NEC UPA1520BH Datasheet

DATA SHEET
3
2
1
4
5
6
7
8
9
10
ELECTRODE CONNECTION
2, 4, 6, 8 3, 5, 7, 9 1, 10
: Gate : Drain : Source
Compound Field Effect Power Transistor
N-CHANNEL POWER MOS FET ARRAY
SWITCHING USE

DESCRIPTION

The µPA1520B is N-channel Power MOS FET Array that built in 4 circuits designed for solenoid, motor and lamp driver.
µ
PA1520B

PACKAGE DIMENSIONS

in millimeters
26.8 MAX.
4.0

FEATURES

• 4 V driving is possible
• Large Current and Low On-state Resistance
D (DC) = ±2.0 A
I RDS (on) 1 0.17 MAX. (VGS = 10 V, ID = 1 A)
DS (on) 1 0.25 MAX. (VGS = 4 V, ID = 1 A)
R
• Low Input Capacitance Ciss = 220 pF TYP.

ORDERING INFORMATION

Type Number Package
µ
PA1520BH 10 Pin SIP
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)
Drain to Source Voltage VDSS
Gate to Source Voltage VGSS
Drain Current (DC) ID
Drain Current (pulse) ID(pulse)
Total Power Dissipation PT1
Total Power Dissipation P
Channel Temperature TCH 150 °C
Storage Temperature Tstg –55 to +150 °C
Note 1 Note 2
(DC) ±2.0 A/unit
Note 3 Note 4 Note 5
T2
30 V
±20 V
±8.0 A/unit
28 W
3.5 W
10
2.5
1.4 0.6±0.1
1 1023456789

CONNECTION DIAGRAM

2.54
10 MIN.
1.4
0.5±0.1
Notes 1. V
Document No. G10598EJ2V0DS00 (2nd edition) Date Published December 1995 P Printed in Japan
The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device is actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.
GS = 0 2. VDS = 0
3. PW 10 µs, Duty Cycle 1 % 4. 4 circuits, TC = 25 °C
3. 4 circuits, T
A = 25 °C
©
1995
µ
y Cy
PA1520B
ELECTRICAL CHARACTERISTICS (TA = 25 °C)
CHARACTERISTIC SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Drain Leakage Current IDSS VDS = 30 V, VGS = 0 10 Gate Leakage Current IGSS VGS = ±20 V, VDS = 0 ±10 Gate Cutoff Voltage VGS(off) VDS = 10 V, ID = 1.0 mA 1.0 2.0 V Forward Transfer Admittance | Yfs |VDS = 10 V, ID = 1.0 A 1.0 S Drain to Source On-State Resistance
RDS(on)1 VGS = 10 V, ID = 1.0 A 0.10 0.17
RDS(on)2 VGS = 4.0 V, ID = 1.0 A 0.13 0.25 Input Capacitance Ciss VDS = 10 V, VGS = 0, f = 1.0 MHz 220 pF Output Capacitance Coss 220 pF Reverse Transfer Capacitance Crss 90 pF Turn-on Delay Time td(on) ID = 1.0 A, VGS = 10 V, VDD = 15 V, 27 ns
.
. Rise Time tr RL = 15 125 ns Turn-off Delay Time td(off) 590 ns Fall Time tr 500 ns Total Gate Charge QG VGS = 10 V, ID = 2.0 A, VDD = 24 V 14 nC Gate to Source Charge QGS 2nC Gate to Drain Charge QGD 5.5 nC Body Diode Forward Voltage VF(S-D) IF = 2.0 A, VGS = 0 1.0 V Reverse Recovery Time trr IF = 2.0 A, VGS = 0, di/dt = 50 A/µs 640 ns Reverse Recovery Charge Qrr 3.4
µ
A
µ
A
µ
C
Test Circuit 1 Switching Time
D.U.T.
R
G
RG = 10 Ω
0
V
GS
t = 1 s Dut
PG.
t
µ
cle 1 %
Test Circuit 2 Gate Charge
D.U.T.
I
G
= 2 mA
PG.
50
V
R
L
V
Wave Form
V
DD
I
D
Wave Form
GS
GS
10 %
0
I
D
10 %
0
t
d (on)
L
R
V
DD
90 %
t
on
V
I
D
t
r
GS (on)
t
d (off)
t
90 %
off
90 %
10 %
t
f
2
CHARACTERISTICS (TA = 25 °C)
g
g
µ
PA1520B
TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE
6
NEC
PA1520BH
µ
5
4
Laed
Print Circuit Boad
4 Circuits operation 3 Circuits operation
2 Circuits operation
3
1 Circuit operation
2
1
PT - Total Power Dissipation - W
0
50 100 150
TA - Ambient Temperature - °C
FORWARD BIAS SAFE OPERATING AREA
100
I
10
Limited (V
DS(on)
R
GS
= 10 V)
I
D(DC)
D(Pulse)
50 ms
1
ID - Drain Current - A
TC = 25 °C Single Pulse
0.1
0.1
1 10 100
DS - Drain to Source Voltage - V
V
Under same dissipation in each circuit
PW = 1 ms
10 ms
100 ms
DC
TOTAL POWER DISSIPATION vs. CASE TEMPERATURE
30
4 Circuits operation
20
3 Circuits operation 2 Circuits operation
1 Circuit operation
10
TC is grease
PT - Total Power Dissipation - W
Temperature on back surface
0
50 100 150
TC - Case Temperature - °C
DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA
100
80
60
40
20
dT - Percentage of Rated Power - %
0
20 40 60 80 100 120 140 160
C - Case Temperature - °C
T
Under same dissipation in each circuit
FORWARD TRANSFER CHARACTERISTICS
100
Pulsed
DS = 10 V
V
10
1.0
TA = 125 °C
75 °C 25 °C
-25 °C
ID - Drain Current - A
0.1
0246
GS- Gate to Source Volta
V
e - V
DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE
10
VGS = 20 V
8
10 V
6
4
ID - Drain Current - A
2
0
0.5
DS - Drain to Source Volta
V
1.0
VGS = 4 V
1.5
Pulsed
2.0
e - V
3
Loading...
+ 5 hidden pages