ATM Multimode Fiber
Transceivers
for SONET OC-3/SDH STM-1 in
Low Cost 1x9 Package Style
Technical Data
Features
• Full Compliance with ATM
Forum UNI SONET OC-3
Multimode Fiber Physical
Layer Specification
• Multisourced 1 x 9 Package
Style with Choice of Duplex
SC or Duplex ST* Receptacle
• Wave Solder and Aqueous
Wash Process Compatibility
• Manufactured in an ISO 9002
Certified Facility
Applications
• Multimode Fiber ATM
Backbone Links
• Multimode Fiber ATM
Wiring Closet to Desktop
Links
• Very Low Cost Multimode
Fiber 800 nm ATM Wiring
Closet to Desktop Links
• ATM 155 Mbps/194 MBd
Encoded Links (available
upon special request)
Description
The HFBR-5200 family of transceivers from Agilent Technologies
provide the system designer with
products to implement a range of
solutions for multimode fiber
SONET OC-3 (SDH STM-1)
physical layers for ATM and other
services.
These transceivers are all
supplied in the new industry
standard 1x9 SIP package style
with either a duplex SC or a
duplex ST* connector interface.
ATM 2000 m Backbone Links
The HFBR-5205/-5205T are
1300 nm products with optical
performance compliant with the
SONET STS-3c (OC-3) Physical
Layer Interface Specification. This
physical layer is defined in the
ATM Forum User-Network Interface (UNI) Specification Version
3.0. This document references the
ANSI T1E1.2 specification for the
details of the interface for 2000
meter multimode fiber backbone
links.
Selected versions of these
transceivers may be used to
implement the ATM Forum UNI
Physical Layer Interface at the
155 Mbps/194 MBd rate.
The ATM 100 Mbps/125 MBd
Physical Layer interface is best
implemented with the HFBR-5100
family of FDDI Transceivers
which are specified for use in this
4B/5B encoded physical layer per
the FDDI PMD standard.
HFBR-5203/-5203T
800 nm 300 m
HFBR-5204/-5204T
1300 nm 500 m
HFBR-5205/-5205T
1300 nm 2 km
ATM 500 m Backbone and
Desktop Links
The HFBR-5204/-5204T are 1300
nm products which are similar to
the HFBR-5205/5205T except
that they are intended to provide
a lower cost SONET OC-3 link to
distances up to 500 meters in
62.5/125 µm multimode fiber
optic cables.
Very Low Cost ATM 300 m
Desktop Links
The HFBR-5203/-5203T are very
low cost 800 nm alternatives to
the HFBR-5204/-5204T for
SONET OC-3 links to distances up
to 300 meters in 62.5/125 µm
multimode fiber optic cables.
Transmitter Sections
The transmitter sections of the
HFBR-5204 and HFBR-5205
series utilize 1300 nm InGaAsP
LEDs and the HFBR-5203 series
*ST is a registered trademark of AT&T Lightguide Cable Connectors.
2
uses a low cost 800 nm AlGaAs
LED. These LEDs are packaged in
the optical subassembly portion
of the transmitter section. They
are driven by a custom silicon IC
which converts differential PECL
logic signals, ECL referenced
(shifted) to a +5 Volt supply, into
an analog LED drive current.
Receiver Sections
The receiver sections of the
HFBR-5204 and HFBR-5205
series utilize InGaAs PIN photodiodes coupled to a custom
silicon transimpedance preamplifier IC. The HFBR-5203 series
uses the same preamplifier IC in
conjunction with an inexpensive
silicon PIN photodiode. These are
packaged in the optical subassembly portion of the receiver.
These PIN/preamplifier combinations are coupled to a custom
quantizer IC which provides the
final pulse shaping for the logic
output and the Signal Detect
function. The data output is
differential. The signal detect
output is single-ended. Both data
and signal detect outputs are
PECL compatible, ECL referenced
(shifted) to a +5 volt power
supply.
design complies with the
maximum height allowed for the
duplex SC connector over the
entire length of the package.
