Samsung M393AAG40M32-CAE User Manual

Rev. 1.0, Feb. 2019
M393AAG40M3B
288pin Registered DIMM based on 16Gb M-die
78FBGA with Lead-Free & Halogen-Free (RoHS compliant)
datasheet
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other­wise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
© 2019 Samsung Electronics Co., Ltd. All rights reserved.
- 1 -
Rev. 1.0
datasheet
DDR4 SDRAMRegistered DIMM
Revision History
Revision No. History Draft Date Remark Editor
0.0 - First version for target specification. 21st Sep, 2018 Target T.Y.Lee
1.0 - Final datasheet. 21st Feb, 2019 Final T.Y.Lee
- Update IDD table J.Y.Bae
1. Update IDD and IPP values.
2. Remove symbol IDD5B2, IDD5F3, IDD5F5, IPP5B2, IPP5F3 and IPP5F5.
- Update Speed bins table.
- Add Timings used for IDD, IPP and IDDQ Measurement-Loop Pat­terns table.
- Update Basic IDD, IPP and IDDQ Measurement Conditions table.
1. Correct typo.
2. Remove IDD4RB/IDDQ4RB/IDD4WB.
3. Add IDD5B2/IPP5B2/IDD5F3/IPP5F3/IDD5F5/IPP5F5 parame­ters.
J.Y.Bae
- Update DDR4-2933 Speed Bins and Operations table.
- Correct CAS latency in Key features.
- 2 -
Rev. 1.0
datasheet
DDR4 SDRAMRegistered DIMM
Table Of Contents
288pin Registered DIMM based on 16Gb M-die
1. DDR4 REGISTERED DIMM ORDERING INFORMATION ..................................................................................................................5
2. KEY FEATURES ..................................................................................................................................................................................5
3. ADDRESS CONFIGURATION .............................................................................................................................................................5
4. REGISTERED DIMM PIN CONFIGURATIONS (FRONT SIDE/BACK SIDE)......................................................................................6
5. PIN DESCRIPTION .............................................................................................................................................................................7
6. ON DIMM THERMAL SENSOR ...........................................................................................................................................................8
7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION .................................................................................................................................9
8. REGISTERING CLOCK DRIVER SPECIFICATION ............................................................................................................................11
8.1 Timing & Capacitance values .........................................................................................................................................................11
8.2 Clock driver Characteristics ............................................................................................................................................................11
9. FUNCTION BLOCK DIAGRAM: ...........................................................................................................................................................12
9.1 128GB, 16Gx72 Module .................................................................................................................................................................12
9.1.1. (PC4-RDIMM Populated as 2 physical ranks / 2 logical ranks of x4 DDR4 SDRAMs) ...........................................................12
10. ABSOLUTE MAXIMUM RATINGS .....................................................................................................................................................15
11. AC & DC OPERATING CONDITIONS ...............................................................................................................................................15
12. AC & DC INPUT MEASUREMENT LEVELS......................................................................................................................................16
12.1 AC & DC Logic Input Levels for Single-Ended Signals................................................................................................................. 16
12.2 AC and DC Input Measurement Levels: VREF Tolerances. ......................................................................................................... 16
12.3 AC and DC Logic Input Levels for Differential Signals .................................................................................................................17
12.3.1. Differential Signals Definition ................................................................................................................................................17
12.3.2. Differential Swing Requirements for Clock (CK_t - CK_c) ....................................................................................................17
12.3.3. Single-ended Requirements for Differential Signals .............................................................................................................18
12.3.4. Address, Command and Control Overshoot and Undershoot specifications........................................................................ 19
12.3.5. Clock Overshoot and Undershoot Specifications.................................................................................................................. 20
12.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications ...................................................................................... 21
12.4 Slew Rate Definitions.................................................................................................................................................................... 22
12.4.1. Slew Rate Definitions for Differential Input Signals (CK) ......................................................................................................22
12.4.2. Slew Rate Definition for Single-ended Input Signals (CMD/ADD) ........................................................................................23
12.5 Differential Input Cross Point Voltage........................................................................................................................................... 24
12.6 CMOS rail to rail Input Levels .......................................................................................................................................................25
12.6.1. CMOS rail to rail Input Levels for RESET_n .........................................................................................................................25
12.7 AC and DC Logic Input Levels for DQS Signals........................................................................................................................... 26
12.7.1. Differential signal definition ...................................................................................................................................................26
12.7.2. Differential swing requirements for DQS (DQS_t - DQS_c).................................................................................................. 26
12.7.3. Peak voltage calculation method ..........................................................................................................................................27
12.7.4. Differential Input Cross Point Voltage ...................................................................................................................................28
12.7.5. Differential Input Slew Rate Definition ..................................................................................................................................29
13. AC AND DC OUTPUT MEASUREMENT LEVELS ............................................................................................................................30
13.1 Output Driver DC Electrical Characteristics..................................................................................................................................30
13.1.1. Output Driver Temperature and Voltage Sensitivity.............................................................................................................. 32
13.1.2. Alert_n output Drive Characteristic .......................................................................................................................................32
13.1.3. Output Driver Characteristic of Connectivity Test (CT) Mode............................................................................................... 33
13.2 Single-ended AC & DC Output Levels..........................................................................................................................................34
13.3 Differential AC & DC Output Levels.............................................................................................................................................. 34
13.4 Single-ended Output Slew Rate ...................................................................................................................................................35
13.5 Differential Output Slew Rate .......................................................................................................................................................36
13.6 Single-ended AC & DC Output Levels of Connectivity Test Mode ...............................................................................................37
13.7 Test Load for Connectivity Test Mode Timing ..............................................................................................................................38
14. IDD AND IDDQ SPECIFICATION PARAMETERS AND TEST CONDITIONS ..................................................................................39
14.1 IDD, IPP and IDDQ Measurement Conditions.............................................................................................................................. 39
15. DIMM IDD SPECIFICATION DEFINITION .........................................................................................................................................42
16. IDD TABLE .........................................................................................................................................................................................55
17. INPUT/OUTPUT CAPACITANCE ......................................................................................................................................................57
18. ELECTRICAL CHARACTERISTICS & AC TIMINGS FOR DDR4-1600-3DS TO DDR4-2933-3DS ..................................................58
18.1 Refresh parameters ......................................................................................................................................................................58
18.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding bin.........................................................................................60
18.3 Speed Bin Table Note................................................................................................................................................................... 65
19. ELECTRICAL CHARACTERISTICS & AC TIMING ...........................................................................................................................66
19.1 Reference Load for AC Timing and Output Slew Rate .................................................................................................................66
- 3 -
Rev. 1.0
datasheet
19.2 tREFI............................................................................................................................................................................................. 66
19.3 Clock Specification .......................................................................................................................................................................67
19.3.1. Definition for tCK(abs)...........................................................................................................................................................67
19.3.2. Definition for tCK(avg)...........................................................................................................................................................67
19.3.3. Definition for tCH(avg) and tCL(avg)....................................................................................................................................67
19.3.4. Definition for tERR(nper).......................................................................................................................................................67
20. TIMING PARAMETERS BY SPEED GRADE ....................................................................................................................................68
20.1 Rounding Algorithms ...................................................................................................................................................................74
20.2 The DQ input receiver compliance mask for voltage and timing .................................................................................................. 75
20.3 Command, Control, and Address Setup, Hold, and Derating .......................................................................................................79
20.4 DDR4 Function Matrix ..................................................................................................................................................................81
21. PHYSICAL DIMENSIONS ..................................................................................................................................................................83
21.1 8Gbx4(3DS 2H) based 16Gx72 Module (M393AAG40M3B)........................................................................................................83
21.1.1. x72 DIMM, populated as 2 physical ranks / 2 logical ranks of x4 DDR4 SDRAMs ............................................................... 83
21.1.2. .............................................................................................................................................................................................. 83
22. PRODUCT REGULATORY COMPLIANCE .......................................................................................................................................84
22.1 Product Regulatory Compliance And Certifications ...................................................................................................................... 84
DDR4 SDRAMRegistered DIMM
- 4 -
Rev. 1.0
datasheet
DDR4 SDRAMRegistered DIMM

