Three Stage Battery Charging..................................................................................................................7
BATTERY CHARGER CONTROLS AND LED INDICATOR................................ 8
Charger LED .............................................................................................................................................8
AC Connections .......................................................................................................................................15
Important Precautions ............................................................................................................................15
Programming the RC7 ............................................................................................................................22
User Menu ................................................................................................................................................23
Meters Menu ............................................................................................................................................24
Setup Menu ..............................................................................................................................................24
Installation with External Transfer Relay (120/240 System)...............................................................27
ii
Xantrex RV Series Inverter/Charger Owner’s Manual
Mobile Installation...................................................................................................................................28
Problem Loads.........................................................................................................................................30
Typical Battery Draw of Common Appliances .....................................................................................32
English to Metric Wire Conversion .......................................................................................................33
RC7 Menu Map .......................................................................................................................................34
TECHNICAL INFORMATION ............................................................................. 36
RV Series Specifications..........................................................................................................................36
UNLESS SPECIFICALLY AGREED TO IN WRITING, XANTREX TECHNOLOGY INC. (“XANTREX”)
(a)MAKES NO WARRANTY AS TO THE ACCURACY, SUFFICIENCY OR SUITABILITY OF ANY TECHNICAL OR
OTHER INFORMATION PROVIDED IN ITS MANUALS OR OTHER DOCUMENTATION.
(b)ASSUMES NO RESPONSIBILITY OR LIABILITY FOR LOSS OR DAMAGE, WHETHER DIRECT, INDIRECT,
CONSEQUENTIAL OR INCIDENTAL, WHICH MIGHT ARISE OUT OF THE USE OF SUCH INFORMATION. THE USE
OF ANY SUCH INFORMATION WILL BE ENTIRELY AT THE USER’S RISK.
Date and Revision December 2002, Revision 2 Part Number 445-0202-01-01
This manual contains important safety and operating instructions as prescribed by UL
specifications for inverters used in land vehicle applications. This manual covers Xantrex RV
Series Inverter/Chargers models RV2012, RV2512, and RV3012.
General Precautions
1. Before using the inverter/charger, read all instructions and cautionary markings on (1) the
inverter/charger, (2) the batteries and (3) all appropriate sections of this instruction manual.
2. CAUTION: To reduce risk of injury, charge only deep-cycle lead acid, lead antimony, lead
calcium, gel cell, absorbed mat, or NiCad/NiFe type rechargeable batteries. Other types of
batteries may burst, causing personal injury and damage.
3. Do not expose inverter/charger to rain, snow or liquids of any type. The inverter is designed
for indoor mounting only. Protect the inverter from splashing when used in vehicle
applications. Do not mount the inverter in unventilated enclosures or in the engine
compartment.
4. Do not disassemble the inverter/charger; take it to a qualified Xantrex service center when
service or repair is required. Incorrect reassembly may result in a risk of electric shock or fire.
5. To reduce risk of electric shock, disconnect all wiring before attempting any maintenance or
cleaning. Turning off the inverter will not reduce this risk. Solar modules produce power when
exposed to light—cover them with opaque material before servicing any connected
equipment.
6. WARNING:WORKING IN THE VICINITY OF A LEAD ACID BATTERY IS DANGEROUS.BATTERIES GENERATE EXPLOSIVE GASES DURING NORMAL OPERATION. Provide
ventilation to outdoors from the battery compartment. The battery enclosure should be
designed to prevent accumulation and concentration of hydrogen gas in “pockets” at the top
of the compartment. Vent the battery compartment from the highest point.
7. NEVER charge a frozen battery.
8. No terminals or lugs are required for hook-up of the AC wiring. AC wiring must be no less than
10 AWG (5.3 mm
rated for 75 °C or higher and should be no less than #2 AWG (67.4 mm
and sealed copper ring terminal lugs with a 5/16 hole should be used to connect the battery
cables to the DC terminals of the inverter/charger. Soldered cable lugs are also acceptable.
9. Torque all AC wiring connections to 20 inch-pounds. Torque all DC cable connections to 12
foot-pounds. Be extra cautious to reduce the risk of dropping a metal tool onto batteries. It
could short-circuit the batteries or other electrical parts, resulting in sparks that could cause
an explosion.
