Sharp EL-506W User Manual

/
PRINTED IN CHINA / IMPRIMÉ EN CHINE / IMPRESO EN CHINA
EL-506W EL-546W
SCIENTIFIC CALCULATOR
OPERATION MANUAL
MODEL
MEM RESET
0 1
DRG FSE TA B
0 1
P (x,y )
X
Y
0
y
x
P (r,θ )
X
Y
0
r
θ
y
x
b
xx
xx
a
0
13
2
y
a
b
x
x x x
x
1
0
2
3
ENGLISH
04HGK (TINSE0719EH01)
INTRODUCTION
Thank you for purchasing the SHARP Scientific Calculator Model EL-506W/546W. About the calculation examples (including some formulas and
tables), refer to the reverse side of this English manual. Refer to the number on the right of each title in the manual for use.
After reading this manual, store it in a convenient location for future reference. Note: Some of the models described in this manual may not be
available in some countries.
Operational Notes
• Do not carry the calculator around in your back pocket, as it may break when you sit down. The display is made of glass and is particularly fragile.
• Keep the calculator away from extreme heat such as on a car dashboard or near a heater, and avoid exposing it to exces­sively humid or dusty environments.
• Since this product is not waterproof, do not use it or store it where fluids, for example water, can splash onto it. Raindrops, water spray, juice, coffee, steam, perspiration, etc. will also cause malfunction.
• Clean with a soft, dry cloth. Do not use solvents or a wet cloth.
• Do not drop it or apply excessive force.
• Never dispose of batteries in a fire.
• Keep batteries out of the reach of children.
• This product, including accessories, may change due to up­grading without prior notice.
NOTICE
• SHARP strongly recommends that separate permanent written records be kept of all important data. Data may be lost or altered in virtually any electronic memory product under certain circumstances. Therefore, SHARP assumes no responsibility for data lost or otherwise rendered unusable whether as a result of improper use, repairs, defects, battery replacement, use after the specified battery life has expired, or any other cause.
• SHARP will not be liable nor responsible for any incidental or consequential economic or property damage caused by misuse and/or malfunctions of this product and its peripherals, unless such liability is acknowledged by law.
Press the RESET switch (on the back), with the tip of a ball-
point pen or similar object, only in the following cases. Do not use an object with a breakable or sharp tip. Note that pressing the RESET switch erases all data stored in memory.
• When using for the first time
• After replacing the batteries
• To clear all memory contents
When an abnormal condition occurs and all keys are inoperative. If service should be required on this calculator, use only a SHARP servicing dealer, SHARP approved service facility, or SHARP repair service where available.
Hard Case
DISPLAY
Exponent
Symbol
Equation Display
Mantissa
During actual use, not all symbols are displayed at the same time.
• Certain inactive symbols may appear visible when viewed from
a far off angle.
• Only the symbols required for the usage under instruction are
shown in the display and calculation examples of this manual.
:
Appears when the entire equation cannot be displayed. Press
</>
to see the remaining (hidden) section.
xy/rθ: Indicates the mode of expression of results in the com-
plex calculation mode.
: Indicates that data can be visible above/below the
2ndF : Appears when @ is pressed. HYP : Indicates that h has been pressed and the hyper-
screen. Press [/] to scroll up/down the view.
bolic functions are enabled. If @H are pressed, the symbols “2ndF HYP” appear, indicating that inverse hyperbolic functions are enabled.
ALPHA :
Appears when K (STAT VAR), O or R is pressed.
FIX/SCI/ENG: Indicates the notation used to display a value. DEG/RAD/GRAD: Indicates angular units.
: Appears when matrix mode is selected. : Appears when list mode is selected. : Appears when statistics mode is selected.
M:Indicates that a value is stored in the independent memory.
? :
i : Indicates an imaginary number is being displayed in the
Indicates that the calculator is waiting for a numerical value to be entered, such as during simulation calculation.
: Appears when the calculator shows an angle as the result
in the complex calculation mode.
complex calculation mode.
BEFORE USING THE CALCULATOR
Key Notation Used in this Manual
In this manual, key operations are described as follows:
To specify ex: @e To specify ln : I To specify F :
Functions that are printed in orange above the key require @ to be pressed first before the key. When you specify the memory, press K first. Numbers for input value are not shown as keys, but as ordinary numbers.
Power On and Off
Press ª to turn the calculator on, and @F to turn it off.
Clearing the Entry and Memories
Operation Entry M A-F, X,Y STAT*1matA-D*
ª ×× × × @c ×
Mode selection ×
@∏00* @∏10*
RESET switch
: Clear × : Retain
*1Statistical data (entered data).
2
, sx, σx, n, Σx, Σx2, ¯y, sy, σy, Σy, Σy2, Σxy, r, a, b, c.
*
3
Matrix memories (matA, matB, matC and matD)
*
4
*
List memories (L1, L2, L3 and L4)
5
All variables are cleared.
*
6
This key combination functions the same as the RESET switch.
*
(Display) F1-F4 ANS STAT VAR*2L1-4*
5
6
3
4
[Memory clear key]
Press @∏ to display the menu.
• To clear all variables (M, A-F, X, Y, ANS, F1-F4, STAT VAR, matA-D, L1-4), press 00 or 0 ®.
• To RESET the calculator, press 10 or . The RESET operation will erase all data stored in memory, and restore the calculator’s default setting.
Entering and Correcting the Equation
[Cursor keys]
• Press < or > to move the cursor. You can also return to the equation after getting an answer by pressing > (<). See the next section for using the [ and ] keys.
• See ‘SET UP menu’ for cursor use in the SET UP menu.
[Insert mode and Overwrite mode in the Equation display]
• Pressing @‘ switches between the two editing modes: insert mode (default); and overwrite mode. A triangular cursor indicates that an entry will be inserted at the cursor, while the rectangular cursor indicates to overwrite preexisting data as you make entries.
• To insert a number in the insert mode, move the cursor to the place immediately after where you wish to insert, then make a desired entry. In the overwrite mode, data under the cursor will be overwritten by the number you enter.
• The mode set will be retained until the next RESET operation.
[Deletion key]
• To delete a number/function, move the cursor to the number/ function you wish to delete, then press d. If the cursor is located at the right end of an equation, the d key will function as a back space key.
Multi-line Playback Function
Previous equations may be recalled in the normal mode. Equations also include calculation ending instructions such as “=” and a maxi­mum of 142 characters can be stored in memory. When the memory is full, stored equations are deleted in the order of the oldest first. Pressing [ will display the previous equation. Further pressing [ will display preceding equations (after returning to the previ­ous equation, press ] to view equations in order). In addition, @[ can be used to jump to the oldest equation.
• The multi-line memory is cleared by the following operations: @c, mode change, RESET, N-base conversion and memory clear (@∏).
Priority Levels in Calculation
Operations are performed according to the following priority: Q Fractions (1 preceded by their argument (x multiplication of a memory value (2Y, etc.) Y Functions followed by their argument (sin, cos, etc.) U Implied multiplication of a function
4, etc.) W , engineering prefixes E Functions
l
-1
, x2, n!, etc.) R Yx, x¿ T Implied
(2sin30, etc.) I nCr, nPr O ×, ÷ P +, – { AND } OR, XOR, XNOR q =, M+, M–, M, |DEG, |RAD, |GRAD, DATA, CD, rθ, xy and other calculation ending instructions
• If parentheses are used, parenthesized calculations have prec­edence over any other calculations.
INITIAL SET UP
Mode Selection
m0: Normal mode (NORMAL) m1: Statistic mode (STAT) m2: Equation mode (EQN) m3: Complex number mode (CPLX) m4: Matrix mode (MAT) m5: List mode (LIST)
SET UP menu
Press to display the SET UP menu.
•A menu item can be selected by:
•moving the flashing cursor by using
><, then pressing ® (= key), or
• pressing the number key corresponding to the menu item number.
or is displayed on the screen, press [ or ] to
• If view the previous/next menu screen.
• Press ª to exit the SET UP menu.
[Determination of the Angular Unit]
The following three angular units (degrees, radians, and grads) can be specified.
• DEG (°) : Press ”00.
• RAD (rad): Press ”01.
• GRAD (g) : Press ”02.
[Selecting the Display Notation and Decimal Places]
Four display notation systems are used to display calculation re­sults: Floating point; Fixed decimal point; Scientific notation; and Engineering notation.
• When the FIX, SCI, or ENG symbol is displayed, the number of decimal places (TAB) can be set to any value between 0 and 9. Displayed values will be reduced to the corresponding number of digits.
[Setting the Floating Point Numbers System in Scientific Notation]
Two settings are used to display a floating point number: NORM1 (default setting) and NORM2. A number is automatically displayed in scientific notation outside a preset range:
• NORM1: 0.000000001
• NORM2: 0.01
x ≤ 9999999999
x ≤ 9999999999
SCIENTIFIC CALCULATIONS
• Press m0 to select the normal mode.