1. DDR4 REGISTERED DIMM ORDERING INFORMATION

[Table 1] Ordering Information Table
Part Number Density Organization Component Composition Number of Rank Height
M393AAG40M3B-CYF 128GB 16Gx72 3DS 2H 8Gx4 (K4ABG45WM-3C##)*36
NOTE :
1) "##" - YF
2) RB(2133Mbps 17-15-15)/TC(2400Mbps 19-17-17) /WD(2666Mbps 22-19-19)
- DDR4-2666(22-19-19) is backward compatible to DDR4-2400(19-17-17) and DDR4-2133(17-15-15) YF(2933Mbps 24-21-21)
- DDR4-2933(24-21-21) is backward compatible to DDR4-2666(22-19-19), DDR4-2400(19-17-17) and DDR4-2133(17-15-15).
(2 physical ranks / 2 logical ranks)
4

2. KEY FEATURES

[Table 2] Speed bins
Speed
tCK 0.937 0.833 0.750 0.682 ns
CAS Latency 17 19 22 24 nCK
tRCD 14.06 14.16 14.25 14.32 ns
tRP 14.06 14.16 14.25 14.32 ns
tRAS 33 32 32 32 ns
tRC 47.06 46.16 46.25 46.32 ns
DDR4-2133 DDR4-2400 DDR4-2666 DDR-2933
17-15-15 19-17-17 22-19-19 24-21-21
31.25mm
Unit
• JEDEC standard 1.2V ± 0.06V Power Supply
•V
• 800 MHz fCK for 1600Mb/sec/pin,933 MHz fCK for 1866Mb/sec/pin, 1067MHz fCK for 2133Mb/sec/pin, 1200MHz fCK for 2400Mb/sec/pin,1333MHz
• 16 Banks (4 Bank Groups)
• Programmable CAS Latency: 11,12,13,14,15,16,17,18,20,22,24,25
• Programmable Additive Latency (Posted CAS): CL - 2 or CL - 1 clock
• Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,11,12 (DDR4-1866), 11,14 (DDR4-2133), 12,16 (DDR4-2400), 14,18 (DDR4-
• Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS]
• Bi-directional Differential Data Strobe
• On Die Termination using ODT pin
• Average Refresh Period 7.8us at lower then T
• Asynchronous Reset
= 1.2V ± 0.06V
DDQ
for 2666Mb/sec/pin, 1467MHz fCK for 2933Mb/sec/pin.
f
CK
2666) and 16, 20 (DDR4-2933)
CASE
85C, 3.9us at 85C < T
CASE
95C

3. ADDRESS CONFIGURATION

Organization Row Address Column Address Bank Address Auto Precharge
8Gx4(32Gb 3DS 2H) based Module A0-A17 A0-A9 BA0-BA1 A10/AP
- 5 -
Rev. 1.0
datasheet
DDR4 SDRAMRegistered DIMM

