Cirrus Logic CS5490 User Manual

5 (1)

CS5490

 

Two Channel Energy Measurement IC

Features

Description

Superior Analog Performance with Ultra-low Noise Level & The CS5490 is a high-accuracy, two-channel, energy measure-

 

High SNR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ment analog front end.

 

 

 

 

 

 

 

 

• Energy Measurement Accuracy of 0.1% over a 4000:1

 

 

 

 

The CS5490 incorporates independent 4th order Delta-Sigma an-

 

Dynamic Range

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Two Independent 24-bit, 4th-order, Delta-Sigma

 

 

 

 

alog-to-digital converters for both channels, reference circuitry,

 

Modulators for Voltage and Current Measurements

 

 

 

 

and the proven EXL signal processing core to provide active, re-

• Configurable Digital Output for Energy Pulses, Interrupt,

 

active, and apparent energy measurement. In addition, RMS and

 

power factor calculations are available. Calculations are output

 

zero-crossing, and Energy Direction

 

 

 

 

 

 

 

 

 

 

• Supports Shunt Resistor, CT, and Rogowski Coil Current

 

via a configurable energy pulse, or direct UART serial access to

 

on-chip registers. Instantaneous current, voltage, and power

 

Sensors

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On-chip Measurements/Calculations:

 

 

 

 

 

 

 

 

 

 

measurements are also

available over

 

the serial port. The

 

 

 

 

 

 

 

 

 

 

two-wire UART minimizes the cost of isolation where required.

 

-

Active, Reactive, and Apparent Power

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

RMS Voltage and Current

 

 

 

 

 

 

 

 

 

 

A configurable digital output provides energy pulses, zero-cross-

 

-

Power Factor and Line Frequency

 

 

 

 

 

 

 

 

 

 

ing, energy direction, or interrupt functions. Interrupts can be

 

-

Instantaneous Voltage, Current, and Power

 

 

 

 

 

 

 

 

 

generated for a variety of conditions including voltage sag or

• Overcurrent, Voltage Sag, and Voltage Swell Detection

 

 

swell, overcurrent, and more. On-chip register integrity is assured

• Ultra-fast On-chip Digital Calibration

 

 

 

 

 

 

 

 

 

 

via checksum and write protection. The CS5490 is designed to in-

• Configurable No-load Threshold for Anti-creep

 

 

 

 

terface to a variety of voltage and current sensors, including shunt

• Internal Register Protection via Checksum and Write

 

 

 

 

resistors, current transformers, and Rogowski coils.

 

Protection

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On-chip functionality makes digital calibration simple and ultra

UART Serial Interface

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fast to minimize the time required at the end of the customer pro-

• On-chip Temperature Sensor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

duction line. Performance across temperature is ensured with an

• On-chip Voltage Reference (25ppm/°C Typ.)

 

 

 

 

 

 

 

 

on-chip voltage reference with low drift. A single 3.3V power sup-

• Single 3.3 V Power Supply

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ply is required, and power consumption is low at <13mW. To

Ultra-fine Phase Compensation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

minimize space requirements, the CS5490 is offered in a low-cost

• Low Power Consumption: <13 mW

 

 

 

 

 

 

 

 

 

 

16-pin SOIC package.

 

 

 

 

 

 

 

 

Power Supply Configurations:

 

 

 

 

 

 

 

 

 

 

ORDERING INFORMATION

 

 

 

 

- GNDA = 0 V, VDDA: +3.3 V

 

 

 

 

 

 

 

 

 

 

 

 

 

• Low-cost 16-pin SOIC Package

 

 

 

 

 

 

 

 

 

 

 

 

See Page 57.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDDA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS5490

 

 

 

 

 

IIN+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4th Order

 

 

 

 

 

Digital

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PGA

 

 

 

 

 

 

 

 

 

 

 

 

 

HPF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IIN-

 

 

 

 

 

 

 

Modulator

 

 

 

 

 

Filter

 

 

 

 

Option

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UART

 

 

RX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Serial

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interface

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIN+

 

 

10x

 

 

 

 

4th Order

 

 

 

Digital

 

 

 

 

HPF

 

 

 

Calculation

 

 

 

 

 

 

 

 

 

 

VIN-

 

 

 

 

 

 

Modulator

 

 

 

 

 

Filter

 

 

 

 

Option

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Configurable

 

 

 

 

 

 

VREF+

 

 

Voltage

 

 

 

 

Temperature

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Digital

 

 

DO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference

 

 

 

 

Sensor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VREF-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

System

 

 

 

 

Clock

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clock

 

 

 

 

 

Generator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GNDA

 

 

 

 

 

 

XIN

 

XOUT

 

 

 

 

 

 

MODE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cirrus Logic, Inc.