• In each example, press ª to clear the display. If the FIX, SCI, or ENG indicator is displayed, clear the indicator by selecting ‘NORM1’ from the SET UP menu.
Arithmetic Operations
• The closing parenthesis ) just before = or ; may be omitted.
Constant Calculations
• In constant calculations, the addend becomes a constant. Sub­traction and division are performed in the same manner. For multiplication, the multiplicand becomes a constant.
• In the constants calculations, constants will be displayed as K.
Functions
• Refer to the calculation examples of each function.
• Before starting calculations, specify the angular unit.
Differential/Integral Functions
Differential and integral calculations are only available in the nor­mal mode. For calculation conditions such as the x ential calculation or the initial point in integral calculation, only numerical values can be entered and equations such as 22 cannot be specified. It is possible to reuse the same equation over and over again and to recalculate by only changing the conditions with­out re-entering the equation.
• Performing a calculation will clear the value in the X memory. When performing a differential calculation, enter the formula first and
• then enter the x value in differential calculation and the minute interval (dx). If a numerical value is not specified for minute interval,
x
×10–5 and x=0 will be 10–5 from the value of the numeric derivative.
• When performing an integral calculation, enter the formula first and then enter a range of integral (a, b) and subintervals (n). If a numerical value is not specified for subintervals, calculation will be performed using n=100.
Since differential and integral calculations are performed based on the following equations, correct results may not be obtained, in certain rare cases, when performing special calculations that con­tain discontinuous points.
Integral calculation (Simpson’s rule):
1
S=—h{ƒ(a)+4{ƒ(a+h)+ƒ(a+3h)+······+ƒ(a+(N–1)h)}
3
+2{ƒ(a+2h)+ƒ(a+4h)+······+ƒ(a+(N–2)h)}+f(b)}
dx
f(x+ ––)–f(x – ––)
Differential calculation:
f’(x)=————————
2
dx
[When performing integral calculations]
Integral calculations, depending on the integrands and subintervals included, require longer calculation time. During calculation, “Calculat­ing!” will be displayed. To cancel calculation, press ª. Note that there will be greater integral errors when there are large fluctuations in
value in differ-
   
dx
2
x
0 will be
b a ——
h=
N
N=2n
axb
   
the integral values during
P (x,y )
X
Y
0
y
x
P (r,θ )
X
Y
0
r
θ
y
x
b
xx
xx
a
0
13
2
y
a
b
x
x x x
x
1
0
2
3
minute shifting of the inte­gral range and for periodic functions, etc., where posi­tive and negative integral values exist depending on the interval. For the former case, divide integral intervals as small as possible. For the latter case, separate the positive and negative values. Following these tips will allow results of calculations with greater accuracy and will also shorten the calculation time.
Random Function
The Random function has four settings for use in the normal, statis­tics, matrix and list modes. (This function cannot be selected while using the N-Base function.) To generate further random numbers in
In the binary, pental, octal, and hexadecimal systems, fractional parts cannot be entered. When a decimal number having a frac­tional part is converted into a binary, pental, octal, or hexadeci­mal number, the fractional part will be truncated. Likewise, when the result of a binary, pental, octal, or hexadecimal calculation includes a fractional part, the fractional part will be truncated. In the binary, pental, octal, and hexadecimal systems, negative num­bers are displayed as a complement.
Time, Decimal and Sexagesimal Calculations
Conversion between decimal and sexagesimal numbers can be performed, and, while using sexagesimal numbers, conversion to seconds and minutes notation. The four basic arithmetic opera­tions and memory calculations can be performed using the sexagesimal system. Notation for sexagesimal is as follows:
succession, press ®. Press ª to exit.
• The generated pseudo-random number series is stored in memory Y. Each random number is based on a number series.
[Random Numbers]
A pseudo-random number, with three significant digits from 0 up to
0.999, can be generated by pressing @`0®.
Coordinate Conversions
• Before performing a calculation, select the angular unit.
[Random Dice]
To simulate a die-rolling, a random integer between 1 and 6 can be generated by pressing @`1®.
[Random Coin]
To simulate a coin flip, 0 (head) or 1 (tail) can be randomly gener­ated by pressing @`2®.
[Random Integer]
An integer between 0 and 99 can be generated randomly by press­ing @`3®.
Angular Unit Conversions
Each time
@g
are pressed, the angular unit changes in sequence.
Memory Calculations
Mode ANS M, F1-F4 A-F, X,Y NORMAL
STAT ×× EQN ××× CPLX × MAT × LIST ×
: Available × : Unavailable
[Temporary memories (A-F, X and Y)]
Press O and a variable key to store a value in memory. Press R and a variable key to recall a value from the memory. To place a variable in an equation, press K and a variable key.
• The calculation result is automatically stored in memories X
Calculations Using Physical Constants
See the quick reference card and the English manual reverse side. A constant is recalled by pressing ß followed by the number of the physical constant designated by a 2-digit number. The recalled constant appears in the display mode selected with the designated number of decimal places. Physical constants can be recalled in the normal mode (when not set to binary, pental, octal, or hexadecimal), statistics mode, equa­tion mode, matrix mode and list mode. Note: Physical constants and metric conversions are based either
No. Constant
[Independent memory (M)]
In addition to all the features of temporary memories, a value can be added to or subtracted from an existing memory value. Press ªOM to clear the independent memory (M).
[Last answer memory (ANS)]
The calculation result obtained by pressing = or any other calculation ending instruction is automatically stored in the last answer memory. A Matrix/List format result is not stored.
[Formula memories (F1-F4)]
Formulas up to 256 characters in total can be stored in F1 - F4. (Functions such as sin, etc., will be counted as one letter.) Storing a new equation in each memory will automatically replace the existing equation. Note:
• Calculation results from the functions indicated below are auto­matically stored in memories X or Y replacing existing values.
• Random function .......... Y memory
rθ, xy ........................ X memory (r or x), Y memory (θ or y)
• Use of R or K will recall the value stored in memory using up to 14 digits.
Chain Calculations
• The previous calculation result can be used in the subsequent calculation. However, it cannot be recalled after entering multiple instructions or when the calculation result is in Matrix/List format.
• When using postfix functions (¿ , sin, etc.), a chain calculation is possible even if the previous calculation result is cleared by the use of the ª key.
Fraction Calculations
Arithmetic operations and memory calculations can be performed
Metric Conversions
See the quick reference card and the English manual reverse side. Unit conversions can be performed in the normal mode (when not set to binary, pental, octal, or hexadecimal), statistics mode, equa­tion mode, matrix mode and list mode.
No. Remarks
using fractions, and conversion between a decimal number and a fraction.
• If the number of digits to be displayed is greater than 10, the number is converted to and displayed as a decimal number.
Binary, Pental, Octal, Decimal, and Hexadecimal Operations (N-Base)
Conversions can be performed between N-base numbers. The four basic arithmetic operations, calculations with parentheses and memory calculations can also be performed, along with the logical operations AND, OR, NOT, NEG, XOR and XNOR on binary, pental, octal and hexadecimal numbers. Conversion to each system is performed by the following keys: (“ (“
” appears.), @ì (“ ” appears.), @í (“ ”, “ ”, “ ” and “ Note: The hexadecimal numbers A – F are entered by pressing
” appears.), @û (“ ” appears.),
” disappear.)
ß, , L, ÷, l, and I, and displayed as follows:
10 m : meter 11 acre : acre 12 m2: square meter 13 oz : ounce 14 g : gram 15 lb : pound 16 kg : kilogram 17 °F : Degree Fahrenheit 18 °C : Degree Celsius 19 gal (US) : gallon (US) 20 l : liter 21 gal (UK) : gallon (UK) 22 l : liter
A ï, B , C ó, D ò, E ô, F ö
degree second
minute
Rectangular coord. Polar coord.
and Y.
• Value of r or x: X memory • Value of θ or y: Y memory
on the 2002 CODATA recommended values or 1995 Edi­tion of the “Guide for the Use of the International System of Units (SI)” released by NIST (National Institute of Stand­ards and Technology) or on ISO specifications.