4. REGISTERED DIMM PIN CONFIGURATIONS (FRONT SIDE/BACK SIDE)

Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back
1
12V3),NC
2 VSS 146 VREFCA 41
3 DQ4 147 VSS 42 VSS 186 DQS3_t 80 VDD 224 BA1 119 DQ48 263 VSS
4 VSS 148 DQ5 43 DQ30 187 VSS 81 BA0 225 A10/AP 120 VSS 264 DQ49
5 DQ0 149 VSS 44 VSS 188 DQ31 82 RAS_n/A16 226 VDD 121
6 VSS 150 DQ1 45 DQ26 189 VSS 83 VDD 227 RFU 122
TDQS9_t,
7
DQS9_t
TDQS9_c,
8
DQS9_c
9 VSS 153 DQS0_t 48 VSS 192 CB5 86 CAS_n/A15 230 NC 125 VSS 269 DQ55
10 DQ6 154 VSS 49 CB0 193 VSS 87 ODT0 231 VDD 126 DQ50 270 VSS
11 VSS 155 DQ7 50 VSS 194 CB1 88 VDD 232 A13 127 VSS 271 DQ51
12 DQ2 156 VSS 51
13 VSS 157 DQ3 52
14 DQ12 158 VSS 53 VSS 197 DQS8_t 91 ODT1 235 NC,C2 130 DQ56 274 VSS
15 VSS 159 DQ13 54 CB6 198 VSS 92 VDD 236 VDD 131 VSS 275 DQ57
16 DQ8 160 VSS 55 VSS 199 CB7 93 C0,CS2_n,NC 237 NC,CS3_c,C1 132
17 VSS 161 DQ9 56 CB2 200 VSS 94 VSS 238 SA2 133
TDQS10_t,
18
DQS10_t
TDQS10_c,
19
DQS10_c
20 VSS 164 DQS1_t 59 VDD 203 CKE1 97 DQ32 241 VSS 136 VSS 280 DQ63
21 DQ14 165 VSS 60 CKE0 204 VDD 98 VSS 242 DQ33 137 DQ58 281 VSS
22 VSS 166 DQ15 61 VDD 205 RFU 99
23 DQ10 167 VSS 62 ACT_n 206 VDD 100
24 VSS 168 DQ11 63 BG0 207 BG1 101 VSS 245 DQS4_t 140 SA1 284 VDDSPD
25 DQ20 169 VSS 64 VDD 208 ALERT_n 102 DQ38 246 VSS 141 SCL 285 SDA
26 VSS 170 DQ21 65 A12/BC_n 209 VDD 103 VSS 247 DQ39 142 VPP 286 VPP
27 DQ16 171 VSS 66 A9 210 A11 104 DQ34 248 VSS 143 VPP 287 VPP
28 VSS 172 DQ17 67 VDD 211 A7 105 VSS 249 DQ35 144 RFU 288
TDQS11_t,
29
DQS11_t
TDQS11_c,
30
DQS11_c
31 VSS 175 DQS2_t 70 VDD 214 A4 108 DQ40 252 VSS
32 DQ22 176 VSS 71 A3 215 VDD 109 VSS 253 DQ41
33 VSS 177 DQ23 72 A1 216 A2 110
34 DQ18 178 VSS 73 VDD 217 VDD 111
35 VSS 179 DQ19 74 CK0_t 218 CK1_t 112 VSS 256 DQS5_t
36 DQ28 180 VSS 75 CK0_c 219 CK1_c 113 DQ46 257 VSS
37 VSS 181 DQ29 76 VDD 220 VDD 114 VSS 258 DQ47
38 DQ24 182 VSS 77 VTT 221 VTT 115 DQ42 259 VSS
39 VSS 183 DQ25 KEY 116 VSS 260 DQ43
145
12V3),NC
151 VSS 46 VSS 190 DQ27 84 S0_n 228 WE_n/A14 123 VSS 267 DQS6_t
152 DQS0_c 47 CB4 191 VSS 85 VDD 229 VDD 124 DQ54 268 VSS
162 VSS 57 VSS 201 CB3 95 DQ36 239 VSS 134 VSS 278 DQS7_t
163 DQS1_c 58 RESET_n 202 VSS 96 VSS 240 DQ37 135 DQ62 279 VSS
173 VSS 68 A8 212 VDD 106 DQ44 250 VSS
174 DQS2_c 69 A6 213 A5 107 VSS 251 DQ45
TDQS12_t,
40
DQS12_t
TDQS12_c,
DQS12_c
TDQS17_t,
DQS17_t
TDQS17_c,
DQS17_c
184 VSS 78 EVENT_n 222 PARITY 117 DQ52 261 VSS
185 DQS3_c 79 A0 223 VDD 118 VSS 262 DQ53
TDQS15_t,
DQS15_t
TDQS15_c,
DQS15_c
195 VSS 89 S1_n 233 VDD 128 DQ60 272 VSS
196 DQS8_c 90 VDD 234 A17 129 VSS 273 DQ61
TDQS16_t,
DQS16_t
TDQS16_c,
DQS16_c
TDQS13_t,
DQS13_t
TDQS13_c,
DQS13_c
TDQS14_t,
DQS14_t
TDQS14_c,
DQS14_c
243 VSS 138 VSS 282 DQ59
244 DQS4_c 139 SA0 283 VSS
254 VSS
255 DQS5_c
265 VSS
266 DQS6_c
276 VSS
277 DQS7_c
VPP
4)
NOTE:
1) VPP is 2.5V DC
2) Pin 230 is defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pin 230 is defined as SAVE_n for NVDIMMs.
3) Pins 1 and 145 are defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pins 1 and 145 are defined as 12V for Hybrid /NVDIMM
4) The 5th VPP is required on all modules. DIMMs.
- 6 -
Rev. 1.0
datasheet
DDR4 SDRAMRegistered DIMM

5. PIN DESCRIPTION

Pin Name Description Pin Name Description
1)
A0-A17
BA0, BA1 Register bank select input SDA I
BG0, BG1 Register bank group select input SA0-SA2 I
RAS_n
CAS_n
WE_n
CS0_n, CS1_n, CS2_n, CS3_n
CKE0, CKE1 Register clock enable lines input VSS Power supply return (ground)
ODT0, ODT1 Register on-die termination control lines input VDDSPD Serial SPD/TS positive power supply
ACT_n Register input for activate input ALERT_n Register ALERT_n output
DQ0–DQ63 DIMM memory data bus RESET_n Set Register and SDRAMs to a Known State
CB0–CB7 DIMM ECC check bits EVENT_n SPD signals a thermal event has occurred
DQS0_t-DQS17_t
DQS0_c-
DQS17_c
CK0_t, CK1_t
CK0_c, CK1_c
Register address input SCL I2C serial bus clock for SPD/TS and register
2
C serial bus data line for SPD/TS and register
2
C slave address select for SPD/TS and register
2)
Register row address strobe input PAR Register parity input
3)
Register column address strobe input VDD SDRAM core power supply
4)
Register write enable input VPP SDRAM activating power supply
DIMM Rank Select Lines input VREFCA SDRAM command/address reference supply
Data Buffer data strobes (positive line of differential pair)
Data Buffer data strobes (negative line of differential pair)
Register clock input (positive line of differential pair)
Register clocks input (negative line of differential pair)
VTT
RFU Reserved for future use
SDRAM I/O termination supply
NOTE :
1) Address A17 is only valid for 16 Gb x4 based SDRAMs.
2) RAS_n is a multiplexed function with A16.
3) CAS_n is a multiplexed function with A15.
4) WE_n is a multiplexed function with A14.
- 7 -
Rev. 1.0
Thermal sensor
SA0 SA1 SA2
SCL
1K
EVENT_nEVENT_n
SCL
SDASDA
Serial PD with
SA0 SA1 SA2
VSSZQCAL
SCL
SDA
Register
SA0
SA1
SA2
datasheet