 

 

 

 

 

 

Copyright Cirrus Logic, Inc. 2013

 

 

 

 

 

 

 

 

 

MAR’13

http://www.cirrus.com

 

 

 

 

 

 

 

(All Rights Reserved)

 

 

 

 

 

 

 

 

 

DS982F3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS5490

TABLE OF CONTENTS

1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

2. Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

2.1 Analog Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

2.1.1 Voltage Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

2.1.2 Current Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

2.1.3 Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2.1.4 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2.2 Digital Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2.2.1 Reset Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2.2.2 Digital Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2.2.3 UART Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2.2.3.1 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2.2.4 MODE Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

3. Characteristics & Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.8

4. Signal Flow Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

4.1

Analog-to-Digital Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

4.2

Decimation Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

4.3

IIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

4.4

Phase Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

4.5

DC Offset & Gain Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

4.6

High-pass & Phase Matching Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

4.7

Digital Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

4.8

Low-rate Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

4.8.1 Fixed Number of Samples Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

4.8.2 Line-cycle Synchronized Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

4.8.3 RMS Current & Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

4.8.4 Active Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

4.8.5 Reactive Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

4.8.6 Apparent Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

4.8.7 Peak Voltage & Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

4.8.8 Power Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

4.9

Average Active Power Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

4.10 Average Reactive Power Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

5. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

5.1 Power-on Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

5.2 Power Saving Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

5.3 Zero-crossing Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

5.4 Line Frequency Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

5.5 Energy Pulse Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

5.5.1 Pulse Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

5.5.2 Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

5.6 Voltage Sag, Voltage Swell, and Overcurrent Detection . . . . . . . . . . . . . . . . . . . . .21

5.7 Phase Sequence Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

5.8 Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

2

DS982F3

CS5490

5.9 Anti-creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.10 Register Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.10.1 Write Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.10.2 Register Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6. Host Commands and Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1 Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1.1 Memory Access Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1.1.1 Page Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1.1.2 Register Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1.1.3 Register Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1.2 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1.3 Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1.4 Serial Time Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Hardware Registers Summary (Page 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 Software Registers Summary (Page 16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.4 Software Registers Summary (Page 17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.5 Software Registers Summary (Page 18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.6 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7. System Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1 Calibration in General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.1 Offset Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.1.1 DC Offset Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.1.2 AC Offset Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.2 Gain Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.3 Calibration Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Phase Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3 Temperature Sensor Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3.1 Temperature Offset and Gain Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8. Basic Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9. Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

11. Environmental, Manufacturing, & Handling Information . . . . . . . . . . . . . . . . . . . . . . . 57

12. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

DS982F3

3

 

CS5490

 

LIST OF FIGURES

Figure 1. Oscillator Connections...................................................................................................

7

Figure 2. UART Serial Frame Format...........................................................................................

7

Figure 3. Active Energy Load Performance..................................................................................

8

Figure 4. Reactive Energy Load Performance..............................................................................

9

Figure 5. IRMS Load Performance ...............................................................................................

9

Figure 6. Signal Flow for V, I, P, and Q Measurements .............................................................

15

Figure 7. Low-rate Calculations ..................................................................................................

16

Figure 8. Power-on Reset Timing ...............................................................................................

18

Figure 9. Zero-crossing Level and Zero-crossing Output on DO................................................

19

Figure 10. Energy Pulse Generation and Digital Output Control ................................................

20

Figure 11. Sag, Swell, & Overcurrent Detect..............................................................................

21

Figure 12. Phase Sequence A, B, C for Rising Edge Transition ................................................

22

Figure 13. Phase Sequence C, B, A for Rising Edge Transition ................................................

23

Figure 14. Byte Sequence for Page Select.................................................................................

24

Figure 15. Byte Sequence for Register Read ............................................................................

24

Figure 16. Byte Sequence for Register Write .............................................................................

24

Figure 17. Byte Sequence for Instructions..................................................................................

24

Figure 18. Byte Sequence for Checksum ...................................................................................

25

Figure 19. Calibration Data Flow ................................................................................................

52

Figure 20. T Register vs. Force Temp ........................................................................................

54

Figure 21. Typical Connection Diagram (Single-phase, Two-wire, Power Meter) ......................

55

LIST OF TABLES

Table 1. POR Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 2. Command Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Table 3. Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4

DS982F3

CS5490

1. OVERVIEW

The CS5490 is a CMOS power measurement integrated circuit that uses two analog-to-digital converters to measure line voltage and current. The CS5490 calculates active, reactive, and apparent power as well as RMS voltage and current and peak voltage and current. It handles other system-related functions, such as energy pulse generation, voltage sag and swell, overcurrent and zero-crossing detection, and line frequency measurement. A separate analog-to-digital converter is used for on-chip temperature measurement.

The CS5490 is optimized to interface to current transformers, shunt resistors, or Rogowski coils for current measurement, and to resistive dividers or voltage transformers for voltage measurement. Two full-scale ranges are provided on the current input to accommodate different types of current sensors. The CS5490’s two differential inputs have a common-mode input range from analog ground (GNDA) to the positive analog supply (VDDA).

An on-chip voltage reference (typically 2.4 volts) is generated and provided at analog output, VREF±.

The digital output (DO) provides a variety of output signals and, depending on the mode selected, provides energy pulses, zero-crossings, or other choices.

The CS5490 includes a UART serial host interface to an external microcontroller. The UART signals include serial data input (RX) and serial data output (TX).

DS982F3

5

CS5490

2. PIN DESCRIPTION

 

XOUT

 

1

16

 

VDDD

 

 

 

 

 

XIN

 

2

15

 

MODE

 

 

 

 

 

 

 

 

3

14

 

RX

RESET

 

 

 

 

 

IIN-

 

4

13

 

TX

 

 

 

IIN+

 

5

12

 

DO

 

 

 

VIN+

 

6

11

 

VDDA

 

 

 

 

 

VIN-

 

7

10

 

GNDA

 

 

 

 

 

VREF-

 

8

9

 

VREF+

 

 

 

 

 

 

 

 

 

 

 

 

Clock Generator

Crystal In

2,1

XIN, XOUT — Connect to an external quartz crystal. Alternatively, an external clock can be

Crystal Out

 

supplied to the XIN pin to provide the system clock for the device.