01 Speed of light in vacuum
Newtonian constant of gravitation
02 03
Standard acceleration of gravity 04 Electron mass 05 Proton mass 06 Neutron mass 07 Muon mass 08 Atomic mass unit-kilogram
relationship 09 Elementary charge 10 Planck constant 11 Boltzmann constant 12 Magnetic constant 13 Electric constant 14 Classical electron radius 15 Fine-structure constant 16 Bohr radius 17 Rydberg constant 18 Magnetic flux quantum 19 Bohr magneton 20 Electron magnetic moment 21 Nuclear magneton 22 Proton magnetic moment 23 Neutron magnetic moment 24 Muon magnetic moment 25 Compton wavelength 26 Proton Compton wavelength 27 Stefan-Boltzmann constant
1in: inch 2cm: centimeter 3ft: foot 4m : meter 5yd: yard 6m : meter 7 mile : mile 8km: kilometer 9n mile : nautical mile
No. Constant
28 Avogadro constant 29 Molar volume of ideal gas
(273.15 K, 101.325 kPa) 30 Molar gas constant 31 Faraday constant 32 Von Klitzing constant 33
Electron charge to mass quotient 34 Quantum of circulation 35 Proton gyromagnetic ratio 36 Josephson constant 37 Electron volt 38 Celsius Temperature 39 Astronomical unit 40 Parsec 41 Molar mass of carbon-12 42 Planck constant over 2 pi 43 Hartree energy 44 Conductance quantum 45 Inverse fine-structure constant 46 Proton-electron mass ratio 47 Molar mass constant 48 Neutron Compton wavelength 49 First radiation constant 50 Second radiation constant 51 Characteristic impedance of
vacuum 52 Standard atmosphere
No. Remarks
23 fl oz(US) : fluid ounce(US) 24 ml : milliliter 25 fl oz(UK) : fluid ounce(UK) 26 ml : milliliter 27 J : Joule 28 cal : calorie 29 J : Joule 30 cal15 : Calorie (15n°C) 31 J : Joule 32 calIT : I.T. calorie 33 hp : horsepower 34 W : watt 35 ps : French horsepower 36 W : watt 37 38 Pa : Pascal 39 atm : atmosphere 40 Pa : Pascal 41 (1 mmHg = 1 Torr) 42 Pa : Pascal 43 44 J : Joule
Calculations Using Engineering Prefixes
/
EL-506W EL-546W
SCIENTIFIC CALCULATOR
OPERATION MANUAL
MODEL
SHARP CORPORATION
MEM RESET
0 1
DRG FSE TA B
0 1
P (x,y )
X
Y
0
y
x
P (r,θ )
X
Y
0
r
θ
y
x
b
xx
xx
a
0
13
2
y
a
b
x
x x x
x
1
0
2
3
ENGLISH
Calculation can be executed in the normal mode (excluding N­base) using the following 9 types of prefixes.
Prefix Operation Unit
k (kilo) ∑10 10 M (Mega) ∑11 10 G (Giga) ∑12 10 T (Tera) ∑13 10 m (milli) ∑14 10 µ (micro) ∑15 10 n (nano) ∑16 10 p(pico) ∑17 10 f(femto) ∑18 10
Modify Function
Calculation results are internally obtained in scientific notation with up to 14 digits for the mantissa. However, since calculation results are displayed in the form designated by the display nota­tion and the number of decimal places indicated, the internal calculation result may differ from that shown in the display. By using the modify function, the internal value is converted to match that of the display, so that the displayed value can be used without change in subsequent operations.
Solver Function
The x value can be found that reduces an entered equation to “0”.
• This function uses Newton's method to obtain an approxima­tion. Depending on the function (e.g. periodic) or start value, an error may occur (Error 2) due to there being no convergence to the solution for the equation.
• The value obtained by this function may include a margin of error. If it is larger than acceptable, recalculate the solution after changing ‘Start’ and dx values.
• Change the ‘Start’ value (e.g. to a negative value) or dx value (e.g. to a smaller value) if:
• no solution can be found (Error 2).
• more than two solutions appear to be possible (e.g. a cubic
equation).
• to improve the arithmetic precision.
• The calculation result is automatically stored in the X memory.
[Performing Solver function]
Q Press m0. W Input a formula with an x variable. E Press ∑0. R Input ‘Start’ value and press ®. The default value is “0”. T Input dx value (minute interval). Y Press ®.
SIMULATION CALCULATION (ALGB)
If you have to find a value consecutively using the same formula, such as plotting a curve line for 2x 2x + 2y =14, once you enter the equation, all you have to do is to specify the value for the variable in the formula. Usable variables: A-F, M, X and Y Unusable functions: Random function
• Simulation calculations can only be executed in the normal mode. Calculation ending instructions other than = cannot be used.
2
+ 1, or finding the variable for
Performing Calculations
Q Press m0. W Input a formula with at least one variable. E Press @≤. R Variable input screen will appear. Input the value of the flashing
variable, then press ® to confirm. The calculation result will be displayed after entering the value for all used variables.
• Only numerical values are allowed as variables. Input of formulas is not permitted.
• Upon completing the calculation, press @≤ to per­form calculations using the same formula.
• Variables and numerical values stored in the memories will be displayed in the variable input screen. To change a numerical value, input the new value and press ®.
• Performing simulation calculation will cause memory loca­tions to be overwritten with new values.
STATISTICAL CALCULATIONS
Press m1 to select the statistics mode. The seven statisti­cal calculations listed below can be performed. After selecting the statistics mode, select the desired sub-mode by pressing the number key corresponding to your choice. To change statistical sub-mode, reselect statistics mode (press
m1), then select the required sub-mode. 0 (SD) : Single-variable statistics
1 (LINE) : Linear regression calculation 2 (QUAD) : Quadratic regression calculation 3 (EXP) : Exponential regression calculation 4 (LOG) : Logarithmic regression calculation 5 (PWR) : Power regression calculation 6 (INV) : Inverse regression calculation
The following statistics can be obtained for each statistical calcu­lation (refer to the table below):
Single-variable statistical calculation
Statistics of Q and value of the normal probability function
Linear regression calculation
Statistics of Q and W and, in addition, estimate of y for a given x (estimate y´) and estimate of x for a given y (estimate x´)
Exponential regression, Logarithmic regression, Power regression, and Inverse regression calculation
Statistics of Q and W. In addition, estimate of y for a given x and
3
6
9
12
–3
–6
–9
–12
–15
estimate of x for a given y. (Since the calculator converts each formula into a linear regression formula before actual calculation takes place, it obtains all statistics, except coefficients a and b, from converted data rather than entered data.)
Quadratic regression calculation
Statistics of Q and W and coefficients a, b, c in the quadratic regression formula (y = a + bx + cx calculations, no correlation coefficient (r) can be obtained.) When there are two x´ values, press @≠.
When performing calculations using a, b and c, only one numeric
2
). (For quadratic regression
value can be held.
¯
x Mean of samples (x data)
sx Sample standard deviation (x data)
σ
Q
x Population standard deviation (x data)
n Number of samples
Σ
x Sum of samples (x data)
Σ
x2Sum of squares of samples (x data)
¯
y Mean of samples (y data)
sy Sample standard deviation (y data)
σ
y Population standard deviation (y data)
Σ
W
y Sum of samples (y data)
Σ
y2Sum of squares of samples (y data)
Σ
xy Sum of products of samples (x, y) r Correlation coefficient a Coefficient of regression equation b Coefficient of regression equation c Coefficient of quadratic regression equation
• Use K and R to perform a STAT variable calculation.
Data Entry and Correction
Entered data are kept in memory until @c or mode selec­tion. Before entering new data, clear the memory contents.
[Data Entry]
Single-variable data
Data
k
Data
&
frequency
k
(To enter multiples of the same data)
Two-variable data
Data
x &
Data
Data
x &
Data
y k
y &
frequency
k (To enter multiples
of the same data x and y.)
• Up to 100 data items can be entered. With the single-variable data, a data item without frequency assignment is counted as one data item, while an item assigned with frequency is stored as a set of two data items. With the two-variable data, a set of data items without frequency assignment is counted as two data items, while a set of items assigned with frequency is stored as a set of three data items.
[Data Correction]
Correction prior to pressing k immediately after a data entry:
Delete incorrect data with ª, then enter the correct data.
Correction after pressing k:
Use [] to display the data previously entered. Press ] to display data items in ascending (oldest first) order. To reverse the display order to descending (latest first), press the [ key. Each item is displayed with ‘Xn=’, ‘Yn=’, or ‘Nn=’ (n is the sequen- tial number of the data set). Display the data item to modify, input the correct value, then press k. Using &, you can correct the values of the data set all at once.
• To delete a data set, display an item of the data set to delete, then press @J. The data set will be deleted.
• To add a new data set, press ª and input the values, then press k.
Statistical Calculation Formulas
Type Regression formula Linear y = a + bx Exponential y = ae Logarithmic y = a + b • ln x Power y = ax
Inverse y = a + b
Quadratic y = a + bx + cx
In the statistical calculation formulas, an error will occur when:
• The absolute value of the intermediate result or calculation result
is equal to or greater than 1 × 10
• The denominator is zero.
• An attempt is made to take the square root of a negative number.
• No solution exists in the quadratic regression calculation.