2
) gauge copper wire and rated for 75 °C or higher. Battery cables must be
2
) gauge. Crimped
1
Xantrex RV Series Inverter/Charger Owner’s Manual
10. Symbols used in this manual and on the inverter/charger are:
Chassis Phase AC OutputAC Input
1. Tools required to make AC wiring connections: Wire strippers, 1/2" (13 mm) open-end wrench
or socket, Phillips screwdriver #2, Slotted screwdriver 1/4" (6 mm) blade.
2. This inverter/charger is intended to be used with a battery supply with a nominal voltage of 12
volts DC.
3. For instructions on shelf mounting, see ”Installation” on page 14. For battery installation and
maintenance: read the battery manufacturer's installation and maintenance instructions prior
to operating.
4. No AC or DC disconnects are provided as an integral part of this inverter. Both AC and DC
disconnects must be provided as part of the system installation. See SYSTEM SAFETYWIRING REQUIREMENTS section of this manual.
5. No over-current protection for the battery supply is provided as an integral part of this inverter.
Over-current protection of the battery cables must be provided as part of the system
installation. See “DC Over-Current Protection” on page 16.
6. No over-current protection for the AC output wiring is provided as an integral part of this
inverter. Over-current protection of the AC output wiring must be provided as part of the
system installation. See SYSTEM SAFETY WIRING REQUIREMENTS section of this
manual.
7. DC GROUNDING INSTRUCTIONS: This inverter/charger should be connected to a
grounded, permanent wiring system. For most installations, the negative battery conductor
should be bonded to the grounding system at one (and only one point) in the system. All
installations should comply with all national and local codes and ordinances.
8. AC GROUNDING INSTRUCTIONS: This inverter/charger includes neutral ground switching
for the AC electrical system. The AC system must have the neutral isolated from the
grounding system throughout the load distribution circuits. AC generators must have the
neutral bonded to the grounding system when used with this inverter.
2
Xantrex RV Series Inverter/Charger Owner’s Manual
Personal Precautions
1. Someone should be within range of your voice to come to your aid when you work near
batteries.
2. Have plenty of fresh water and soap nearby in case battery acid contacts skin, clothing, or
eyes.
3. Wear complete eye protection and clothing protection. Avoid touching eyes while working
near batteries. Wash your hands when done.
4. If battery acid contacts skin or clothing, wash immediately with soap and water. If acid enters
eye, immediately flood eye with running cool water for at least 15 minutes and get medical
attention immediately.
5. Baking soda neutralizes lead acid battery electrolyte. Keep a supply on hand in the area of the
batteries.
6. NEVER smoke or allow a spark or flame in the vicinity of a battery or generator.
7. Be extra cautious to reduce the risk of dropping a metal tool onto batteries. It could shortcircuit the batteries or other electrical parts, resulting in a spark that could cause an explosion.
8. Remove personal metal items such as rings, bracelets, necklaces, and watches when
working with a battery. A battery can produce a short-circuit current high enough to weld a ring
or the like to metal, causing severe burns.
9. To prevent accidental starting during servicing, disable the automatic starting circuit and/or
disconnect the generator from its starting battery if a remote or automatic generator start
system is used.
3
Xantrex RV Series Inverter/Charger Owner’s Manual
Theory of Inverter Operation
Waveform
The output waveform of the inverter is referred to as a modified sine wave. This waveform is
suitable for a wide variety of applications—induction motors (such as in refrigerators and drill
presses), resistive loads (such as heaters and toasters), universal motors (such as in hand tools
and vacuum cleaners) as well as microwave ovens and computers.
Comparison of Output Waveforms
The waveform could be more accurately described as a pulse width modulated square wave. The
illustration above shows the relationships between square wave, sine wave and modified sine
wave formats.
Regulation
The inverter is RMS voltage regulated. RMS regulation ensures that resistive loads will always
have the same amount of power delivered to them as battery voltage changes. Regulation is
achieved by varying the width of each pulse. Peak voltage is the product of the battery voltage
times the turns ratio of the inverter’s power transformer and is therefore not actively regulated.