6. ON DIMM THERMAL SENSOR

NOTE :
1) All Samsung RDIMM support Thermal sensor on DIMM
[ Table 3 ] Temperature Sensor Characteristics
Grade Range
75 < Ta < 95 - +/- 0.5 +/- 1.0
B
40 < Ta < 125 - +/- 1.0 +/- 2.0 -
-20 < Ta < 125 - +/- 2.0 +/- 3.0 -
Resolution 0.25 C /LSB -
Min. Typ. Max.
Temperature Sensor Accuracy
DDR4 SDRAMRegistered DIMM
Units NOTE
-
C
- 8 -
Rev. 1.0
datasheet

7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION

[ Table 4 ] Input/Output Function Description
Symbol Type Function
CK_t, CK_c
CKE, (CKE1) Input
CS_n, (CS1_n)
C0, C1, C2 Input
ODT, (ODT1) Input
ACT_n Input
RAS_n/A16 CAS_n/A15
WE_n/A14
DM_n/DBI_n/ TDQS_t, (DMU_n/ DBIU_n), (DML_n/
DBIL_n)
BG0 - BG1 Input
BA0 - BA1 Input
A0 - A17 Input
A10 / AP Input
A12 / BC_n Input
RESET_n Input
DQ
Input/Output
Input
Input
Input
Input/
Output
Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c.
Clock Enable: CKE HIGH activates and CKE LOW deactivates, internal clock signals and device input buffers and output drivers. Taking CKE LOW provides Precharge Power-Down and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal DQ Vref have become stable during the power on and initialization sequence, they must be maintained during all operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK_t, CK_c, ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self-Refresh.
Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection on systems with multiple Ranks. CS_n is considered part of the command code.
Chip ID : Chip ID is only used for 3DS for 2,4,8 high stack via TSV to select each slice of stacked component. Chip ID is considered part of the command code.
On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/TDQS_t, NU/TDQS_c (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. For x16 configuration ODT is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, DMU_n, and DML_n signal. The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM.
Activation Command Input : ACT_n defines the Activation command being entered along with CS_n. The input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14
Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being entered. Those pins have multi function. For example, for activation with ACT_n Low, these are Addresses like A16, A15 and A14 but for non-activation command with ACT_n High, these are Command pins for Read, Write and other command defined in command truth table
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is masked when DM_n is sampled LOW coincident with that input data during a Write access. DM_n is sampled on both edges of DQS. DM is muxed with DBI function by Mode Register A10,A11,A12 setting in MR5. For x8 device, the function of DM or TDQS is enabled by Mode Register A11 setting in MR1. DBI_n is an input/output identifing whether to store/ output the true or inverted data. If DBI_n is LOW, the data will be stored/output after inversion inside the DDR4 SDRAM and not inverted if DBI_n is HIGH. TDQS is only supported in X8.
Bank Group Inputs: BG0 - BG1 define to which bank group an Active, Read, Write or Precharge command is being applied. BG0 also determines which mode register is to be accessed during a MRS cycle. X4/8 have BG0 and BG1 but X16 has only BG0.
Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines which mode register is to be accessed during a MRS cycle.
Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/Write commands to select one location out of the memory array in the respective bank. A10/AP, A12/BC_n, RAS_n/A16, CAS_n/A15 and WE_n/A14 have additional functions. See other rows. The address inputs also provide the op-code during Mode Register Set commands. A17 is only defined for the x4 configuration.
Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses.
Burst Chop: A12/BC_n is sampled during Read and Write commands to determine if burst chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDD.
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at the end of Data Burst. Any DQ from DQ0-DQ3 may indicate the internal Vref level during test via Mode Register Setting MR4 A4=High. During this mode, RTT value should be set to Hi-Z. Refer to vendor specific data sheets to determine which DQ is used.
DDR4 SDRAMRegistered DIMM
- 9 -
Rev. 1.0
datasheet
[ Table 4 ] Input/Output Function Description
Symbol Type Function
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the
DQS_t, DQS_c,
DQSU_t, DQSU_c,
DQSL_t, DQSL_c
TDQS_t, TDQS_c Output
PAR
ALERT_n
TEN
NC No Connect: No internal electrical connection is present
VDDQ Supply DQ Power Supply: 1.2V +/- 0.06V
VSSQ Supply DQ Ground
VDD
VSS Supply
VPP Supply
VREFCA Supply
ZQ Supply
Input/
Output
Input
Output/
Input
Input
Supply
x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS_t, DQSL_t and DQSU_t are paired with differential signals DQS_c, DQSL_c, and DQSU_c, respectively, to provide differential pair signaling to the system during reads and writes. DDR4 SDRAM supports differential data strobe only and does not support single-ended.
Termination Data Strobe: TDQS_t/TDQS_c is applicable for x8 DRAMs only. When enabled via Mode Register A11 = 1 in MR1, the DRAM will enable the same termination resistance function on TDQS_t/TDQS_c that is applied to DQS_t/DQS_c. When disabled via mode register A11 = 0 in MR1, DM/DBI/TDQS will provide the data mask function or Data Bus Inversion depending on MR5; A11,12,10and TDQS_c is not used. x4/x16 DRAMs must disable the TDQS function via mode register A11 = 0 in MR1.
Command and Address Parity Input: DDR4 Supports Even Parity check in DRAM with MR setting. Once it’s enabled via Register in MR5, then DRAM calculates Parity with ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0-BG1, BA0­BA1, A17-A0 and C0-C2 (3DS devices). Command and address inputs shall have parity check performed when commands are latched via the rising edge of CK_t and when CS_n is low.
Alert : It has multi functions such as CRC error flag, Command and Address Parity error flag as Output signal. If there is error in CRC, then ALERT_n goes LOW for the period time interval and goes back HIGH. If there is error in Command Address Parity Check, then ALERT_n goes LOW for relatively long period until on going DRAM internal recovery transaction is complete. During Connectivity Test mode this pin works as input. Using this signal or not is dependent on system. In case of not connected as Signal, ALERT_n Pin must be bounded to VDD on board.
Connectivity Test Mode Enable : Required on X16 devices and optional input on x4/x8 with densities equal to or greater than 8Gb.HIGH in this pin will enable Connectivity Test Mode operation along with other pins. It is a CMOS rail to rail signal with AC high and low at 80% and 20% of VDD. Using this signal or not is dependent on System. This pin may be DRAM internally pulled low through a weak pull-down resistor to VSS.
Power Supply: 1.2V ± 0.06V
Ground
DRAM Activating Power Supply: 2.5V (2.375V min, 2.75V max)
Reference voltage for CA
Reference Pin for ZQ calibration
DDR4 SDRAMRegistered DIMM
NOTE:
1) Input only pins (BG0-BG1, BA0-BA1, A0-A17, ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, CS_n, CKE, ODT and RESET_n) do not supply termination.
- 10 -
Rev. 1.0
datasheet
DDR4 SDRAMRegistered DIMM