Normal Probability Calculations
•P(t), Q(t), and R(t) will always take positive values, even when t<0, because these functions follow the same principle used
when solving for an area. Values for P(t), Q(t), and R(t) are given to six decimal places.
SIMULTANEOUS LINEAR EQUATIONS
Simultaneous linear equation with two unknowns (2-VLE) or with three unknowns (3-VLE) may be solved using this function.
Q 2-VLE: m20 W 3-VLE: m21
bx
b
1
x
2
100
.
• If the determinant D = 0, an error occurs.
• If the absolute value of an intermediate result or calculation result
• Coefficients ( a
• To clear the entered coefficients, press @c.
• Pressing ® when the determinant D is in the display recalls
100
is 1 × 10
operations.
the coefficients. Each time ® is pressed, a coefficient is displayed in the order of input, allowing the entered coefficients to be verified (by pressing , coefficients are displayed in reverse order.) To correct a particular coefficient being dis­played, enter the correct value and then press ®.
or more, an error occurs.
, etc.) can be entered using ordinary arithmetic
1
QUADRATIC AND CUBIC EQUATION SOLVERS
Quadratic (ax2 + bx + c = 0) or cubic (ax3 + bx2 + cx + d = 0) equation may be solved using this function.
Q Quadratic equation solver: m22 W Cubic equation solver: m23
• Press ® after entering each coefficient.
• The result will be displayed by pressing ® after entering all coefficients. When there are more than 2 results, the next solu­tion will be displayed.
• When the result is an imaginary number, “xy” symbol will appear. The display can be switched between imaginary and real parts by pressing @≠.
• The results obtained by this function may include a margin of error.
COMPLEX NUMBER CALCULATIONS
To carry out addition, subtraction, multiplication, and division using complex numbers, press m3 to select the complex number mode. Results of complex number calculations are expressed in two modes:
Q @}: Rectangular coordinate mode (xy appears.) W @{: Polar coordinate mode (
r
θ
appears.)
Complex number entry
Q Rectangular coordinates
x-coordinate
x-coordinate
or
W Polar coordinates
r
Ö
r: absolute value θ: argument
• On selecting another mode, the imaginary part of any complex number stored in the independent memory (M) will be cleared.
•A complex number expressed in rectangular coordinates with the y-value equal to zero, or expressed in polar coordinates with the angle equal to zero, is treated as a real number.
• Press ∑0 to return the complex conjugate of the speci­fied complex number.
θ
+
y-coordinate
+ Ü
Ü
y-coordinate
MATRIX CALCULATIONS
This function enables the saving of up to 4 matrices (4 rows x 4 columns) for calculations. Press m4 to enter the matrix mode.
• Matrix data must be entered prior to making calculations. Press­ing [/] will display the matrix edit buffer along with Enter the value of each item (‘ROW’, ‘COLUMN’, and then each element, e.g. ‘MAT1,1’) and press k after each. After enter­ing all items, press ª, then press °2 and specify matA-D to save the data.
• To edit data saved in matA-D, press °1 and specify matA-D to recall the data to the matrix edit buffer. After editing, press ª, then press °2 and specify matA-D to save the data.
• Before performing calculations, press ª to close the matrix edit buffer.
• When results of calculations are in the matrix format, the matrix edit buffer with those results will be displayed. (At this time, you cannot return to the equation.) To save the result in matA-D, press ª, then press °2 and specify matA-D.
• Since there is only one matrix edit buffer, the previous data will be overwritten by the new calculation.
• In addition to the 4 arithmetic functions (excluding divisions be­tween matrices), x available:
dim(
matrix name,
row,column
fill( cumul aug(
matrix name
identity
rnd_mat(
det trans
matlist (∑5)
matAlist (∑6)
)
value,row,column
matrix name
matrix name,
)
value
row,column
matrix name
matrix name
3
, x2, and x–1, the following commands are
Returns a matrix with dimensions changed as specified.
)Fills each element with a specified value.
Returns the cumulative matrix. Appends the second matrix to the first matrix as new
columns. The first and second matrices must have the same number of rows.
Returns the identity matrix with specified value of rows and columns.
)Returns a random matrix with specified values of
rows and columns. Returns the determinant of a square matrix. Returns the matrix with the columns transposed to
rows and the rows transposed to columns. Creates lists with elements from the left column of each
matrix. (matAL1, matBL2, matCL3, matDL4) Mode changes from matrix mode to list mode.
Creates lists with elements from each column of the matrix. (matAL1, L2, L3, L4) Mode changes from matrix mode to list mode.
LIST CALCULATIONS
This function enables the saving of up to 4 lists of 16 elements for calculations. Press m5 to enter the list mode.
• List data must be entered prior to making calculations. Pressing [/] will display the list edit buffer along with
. Enter
.
SHARP CORPORATION
the value of each item (‘SIZE’, and then each element, e.g.
P (x,y )
X
Y
0
y
x
P (r,θ )
X
Y
0
r
θ
y
x
b
xx
xx
a
0
13
2
y
a
b
x
x x x
x
1
0
2
3
‘LIST1’) and press k after each. After entering all items, press ª, then press °2 and specify L1-4 to save the data.
• To edit data saved in L1-4, press °1 and specify L1-4 to recall the data to the list edit buffer. After editing, press ª, then press °2 and specify L1-4 to save the data. Before performing calculations, press ª to close the list edit
• buffer.
• When results of calculations are in the list format, the list edit buffer with those results will be displayed. (At this time, you cannot return to the equation.) To save the result in L1-4, press ª, then press °2 and specify L1-4.
• Since there is only one list edit buffer, the previous data will be overwritten by the new calculation.
• In addition to the 4 arithmetic functions, x ing commands are available:
sortA
list name
sortD
list name
dim(
list name,size
fill(
value,size
cumul
list name
df_list
list name
aug(
list name,list name
min
list name
max
list name
mean
list name
med
list name
sum
list name
prod
list name
stdDv
list name
vari
list name
o_prod(
list name,list name
i_prod(
list name,list name
abs
list name
listmat (∑5)
listmatA (∑6)
)Enter the specified value for all items.
Sorts list in ascending order. Sorts list in descending order.
)Returns a list with size changed as specified.
Sequentially cumulates each item in the list. Returns a new list using the difference between
adjacent items in the list.
)Returns a list appending the specified lists.
Returns the minimum value in the list. Returns the maximum value in the list. Returns the mean value of items in the list. Returns the median value of items in the list. Returns the sum of items in the list. Returns the multiplication of items in the list. Returns the standard deviation of the list. Returns the variance of the list.
)Returns the outer product of 2 lists (vectors).
)Returns the inner product of 2 lists (vectors).
Returns the absolute value of the list (vector). Creates matrices with left column data from
each list. (L1matA, L2matB, L3matC, L4matD) Mode changes from list mode to matrix mode.
Creates a matrix with column data from each list. (L1, L2, L3, L4matA) Mode changes from list mode to matrix mode.
3
, x2, and x–1, the follow-
ERROR AND CALCULATION RANGES
Errors
An error will occur if an operation exceeds the calculation ranges, or if a mathematically illegal operation is attempted. When an error occurs, pressing < (or >) automatically moves the cursor back to the place in the equation where the error occurred. Edit the equation or press ª to clear the equation.
Error Codes and Error Types
Syntax error (Error 1):
• An attempt was made to perform an invalid operation.
Ex. 2 @{
Calculation error (Error 2):
• The absolute value of an intermediate or final calculation result equals or exceeds 10
• An attempt was made to divide by 0 (or an intermediate calculation resulted in zero).
• The calculation ranges were exceeded while performing calculations.
Depth error (Error 3):
• The available number of buffers was exceeded. (There are 10 buffers* for numeric values and 24 buffers for calculation instructions in the normal mode). *5 buffers in other modes, and 1 buffer for Matrix/List data.
• Data items exceeded 100 in the statistics mode.
Equation too long (Error 4):
• The equation exceeded its maximum input buffer (142 characters). An equation must be shorter than 142 characters.
Equation recall error (Error 5):
• The stored equation contains a function not available in the mode used to recall the equation. For example, if a numerical value with numbers other than 0 and 1 is stored as a decimal, etc., it cannot be recalled when the calculator is set to binary.
Memory over error (Error 6):
• Equation exceeded the formula memory buffer (256 characters in total in F1 - F4).
Invalid error (Error 7):
• Matrix/list definition error or entering an invalid value.
Dimension error (Error 8):
• Matrix/list dimensions inconsistent while calculation.
Invalid DIM error (Error 9):
•Size of matrix/list exceeds calculation range.
No define error (Error 10):
• Undefined matrix/list used in calculation.
100
.
