION
Rank FB Marking V44 hFE value of Q1 100 to 145 hFE value of Q2 75 to 150
s, Duty cycle ≤ 2%
µ
3
µµµµ
PA833TF
TYPICAL CHARACTERISTICS (TA = 25
Q1 Q2
Total Power Dissipation vs. Ambient Temperature
200
(mW)
T
2 elements in total
100
Total power dissipation P
0
50 100 150
Ambient temperature TA (˚C)
Collector Current vs. DC Base Voltage
100
V
CE
50
= 1 V
20 10
(mA)
5
C
2 1
0.5
0.2
0.1
Collector current I
0.05
0.02
0.01 0 0.5 1
DC base voltage V
Free Air
Q1 when using 1 element
Q1 when using 2 elements
BE
(V)
°°°°
C)
Total Power Dissipation vs. Ambient Temperature
Free Air
Q2 when using
200
(mW)
T
2 elements in total
1 element
Q2 when using
100
2 elements
Total power dissipation P
0 50 100 150
A
Ambient temperature T
(˚C)
Collector Current vs. DC Base Voltage
50
V
CE
= 3 V
40
(mA)
C
30
20
Collector current I
10
0
DC base voltage V
0.5 1.0
BE
(V)
Collector Current vs. Collector to Emitter Voltage
30
200 A 180 A
(mA)
C
20
160 A 140 A
120 A 100 A
10
Collector current I
IB = 20 A
0 123456
Collector to emitter voltage V
CE
4
µ µ µ µ
µ µ µ
80 A
µ
60 A
µ
40 A
(V)
Collector Current vs. Collector to Emitter Voltage
60
500 A
µ
50
(mA)
C
40
30
400 A
µ
300 A
µ
µ
200 A
20
µ
B
= 100 A
Collector current I
10
I
µ
0 246
135
Collector to emitter voltage V
CE
(V)
Q1 Q2
µµµµ
PA833TF
DC Current Gain vs. Collector Current
200
VCE = 1 V
FE
100
DC current gain h
0
0.1 0.2 10.5 10 20 5025 Collector current IC (mA)
Gain Bandwidth Product vs. Collector Current
10
f = 2 GH
)
Z
(GH
T
Z
VCE = 1 V
5
100
DC Current Gain vs. Collector Current
200
FE
5 V
VCE = 3 V
100
DC current gain h
0
0.2 2
0.1
0.5 1 5 10 50 100
20
Collector current IC (mA)
Gain Bandwidth Product vs. Collector Current
14
)
Z
(GH
T
f = 2 GHz
12
10
8
5 V 3 V
VCE = 1 V
Gain bandwidth product f
0
1235710
Collector current IC (mA)
Insertion Power Gain vs. Collector Current
10
f = 2 GH
Z
VCE = 1 V
(dB)
2
21e
5
Insertion power gain S
0
1235710
Collector current IC (mA)
6
4
Gain bandwidth product f
2
0.5
12 510
Collector current IC (mA)
Insertion Power Gain vs. Collector Current
10
f = 2 GHz
(dB)
2
8
21e
6
4
Insertion power gain S
2
0.5
2
510
Collector current IC (mA)
20
VCE = 1 V
20
50
5 V 3 V
50
5
Loading...
+ 11 hidden pages