The optical subassemblies utilize
a high volume assembly process
together with low cost lens
elements which result in a cost
effective building block.
The electrical subassembly consists of a high volume multilayer
printed circuit board on which the
IC chips and various surfacemounted passive circuit elements
are attached.
The package includes internal
shields for the electrical and
optical subassemblies to insure
low EMI emissions and high
immunity to external EMI fields.
The outer housing including the
duplex SC connector or the
duplex ST ports is molded of filled
non-conductive plastic to provide
mechanical strength and electrical
isolation. The solder posts of the
Agilent design are isolated from
the circuit design of the
transceiver and do not require
connection to a ground plane on
the circuit board.
The transceiver is attached to a
printed circuit board with the nine
signal pins and the two solder
posts which exit the bottom of the
housing. The two solder posts
provide the primary mechanical
strength to withstand the loads
imposed on the transceiver by
mating with the duplex or simplex
SC or ST connectored fiber
cables.
Note: The “T” in the product
numbers indicates a transceiver
with a duplex ST connector
receptacle. Product numbers
without a “T” indicate transceivers
with a duplex SC connector
receptacle.
Application Information
The Applications Engineering
group in the Agilent Optical
Communication Division is
available to assist you with the
technical understanding and
design trade-offs associated with
these transceivers. You can contact them through your Agilent
sales representative.
Package
The overall package concept for
the Agilent transceivers consists
of three basic elements; the two
optical subassemblies, an
electrical subassembly, and the
housing as illustrated in the block
diagrams in Figure 1 and
Figure 1a.
The package outline drawing and
pin out are shown in Figures 2,
2a, and 3. The details of this
package outline and pin out are
compliant with the multisource
definition of the 1x9 SIP. The low
profile of the Agilent transceiver
ELECTRICAL SUBASSEMBLY
DIFFERENTIAL
DATA OUT
SINGLE-ENDED
SIGNAL
DETECT OUT
DIFFERENTIAL
DATA IN
Figure 1. Block Diagram.
QUANTIZER IC
DRIVER IC
DUPLEX SC
RECEPTACLE
PIN PHOTODIODE
PREAMP IC
OPTICAL
SUBASSEMBLIES
LED
TOP VIEW
3
ELECTRICAL SUBASSEMBLY
DIFFERENTIAL
DATA OUT
SINGLE-ENDED
SIGNAL
DETECT OUT
QUANTIZER IC
DIFFERENTIAL
DATA IN
DRIVER IC
Figure 1a. ST Block Diagram.
TOP VIEW
25.40
(1.000)
PREAMP IC
MAX.
DUPLEX ST
RECEPTACLE
PIN PHOTODIODE
OPTICAL
SUBASSEMBLIES
LED
39.12
MAX.
(1.540)
12.70
(0.500)
AREA
RESERVED
FOR
PROCESS
PLUG
12.70
(0.500)
HFBR-5XXX
DATE CODE (YYWW)
A
SINGAPORE
+ 0.08
0.75
3.30 ± 0.38
(0.130 ± 0.015)
23.55
(0.927)
(0.800)
NOTE 1: THE SOLDER POSTS AND ELECTRICAL PINS ARE PHOSPHOR BRONZE WITH TIN LEAD OVER NICKEL PLATING.
DIMENSIONS ARE IN MILLIMETERS (INCHES).
(0.030
20.32
[8x(2.54/.100)]
- 0.05
+ 0.003
- 0.002
)
0.46
(0.018)
NOTE 1
10.35
(0.407)
2.92
(0.115)
(9x)ø
16.70
(0.657)
0.87
(0.034)
MAX.
23.24
(0.915)
18.52
(0.729)
4.14
(0.163)
15.88
(0.625)
1.27
(0.050
+ 0.25
- 0.05
+ 0.010
- 0.002
NOTE 1
17.32
(0.682)
)
20.32
(0.800)
23.32
(0.918)
Figure 2. Package Outline Drawing.
24.8
(0.976)
42
(1.654)
4
MAX.