Calculation Ranges
Within the ranges specified, this calculator is accurate to ±1 of the least significant digit of the mantissa. However, a calculation error increases in continuous calculations due to accumulation of each calculation error. (This is the same
x, x
for y
¿
continuous calculations are performed internally.) Additionally, a calculation error will accumulate and become larger in the vicinity of inflection points and singular points of functions.
x
,
n!, e
, ln, Matrix/List calculations, etc., where
• Calculation ranges
–99
~ ±9.999999999×1099 and 0.
±10 If the absolute value of an entry or a final or intermediate result of a calculation is less than 10 calculations and in the display.
–99
, the value is considered to be 0 in
BATTERY REPLACEMENT
Notes on Battery Replacement
Improper handling of batteries can cause electrolyte leakage or explosion. Be sure to observe the following handling rules:
• Replace both batteries at the same time.
• Do not mix new and old batteries.
• Make sure the new batteries are the correct type.
• When installing, orient each battery properly as indicated in the
calculator.
• Batteries are factory-installed before shipment, and may be
exhausted before they reach the service life stated in the speci-
fications.
Notes on erasure of memory contents
When the battery is replaced, the memory contents are erased. Erasure can also occur if the calculator is defective or when it is repaired. Make a note of all important memory contents in case accidental erasure occurs.
When to Replace the Batteries
If the display has poor contrast or nothing appears on the display even when ª is pressed in dim lighting, it is time to replace the batteries.
Cautions
• Fluid from a leaking battery accidentally entering an eye could
result in serious injury. Should this occur, wash with clean
water and immediately consult a doctor.
• Should fluid from a leaking battery come in contact with your
skin or clothes, immediately wash with clean water.
• If the product is not to be used for some time, to avoid damage
to the unit from leaking batteries, remove them and store in a
safe place.
• Do not leave exhausted batteries inside the product.
• Do not fit partially used batteries, and be sure not to mix
batteries of different types.
• Keep batteries out of the reach of children.
• Exhausted batteries left in the calculator may leak and damage
the calculator.
• Explosion risk may be caused by incorrect handling.
• Do not throw batteries into a fire as they may explode.
Replacement Procedure
1. Turn the power off by pressing @F.
2. Remove the two screws. (Fig. 1)
3. Slide the battery cover slightly and lift it to remove.
4. Remove the used batteries by prying them out with a ball-point
pen or other similar pointed device. (Fig. 2)
5. Install two new batteries. Make sure the “+” side is facing up.
6. Replace the cover and screws.
7. Press the RESET switch (on the back).
• Make sure that the display appears as shown below. If the
display does not appear as shown, remove the batteries, rein-
stall them and check the display once again. (Fig. 1) (Fig. 2)
Automatic Power Off Function
This calculator will turn itself off to save battery power if no key is pressed for approximately 10 minutes.
SPECIFICATIONS
Calculations: Scientific calculations, complex number
Internal calculations: Mantissas of up to 14 digits Pending operations: 24 calculations 10 numeric values in the
Power source: Built-in solar cells
Operating temperature: 0°C – 40°C (32°F – 104°F) External dimensions:
Weight: Approx. 97g (0.22 lb)
Accessories: Batteries × 2 (installed), operation manual,
FOR MORE INFORMATION ABOUT SCIENTIFIC CALCULATOR
Visit our Web site. http://sharp-world.com/calculator/
calculations, equation solvers, statistical calculations, etc.
normal mode (5 numeric values in other modes, and 1 numeric value for Matrix/ List data.)
3 V (DC): Backup batteries (Alkaline batteries (LR44 or equivalent) × 2)
79.6 mm (W) × 154.5 mm (D) × 13.2 mm (H) 3-1/8” (W) × 6-3/32” (D) × 17/32” (H)
(Including batteries)
quick reference card and hard case
EL-506W
4
3
x =
Σx
n
y =
Σy
n
sy =
Σy
2
– ny
2
n – 1
sx =
Σx
2
– nx
2
n – 1
σy =
Σy
2
– ny
2
n
σx =
Σx
2
– nx
2
n
ENGLISH
EL-546W
CALCULATION EXAMPLES ANWENDUNGSBEISPIELE EXEMPLES DE CALCUL EJEMPLOS DE CÁLCULO EXEMPLOS DE CÁLCULO ESEMPI DI CALCOLO REKENVOORBEELDEN PÉLDASZÁMÍTÁSOK
PŘÍKLADY VÝPOČTŮ
RÄKNEEXEMPEL LASKENTAESIMERKKEJÄ
икаеЦкх ЗхуалгЦзав
UDREGNINGSEKSEMPLER
CONTOH-CONTOH PENGHITUNGAN CONTOH-CONTOH PERHITUNGAN
CAÙC VÍ DUÏ PHEÙP TÍNH
[]
13(5+2)= ª 3 ( 5 + 2 )= 23×5+2= 3 * 5 + 2 = 33×5+3×2= 3 * 5 + 3 * 2 =
1 @[2 ]3 ]2 [
100000÷3= [NORM1] ª 100000 / 3 = [FIX] ”10 [TAB 2] ”2 2
[SCI] ”11[ENG] ”12 [NORM1] ”13
3÷1000= [NORM1] ª 3 / 1000 =
[NORM2] ”14 3.× →[NORM1] ”13
+-*/()±E
45+285÷3= ª 45 + 285 / 3 =
18+6
=
15–8 ( 15 - 8 =
42×(–5)+120= 42 5 + 120 =
(5×103)÷(4×10–3)= 5 E 3 / 4 E
34+57= 34 + 57 = 45+57= 45 + 57 =
68×25= 68 * 25 = 68×40= 68 * 40 =
sutSUTVhH Ile¡•L÷⁄™ $#!qQ%
sin60[°]= ªs 60 =
π
cos — [rad]=
4
tan–11=[g] ”02@T 1 =
(cosh 1.5 + ª(hu 1.5 +h sinh 1.5)2 = s 1.5 )L=
• •••
( 18 + 6 )/
*1 (5 ±) *
± 3 =
”01u( @V/ 4 )=
”00
1
33’333.33333 33’333.33333
33’333.33333
33’333.33
3.33×10
33.33×10
0.003
0.003
3.428571429
1’250’000.
0.866025403
0.707106781
20.08553692
21.
17.
21.
21.
17.
21.
17.
10
140.
–90.
91.
102.
1’700. 2’720.
50.
••••
5
tanh–1— =
7
ln 20 = I 20 =
log 50 = l 50 =
e3 = @e 3 =
1.7
10
= @¡ 1.7 =
1
1
— + — =
6
7
8–2 – 34 × 52 =8 ™± 2 - 3 ™
1 4
(123)—=
83 =8 ÷=
¿
49 –4¿
3
¿
27 = @# 27 =
4! = 4 @!=
= 10 @q 3 =
10P3
=5 @Q 2 =
5C2
500×25%= 500 * 25 @%
120÷400=?% 120 / 400 @%
500+(500×25%)= 500 + 25 @%
400–(400×30%)= 400 - 30 @%
04
03
@Ht( 5 / 7 )=
6 @•+ 7 @
•=
4 * 5 L=
12 3 4
@•=
81 = @⁄ 49 - 4 @$
81 =
θ = sin–1 x, θ = tan–1 x θ = cos–1 x
DEG –90 ≤ θ ≤ 90 0 ≤ θ ≤ 180
–03
RAD – — ≤ θ ≤ —0 ≤ θ ≤ π
GRAD –100 ≤ θ ≤ 100 0 θ 200
π
π
2
2
Åè
d/dx (x4 – 0.5x3 + 6x2) ªKˆ™ 4 - 0.5 K
x=2 ˆ÷+ 6 KˆL
 
dx=0.00002 2 ®®
x=3 ® 3 ® 0.001 ®
dx=0.001
8
(x2 – 5)dx ªKˆL- 5
2
n=100 è 2 ® 8 ®® n=10 ®®® 10 ®
g
90° [rad] ª 90 @g [g] @g [°] @g
sin–10.8 = [°] @S 0.8 =
[rad] @g [g] @g [°] @g
0.895879734
2.995732274
1.698970004
20.08553692
50.11872336
0.309523809
–2’024.984375
6.447419591
512.
24.
720.
10.
125.
30.
625.
280.
50.
130.5000029
138.
138.
1.570796327
100.
90.
53.13010235
0.927295218
59.03344706
53.13010235
KRO;:?≥∆˚¬
24÷(8×2)= 24 /KM= (8×2)×5= KM* 5 =
$150×3:M1 150 * 3 ; +)$250:M2 =M1+250 250 ; –)M2×5% RM* 5 @% M @:RM
$1=¥110 110 OY ¥26,510=$? 26510 /RY= $2,750=¥? 2750 *RY=
r=3cm (r→Y) 3 OY πr2=? @VKYL=
24
—— = 2.4...(A) 24 /( 4 + 6 )=
4+6
4.
3×(A)+60÷(A)=
3.
