MOTOROLA MC100LVEP111FA, MC100LVEP111FAR2 Datasheet

MC100LVEP111 Low-V oltage 1:10 Differential
L VECL/LVPECL/L VEPECL/HSTL Clock Driver
The LVEP111 specifically guarantees low output–to–output skew. Optimal design, layout, and processing minimize skew within a device and from lot to lot.
To ensure that the tight skew specification is realized, both sides of any differential output need to be terminated identically into 50W even if only one side is being used. When fewer than all ten pairs are used, identically terminate all the output pairs on the same package side whether used or unused. If no outputs on a single side are used, then leave these outputs open (unterminated). This will maintain minimum output skew. Failure to do this will result in a 10–20ps loss of skew margin (propagation delay) in the output(s) in use.
The MC100LVEP111, as with most other LVECL devices, can be operated from a positive VCC supply in LVPECL mode. This allows the LVEP111 to be used for high performance clock distribution in +3.3V or +2.5V systems. Single ended input operation is limited to a VCC 3.0V in LVPECL mode, or VEE –3.0V in LVECL mode. Designers can take advantage of the LVEP111’s performance to distribute low skew clocks across the backplane or the board. In a PECL environment, series or Thevenin line terminations are typically used as they require no additional power supplies. For more information on using LVPECL, designers should refer to Application Note AN1406/D.
100ps Part–to–Part Skew
25ps Output–to–Output Skew
Dif ferential Design
V
430ps Typical Propagation Delay
High Bandwidth to 1.5 Ghz Typical
LVPECL and HSTL mode: +2.375V to +3.8V V
LVECL mode: 0V V
75kInternal Input Pulldown Resistors on CLKs, Pull up &
ESD Protection: >2KV HBM; >100V MM
Moisture Sensitivity Level 2
Flammability Rating: UL–94 code V–0 @ 1/8”, Oxygen Index 28 to 34
Transistor Count = 602 devices
Output
BB
with VEE = 0V
CC
with VEE = –2.375V to –3.8V
CC
Pulldown resistors on CLK
For Additional Information, See Application Note AND8003/D
s
http://onsemi.com
32–LEAD TQFP
FA SUFFIX
CASE 873A
MARKING DIAGRAM*
MC100
LVEP111
AWLYYWW
32
1
*For additional information, see Application Note AND8002/D
ORDERING INFORMATION
Device Package Shipping
MC100L VEP111FA TQFP 250 Units/Tray
MC100L VEP111FAR2 TQFP 2000 Tape & Reel
A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week
Semiconductor Components Industries, LLC, 1999
March, 2000 – Rev . 2
1 Publication Order Number:
MC100L VEP111/D
MC100LVEP111
Q6Q6Q5Q5Q4Q4Q3 Q3
24 23 22 21 20 19 18 17
VCC
Q2 Q2 Q1
25 26 27 28
MC100LVEP111
Q1 Q0 Q0
VCC
29 30 31 32
12345678
VEECLK1CLK1VBBCLK0CLK0VCC
CLK_SEL
Figure 1. 32–Lead TQFP Pinout
(Top View)
Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation.
PIN DESCRIPTION
16 15 14 13 12 11 10
9
VCC Q7 Q7 Q8 Q8 Q9 Q9 VCC
Pins
CLK0, CLK0 CLK1, CLK1 Q0:9, Q0:9 CLK_SEL VBB VCC VEE
CLK_SEL
0 1
LVECL/LVPECL/HSTL CLK Input LVECL/LVPECL/HSTL CLK Input LVECL/LVPECL Outputs LVECL/LVPECL Active Clock Select Input Reference Voltage Output Positive Supply Negative, 0 Supply
FUNCTION TABLE
Function
Active Input
CLK0, CLK0 CLK1, CLK1
CLK0 CLK0
CLK1 CLK1
CLK_SEL
Q
0
Q
0
Q
1
Q
1
Q
2
Q
2
Q
3
Q
3
Q
4
Q
0
1
V
BB
4
Q
5
Q
5
Q
6
Q
6
Q
7
Q
7
Q
8
Q
8
Q
9
Q
9
Figure 2. Logic Symbol
http://onsemi.com
2
MC100LVEP111
MAXIMUM RATINGS*
Symbol Parameter Value Unit
V
EE
V
CC
V
I
V
I
I
out
I
BB
T
A
T
stg
θ
JA
θ
JC
T
sol
* Maximum Ratings are those values beyond which damage to the device may occur.
{
Use for inputs of same package only.
DC CHARACTERISTICS, ECL/LVECL (VCC = 0V, VEE = –3.3(+0.925, –0.5)V) (Note 5.)
Symbol Characteristic Min Typ Max Min Typ Max Min Typ Max Unit
I
EE
V
OH
V
OL
V
IH
V
IL
V
BB
V
IHCMR
I
IH
I
IL
1. VCC = 0V, VEE = V
2. All loading with 50 ohms to VCC–2.0 volts.
3. Single ended input operation is limited VEE –3.0V in ECL/LVECL mode.
4. V
5. Input and output parameters vary 1:1 with VCC.
Power Supply Current (Note 1.) 70 100 120 70 100 120 70 100 120 mA Output HIGH Voltage (Note 2.) –1145 –1020 –0895 –1145 –1020 –0895 –1 145 –1020 –0895 mV Output LOW Voltage (Note 2.) –1995 –1820 –1650 –1995 –1820 –1650 –1995 –1820 –1650 mV Input HIGH Voltage –1165 –0880 –1165 –0880 –1165 –0880 mV Input LOW Voltage –1810 –1625 –1810 –1625 –1810 –1625 mV Output Reference Voltage
(Note 3.) Input HIGH Voltage Common
Mode Range (Note 4.) Input HIGH Current 150 150 150 µA Input LOW Current 0.5
min varies 1:1 with VEE, max varies 1:1 with VCC.
IHCMR
DC CHARACTERISTICS, HSTL (VCC = 2.5(–0.125, +1.3)V, VEE = 0V)
Symbol Characteristic Min Typ Max Min Typ Max Min Typ Max Unit
V
IH
V
IL
V
X
I
CC
6. VCC = 2.375V to 3.8V , VEE = 0V, all other pins floating.
Input HIGH Voltage 1200 mV Input LOW Voltage 400 mV Input Crossover Voltage 680 900 mV Power Supply Current (Note 6.) 70 100 120 70 100 120 70 100 120 mA
Power Supply (VCC = 0V) –6.0 to 0 VDC Power Supply (VEE = 0V) 6.0 to 0 VDC Input Voltage (VCC = 0V, VI not more negative than VEE) –6.0 to 0 VDC Input Voltage (VEE = 0V, VI not more positive than VCC) 6.0 to 0 VDC Output Current Continuous
VBB Sink/Source Current Operating Temperature Range –40 to +85 °C Storage Temperature –65 to +150 °C Thermal Resistance (Junction–to–Ambient) Still Air
Thermal Resistance (Junction–to–Case) 12 to 17 °C/W Solder Temperature (<2 to 3 Seconds: 245°C desired) 265 °C
to V
EEmin
EEmax
{
–40°C 25°C 85°C
–1525 –1425 –1325 –1525 –1425 –1325 –1525 –1425 –1325 mV
VEE + 1.2 0.0 VEE + 1.2 0.0 VEE + 1.2 0.0 V
–150
, all other pins floating.
–40°C 25°C 85°C
Surge
500lfpm
0.5
–150
50
100
± 0.5 mA
80 55
0.5
–150
mA
°C/W
150 µA
http://onsemi.com
3
Loading...
+ 5 hidden pages