8. REGISTERING CLOCK DRIVER SPECIFICATION

8.1 Timing & Capacitance values

DDR4-
Symbol Parameter Conditions
fclock Input Clock Frequency application frequency 625 1080 625 1350 625 1620 MHz
t
CH/tCL
t
t
C
NOTE :
1) This parameter does not include package capacitance
2) Data inputs are DCKE0/1, DODT0/1, DA0..DA17, DBA0..DBA1, DBG0..DBG1, DACT_n, DC0..DC2, DPAR, DCS0/1_n
Pulse duration, CK_t, CK_c HIGH or LOW
Inputs active time4 before
ACT
DRST_n is taken HIGH
Propagation delay, single-bit switching, CK_t/ CK_c to out-
PDM
put
t
output disable time
DIS
t
output enable time
EN
C
Input capacitance, Data inputs 0.8 1.1 0.8 1.0 0.8 1.0
I
Input capacitance, CK_t, CK_c 0.8 1.1 0.8 1.0 0.8 1.0 1,2
CK
C
Input capacitance, DRST_n
IR
DCKE0/1 = LOW and DCS0/1_n = HIGH
1.2V Operation 1 1.3 1 1.3 1 1.3 ns
Rising edge of Yn_t to output float
Output valid to rising edge of Yn_t
or VSS ;
V
I=VDD
=1.2V
V
DD
1600/1866/2133
Min Max Min Max Min Max
0.4 - 0.4 - 0.4 -
16 - 16 - 16 -
0.5*tCK + tQSK1(mi
n)
0.5*tCK ­tQSK1(m
ax)
0.5 2.0 0.5 2.0 0.5 2.0
-
-
DDR4-
2400/2666
0.5*tCK + tQSK1(mi
n)
0.5*tCK ­tQSK1(m
ax)
-
-
DDR4-
0.5*tCK + tQSK1(mi
n)
0.5*tCK ­tQSK1(m
ax)
2933
-ps
-ps
Units
t
CK
t
CK
pF
Note
s
1,2

8.2 Clock driver Characteristics

Symbol Parameter Conditions
t
(cc)
Cycle-to-cycle period jitter CK_t/CK_c stable 0
jit
t
t
jit
t
jit
t
NOTE :
1) Refer to JEDEC specification.
Stabilization time - 5 - 5 - 5 - 5 us
STAB
t
Clock Output skew - 10 - 10 - 10 - 10 ps
CKsk
(per)
Yn Clock Period jitter
(hper)
Half period jitter
t
Qn Output to clock tolerance
Qsk1
Maximum re-driven dynamic
dynoff
clock off-set
DDR4-1600/1866/
2133
Min Max Min Max Min Max Min Max
0.025 x tCK
-0.025 * tCK
-0.032 * tCK
-0.125 * tCK
0.025 * tCK
0.032 * tCK
0.125 * tCK
-50-45-45-40ps
DDR4-2400 DDR4-2666 DDR-2933
0
-0.025 * tCK
-0.032 * tCK
-0.125 * tCK
0.025 x tCK
0.025 * tCK
0.032 * tCK
0.125 * tCK
-0.025 *
-0.032 *
-0.1 *
0
tCK
tCK
tCK
0.025 x tCK
0.025 * tCK
0.032 * tCK
0.1 * tCK
0
-0.025 * tCK
-0.032 * tCK
-0.1 * tCK
Units
0.025 x tCK
0.025 * tCK
0.032 * tCK
0.1 * tCK ps
ps
ps
ps
- 11 -
Rev. 1.0
CK0_t
CK0_c
BA[1:0]
QABA[1:0] -> BA[1:0]: SDRAMs D[20:1]
A[17:0]
QAA[17:0] -> A[17:0]: SDRAMs D[20:1]
CS0_n
CKE0
ODT0
RESET_n
QBBA[1:0] -> BA[1:0]: SDRAMs D[36:21]
QBA[17:0] -> A[17:0]: SDRAMs D[36:21]
QRST_n -> RESET_n: All SDRAMs
ACT_n
CK1_t
CK1_c
Y0_t -> CK_t: SDRAMs D[24:21], D[32:29]
BG[1:0]
QABG[1:0] -> BG[1:0]: SDRAMs D[20:1]
QBBG[1:0] -> BG[1:0]: SDRAMs D[36:21]
QACKE0 -> CKE: SDRAMs D[10:1]
QBCKE0 -> CKE: SDRAMs D[28:21]
QAODT0 -> ODT: SDRAMs D[10:1]
QBODT0 -> ODT: SDRAMs D[28:21]
QACS0_n -> CS_n: SDRAMs D[10:1]
QBCS0_n -> CS_n: SDRAMs D[28:21]
QAACT_n -> ACT_n: SDRAMs D[20:1]
QBACT_n -> ACT_n: SDRAMs D[36:21]
PARITY
QAPAR -> PAR: SDRAMs D[20:1]
QBPAR -> PAR: SDRAMs D[36:21]
R e g
i
s
t e r.
CKE1
QACKE1 -> CKE: SDRAMs D[20:11]
QBCKE1 -> CKE: SDRAMs D[36:29]
ODT1
QAODT1 -> ODT: SDRAMs D[20:11]
QBODT1 -> ODT: SDRAMs D[36:29]
CS1_n
QACS1_n -> CS_n: SDRAMs D[20:11]
QBCS1_n -> CS_n: SDRAMs D[36:29]
Y1_t -> CK_t: SDRAMs D[5:1], D[15:11] Y2_t -> CK_t: SDRAMs D[28:25], D[36:33] Y3_t -> CK_t: SDRAMs D[10:6], D[20:16]
Y0_c -> CK_c: SDRAMs D[24:21], D[32:29] Y1_c -> CK_c: SDRAMs D[5:1], D[15:11] Y2_c -> CK_c: SDRAMs D[28:25], D[36:33] Y3_c -> CK_c: SDRAMs D[10:6], D[20:16]
ALERT_n
ERROR_IN_n <- ALERT_n: All SDRAMs
C[2:0]
QAC[2:0] -> C[2:0]: SDRAMs D[20:1]
QBC[2:0] -> C[2:0]: SDRAMs D[36:21]
Address, Command and Control lines
D1 D2 D4 D5 D21 D22 D23 D24
D6 D7 D8 D9 D10 D25 D26 D27 D28
Register
D3
Front
Back
D11 D12 D14 D15 D29 D30 D31 D32
D16 D17 D18 D19 D20 D33 D34 D35 D36
D13
datasheet
DDR4 SDRAMRegistered DIMM