Control Pins and Serial Data I/O

 

 

Digital Output

12

DO — Configurable digital output for energy pulses, interrupt, energy direction, and

 

 

zero-crossings.

Reset

3

 

— An active-low Schmitt-trigger input used to reset the chip.

RESET

Serial Interface

13,14

TX, RX — UART serial data output/input.

Operating Mode Select

15

MODE — Connect to VDDA for proper operation.

Analog Inputs/Outputs

 

 

 

 

 

 

Voltage Input

6,7

VIN+, VIN- — Differential analog input for the voltage channel.

 

 

 

Current Input

5,4

IIN+, IIN- — Differential analog input for the current channel.

 

 

 

Voltage Reference Input

9,8

VREF+, VREF- — The voltage reference output and return.

Power Supply Connections

 

 

 

Internal Digital Supply

16

VDDD — Decoupling pin for the internal digital supply.

 

 

 

Positive Analog Supply

11

VDDA — The positive analog supply.

Analog Ground

10

GNDA — Analog ground.

 

 

 

 

2.1 Analog Pins

 

 

 

 

 

 

2.1.2 Current Input

The CS5490 has two differential inputs, one for voltage

The output of the current-sensing shunt resistor or

 

 

 

 

IIN

 

 

 

 

transformer is connected to the IIN input pins of the

(VIN ) and one for current

 

). The CS5490 also has

CS5490. To accommodate different current-sensing

 

 

 

 

 

 

 

 

 

two voltage reference pins (VREF ) between which a

elements, the current channel incorporates a

0.1µ bypass capacitor must be placed.

 

 

2.1.1 Voltage Input

 

 

 

 

 

 

programmable gain amplifier (PGA) with two selectable

 

 

 

 

 

 

input gains, as described in the Config0 register

The output

of

the line

voltage

resistive

divider

or

description 6.6.1 Configuration 0 (Config0) – Page 0,

transformer

is

connected to

the

 

 

the

Address 0 on page 32. There is a 10x gain setting and

VIN input of

a 50x gain setting. The full-scale signal level for the

CS5490. The voltage channel is equipped with a 10x,

fixed-gain amplifier. The full-scale signal level that can

current channel is ±50mV and ±250mV for 50x and 10x

be applied to the voltage channel is ±250 mV. If the

gain settings, respectively. If the input signal is a sine

wave, the maximum RMS voltage is 35.35 mVRMS or

input signal

is

a sine

wave, the maximum RMS

voltage is 250mVp / 2 176.78mVRMS,

which

is

176.78mVRMS, which is approximately 70.7% of

maximum peak voltage.

approximately 70.7% of maximum peak voltage.

 

 

6

 

 

 

 

 

 

 

 

DS982F3

2.1.3 Voltage Reference

The CS5490 generates a stable voltage reference of 2.4V between the VREF pins. The reference system also requires a filter capacitor of at least 0.1µF between the VREF pins.

The reference system is capable of providing a reference for the CS5490 but has limited ability to drive external circuitry. It is strongly recommended that nothing other than the required filter capacitor is connected to the VREF pins.

2.1.4 Crystal Oscillator

An external, 4.096MHz quartz crystal can be connected to the XIN and XOUT pins as shown in Figure 1. To reduce system cost, each pin is supplied with an on-chip load capacitor.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XIN

XOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1 = 22pF

 

C2 = 22pF

Figure 1. Oscillator Connections

Alternatively, an external clock source can be connected to the XIN pin.

2.2 Digital Pins

2.2.1 Reset Input

The active-low RESET pin, when asserted for longer than 120µs, will halt all CS5490 operations and reset internal hardware registers and states. When de-asserted, an initialization sequence begins, setting the default register values. To prevent erroneous, noise-induced resets to the part, an external pull-up resistor and a decoupling capacitor are necessary on the RESET pin.

CS5490

2.2.2 Digital Output

The CS5490 provides a configurable digital output (DO). It can be configured to output energy pulses, interrupt, zero-crossings, or energy directions. Refer to the description of the Config1 register in section 6.6 Register Descriptions on page 32 for more details.

2.2.3 UART Serial Interface

The CS5490 provides two pins, RX and TX, for communication between a host microcontroller and the CS5490.

2.2.3.1 UART

The CS5490 provides a two-wire, asynchronous, full-duplex UART port. The CS5490 UART operates in 8-bit mode, which transmits a total of 10 bits per byte. Data is transmitted and received LSB first, with one start bit, eight data bits, and one stop bit.

IDLE

START

0

1

2

3

4

5

6

7

STOP

IDLE

 

 

 

 

 

 

 

 

 

 

 

 

DATA

Figure 2. UART Serial Frame Format

The baud rate is defined in the SerialCtrl register. After chip reset, the default baud rate is 600, if MCLK is 4.096MHz. The baud rate is based on the contents of bits BR[15:0] in the SerialCtrl register and is calculated as follows:

BR[15:0] = Baud Rate x (524288/MCLK) or

Baud Rate = BR[15:0] / (524288/MCLK)

The maximum baud rate is 512K if MCLK is 4.096MHz.

The UART has two signals: TX and RX. TX is the serial data output from the CS5490; RX is the serial data input to the CS5490.

2.2.4 MODE Pin

The MODE pin must be tied to VDDA for normal operation. The MODE pin is used primarily for factory test procedures.