5.99
(0.236)
HFBR-5103T
DATE CODE (YYWW)
SINGAPORE
20.32
[(8x (2.54/0.100)]
(0.800)
22.86
(0.900)
3.2
(0.126)
3.6
(0.142)
25.4
(1.000)
12.0
(0.471)
φ
(0.022)
NOTE 1
21.4
(0.843)
MAX.
MAX.
0.46
17.4
(0.685)
1.3
(0.051)
20.32
φ
(0.102)
23.38
(0.921)
± 0.38
(± 0.015)
2.6
18.62
(0.733)
+ 0.08
0.5
- 0.05
(0.020)
+ 0.003
(
- 0.002
3.3 ± 0.38
(0.130) (± 0.015)
20.32
(0.800)
(
+ 0.25
- 0.05
+ 0.010
(
- 0.002
12.7
(0.500)
(
NOTE 1: PHOSPHOR BRONZE IS THE BASE MATERIAL FOR THE POSTS & PINS
WITH TIN LEAD OVER NICKEL PLATING.
DIMENSIONS IN MILLIMETERS (INCHES).
Figure 2a. ST Package Outline Drawing.
1 = V
2 = RD
3 = RD
4 = SD
5 = V
6 = V
7 = TD
8 = TD
9 = V
EE
CC
CC
EE
TOP VIEW
N/C
N/C
Figure 3. Pin Out Diagram.
5
The following information is
provided to answer some of the
most common questions about
the use of these parts.
Agilent LED technology has
produced 800 nm LED and 1300
nm LED devices with lower aging
characteristics than normally
associated with these technolo-
Transceiver Optical Power
Budget versus Link Length
Optical Power Budget (OPB) is
the available optical power for a
fiber optic link to accommodate
fiber cable losses plus losses due
to in-line connectors, splices,
optical switches, and to provide
margin for link aging and
unplanned losses due to cable
gies in the industry. The industry
convention is 3 dB aging for 800
nm and 1.5 dB aging for 1300 nm
LEDs. The 1300 nm HP LEDs are
specified to experience less than
1 dB of aging over normal
commercial equipment mission
life periods. Contact your Agilent
sales representative for additional
details.
plant reconfiguration or repair.
Figure 4 was generated for the
Figure 4 illustrates the predicted
OPB associated with the three
transceivers series specified in
this data sheet at the Beginning of
Life (BOL). These curves represent the attenuation and chromatic
plus modal dispersion losses
associated with the 62.5/125 µm
and 50/125 µm fiber cables only.
The area under the curves
represents the remaining OPB at
any link length, which is available
for overcoming non-fiber cable
losses.
1300 nm transceivers with an
Agilent fiber optic link model
containing the current industry
conventions for fiber cable
specifications and the draft ANSI
T1E1.2. These optical parameters
are reflected in the guaranteed
performance of the transceiver
specifications in this data sheet.
This same model has been used
extensively in the ANSI and IEEE
committees, including the ANSI
T1E1.2 committee, to establish
the optical performance
requirements for various fiber
12
10
8
HFBR-5203,
6
50/125 µm
4
2
OPTICAL POWER BUDGET (dB)
0
Figure 4. Optical Power Budget vs. Fiber Optic Cable Length.
HFBR-5205, 62.5/125 µm
HFBR-5203,
62.5/125 µm
HFBR-5205,
50/125 µm
HFBR-5204,
62.5/125 µm
HFBR-5204,
50/125 µm
0.51.52.02.5
1.00.3
FIBER OPTIC CABLE LENGTH (km)
optic interface standards. The
cable parameters used come from
the ISO/IEC JTC1/SC 25/WG3
Generic Cabling for Customer
Premises per DIS 11801 document and the EIA/TIA-568-A
Commercial Building
Telecommunications Cabling
Standard per SP-2840.
The HFBR-5203 series 800 nm
transceiver curve in Figure 4 was
generated based on extensive
empirical test data of the 800 nm
transceiver performance. The
curve includes the effect of typical
fiber attenuation, plus receiver
sensitivity loss due to chromatic
and metal dispersion losses
through the fiber.