4
Xantrex RV Series Inverter/Charger Owner’s Manual
Search Sense Mode Using Optional RC7 Remote
The SEARCH SENSE menu on the RC7 is used for adjusting the sensitivity of the search mode
circuit. The RV inverter’s search sensitivity can only be set using the optional RC7 remote.
However, once the mode is set the remote may then be removed and the inverter will retain the
settings. The RV Series inverters feature an adjustable search mode circuit. It minimizes power
drain by reducing the inverter’s output to small test pulses when there is no load connected.
These pulses are used to detect the presence of a load. When a load is detected the inverter’s
output goes to full voltage. The sensitivity of the detection threshold is adjustable.
Example: With the SEARCH WATTS control set to detect a 40-watt load, a 50-watt load will bring
the unit to full output voltage. However, a 30-watt load will leave the inverter in its energy-saving
search mode state. If the sensitivity is increased by setting the control to 10, a 20-watt load will
bring the inverter out of the search mode, while a 5-watt load will not.
When in the search mode, the green power LED will blink and the inverter will make a ticking
sound. At full output voltage, the green power LED will burn steadily and the inverter will make a
steady humming sound. When the inverter is used as an “uninterruptible” power supply the search
mode function should be defeated.
A neon-type nightlight can also be used as a good indicator to determine if the inverter is in search
mode. Simply plug the light into any AC outlet. When the inverter is in the search mode the light
will blink. If the inverter is running a load, the light will be solid.
Exceptions
Example A: If the SEARCH WATTS control is set to detect a 40-watt load and a 30-watt
incandescent light is turned on, the inverter will detect the light. The light is a bigger load than 40
watts when its filaments are cold. When the light gets bright the filaments heat up and the light
becomes a 30-watt load. Since this is below the control setting of 40, the inverter will not detect it
and the light will go out, beginning the process all over again.
Example B: If the SEARCH WATTS control is set to detect a 30-watt load and a 40-watt
fluorescent light is turned on, the inverter will not detect the light. The light presents a smaller load
than 30 watts until the gas in the fluorescent tube ionizes.
Example C: There are some appliances that draw power even though they are turned off. TVs
with instant-on circuits, microwave ovens with digital displays and VCRs are examples. These
loads present a dilemma. If the sensitivity is set higher than the combination of these loads, then
an auxiliary load must be used to bring the inverter out of the search mode before the appliances
can be turned on. If the sensitivity is set lower than this combination of loads, the loads will be left
on and will put an additional drain on the batteries. (Three such 15-watt loads would amount to an
additional 90 amp hours per 24 hours in a 12 VDC system.) One solution is to turn these items off
at the wall. Use an extension cord with a rocker switch, a switch at the outlet, or the appropriate
circuit breaker.
5
Xantrex RV Series Inverter/Charger Owner’s Manual
Battery Charger
Theory of Operation
Inverter to Charger Transition
The internal battery charger and automatic transfer relay allows operation as either a battery
charger or inverter (but not both at the same time). An external source of AC power (such as
shorepower or a generator) must be supplied to the inverter AC input in order to allow it to operate
as a battery charger. The RV series charger will always charge when there is AC power present,
even when the inverter itself is turned off (by the on/off switch). W hen operating as a charger, the
AC output is powered by the external source (such as a generator or public power).
The inverter automatically becomes a battery charger whenever AC power is connected to its AC
inputs. There is a minimum 20-second time delay from the time the inverter senses that AC is
present at the input terminals to when the transfer is made. This delay is built in to provide time for
a generator to spin-up to a stable voltage and avoid relay chattering. The inverter will not transfer
to generator until it has locked onto the generator’s output. The inverter’s AC input is internally
connected to the inverter’s AC output while in the battery charger mode.
Transfer Switching Speed
While this inverter is not designed specifically as an uninterruptible power supply (UPS) system,
its transfer time is normally fast enough to hold up most computers. The transfer time is typically
16 milliseconds.
Several PC magazines have run tests indicating a transfer time up to 100 milliseconds will
normally hold up the present generation of PCs.
When switching from inverter to charger, the inverter waits a minimum of 20 seconds to ensure
the AC source is stable (as the generator gets up to speed).