9. FUNCTION BLOCK DIAGRAM:

9.1 128GB, 16Gx72 Module

9.1.1 (PC4-RDIMM Populated as 2 physical ranks / 2 logical ranks of x4 DDR4 SDRAMs)

NOTE :
1) CK0
2) CK1
3) Unless otherwise noted resistors are 22 ± 5%.
_t
, CK0_c terminated with 120 ± 5% resistor.
_t
, CK1_c terminated with 120 ± 5% resistor but not used.
- 12 -
Rev. 1.0
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS0_t
DQS0_c
DQ[3:0]
VSS
D6
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D16
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS1_t
DQS1_c
DQ[11:8]
D7
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D17
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS2_t
DQS2_c
DQ[19:16]
D8
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D18
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS3_t
DQS3_c
DQ[27:24]
D9
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D19
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS8_t
DQS8_c
CB[3:0]
D10
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D20
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS9_t
DQS9_c
DQ[7:4]
VSS
D1
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D11
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS10_t
DQS10_c
DQ[15:12]
D2
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D12
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS11_t
DQS11_c
DQ[23:20]
D3
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D13
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS12_t
DQS12_c
DQ[31:28]
D4
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D14
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS17_t
DQS17_c
CB[7:4]
D5
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D15
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
QACKE1
QAODT1
QACS1_n
QACKE0
QAODT0
QACS0_n
datasheet
DDR4 SDRAMRegistered DIMM
NOTE :
1) Unless otherwise noted, resistor values are 15± 5%.
2) See the Net Structure diagrams for all resistors associated with the command, address and Control bus.
3) ZQ resistors are 240± 1%. For all other resistor values refer to the appropriate wiring diagram.
4) DRAM TEN pin need to be tied to VSS.
- 13 -
Rev. 1.0
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS4_t
DQS4_c
DQ[35:32]
VSS
D25
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D33
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS5_t
DQS5_c
DQ[43:40]
D26
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D34
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS6_t
DQS6_c
DQ[51:48]
D27
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D35
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS7_t
DQS7_c
DQ[59:56]
D28
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D36
VSS
VSS
VSS
VSS
VSS
VSS
VSS
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS13_t
DQS13_c
DQ[39:36]
VSS
D21
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D29
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS14_t
DQS14_c
DQ[47:44]
D22
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D30
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS15_t
DQS15_c
DQ[55:52]
D23
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D31
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
DQS16_t
DQS16_c
DQ[63:60]
D24
DQS_t
DQS_c
DQ[3:0]
CKE
ODT
CS_n
ZQ
D32
VSS
VSS
VSS
VSS
VSS
VSS
VSS
QBCKE1
QBODT1
QBCS1_n
QBCKE0
QBODT0
QBCS0_n
SCL SDA
EVENT_n
SA0 SA1 SA2
SCL SDA
SCL SDA
ZQCAL
SA0 SA1 SA2
BFUNC VSS
VSS
SA2 SA1 SA0
V
DDSPD
Serial PD
V
PP
V
DD
V
TT
VREFCA
V
SS
D1-D36
D1-D36
D1-D36
D1-D36
D1-D36
Serial PD with
Thermal sensor
Register
datasheet
DDR4 SDRAMRegistered DIMM
NOTE :
1) Unless otherwise noted, resistor values are 15± 5%.
2) See the Net Structure diagrams for all resistors associated with the command, address and control bus.
3) ZQ resistors are 240 ±1%. For all other resistor values refer to the appropriate wiring diagram.
4) DRAM TEN pin need to be tied to VSS.
- 14 -
Rev. 1.0
datasheet
DDR4 SDRAMRegistered DIMM

10. ABSOLUTE MAXIMUM RATINGS

[Table 5] Absolute Maximum DC Ratings
Symbol Parameter Rating Units NOTE
VDD Voltage on VDD pin relative to Vss -0.3 ~ 1.5 V 1,3
VDDQ Voltage on VDDQ pin relative to Vss -0.3 ~ 1.5 V 1,3
VPP Voltage on VPP pin relative to Vss -0.3 ~ 3.0 V 4
V
NOTE :
1) Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3) VDD and VDDQ must be within 300mV of each other at all times; and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREFCA may be equal to or less than 300mV
4) VPP must be equal or greater than VDD/VDDQ at all times.
5) Overshoot area above 1.5 V is specified in 12.3.4, 12.3.5Clock Overshoot and Undershoot Specifications and 12.3.6.
Voltage on any pin except VREFCA relative to Vss -0.3 ~ 1.5 V 1,3,5
IN, VOUT
T
Storage Temperature -55 to +100 °C 1,2
STG