Transceiver Signaling
Operating Rate Range and BER
Performance
For purposes of definition, the
symbol (Baud) rate, also called
signaling rate, is the reciprocal of
the symbol time. Data rate (bits/
sec) is the symbol rate divided by
the encoding factor used to
encode the data (symbols/bit).
When used in 155 Mbps SONET
OC-3 applications the performance of the 1300 nm transceivers,
HFBR-5204/5205 is guaranteed
to the full conditions listed in
individual product specification
tables.
The transceivers may be used for
other applications at signaling
rates different than 155 Mbps
with some variation in the link
optical power budget. Figure 5
gives an indication of the typical
performance of these products at
different rates.
These transceivers can also be
used for applications which
require different Bit Error Rate
(BER) performance. Figure 6
6
2.5
2.0
1.5
1.0
0.5
AT CONSTANT BER (dB)
0
0.5
2575100 125
0200
TRANSCEIVER RELATIVE OPTICAL POWER BUDGET
CONDITIONS:
1. PRBS 2
2. DATA SAMPLED AT CENTER OF DATA SYMBOL.
3. BER = 10
4. TA = 25° C
5. V
6. INPUT OPTICAL RISE/FALL TIMES = 1.0/2.1 ns.
Figure 5. Transceiver Relative Optical Power Budget
at Constant BER vs. Signaling Rate.
50150
SIGNAL RATE (MBd)
7
-1
-6
= 5 Vdc
CC
175
-2
1 x 10
-3
1 x 10
-4
1 x 10
-5
1 x 10
-6
1 x 10
-7
1 x 10
BIT ERROR RATE
-8
1 x 10
-9
1 x 10
-10
1 x 10
-11
1 x 10
-12
1 x 10
-64
-42-2
RELATIVE INPUT OPTICAL POWER – dB
CONDITIONS:
1. 155 MBd
2. PRBS 2
3. CENTER OF SYMBOL SAMPLING.
4. T
= 25° C
A
5. V
= 5 Vdc
CC
6. INPUT OPTICAL RISE/FALL TIMES = 1.0/2.1 ns.
Figure 6. Bit Error Rate vs. Relative Receiver Input
Optical Power.
HFBR-5203/5204/5205
SERIES
CENTER OF SYMBOL
7
-1
0
illustrates the typical trade-off
between link BER and the
receivers input optical power
level.
Transceiver Jitter
Performance
The Agilent 1300 nm transceivers
are designed to operate per the
system jitter allocations stated in
Table B1 of Annex B of the draft
ANSI T1E1.2 Revision 3 standard.
The Agilent 1300 nm transmitters
will tolerate the worst case input
electrical jitter allowed in Annex
B without violating the worst case
output optical jitter requirements.
The Agilent 1300 nm receivers
will tolerate the worst case input
optical jitter allowed in Annex B
without violating the worst case
output electrical jitter allowed.
The jitter specifications stated in
the following 1300 nm transceiver
specification tables are derived
from the values in Table B1 of
Annex B. They represent the
worst case jitter contribution that
the transceivers are allowed to
make to the overall system jitter
without violating the Annex B
allocation example. In practice,
the typical contribution of the
Agilent transceivers is well below
these maximum allowed amounts.
Recommended Handling
Precautions
Agilent recommends that normal
static precautions be taken in the
handling and assembly of these
transceivers to prevent damage
which may be induced by
electrostatic discharge (ESD).
The HFBR-5200 series of
transceivers meet MIL-STD-883C
Method 3015.4 Class 2 products.
Care should be used to avoid
shorting the receiver data or
signal detect outputs directly to
ground without proper current
limiting impedance.
Solder and Wash Process
Compatibility
The transceivers are delivered
with protective process plugs
inserted into the duplex SC or
duplex ST connector receptacle.
This process plug protects the
optical subassemblies during
wave solder and aqueous wash
processing and acts as a dust
cover during shipping.
These transceivers are compatible
with either industry standard
wave or hand solder processes.
Shipping Container
The transceiver is packaged in a
shipping container designed to
Loading...
+ 14 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.