πr2⇒F1 @VKYL
V = ? R≥* 4 / 3 =
6+4=ANS ª 6 + 4 = ANS+5 + 5 =
8×2=ANS 8 * 2 =
2
ANS
44+37=ANS 44 + 37 =
ANS= @⁄=
ª 8 * 2 OM
ªOM
3 *K?+ 60 / K?=
O≥ 3 OY
L=
\|
124
3— + — = [a—] ª 3 \ 1 \ 2 +
[a.xxx] \[d/c] @|
10
7
(—)
5
1
(—)
8
—— = @⁄ 64 \ 225 =
225
3
2 — =
4
3
1.2 —– =
2.3 1°2’3”
——– =
2
1×10 ——– = 2×10
A = 7 ª 7 OA
4
— = 4 \KA=
A
1.25 + — = [a.xxx] 1.25 + 2 \ 5 = [a—] \
*
4 l5 l6
b c
3
2 3
= 2 \ 3 =
5
=7 \ 5 ™ 5 =
1
3
=
64
3
3
2 5
b c
= 4—
4 \ 3 =
1 \ 8 1 \ 3
=
( 2 ™ 3 ) \ ( 3 ™ 4 ) =
1.2 \ 2.3 =
1 o 2 o 3 \ 2 =
1 E 3 \ 2 E 3 =
5 6
кыомнгв†д аб
DEC(25)BIN ª@í 25
HEX(1AC) 1AC
BIN PEN OCT DEC
BIN(1010–100) @ê( 1010 - 100 ) ×11 = * 11 =
BIN(111)NEG ã 111 =
HEX(1FF)+ 1FF @î+ OCT(512)= 512 = HEX(?)
2FEC– ªOM@ì 2FEC ­2C9E=(A) 2C9E ;
+)2000– 2000 -
1901=(B) 1901 ;
(C) RM
• •••
450.
250.
665.
110.
241.
302’500.
28.27433388
32.2
37.69911184
256.
4 l5 l6
4.833333333 29 l6
4.641588834
16807 l3125
1 l2
8 l15
8 l81
12 l23
0°31’1.5”
1 l2
4 l7
1.65
1 l13 l20
11001.
110101100.
3203.
654.
428.
10010.
1111111001.
1511.
349.
34E.
6FF. A4d.
16.
1.5
80.
0.
35.
3.
2.4
F1
3.
10.
15.
16.
81.
9.
*
7.
b
b
P
0
b
b
0
H
H
H
H
••••
x =
Σx
n
y =
Σy
n
sy =
Σy
2
– ny
2
n – 1
sx =
Σx
2
– nx
2
n – 1
σy =
Σy
2
– ny
2
n
σx =
Σx
2
– nx
2
n
1011 AND ª@ê 1011 101 = (BIN) 101 =
5A OR C3 = (HEX) 5A ä C3 =
NOT 10110 = @êâ 10110 = (BIN)
24 XOR 4 = (OCT) @î 24 à 4 =
B3 XNOR B3 á 2D = (HEX) 2D = DEC
1111101001.
FFFFFFFF61.
o_° (→sec, min)
12°39’18.05” ª 12 o 39 o 18.05 [10] @_
123.678[60] 123.678 @_
3h30m45s + 3 o 30 o 45 + 6 o 6h45m36s = [60] 45 o 36 =
1234°56’12” + 1234 o 56 o 12 + 0°0’34.567” = [60] 0 o 0 o 34.567 =
3h45m – 3 o 45 - 1.69 =
1.69h = [60] @_
sin62°12’24” = [10] s 62 o 12 o 24=
24°[”] 24 o°2
1500”[’] 0 o 0 o 1500 °3
12.65501389
123°40’40.8”
10°16’21.”
1234°56’47.”
2°3’36.”
0.884635235 86’400.
{},≠
x = 6 →r = @{[
y = 4 θ = [°] @≠[θ]
r = 14 →x = @}[x]
θ = 36[°] y = @≠[y]
ª 6 @, 4
@≠[r]
14 @, 36
  
@≠[x]
r
]
7.211102551
33.69006753
7.211102551
11.32623792
8.228993532
11.32623792
ß
V0 = 15.3m/s ª 15.3 * 10 + 2 @•* t = 10s ß 03 * 10 L=
1
V0t+ — gt2 = ?m
2
643.3325
¥
125yd = ?m ª 125 5 =
(k, M, G, T, m,
100m×10k= 100 ∑14*
ÌÌ
Ì, n, p, f)
ÌÌ
10 ∑10=
j”
5÷9=ANS ª”10”2 1 ANS×9= 5 / 9 = [FIX,TAB=1] * 9 =*
5 / 9 =@j * 9 =*
1
5.5555555555555×10–1×9
*
2
0.6×9
*
”13
1
2
(SOLV)
sin x–0.5 ªsKˆ- 0.5 Start= 0 ∑0 0 ®® Start= 180 ® 180 ®®
3
–3x2+2 Kˆ™ 3 - 3 K
f(x) = x
x = –1 1 ±® x = –0.5 @≤ 0.5 ±®
2
A2+B
A = 2, B = 3 2 ® 3 ® A = 2, B = 5 @≤® 5 ®
m0
ˆL+ 2 @≤
@⁄(KAL+ KBL)@≤
3.605551275
5.385164807
db.
20.
–159.
114.3
1’000.
150.
1.125
k&~£pnzw^
1.
25.
b
H
b
0
H
¢PZWvrab© xy≠° (t, P(, Q(, R()
DATA
95 m10 80 95 k 80 80 k 75 k 75 75 & 3 k 75 50 k 50
x= R~
σx= Rp
n= Rn
Σx= Rz
Σx2= Rw
sx=
sx2= L=
(95––x)
×10+50=
sx
x = 60 P(t) ? °1 60 °0)=
t = –0.5 R(t) ? °3 0.5 ±)=
xy m11
2 5 2 & 5 k 2 5 k 12 24 12 & 24 k 21 40 21 & 40 & 3 k 21 40 15 & 25 k 21 40 Ra 15 25 Rb
x=3 y=? 3 @y y=46 x=? 46 @x
xy m12
12 41 12 & 41 k 8 13 8 & 13 k 5 2 5 & 2 k 23 200 23 & 200 k 15 71 15 & 71 k
x=10 y=? 10 @y y=22 x=? 22 @x
( 95 -K~) /K£* 10 + 50 =
Rr R£ R¢
Ra Rb R©
@≠ @≠
k[]
DATA
30 m10 40 30 k
0.6
5.0
0.6
5.4
30.
–2.
40 40 & 2 k 50 50 k
DATA
30 ]]]
45 45 & 3 k X2= 45 ] N2= 45 60 ] 60 k X3=
Σx = x1 + x2 + ··· + x Σx2 = x
Σxy = x1y1 + x2y2 + ··· + xny Σy = y1 + y2 + ··· + y Σy2 = y
0.
1.
2.
3.
4.
5.
75.71428571
12.37179148
7.
530.
41’200.
13.3630621
178.5714286
64.43210706
0.102012
0.691463
0.
1.
2.
3.
4.
5.
1.050261097
1.826044386
0.995176343
8.541216597
15.67223812
6.528394256
24.61590706
0.
1.
2.
3.
4.
5.
5.357506761
–3.120289663
0.503334057
24.4880159
9.63201409
–3.432772026
9.63201409
0.
1.
2.
3.
45.
3.
60.