11. AC & DC OPERATING CONDITIONS

[Table 6] Recommended DC Operating Conditions
Symbol Parameter
VDD Supply Voltage 1.14 1.2 1.26 V 1,2,3
VDDQ Supply Voltage for Output 1.14 1.2 1.26 V 1,2,3
VPP Peak-to-Peak Voltage 2.375 2.5 2.75 V 3
NOTE :
1) Under all conditions V
tracks with VDD. AC parameters are measured with VDD and V
2) V
DDQ
3) DC bandwidth is limited to 20MHz.
must be less than or equal to VDD.
DDQ
Min. Typ. Max.
tied together.
DDQ
Rating
Unit NOTE
- 15 -
Rev. 1.0
voltage
V
DD
V
SS
time
datasheet
DDR4 SDRAMRegistered DIMM

12. AC & DC INPUT MEASUREMENT LEVELS

12.1 AC & DC Logic Input Levels for Single-Ended Signals

[Table 7] Single-ended AC & DC Input Levels for Command and Address
Symbol Parameter
VIH.CA(DC75)
VIH.CA(DC65) - -
VIL.CA(DC75)
VIL.CA(DC65) - - VSS
VIH.CA(AC100)
VIH.CA(AC90) - -
VIL.CA(AC100)
VIL.CA(AC90) - - Note 2
VREFCA(DC) Reference Voltage for ADD, CMD inputs 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 2,3
NOTE :
1) See “Overshoot and Undershoot Specifications” on section12.3AC and DC Logic Input Levels for Differential Signals.
2) The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)
3) For reference : approx. VDD/2 ± 12mV.
DC input logic high
DC input logic low
AC input logic high
AC input logic low
DDR4-1600/1866/2133/2400 DDR4-2666/2933
Min. Max. Min. Max.
+ 0.075
V
REFCA
V
REF
Note 2
VSS
+ 0.1
VDD - -
V
+ 0.065
REFCA
V
-0.075
REFCA
Note 2 - -
V
- 0.1
REF
--
V
+ 0.09
REF
--
V
REFCA
V
Unit NOTE
VDD
-0.065
Note 2 1
- 0.09
REF
V
V
V
V
1
12.2 AC and DC Input Measurement Levels: V
The DC-tolerance limits and ac-noise limits for the reference voltages V
function of time. (V
V
(DC) is the linear average of V
REF
Furthermore V
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on V
stands for V
REF
(t) may temporarily deviate from V
REF
).
REFCA
(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7.
REF
(DC) by no more than ± 1% VDD.
REF
Figure 1. Illustration of V
(DC) tolerance and V
REF
is illustrated in Figure 1. It shows a valid reference voltage V
REFCA
Tolerances.
REF
AC-noise limits
REF
REF
(t) as a
REF
.
"V
" shall be understood as V
REF
This clarifies, that DC-variations of V
which setup and hold is measured. System timing and voltage budgets need to account for V
data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V
and voltage effects due to AC-noise on V
(DC), as defined in Figure 1.
REF
affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
REF
(DC) deviations from the optimum position within the
REF
up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
REF
- 16 -
AC-noise. Timing
REF
Rev. 1.0
0.0
tDVAC
V
IH
.DIFF.MIN
half cycle
Differential Input Voltage (CK-CK)
time
tDVAC
VIH.DIFF.AC.MIN
V
IL
.DIFF.MAX
V
IL
.DIFF.AC.MAX
(CK_t - CK_c)
datasheet

12.3 AC and DC Logic Input Levels for Differential Signals

12.3.1 Differential Signals Definition

Figure 2. Definition of differential ac-swing and “time above ac-level” t
NOTE:
1) Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.
2) Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.
DDR4 SDRAMRegistered DIMM
DVAC

12.3.2 Differential Swing Requirements for Clock (CK_t - CK_c)

[Table 8] Differential AC and DC Input Levels
Symbol Parameter
V
IHdiff
V
ILdiff
V
IHdiff
V
ILdiff
NOTE :
1) Used to define a differential signal slew-rate.
2) for CK_t - CK_c use V
3) These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (V
as well as the limitations for overshoot and undershoot.
differential input high +0.150 NOTE 3 +0.135 NOTE 3 +0.125 NOTE 3 V 1
differential input low NOTE 3 -0.150 NOTE 3 -0.135 NOTE 3 -0.125 V 1
(AC)
differential input high ac
(AC)
differential input low ac NOTE 3
IH.CA/VIL.CA
(AC) of ADD/CMD and V
[Table 9] Allowed Time Before Ringback (tDVAC) for CK_t - CK_c
Slew Rate [V/ns]
> 4.0 120 -
4.0 115 -
3.0 110 -
2.0 105 -
1.8 100 -
1.6 95 -
1.4 90 -
1.2 85 -
1.0 80 -
< 1.0 80 -
DDR4 -1600/1866/2133 DDR4 -2400/2666 DDR4-2933
min max min max min max
2 x (V
V
IH
REF
(AC) -
)
REFCA
NOTE 3
2 x (V
;
V
IL
REF
(AC) -
)
2 x (V
NOTE 3
V
IH
REF
(AC) -
)
2 x (V
tDVAC [ps] @ |V
min max
NOTE 3
(AC) -
IL
V
REF
IH/Ldiff
2 x (V
(DC) max, V
IH.CA
NOTE 3
)
(AC)| = 200mV
V
(AC) -
IH
REF
)
IL.CA
NOTE 3 V 2
(AC) -
2 x (V
IL
V
REF
(DC)min) for single-ended signals
)
NOT
unit
E
V2
- 17 -
Rev. 1.0
VDD or V
DDQ
V
SEH
min
V
DD
/2 or V
DDQ
/2
V
SEL
max
V
SEH
VSS or V
SSQ
V
SEL
CK
time
datasheet
DDR4 SDRAMRegistered DIMM