DS982F3

7

CS5490

3. CHARACTERISTICS & SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

Parameter

Symbol

Min

Typ

Max

Unit

Positive Analog Power Supply

VDDA

3.0

3.3

3.6

V

Specified Temperature Range

TA

-40

-

+85

°C

POWER MEASUREMENT CHARACTERISTICS

 

Parameter

Symbol

Min

Typ

Max

Unit

Active Energy

All Gain Ranges

PAvg

-

±0.1

-

%

(Note 1 & 2)

Current Channel Input Signal Dynamic Range 4000:1

 

 

 

 

 

Reactive Energy

All Gain Ranges

QAvg

-

±0.1

-

%

(Note 1 & 2)

Current Channel Input Signal Dynamic Range 4000:1

 

 

 

 

 

Apparent Power

All Gain Ranges

S

-

±0.1

-

%

(Note 1 & 3)

Current Channel Input Signal Dynamic Range 1000:1

 

 

 

 

 

Current RMS

All Gain Ranges

IRMS

-

±0.1

-

%

(Note 1, 3, & 4)

Current Channel Input Signal Dynamic Range 1000:1

 

 

 

 

 

Voltage RMS

 

VRMS

-

±0.1

-

%

(Note 1 & 3)

Voltage Channel Input Signal Dynamic Range 20:1

 

 

 

 

 

Power Factor

All Gain Ranges

PF

-

±0.1

-

%

(Note 1 & 3)

Current Channel Input Signal Dynamic Range 1000:1

 

 

 

 

 

Notes: 1. Specifications guaranteed by design and characterization.

2.Active energy is tested with power factor PF = 1.0. Reactive energy is tested with Sin( ) = 1.0. Energy error measured at system level using single energy pulse. Where: 1) One energy pulse = 0.5Wh or 0.5Varh; 2) VDDA = +3.3V, TA = 25°C, MCLK = 4.096MHz; 3) System is calibrated.

3.Calculated using register values; N4000.

4.IRMS error calculated using register values. 1) VDDA = +3.3V; TA = 25°C; MCLK = 4.096MHz; 2) AC offset calibration applied.

TYPICAL LOAD PERFORMANCE

Energy error measured at system level using single energy pulse; where 1 energy pulse = 0.5Wh or 0.5Varh.

IRMS error calculated using register values

VDDA = +3.3V; TA = 25°C; MCLK = 4.096MHz

Percent Error (%)

1

0.5

0

Lagging PF = 0.5

Leading PF = 0.5

PF = 1

-0.5

-1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Current Dynamic Range (x : 1)

Figure 3. Active Energy Load Performance

8

DS982F3

Cirrus Logic CS5490 User Manual

CS5490

Percent Error (%)

1

0.5

0

Lagging sin( ) = 0.5

Leading sin( ) = 0.5

sin( ) = 1

-0.5

-1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Current Dynamic Range (x : 1)

Figure 4. Reactive Energy Load Performance

Percent Error (%)

1

0.5

0

-0.5

-1

0

500

1000

1500

Current Dynamic range (x : 1)

IRMSErrror

RMS

Figure 5. IRMS Load Performance

DS982F3

9

CS5490

ANALOG CHARACTERISTICS

Min/Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.

Typical characteristics and specifications are measured at nominal supply voltages and TA = 25°C.

VDDA = +3.3V ±10%; GNDA = 0V. All voltages with respect to 0V.

MCLK = 4.096MHz.

Parameter

 

Symbol

Min

Typ

Max

Unit

Analog Inputs (Current Channels)

 

 

 

 

 

 

Common Mode Rejection

(DC, 50, 60Hz)

CMRR

80

-

-

dB

Common Mode+Signal

 

 

-0.25

-

VDDA

V

 

 

 

 

 

 

 

Differential Full-scale Input Range

(Gain = 10)

IIN

-

250

-

mVP

[(IIN+) – (IIN-)]

(Gain = 50)

-

50

-

mVP

 

 

 

 

 

 

 

 

 

 

 

Total Harmonic Distortion

(Gain = 50)

THD

90

100

-

dB

Signal-to-Noise Ratio (SNR)

(Gain = 10)

SNR

-

80

-

dB

 

(Gain = 50)

-

80

-

dB

 

 

 

 

 

 

 

 

 

Crosstalk from Voltage Inputs at Full Scale

(50, 60Hz)

 

-

-115

-

dB

Crosstalk from Current Input at Full Scale

(50, 60Hz)

 

-

-115

-

dB

Input Capacitance

 

IC

-

27

-

pF

Effective Input Impedance

 

EII

30

-

-

k

Offset Drift (Without the High-pass Filter)

 

OD

-

4.0

-

µV/°C

Noise (Referred to Input)

(Gain = 10)

NI

-

9

-

µVRMS

 

(Gain = 50)

-

2.2

-

µVRMS

 

 

 

Power Supply Rejection Ratio

(60Hz)

 

 

 

 

 

(Note 7)

(Gain = 10)

PSRR

60

65

-

dB

 

(Gain = 50)

 

68

75

-

dB

 

 

 

 

 

 

 

Analog Inputs (Voltage Channels)

 

 

 

 

 

 

Common Mode Rejection

(DC, 50, 60Hz)

CMRR

80

-

-

dB

Common Mode+Signal

 

 

-0.25

-

VDDA

V

Differential Full-scale Input Range

[(VIN+) – (VIN-)]

VIN

-

250

-

mVP

Total Harmonic Distortion

 