Battery Terminology
Describing the battery charger’s operation requires the use of terms with which you may not be
familiar. The following terms will be referred to in the description of the battery charger operation.
•Electrolyte: Typically a mixture of water and sulfuric acid, it is commonly referred to as
battery acid.
•Plates: Originally made of lead, they are now made of lead oxide. Plates are the part of the
battery that collects current and are connected to the battery terminals. There are several
plates in each cell, each insulated from the other by separators.
•Sulphating: As a battery discharges, its plates are progressively covered with lead sulfate.
During recharging, the lead sulfate is removed from the plates and recombines with the
electrolyte. If the lead sulfate remains on the plates for an extended period of time (over two
months), it hardens, and recharging will not remove it. This reduces effective plate area and
the battery capacity is diminished.
•Stratification: Over time the batteries’ electrolyte (liquid) tends to separate. The electrolyte at
the top of the battery becomes watery while at the bottom it becomes more acidic. This effect
is corrosive to the plates.
•Deep Cycle: A deep cycle occurs when a battery has been discharged such that less than
20% of its capacity remains (80% discharge).
6
Xantrex RV Series Inverter/Charger Owner’s Manual
•Temperature Compensation: The optimum voltage is temperature dependent. As
temperature decreases the proper voltage for each charge stage needs to be increased. The
optional temperature probe will automatically rescale charge voltage settings for ambient
temperature. The compensation slope based on cell voltage is -2.17 mV per degree F per
cell.
Charger Terminology
•Bulk Voltage: This is the maximum voltage at which the batteries will be charged during a
normal charging cycle. The normal range is 2.367 to 2.4 volts per cell. For a 12 VDC battery
(6 cells) this is 14.1 volts for gel cell type batteries and 14.4 volts for lead acid batteries.
•Float Voltage: This is the voltage at which the batteries will be maintained after they have
been charged. In 12-volt systems 13.4 volts for gel cell batteries and 13.5 volts for lead acid
batteries will be maintained by the charger.
•Absorption Stage: During this part of the charge cycle, the batteries are held at the bulk
voltage and accept whatever current is required to maintain this voltage.
•Battery Temperature Compensation: When installed this adjusts the bulk and float voltages
depending on the battery temperature. As battery temperature increases the voltages are
reduced, and as temperature decreases the voltages are increased. This is highly
recommended for sealed batteries.
Three Stage Battery Charging
The battery charger in standby models normally charges in three stages—bulk, absorption and
float—to provide rapid and complete charge cycles without undue battery gassing.
Stage One: Constant Current/Bulk Charge
This stage is initiated when AC is applied to the AC input of the inverter.
Stage one charges the batteries at a constant current. The level of charge for this phase is set
using the BATTERY CHARGER RATE control on the front panel. The constant current phase is
terminated when the batteries reach the bulk charge voltage. During this stage the Charger LED
glows orange.
Stage Two: Constant Voltage/Absorption
Absorption is initiated when the Bulk Voltage setting has been reached. At this point the charge
current begins to taper off at whatever rate is required to hold the voltage constant. During this
stage the Charger LED blinks orange. The absorption phase is terminated in one of two ways.
1. Normally, as the charge cycle progresses, the current required to hold the battery voltage
constant gradually reduces. When this current equals the programmed return amps setting,
the voltage is allowed to fall to the FLOAT (float voltage) setting—stage three.
2. If there are DC loads on the batteries, the current may never fall to a level low enough to
initiate the float voltage stage. A timer is used to ensure that the battery voltage does not
remain indefinitely at the bulk charge voltage. The timing circuit terminates stage two if the
charge current does not reach the return amps value setting within 12 hours.
7
Xantrex RV Series Inverter/Charger Owner’s Manual
Stage Three: Float Voltage
The purpose of stage three is to maintain the batteries at a voltage that will hold full charge but not
gas the batteries. The charger remains in the float stage until the AC input is removed. During this
stage the status LED will show fast flashing green (four times per second).
Note: When DC loads are placed on the battery, the charger will deliver currents up to the
Maximum Charge Rate setting while maintaining the float voltage.