2
+ ··· + x
2
2
+ ··· + y
2
n
2
n
n
n
2
n
2
+ x
1
2
+ y
1
t = ––––
x – x
σx
Standardization conversion formula Standard Umrechnungsformel Formule de conversion de standardisation Fórmula de conversión de estandarización Fórmula de conversão padronizada Formula di conversione della standardizzazione Standaardisering omzettingsformule
Standard átváltási képlet Vzorec pro přepočet rozdělení
Omvandlingsformel för standardisering Normituksen konversiokaava
îÓÏÛ· Òڇ̉‡ÚËÁÓ‚‡ÌÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl
Omregningsformel for standardisering
Rumus penukaran pemiawaian Rumus konversi standarisasi
Coâng thöùc bieán ñoåi chuaån hoùa
y
x
A
B
r
r2
θ1
θ2
r1
θ
4
3
x =
Σx
n
y =
Σy
n
sy =
Σy
2
– ny
2
n – 1
sx =
Σx
2
– nx
2
n – 1
σy =
Σy
2
– ny
2
n
σx =
Σx
2
– nx
2
n
ENGLISH
m (2-VLE)
a1x + b1y = c
a2x + b2y = c
2x + 3y = 4 2 ® 3 ® 4 ®
5x + 6y = 7 5 ® 6 ® 7
x = ? ® [x]
1
2
m20
y = ? ® [y] det(D) = ? ® [det(D)]
D =
a1 b
a2 b
1
2
m (3-VLE)
a1x + b1y + c1z = d
a2x + b2y + c2z = d a3x + b3y + c3z = d
1
2
3
m21
x + yz = 9 1 ® 1 ® 1 ±® 9 ®
6x + 6yz = 17 6 ® 6 ® 1 ±® 17 ®
14x – 7y + 2z = 42 14 ® 7 ±® 2 ® 42
x = ? ® [x] y = ? ® [y] z = ? ® [z]
det(D) = ? ® [det(D)]
D =
a1 b1 c
a2 b2 c a3 b3 c
1
2
3
3.238095238
–1.638095238
m (QUAD, CUBIC)
m22
m23
@≠
@≠
m3
@≠ [y] @≠ [x]
@≠ [y]
@≠ [y]
–6.333333333
–1.233600307
0.216800153
+
1.043018296
0.216800153
1.043018296
13.85640646
2
+ 4x – 95 = 0 3 ® 4 ®± 95
3x
x1 = ? ® x2 = ? ®
3
+4x2+3x +7=0 5 ® 4 ® 3 ® 7
5x
x1 = ? ® x2 = ? ®
x3 = ? ®
m (CPLX)
(12–6i) + (7+15i) – 12 - 6 Ü+ 7 + 15 Ü­(11+4i) = ( 11 + 4 Ü)= [x]
6×(7–9i) × 6 *( 7 - 9 Ü)* (–5+8i) = ( 5 ±+ 8 Ü)= [x]
16×(sin30°+ 16 *(s 30 +
icos30°)÷(sin60°+ Üu 30 )/(s 60 + icos60°)= Üu 60 )= [x]
• •••
+
–7.4
105.
+
222.
606.
+
••••
@{ 8 Ö 70 + 12 Ö 25 = [r] @≠ [θ]
r1 = 8, θ1 = 70° r2 = 12, θ2 = 25°
r = ?, θ = ?°
(1 + i) @} 1 +Ü= @{ [r] r = ?, θ = ?° @≠ [θ]
2
= = [x]
(2 – 3i)
@}( 2 - 3 Ü)L
@≠ [y]
1 ( 1 +Ü)@•= [x] —— = 1 + i @≠ [y]
CONJ(5+2i) =
∑0( 5 + 2 Ü)= [x] @≠ [y]
m (MAT)
1 2
matA
3 4 3 k 4 k
3 1
matB
2 6
=
7 13 17 27
–2
1
1.5 –0.5
matA × matB =
–1
matA
dim(matA,3,3) = 1 2 0
dim(matA,3,3) = 3 4 0
dim(matA,3,3) = 0 0 0
fill(5,3,3) = 5 5 5
fill(5,3,3) = 5 5 5
fill(5,3,3) = 5 5 5
–1.
2.
–3.
cumul matA =
1 2 4 6
aug(matA,matB) =
identity 3 = 1 0 0
identity 3 = 0 1 0 ª∑34 3 =
identity 3 = 0 0 1
rnd_mat(2,3)
det matA = –2
trans matB =
mat list
3 2 1 6
L1: {1 3} L2: {3 2}
m4 ] 2 k 2 k 1 k 2 k
ª∑20 ] 2 k 2 k 3 k 1 k 2 k 6 k ª∑21
ª∑00*∑01=
ª∑00@•=
ª∑30∑00 @, 3 @, 3 )=
ª∑31 5 @, 3 @, 3 )=
ª∑32∑00=
1 2 3 1 ª∑33∑00 3 4 2 6 @,∑01)=
ª∑35 2 @, 3 )=
ª∑40∑00=
ª∑41∑01=
ª∑5
m (LIST)
2, 7, 4 L1 ] 3 k 2 k 7 k 4 k –3, –1, –4 L2
5.
5.
L1+L2 = {–1 6 0}
sortA L1 = {2 4 7}
i
sortD L1 = {7 4 2}
i
dim(L1,5) = {2 7 4 0 0}
i
i
i
fill(5,5) = {5 5 5 5 5}
cumul L1 = {2 9 13}
df_list L1 = {5 –3}
aug(L1,L2) = {2 7 4 –3 –1 –4} ª∑36∑00
8.
i
5.
i
min L1 = 2
8.
i
max L1 = 7
mean L1 = 4.333333333
i
i
med L1 = 4
sum L1 = 13
prod L1 = 56
i
8.
i
••••
m5
ª∑20 ] 3 k ± 3 1 4 k ª∑21
ª∑00+∑01=
ª∑30∑00=
ª∑31∑00=
ª∑32∑00 @, 5 )=
ª∑33 5 @, 5 )=
ª∑34∑00=
ª∑35∑00=
@,∑01)=
ª∑40∑00=
ª∑41∑00=
ª∑42∑00=
ª∑43∑00=
ª∑44∑00=
ª∑45∑00=
18.5408873
42.76427608
1.414213562
• ••• ••••
stdDv L1 = 2.516611478
i
vari L1 = 6.333333333
i
o_prod(L1,L2) = {–24 –4 19}
ª∑46∑00=
ª∑47∑00=
ª
∑48∑00
@,∑01)=
ª
i_prod(L1,L2) = –29
∑49∑00
@,∑01)=
abs L2 = 5.099019514
1.
i
list matA matA: 2 –3
i
list matA matA: 7 –1 ª∑6
45.
i
list matA matA: 4 –4
–5.
i
12.
i
0.5
0.5
i
i
5.
i
2.
i
Function Dynamic range Funktion zulässiger Bereich Fonction Plage dynamique Función Rango dinámico
Função Gama dinâmica
ª∑4A∑01=
Funzioni Campi dinamici
Functie Rekencapaciteit
Függvény Megengedett számítási tartomány
Funkce Dynamický rozsah
Funktion Definitionsområde
Funktio Dynaaminen ala
îÛÌ͈Ëfl СЛМ‡ПЛ˜ВТНЛИ ‰Л‡Ф‡БУМ
Funktion Dynamikområde
Fungsi Julat dinamik Fungsi Kisaran dinamis
Haøm soá Giôùi haïn Ñoäng
DEG: | x | < 10
sin x, cos x,
RAD: | x | < —– × 10
tan x (tan x : | x | — (2n–1))*
GRAD: | x | < —– × 10
sin–1x, cos–1x | x | ≤ 1
3
tan–1x,
x | x | < 10
¿
In x, log x 10
x
y
–99
x < 10
y > 0: –10
y = 0: 0 < x < 10
y < 0: x = n
y > 0: –10
x
¿y y < 0: x = 2n–1
x
e
x
10 sinh x, cosh x,
tanh x
y = 0: 0 < x < 10
100
–10
< x 230.2585092
100
–10
< x < 100
| x | 230.2585092
sinh–1 x | x | < 10 cosh–1 x 1 x < 10 tanh–1 x | x | < 1
2
x
3
x
x 0 x < 10
¿
–1
x
| x | < 10 | x | < 2.15443469 × 10
| x | < 10
10
(tan x : | x | 90 (2n–1))*
π
10
180
10
9
(tan x : | x | 100 (2n–1))*
100
100
100
< x log y < 100
(0 < l x l < 1: — = 2n–1, x 0)*,
100
–10
< x log | y | < 100
100
< — log y < 100 (x 0)
(0 < | x | < 1 : — = n, x 0)*,
100
–10
< — log | y | < 100
50
50
50
100
100
(x 0)
π
2
10
100
1
x
1
x
100
1
x
1
x
33
n! 0 n 69*
nPr
0 r n 9999999999*
n!
100
—— < 10
(n-r)!
0 r n 9999999999*
nCr
DEG, D°M’S
x, y r, θ x2 + y2 < 10
r, θ x, y RAD: | θ | < —– × 10
DRG |
(A+Bi)+(C+Di)| A + C | < 10 (A+Bi)–(C+Di)| A – C | < 10
(A+Bi)×(C+Di)
0 r 69
n!
100
—— < 10
(n-r)!