THD

80

88

-

dB

Signal-to-Noise Ratio (SNR)

 

SNR

-

73

-

dB

Crosstalk from Current Inputs at Full Scale

(50, 60Hz)

 

-

-115

-

dB

Input Capacitance

 

IC

-

2.0

-

pF

Effective Input Impedance

 

EII

2

-

-

M

Noise (Referred to Input)

 

NV

-

40

-

µVRMS

Offset Drift (Without the High-pass Filter)

 

OD

-

16.0

-

µV/°C

 

 

 

 

 

 

 

Power Supply Rejection Ratio

(60Hz)

PSRR

60

65

-

dB

(Note 7)

(Gain = 10)

 

 

 

 

 

Temperature

 

 

 

 

 

 

Temperature Accuracy

(Note 6)

T

-

±5

-

°C

10

DS982F3

CS5490

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

 

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

Power Supplies

 

 

 

 

 

 

 

Power Supply Currents (Active State)

IA+ (VDDA = +3.3V)

PSCA

-

3.9

-

mA

 

Power Consumption

 

 

 

 

 

 

 

(Note 5)

Active State (VDDA = +3.3V)

PC

-

12.9

-

mW

 

 

 

Stand-by State

 

-

4.5

-

mW

 

 

 

 

 

 

 

 

 

Notes:

5. All outputs unloaded. All inputs CMOS level.

 

 

 

 

 

6.Temperature accuracy measured after calibration is performed.

7.Measurement method for PSRR: VDDA = +3.3V, a 150mV (zero-to-peak) (60Hz) sinewave is imposed onto the +3.3V DC supply voltage at the VDDA pin. The “+” and “-” input pins of both input channels are shorted to GNDA. The CS5490 is then commanded to continuous conversion acquisition mode, and digital output data is collected for the channel under test. The (zero-to-peak) value of the digital sinusoidal output signal is determined, and this value is converted into the (zero-to-peak) value of the sinusoidal voltage (measured in mV) that would need to be applied at the channel’s inputs, in order to cause the same digital sinusoidal output. This voltage is then defined as Veq PSRR is (in dB):

PSRR = 20 log

150

----------

 

Veq

 

VOLTAGE REFERENCE

Parameter

 

Symbol

Min

Typ

Max

Unit

Reference

(Note 8)

 

 

 

 

 

Output Voltage

 

VREF

+2.3

+2.4

+2.5

V

Temperature Coefficient

(Note 9)

TCVREF

-

25

-

ppm/°C

Load Regulation

(Note 10)

VR

-

30

-

mV

Notes: 8. It is strongly recommended that no connection other than the required filter capacitor be made to VREF±.

9.The voltage at VREF± is measured across the temperature range. From these measurements the following formula is used to calculate the VREF temperature coefficient:

 

 

VREFMAX VREFMIN

 

1

 

 

 

6

 

TCVREF =

 

---------------------------------------------

1.0

10

 

 

-----------------------------------------------------------VREFAVG -

 

 

 

 

TAMAX TAMIN

 

 

 

 

 

 

 

 

 

 

 

 

10.Specified at maximum recommended output of 1µA sourcing. VREF is a very sensitive signal, the output of the VREF circuit has a very high output impedance so that the 0.1µF reference capacitor provides attenuation even to low frequency noise, such as 50Hz noise on the VREF output. As such VREF intended for the CS5490 only and should not be connected to any external circuitry. The output impedance is sufficiently high that standard digital multi-meters can significantly load this voltage. The accuracy of the metrology IC can not be guaranteed when a multimeter or any component other than the 0.1µF capacitor is attached to VREF. If it is desired to measure VREF for any reason other than a very course indicator of VREF functionality, Cirrus recommends a very high input impedance multimeter such as the Keithley Model 2000 Digital Multimeter be used, but still cannot guarantee the accuracy of the metrology with this meter connected to VREF.

DS982F3

11

CS5490

DIGITAL CHARACTERISTICS

Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.

Typical characteristics and specifications are measured at nominal supply voltages and TA = 25°C.

VDDA = +3.3V ±10%; GNDA = 0V. All voltages with respect to 0V.

MCLK = 4.096MHz.

Parameter

 

Symbol

Min

Typ

Max

Unit

Master Clock Characteristics

 

 

 

 

 

 

XIN Clock Frequency

Internal Gate Oscillator

MCLK

2.5

4.096

5

MHz

XIN Clock Duty Cycle

 

 

40

-

60

%

Filter Characteristics

 

 

 

 

 

 

Phase Compensation Range

(60Hz, OWR = 4000Hz)

 

-10.79

-

+10.79

°

Input Sampling Rate

 

 

-

MCLK/8

-

Hz

Digital Filter Output Word Rate

(Both channels)

OWR

-

MCLK/1024

-

Hz

High-pass Filter Corner Frequency

-3dB

 

-

2.0

-

Hz

Input/Output Characteristics

 

 

 

 

 

 

High-level Input Voltage (All Pins)

 

VIH

0.6(VDDA)

-

-

V

Low-level Input Voltage (All Pins)

 

VIL

-

-

0.6

V

High-level Output Voltage

DO, Iout = +10mA

VOH

VDDA-0.3

-

-

V

(Note 12)

Iout = +5mA

VDDA-0.3

-

-

V

Low-level Output Voltage

DO, Iout = -12mA

VOL

-

-

0.5

V

(Note 12)

All Other Outputs, Iout = -5mA

-

-

0.5

V

Input Leakage Current

 

Iin

-

±1

±10

µA

3-state Leakage Current

 

IOZ

-

-

±10

µA

Digital Output Pin Capacitance

 

Cout

-

5

-

pF

Notes: 11. All measurements performed under static conditions.

