MOTOROLA MC100LVEP14DT, MC100LVEP14DTR2 Datasheet

MC100LVEP14 Low-Voltage 1:5 Differential
LVECL/LVPECL/LVEPECL/HSTL Clock Driver
The LVEP14 specifically guarantees low output–to–output skew. Optimal design, layout, and processing minimize skew within a device and from lot to lot.
To ensure that the tight skew specification is realized, both sides of any differential output need to be terminated identically into 50W even if only one side is being used. When fewer than all five pairs are used, identically terminate all the output pairs on the same package side whether used or unused. If no outputs on a single side are used, then leave these outputs open (unterminated). This will maintain minimum output skew. Failure to do this will result in a 10–20ps loss of skew margin (propagation delay) in the output(s) in use.
The common enable (EN disabled in the LOW state. This avoids a runt clock pulse when the device is enabled/disabled as can happen with an asynchronous control. The internal flip flop is clocked on the falling edge of the input clock, therefore all associated specification limits are referenced to the negative edge of the clock input.
The MC100LVEP14, as with most other LVECL devices, can be operated from a positive VCC supply in LVPECL mode. This allows the LVEP14 to be used for high performance clock distribution in +3.3V or +2.5V systems. Single ended input operation is limited to a VCC 3.0V in LVPECL mode, or VEE –3.0V in LVECL mode. Designers can take advantage of the LVEP14’s performance to distribute low skew clocks across the backplane or the board. For more information, refer to Application Note AN1406/D.
100ps Part–to–Part Skew
25ps Output–to–Output Skew
Differential Design
400ps T ypical Propagation Delay
High Bandwidth to 1.5 Ghz T ypical
LVPECL and HSTL mode: +2.375V to +3.8V V
LVECL mode: 0V V
75kInternal Pulldown CLKs, Pull up & Pulldown CLKs
ESD Protection: >2KV HBM; >100V MM
Moisture Sensitivity Level 2
For Additional Information, See Application Note AND8003/D
Flammability Rating: UL–94 code V–0 @ 1/8”, Oxygen Index 28 to 34
Transistor Count = 357 devices
) is synchronous, outputs are enabled/
with VEE = 0V
CC
with VEE = –2.375V to –3.8V
CC
http://onsemi.com
20
1
TSSOP–20 DT SUFFIX
CASE 948E
MARKING DIAGRAM*
VP = LVEP
100
VP14
ALYW
*For additional information, see Application Note AND8002/D
ORDERING INFORMATION
Device Package Shipping
MC100L VEP14DT TSSOP 75 Units/Tray
MC100L VEP14DTR2 TSSOP 2500 Tape & Reel
A = Assembly Location L = Wafer Lot Y = Year W = Work Week
Semiconductor Components Industries, LLC, 2000
May, 2000 – Rev. 1
1 Publication Order Number:
MC100L VEP14/D
VCC EN
1920
MC100LVEP14
VCC
CLK1 VBB CLK0 CLK0 CLK_SELVEE
CLK1
1718 16 15 14 13 12
10
D
Q
11
21
Q0
56789
43
Q2Q0 Q3 Q4Q4
Q2Q1
10
Q3Q1
Figure 1. 20–Lead TSSOP and Logic Diagram
(Top View)
Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation.
PIN DESCRIPTION
Pins
CLK0, CLK0 CLK1, CLK1 Q0:4, Q0:4 CLK_SEL EN VBB VCC VEE
LVECL/LVPECL/HSTL CLK Input LVECL/LVPECL/HSTL CLK Input LVECL/LVPECL Outputs LVECL/LVPECL Active Clock Select Input Sync Enable Reference Voltage Output Positive Supply Negative, 0 Supply
Function
FUNCTION TABLE
CLK0
L H X X X
CLK1
X X L H X
CLK_SEL
L
L H H X
EN
L L L L
H
Q
L
H
L
H
L*
* On next negative transition of CLK0 or CLK1
http://onsemi.com
2
MC100LVEP14
MAXIMUM RATINGS*
Symbol Parameter Value Unit
V
EE
V
CC
V
I
V
I
I
out
I
BB
T
A
T
stg
θ
JA
θ
JC
T
sol
* Maximum Ratings are those values beyond which damage to the device may occur.
{
Use for inputs of same package only.
DC CHARACTERISTICS, ECL/LVECL (VCC = 0V, VEE = –3.3(+0.925, –0.5)V) (Note 5.)
Symbol Characteristic Min Typ Max Min Typ Max Min Typ Max Unit
I
EE
V
OH
V
OL
V
IH
V
IL
V
BB
V
IHCMR
I
IH
I
IL
1. VCC = 0V, VEE = V
2. All loading with 50 ohms to VCC–2.0 volts.
3. Single ended input operation is limited VEE –3.0V in ECL/LVECL mode.
4. V
5. Input and output parameters vary 1:1 with VCC.
Power Supply Current (Note 1.) 45 60 75 45 60 75 45 60 95 mA Output HIGH Voltage (Note 2.) –1145 –1020 –0895 –1 145 –1020 –0895 –1145 –1020 –0895 mV Output LOW Voltage (Note 2.) –1995 –1820 –1650 –1995 –1820 –1650 –1995 –1820 –1650 mV Input HIGH Voltage –1165 –0880 –1165 –0880 –1165 –0880 mV Input LOW Voltage –1810 –1625 –1810 –1625 –1810 –1625 mV Output Reference Voltage (Note 3.) –1525 –1425 –1325 –1525 –1425 –1325 –1525 –1425 –1325 mV Input HIGH Voltage Common Mode
Range (Note 4.) Input HIGH Current 150 150 150 µA Input LOW Current 0.5
min varies 1:1 with VEE, max varies 1:1 with VCC.
IHCMR
DC CHARACTERISTICS, HSTL (VCC = 2.5(–0.125, +1.3)V, VEE = 0V)
Symbol Characteristic Min Typ Max Min Typ Max Min Typ Max Unit
V
IH
V
IL
V
X
I
CC
6. VCC = 2.375V to 3.8V , VEE = 0V, all other pins floating.
Input HIGH Voltage 1200 mV Input LOW Voltage 400 mV Input Crossover Voltage 680 900 mV Power Supply Current (Note 6.) 100 100 100 mA
Power Supply (VCC = 0V) –6.0 to 0 VDC Power Supply (VEE = 0V) 6.0 to 0 VDC Input Voltage (VCC = 0V, VI not more negative than VEE) –6.0 to 0 VDC Input Voltage (VEE = 0V, VI not more positive than VCC) 6.0 to 0 VDC Output Current Continuous
VBB Sink/Source Current Operating Temperature Range –40 to +85 °C Storage Temperature –65 to +150 °C Thermal Resistance (Junction–to–Ambient) Still Air
Thermal Resistance (Junction–to–Case) 30 to 35 °C/W Solder Temperature (<2 to 3 Seconds: 245°C desired) 265 °C
to V
EEmin
EEmax
{
–40°C 25°C 85°C
VEE + 1.2 0.0 VEE + 1.2 0.0 VEE + 1.2 0.0 V
–150
, all other pins floating.
–40°C 25°C 85°C
Surge
500lfpm
0.5
–150
50
100
± 0.5 mA
90 60
0.5
–150
mA
°C/W
150 µA
http://onsemi.com
3
Loading...
+ 5 hidden pages