Battery Charger Controls and LED
Indicator
A three-color LED reports on the activity of the battery charger. The optional RC7 remote allows
custom control over the charger section of the inverter, including battery type.
Charger LED
The LED indicates charge status as follows:
• Solid Green: this indicates that the unit is inverting
• Slow flashing Green: Search Mode
• Solid Orange: this indicates that the charger is in the bulk-charging mode.
• Blinking Orange: this indicates that the charger is in the absorption stage.
• Fast Flashing Green (four times per second): Float charge mode
• Solid Red: Over current
• Flashing Red: An error has occurred. The number of flashes before a five-second rest
period indicates one of the error conditions listed below.
1234567 or more
Low battery
voltage
Generator Requirements
The maximum charge rate of the battery charger is dependent upon the peak AC voltage
available. Because this type of battery charger uses only the peak part of the input sine wave,
small variations in peak voltage result in large variations in the amount of energy available to the
charger. The charger’s output is rated on the basis of typical public power input, which has a peak
voltage of approximately 164 V.
It takes a powerful AC generator set to maintain the full 164-volt peak while delivering the current
necessary to operate the charger at its maximum rate (typically 5 kW for 2500-watt models and
2.5 kW for 1500-watt models). Smaller generators will have the tops of their waveform clipped
under such loads. Running at these reduced peak voltages will not harm the charger, but it will
limit the maximum charge rate. Large auxiliary AC loads may exacerbate this problem. See the
appendix for specific generator types and peak voltage vs. maximum charge amps information.
High battery
voltage
Inverter
over temp
Charger fault PV controller
fault
Generator
start fault
Consult
Xantrex
support
8
Xantrex RV Series Inverter/Charger Owner’s Manual
Batteries
Batteries come in different sizes, types, chemistries, amp hours, and voltages. There are nearly
as many descriptions of how batteries should be used as there are people willing to offer
explanations. It is not possible here to discuss all aspects in detail. However, there are basic
guidelines you can follow that will help in battery selection and ensure that your batteries are well
maintained.
Selection of Battery Type
Starting Batteries
Starting batteries are not recommended for your inverter/charger. They are designed for high
cranking power, but not deep cycling. They do not hurt the inverter, but will not last long in a deepcycle application. The way they are rated should give a good indication of their intended use—
"cold cranking amps," a measure of the amperage output that can be sustained for 30 seconds.
Starting batteries use lots of thin plates to maximize the surface area of the battery. This allows
very high starting current but lets the plates warp when the battery is cycled.
Deep-Cycle Batteries
This type of battery is best suited for use with inverter/chargers. They are designed to have the
majority of their capacity used before being recharged. They are available in many sizes and
types. The most common type is the non-sealed, liquid electrolyte battery. Non-sealed types have
battery caps. The caps should be removed periodically to check the level of electrolyte. When a
cell is low, distilled water should be added. The electrolyte level should be checked monthly and
topped up if needed after recharging.
Group 27 Batteries
The most common deep-cycle battery is the type used with boats and motor homes. They typically
are called “Group 27” batteries and are similar in size to a large truck battery. They are 12-volt
batteries rated at 80 to 100 amp hours. Often the deep cycle claim is overstated. They do work
better than a car battery, but are not recommended for anything but the smallest systems.
Golf Cart Batteries
Another popular and inexpensive battery of this type is the "golf cart" battery. It is a 6-volt battery
rated at 220 amp hours. They can be cycled repeatedly to 80% of their capacity without being
damaged. This is the minimum quality of battery that should be used with the RV Series inverter in
normal applications.
L16-type Batteries
Some systems use the L16 type of battery. These are 6-volt batteries rated at 350 amp hours and
are available from a number of manufacturers. They are 17 inches in height and weigh up to 130
pounds each, which may be troublesome in RV or marine installations.
Type 8D Batteries
Type 8D batteries are available with either cranking or deep-cycle construction. The deep-cycle
versions are 12-volt batteries rated at about 200 amp hours. Since they are most commonly used
to start truck engines, you should make sure you purchase the deep-cycle version. Type 4D
batteries are very similar in construction.
9
Loading...
+ 30 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.