12.XOUT pin used for crystal only. Typical drive current<1mA.

12

DS982F3

CS5490

SWITCHING CHARACTERISTICS

Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.

Typical characteristics and specifications are measured at nominal supply voltages and TA = 25°C.

VDDA = +3.3V ±10%; GNDA = 0V. All voltages with respect to 0V.

Logic Levels: Logic 0 = 0V, Logic 1 = VDDA.

Parameter

 

Symbol

Min

Typ

Max

Unit

Rise Times

DO

trise

-

-

1.0

µs

(Note 13)

Any Digital Output Except DO

-

50

-

ns

Fall Times

DO

tfall

-

-

1.0

µs

(Note 13)

Any Digital Output Except DO

-

50

-

ns

Start-up

 

 

 

 

 

 

Oscillator Start-up Time

XTAL = 4.096 MHz (Note 14)

tost

-

60

-

ms

Notes: 13. Specified using 10% and 90% points on waveform of interest. Output loaded with 50pF.

14.Oscillator start-up time varies with crystal parameters. This specification does not apply when using an external clock source.

DS982F3

13

CS5490

ABSOLUTE MAXIMUM RATINGS

Parameter

 

Symbol

Min

Typ

Max

Unit

DC Power Supplies

(Note 15)

VDDA

-0.3

-

+4.0

V

 

 

 

 

 

 

 

Input Current

(Notes 16 and 17)

IIN

-

-

±10

mA

Input Current for Power Supplies

 

-

-

-

±50

-

Output Current

(Note 18)

IOUT

-

-

100

mA

Power Dissipation

(Note 19)

PD

-

-

500

mW

Input Voltage

(Note 20)

VIN

- 0.3

-

(VDDA) + 0.3

V

Junction-to-Ambient Thermal Impedance

2 Layer Board

JA

-

140

-

°C/W

 

4 Layer Board

-

70

-

°C/W

Ambient Operating Temperature

 

TA

- 40

-

85

°C

Storage Temperature

 

Tstg

- 65

-

150

°C

Notes: 15. VDDA and GNDA must satisfy [(VDDA) – (GNDA)] + 4.0V.

16.Applies to all pins, including continuous overvoltage conditions at the analog input pins.

17.Transient current of up to 100mA will not cause SCR latch-up.

18.Applies to all pins, except VREF±.

19.Total power dissipation, including all input currents and output currents.

20.Applies to all pins.

WARNING:

Operation at or beyond these limits may result in permanent damage to the device.

Normal operation is not guaranteed at these extremes.

14

DS982F3

CS5490

 

 

4th Order

 

 

 

 

 

PMF

 

MUX

 

V

VIN±

x10

CTRL

SINC3

IIR

 

 

 

 

 

ΔΣ

 

 

HPF

 

 

 

 

 

 

 

DELAY

 

 

 

 

 

 

 

 

 

 

 

Modulator

 

 

 

 

 

 

 

 

Phase

 

 

 

 

 

 

 

 

 

 

 

 

Q

 

 

 

 

 

 

 

 

 

 

 

Shift

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDCOFF

VGAIN

 

 

 

 

Epsilon

 

 

PC

... CPCC[1:0] ...

FPCC[8:0] ...

SYSGAIN

Config 2

...

VFLT[1:0]

IFLT[1:0] ...

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IDCOFF

IGAIN

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

4th Order

 

 

IIR

 

 

 

 

 

 

 

IIN±

PGA

ΔΣ

DELAYCTRL

SINC3

 

 

HPF

 

 

 

 

 

 

Modulator

 

 

 

 

 

 

INT

MUX

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

PMF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Registers

 

 

 

 

 

 

 

 

 

 

Figure 6. Signal Flow for V, I, P, and Q Measurements

4. SIGNAL FLOW DESCRIPTION

The signal flow for voltage, current measurement, and the other calculations is shown in Figure 6.

The signal flow consists of a current and a voltage channel. The current and voltage channels have differential input pins.

4.1 Analog-to-Digital Converters

Both input channels use fourth-order delta-sigma modulators to convert the analog inputs to single-bit digital data streams. The converters sample at a rate of MCLK/8. This high sampling provides a wide dynamic range and simplifies anti-alias filter design.

4.2 Decimation Filters

The single-bit modulator output data is widened to 24 bits and down sampled to MCLK/1024 with low-pass decimation filters. These decimation filters are third-order Sinc filters. The filter outputs pass through an IIR "anti-sinc" filter.

4.3 IIR Filter

The IIR filter is used to compensate for the amplitude roll-off of the decimation filters. The droop-correction filter flattens the magnitude response of the channel out to the Nyquist frequency, thus allowing for accurate measurements of up to 2kHz (MCLK = 4.096MHz). By default, the IIR filters are enabled. The IIR filters can be bypassed by setting the IIR_OFF bit in the Config2 register.

4.4 Phase Compensation

Phase compensation changes the phase of voltage relative to current by adding a delay in the decimation filters. The amount of phase shift is set by the PC register bits CPCC[1:0] and FPCC[8:0] for the current channel. For the voltage channel, only bits CPCC[1:0] affect the delay.