0°0’0.00001” | x | < 10000°
100
100
0 r < 10 DEG: | θ | < 10
GRAD : | θ | < — × 10
DEGRAD, GRADDEG: | x | < 10 RADGRAD: | x | < — × 10
(AC – BD) < 10 (AD + BC) < 10
10
π
10
180
10
10
9
π
2
100
, | B + D | < 10
100
, | B – D | < 10
100
100
98
100
100
100
••••
x =
Σx
n
y =
Σy
n
sy =
Σy
2
– ny
2
n – 1
sx =
Σx
2
– nx
2
n – 1
σy =
Σy
2
– ny
2
n
σx =
Σx
2
– nx
2
n
AC + BD
(A+Bi)÷(C+Di)
→DEC DEC : | x | ≤ 9999999999 →BIN BIN : 1000000000 ≤ x ≤ 1111111111 →PEN 0 ≤ x ≤ 111111111 →OCT PEN : 2222222223 ≤ x ≤ 4444444444 →HEX 0 ≤ x ≤ 2222222222
AND OCT : 4000000000 x ≤ 7777777777 OR 0 x 3777777777 XOR HEX : FDABF41C01 x FFFFFFFFFF XNOR 0 x 2540BE3FF
NOT
NEG
C2 + D
BC – AD
C2 + D
C2 + D2 0
BIN : 1000000000 x ≤ 1111111111
PEN : 2222222223 x ≤ 4444444444
OCT : 4000000000 x ≤ 7777777777
HEX : FDABF41C01 x FFFFFFFFFF
BIN : 1000000001 x ≤ 1111111111
PEN : 2222222223 x ≤ 4444444444
OCT : 4000000001 x ≤ 7777777777
HEX : FDABF41C01 x FFFFFFFFFF
100
< 10
2
100
< 10
2
0 x 111111111
0 x 2222222221
0 x 3777777777
0 x 2540BE3FE
0 x 111111111
0 x 2222222222
0 x 3777777777
0 x 2540BE3FF
* n, r: integer / ganze Zahlen / entier / entero / inteiro / intero /
geheel getal / egész számok / celé číslo / heltal / kokonaisluku / ˆÂÎ˚ / heltal /
/ /
integer / bilangan bulat / soá nguyeân
In Europe:
This equipment complies with the requirements of Directive 89/336/ EEC as amended by 93/68/EEC.
Dieses Gerät entspricht den Anforderungen der EG-Richtlinie 89/336/ EWG mit Änderung 93/68/EWG.
Ce matériel répond aux exigences contenues dans la directive 89/336/ CEE modifiée par la directive 93/68/CEE.
Dit apparaat voldoet aan de eisen van de richtlijn 89/336/EEG, gewijzigd door 93/68/EEG.
Dette udstyr overholder kravene i direktiv nr. 89/336/EEC med tillæg nr. 93/68/EEC.
Quest’ apparecchio è conforme ai requisiti della direttiva 89/336/EEC come emendata dalla direttiva 93/68/EEC.
           89/336/,         93/68/.
Este equipamento obedece às exigências da directiva 89/336/CEE na sua versão corrigida pela directiva 93/68/CEE.
Este aparato satisface las exigencias de la Directiva 89/336/CEE modificada por medio de la 93/68/CEE.
Denna utrustning uppfyller kraven enligt riktlinjen 89/336/EEC så som kompletteras av 93/68/EEC.
Dette produktet oppfyller betingelsene i direktivet 89/336/EEC i endringen 93/68/EEC.
Tämä laite täyttää direktiivin 89/336/EEC vaatimukset, jota on muutettu direktiivillä 93/68/EEC.
чÌÌÓ ÛÒÚÓÈÒÚ‚Ó ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ú·ӂ‡ÌËflÏ ‰ËÂÍÚË‚˚ 89/336/ EEC Ò Û˜ÂÚÓÏ ÔÓÔ‡‚ÓÍ 93/68/EEC.
Ez a készülék megfelel a 89/336/EGK sz. EK-irányelvben és annak 93/ 68/EGK sz. módosításában foglalt követelményeknek.
Tento pfiístroj vyhovuje poÏadavkÛm smûrnice 89/336/EEC v platném znûní 93/68/EEC.
Endast svensk version/For Sweden only:
Miljöskydd
Denna produkt drivs av batteri. Vid batteribyte skall följande iakttagas:
• Det förbrukade batteriet skall inlämnas till er lokala handlare eller till kommunal miljöstation för återinssamling.
• Kasta ej batteriet i vattnet eller i hushållssoporna. Batteriet får ej heller utsättas för öppen eld.
OPMERKING: ALLEEN VOOR NEDERLAND/ NOTE: FOR NETHERLANDS ONLY
• Physical Constants and Metric Conversions are shown in the tables.
• Physikalischen Konstanten und metriche Umrechnungen sind in der Tabelle aufgelistet.
• Les constants physiques et les conversion des unités sont indiquées sur les tableaux.
• Las constants fisicas y conversiones métricas son mostradas en las tables.
• Constantes Fisicas e Conversões Métricas estão mostradas nas tablelas.
• La constanti fisiche e le conversioni delle unità di misura vengono mostrate nella tabella.
• De natuurconstanten en metrische omrekeningen staan in de tabellen hiernaast.
A fizikai konstansok és a metrikus átváltások a táblázatokban
találhatók.
Fyzikální konstanty a převody do metrické soustavy jsou
/
uvedeny v tabulce.
• Fysikaliska konstanter och metriska omvandlingar visas i tabellerna.
• Fysikaaliset vakiot ja metrimuunnokset näkyvät taulukoista.
З Ъ‡·ОЛˆ‡ı ФУН‡Б‡М˚ ЩЛБЛ˜ВТНЛВ НУМТЪ‡МЪ˚ Л
ПВЪЛ˜ВТНЛВ ФВУ·‡БУ‚‡МЛfl.
• Fysiske konstanter og metriske omskrivninger vises i tabellen.
• Pemalar Fizik dan Pertukaran Metrik ditunjukkan di dalam jadual.
• Konstanta Fisika dan Konversi Metrik diperlihatkan di dalam tabel.
Caùc Haèng soá Vaät lyù vaø caùc Pheùp bieán ñoåi Heä meùt ñöôïc theå
hieän trong caùc baûng.
PHYSICAL CONSTANTS ß 01 — 52
No. SYMBOL UNIT No. SYMBOL UNIT No. SYMBOL UNIT 01 - c, c0m s 02 - G m3 kg–1 s–220 ­03 - gnm s 04 - mekg 22 ­05 - mpkg 23 ­06 - mnkg 24 ­07 - mµkg 25 ­08 - lu kg 26 ­09 - e C 27 - 10 - h J s 28 - N 11 - k J K 12 -
µ
13 -
ε
14 - rem 32 - RKOhm 50 - c2m K 15 -
α
16 - a0m 34 - h/2mem2 s 17 - R∞m 18 - Φ0Wb 36 - KJHz V
–1
19 -
–2
21 -
–1
29 - Vmm3 mol–147 - Mukg mol
–2
N A
0
F m
0
30 - R J mol–1 K–148 -
–1
31 - F C mol–149 - c1W m
33 - -e/meC kg–151 - Z0Ω
–1
35 -
–1
µ
J T
Β
–1
µ
J T
e
–1
µ
J T
Ν
–1
µ
J T
p
–1
µ
J T
n
–1
µ
J T
µ
λ
m43 - EhJ
c
λ
m44 - G0s
c, p
σ
W m–2 K–445 -
–1
,
L mol
Α
–1
s–1 T
–1
–1
γ
p
37 - eV J 38 - t K 39 - AU m 40 - pc m 41 - M(12C) kg mol 42 - h-J s
–1
α
46 - mp/m
e
λ
m
c, n
52 - Pa
–1
–1
2
Nur für Deutschland/For Germany only:
Umweltschutz
Das Gerät wird durch eine Batterie mit Strom versorgt. Um die Batterie sicher und umweltschonend zu entsorgen, beachten Sie bitte folgende Punkte:
• Bringen Sie die leere Batterie zu Ihrer örtlichen Mülldeponie, zum Händler oder zum Kundenservice-Zentrum zur Wiederverwertung.
• Werfen Sie die leere Batterie niemals ins Feuer, ins Wasser oder in den Hausmüll.
Seulement pour la France/For France only:
Protection de l’environnement
L’appareil est alimenté par pile. Afin de protéger l’environnement, nous vous recommandons:
• d’apporter la pile usagée ou à votre revendeur ou au service après-vente, pour recyclage.
• de ne pas jeter la pile usagée dans une source de chaleur, dans l’eau ou dans un vide-ordures.
METRIC CONVERSIONS
No. UNIT No. UNIT No. UNIT 1in→cm 16 kg→lb 31 J→calIT 2cm→in 17 °F→°C 32 calIT→J 3ft→m18°C→°F 33 hp→W 4m→ft 19 gal (US)→l 34 W→hp 5yd→m20l→gal (US) 35 ps→W 6m→yd 21 gal (UK)→l 36 W→ps 7 mile→km 22 lgal (UK) 37 kgf/cm2→Pa 8km→mile 23 fl oz (US)→ml 38 Pa→kgf/cm 9 n mile→m24ml →fl oz (US) 39 atm→Pa 10 mn mile 25 fl oz (UK)→ml 40 Pa→atm 11 acre→m 12 m2→acre 27 J→cal 42 Pa→mmHg 13 ozg28calJ43kgf·m→J 14 goz 29 Jcal15 44 Jkgf·m 15 lbkg 30 cal15→J
2
26 mlfl oz (UK) 41 mmHgPa
x 1 — 44
2
Loading...