Fine phase compensation control bits, FPCC[8:0], provide up to 1/OWR delay in the current channel. Coarse phase compensation control bits, CPCC[1:0], provide an additional 1/OWR delay in the current channel or up to 2/OWR delay in the voltage channel. Negative delay in the voltage channel can be implemented by setting longer delay in the current channel than the voltage channel. For a OWR of 4000Hz, the delay range is ±500µs, a phase shift of ±8.99° at 50Hz and ±10.79° at 60Hz. The step size is 0.008789° at 50Hz and 0.010547° at 60Hz. For more information about phase compensation, see section 7.2 Phase Compensation on page 53.

4.5 DC Offset & Gain Correction

The system and CS5490 inherently have component tolerances, gain, and offset errors, which can be removed using the gain and offset registers. Each measurement channel has its own set of gain and offset registers. For every instantaneous voltage and current sample, the offset and gain values are used to correct DC offset and gain errors in the channel (see section 7. System Calibration on page 52 for more details).

DS982F3

15

CS5490

4.6 High-pass & Phase Matching Filters

Optional high-pass filters (HPF in Figure 6) remove any DC component from the selected signal paths. Each power calculation contains a current and voltage channel. If an HPF is enabled in only one channel, a phase-matching filter (PMF) should be applied to the other channel to match the phase response of the HPF. For AC power measurement, high-pass filters should be enabled on the voltage and current channels. For information about how to enable and disable the HPF or PMF on each channel, refer to Config2 register descriptions in section 6.6 Register Descriptions on page 32.

4.7 Digital Integrators

Optional digital integrators (INT in Figure 6) are implemented on the current channel to compensate for the 90° phase shift and 20dB/decade gain generated by the Rogowski coil current sensor. When a Rogowski coil is used as the current sensor, the integrator (INT) should be enabled on that current channel. For information about how to enable and disable the INT on the current channel, refer to Config2 register descriptions in section 6.6 Register Descriptions on page 32.

4.8 Low-rate Calculations

All the RMS and power results come from low-rate calculations by averaging the output word rate (OWR) instantaneous values over N samples, where N is the value stored in the SampleCount register. The low-rate interval or averaging period is N divided by OWR (4000Hz if MCLK = 4.096MHz). The CS5490 provides

V

N

÷ N

 

 

 

 

 

IACOFF

I

N

÷ N

+

-

 

 

 

 

 

 

 

QOFF

 

N

 

+

+

Q

 

÷ N

 

 

 

 

 

 

 

 

 

POFF

 

N

 

+

+

P

 

÷ N

 

 

 

 

 

 

 

Registers

 

 

 

two averaging modes for low-rate calculations: Fixed Number of Sample Averaging mode and Line-cycle Synchronized Averaging mode. By default, the CS5490 averages with the Fixed Number of Samples Averaging mode. By setting the AVG_MODE bit in the Config2 register, the CS5490 will use the Line-cycle Synchronized Averaging mode.

4.8.1 Fixed Number of Samples Averaging

N is the preset value in the SampleCount register and should not be set less than 100. By default, the SampleCount register is 4000. With MCLK = 4.096 MHz, the averaging period is fixed at N/4000 = 1 second, regardless of the line frequency.

4.8.2 Line-cycle Synchronized Averaging

When operating in Line-cycle Synchronized Averaging mode, and when line frequency measurement is enabled (see section 5.4 Line Frequency Measurement on page 19), the CS5490 uses the voltage (V) channel zero crossings and measured line frequency to automatically adjust N such that the averaging period will be equal to the number of half line-cycles in the CycleCount register. For example, if the line frequency is 51Hz, and the CycleCount register is set to 100, N will be 4000 (100/2)/51 = 3921 during continuous conversion. N is self-adjusted according to the line frequency, therefore the averaging period is always close to the whole number of half line-cycles, and the low-rate calculation results will minimize ripple and maximize resolution, especially when the line frequency varies. Before starting a low-rate conversion in the Line-cycle Synchronized Averaging mode, the

VRMS

 

 

Config 2

 

 

 

 

 

 

 

 

 

...

APCM

...

IRMS

 

 

 

MUX

S

QAVG

 

 

X

 

 

 

 

Inverse

PAVG

+ +

 

X

 

X

PF

Figure 7. Low-rate Calculations

16

DS982F3

SampleCount register should not be changed from its default value of 4000, and bit AFC of the Config2 register must be set. During continuous conversion, the host processor should not change the SampleCount register.

4.8.3 RMS Current & Voltage

The root mean square (RMS in Figure 7) calculations are performed on N instantaneous voltage and current samples using Equation 1:

 

N 1

 

N 1

IRMS =

I2n

VRMS =

V2n [Eq.1]

n = 0

n = 0

 

-------------------

 

---------------------

 

N

 

N

4.8.4 Active Power

The instantaneous voltage and current samples are multiplied to obtain the instantaneous power (P) (see Figure 6). The product is then averaged over N samples to compute active power (PAVG).

4.8.5 Reactive Power

Instantaneous reactive power (Q) is the sample rate result obtained by multiplying instantaneous current (I) by instantaneous quadrature voltage (Q). These values are created by phase shifting instantaneous voltage (V) 90° using first-order integrators (see Figure 6). The gain of these integrators is inversely related to line frequency, so their gain is corrected by the Epsilon register, which is based on line frequency. Reactive power (QAVG) is generated by integrating the instantaneous quadrature power over N samples.

4.8.6 Apparent Power

By default, the CS5490 calculates the apparent power (S) as the product of RMS voltage and current. See Equation 2:

S = VRMS IRMS

[Eq.2]

The CS5490 also provides an alternate apparent power calculation method. The alternate apparent power method uses real power (PAVG) and reactive power (QAVG) to calculate apparent power. See Equation 3.

S = QAVG2 + PAVG2

[Eq.3]

CS5490

The APCM bit in the Config2 register controls which method is used for apparent power calculation.

4.8.7 Peak Voltage & Current

Peak current (IPEAK) and peak voltage (VPEAK) are calculated over N samples and recorded in the corre-

sponding channel peak register documented in the register map. This peak value is updated every N samples.

4.8.8 Power Factor

Power factor (PF) is active power divided by apparent power, as shown below. The sign of the power factor is determined by the active power. See Equation 4.

PF =

P---------------------ACTIVE-

[Eq.4]

 

S

 

4.9 Average Active Power Offset

The average active power offset register, POFF, can be used to offset erroneous power sources resident in the system not originating from the power line. Residual power offsets are usually caused by crosstalk into the current channel from the voltage channel, or from ripple on the meter’s or chip’s power supply, or from inductance from a nearby transformer.

These offsets can be either positive or negative, indicating crosstalk coupling either in phase or out of phase with the applied voltage input. The power offset register can compensate for either condition.

To use this feature, measure the average power at no load and take the measured result (from the PAVG register), invert (negate) the value, and write it to the associated power offset register, POFF.

4.10 Average Reactive Power Offset

The average reactive power offset register, QOFF, can be used to offset erroneous power sources resident in the system not originating from the power line. Residual reactive power offsets are usually caused by crosstalk into the current channel from the voltage channel, or from ripple on the meter’s or chip’s power supply, or from inductance from a nearby transformer.

These offsets can be either positive or negative, depending on the phase angle between the crosstalk coupling and the applied voltage. The reactive power offset register can compensate for either condition. To use this feature, measure the average reactive power at no load. Take the measured result from the QAVG register, invert (negate) the value and write it to the reactive power offset register, QOFF.

DS982F3

17

5. FUNCTIONAL DESCRIPTION

5.1 Power-on Reset (POR)

The CS5490 has an internal power supply supervisor circuit that monitors the VDDA and VDDD power supplies and provides the master reset to the chip. If any of these voltages are in the reset range, the master reset is triggered.

Both the analog and the digital supply have their own POR circuit. During power-up, both supplies have to be above the rising threshold for the master reset to be de-asserted.

Each POR is divided into 2 blocks: rough and fine. Rough POR triggers the fine POR. Rough POR depends only on the supply voltage. The trip point for the fine POR is dependent on bandgap voltage for precise control.

The POR circuit also acts as a brownout detect. The fine POR detects supply drops and asserts the master reset.

The rough and fine PORs have hysteresis in their rise and fall thresholds which prevents the reset signal from chattering.

The following plot shows the POR outputs for each of the power supplies. The POR_Fine_VDDA and POR_Fine_VDDD signals are AND-ed to form the actual power-on reset signal to the digital circuity. The digital circuitry, in turn, holds the master reset signal for 130ms and then de-asserts the master reset.

VDDA

 

 

 

 

 

 

Vth2

 

 

Vth5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vth1

 

 

 

 

 

 

 

 

 

 

Vth6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POR_Rough_VDDA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POR_Fine_VDDA

 

 

 

 

 

 

 

Vth4

Vth7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDDD

 

 

 

 

 

 

Vth8

 

 

 

 

Vth3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POR_Rough_VDDD

POR_Fine_VDDD

POR_Fine_VDDA

POR_Fine_VDDD

Master Reset

 

130ms

 

 

 

 

 

 

 

Figure 8. Power-on Reset Timing

CS5490

Table 1. POR Thresholds

Typical POR

Rising

Falling

Threshold

 

 

VDDA

Rough

Vth1 = 2.34V

Vth6 = 2.06V

Fine

Vth2 = 2.77V

Vth5 = 2.59V

 

VDDD

Rough

Vth3 = 1.20V

Vth8 = 1.06V

Fine

Vth4 = 1.51V

Vth7 = 1.42V

 

5.2 Power Saving Modes

Power Saving modes for CS5490 are accessed through the Host Instruction Commands (see 6.1 Host Commands on page 24).

Standby: Powers down all the ADCs, rough buffer, and the temperature sensor. Standby mode disables the system time calculations. Use the wake-up command to come out of standby mode.

Wake-up: Clears the ADC power-down bits and starts the system time calculations.

After any of these commands are completed, the DRDY bit is set in the Status0 register.

5.3 Zero-crossing Detection

Zero-crossing detection logic is implemented in CS5490. A low-pass filter can be enabled by setting ZX_LPF bit in register Config2. The low-pass filter has a cut-off frequency of 80Hz. It is used to eliminate any harmonics and to help the zero-crossing detection on the 50Hz or 60Hz fundamental component. The zero-crossing level registers are used to set the minimum threshold over which the channel peak has to exceed in order for the zero-crossing detection logic to function. There are two separate zero-crossing level

registers: VZXLEVEL is the threshold for the voltage channels, and IZXLEVEL is the threshold for the current channels.

18

DS982F3

Loading...
+ 39 hidden pages