12.3.3 Single-ended Requirements for Differential Signals

Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain requirements for single-ended signals.
CK_t and CK_c have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH.CA(AC) / VIL.CA(AC)) for ADD/CMD signals) in every half-cycle.
Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g., if Different value than VIH.CA(AC100)/VIL.CA(AC100) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK_c.
Figure 3. Single-ended requirement for differential signals.
Note that, while ADD/CMD signal requirements are with respect to VrefCA, the single-ended components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single­ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals.
[Table 10] Single-ended Levels for CK_t, CK_c
Symbol Parameter
V
V
NOTE :
1) For CK_t - CK_c use V
2) V
3) These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits (V
signals as well as the limitations for overshoot and undershoot.
Single-ended high-level for
SEH
CK_t, CK_c
Single-ended low-level for
SEL
CK_c
(AC)/VIL(AC) for ADD/CMD is based on V
IH
IH.CA/VIL.CA
(AC) of ADD/CMD;
CK_t,
DDR4-1600/1866/2133 DDR4-2400/2666 DDR4-2933
Min Max Min Max Min Max
(VDD/2)+0.100 NOTE3 (VDD/2)+0.95 NOTE3 (VDD/2)+0.85 NOTE3 V 1, 2
NOTE3 (VDD/2)-0.100 NOTE3 (VDD/2)-0.95 NOTE3 (VDD/2)-0.85 V 1, 2
;
REFCA
(DC) max, V
IH.CA
(DC)min) for single-ended
IL.CA
Unit NOTE
- 18 -
Rev. 1.0
A
AOS1
V
DD
A
AUS
V
SS
Volts
(V)
1 tCK
V
AOSP
A
AOS2
V
AOS
V
AUS
datasheet
DDR4 SDRAMRegistered DIMM

12.3.4 Address, Command and Control Overshoot and Undershoot specifications

[Table 11] AC overshoot/undershoot specification for Address, Command and Control pins
Specification
Parameter Symbol
Maximum peak amplitude above VAOS VAOSP 0.06 V
Upper boundary of overshoot area AAOS1 VAOS VDD +0.24 V 1
Maximum peak amplitude allowed for undershoot VAUS 0.30 V
Maximum overshoot area per 1 tCK above VAOS AAOS2 0.0083 0.0071 0.0062 0.0055 0.0055 0.0055 V-ns
Maximum overshoot area per 1 tCK between VDD and VAOS
Maximum undershoot area per 1 tCK below VSS AAUS 0.2644 0.2265 0.1984 0.1762 0.1762 0.1762 V-ns
(A0-A13,A17,BG0-BG1,BA0-BA1,ACT_n,RAS_n/A16,CAS_n/A15,WE_n/A14,CS_n,CKE,ODT,C2-C0)
NOTE :
1) The value of VAOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC
Operating Conditions. If VDD is above the recommended operating conditions, VAOS remains at VDD absolute max as defined in Table 5.
AAOS1 0.2550 0.2185 0.1914 0.1699 0.1699 0.1699 V-ns
DDR4-
1600
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
DDR4-
2933
Unit NOTE
Figure 4. Address, Command and Control Overshoot and Undershoot Definition
- 19 -
Rev. 1.0
A
COS1
V
DD
A
CUS
V
SS
Volts
(V)
1 UI
V
COSP
A
COS2
V
COS
V
CUS
datasheet
DDR4 SDRAMRegistered DIMM

12.3.5 Clock Overshoot and Undershoot Specifications

[Table 12] AC overshoot/undershoot specification for Clock
Specification
Parameter Symbol
Maximum peak amplitude above VCOS VCOSP 0.06 V
Upper boundary of overshoot area ADOS1 VCOS VDD +0.24 V 1
Maximum peak amplitude allowed for undershoot VCUS 0.30 V
Maximum overshoot area per 1 UI above VCOS ACOS2 0.0038 0.0032 0.0028 0.0025 0.0025 0.0025 V-ns
Maximum overshoot area per 1 UI between VDD and VDOS
Maximum undershoot area per 1 UI below VSS ACUS 0.1144 0.0980 0.0858 0.0762 0.0762 0.0762 V-ns
NOTE :
1) The value of VCOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC
Operating Conditions. If VDD is above the recommended operating conditions, VCOS remains at VDD absolute max as defined in Table 5.
ACOS1 0.1125 0.0964 0.0844 0.0750 0.0750 0.0750 V-ns
DDR4-
1600
(CK_t, CK_c)
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
DDR4-
2933
Unit NOTE
Figure 5. Clock Overshoot and Undershoot Definition
- 20 -
Rev. 1.0
A
DOS1
V
DDQ
A
DUS2
V
SSQ
Volts
(V)
1 UI
V
DOSP
A
DOS2
V
DOS
V
DUSP
A
DUS1
datasheet
DDR4 SDRAMRegistered DIMM

12.3.6 Data, Strobe and Mask Overshoot and Undershoot Specifications

[Table 13] AC overshoot/undershoot specification for Data, Strobe and Mask
Specification
Parameter Symbol
Maximum peak amplitude above VDOS VDOSP 0.16 V
Upper boundary of overshoot area ADOS1 VDOS VDDQ + 0.24 V 1
Lower boundary of undershoot area ADUS1 VDUS 0.30 V 2
Maximum peak amplitude below VDUS VDUSP 0.10 0.10 0.10 0.10 0.10 0.10 V
Maximum overshoot area per 1 UI above VDOS ADOS2 0.0150 0.0129 0.0113 0.0100 0.0100 0.0100 V-ns
Maximum overshoot area per 1 UI between VDDQ and VDOS
Maximum undershoot area per 1 UI between VSSQ and VDUS1
Maximum undershoot area per 1 UI below VDUS ADUS2 0.0150 0.0129 0.0113 0.0100 0.0100 0.0100 V-ns
NOTE :
1) The value of VDOS matches (VIN, VOUT) max as defined in Table 5 Absolute Maximum DC Ratings if VDDQ equals VDDQ max as defined in Table 6 Recommended DC
Operating Conditions. If VDDQ is above the recommended operating conditions, VDOS remains at (VIN, VOUT) max as defined in Table 5.
2) The value of VDUS matches (VIN, VOUT) min as defined in Table 5 Absolute Maximum DC Ratings
ADOS1 0.1050 0.0900 0.0788 0.0700 0.0700 0.0700 V-ns
ADUS1 0.1050 0.0900 0.0788 0.0700 0.0700 0.0700 V-ns
DDR4-
1600
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
DDR4-
2933
Unit
NOT
E
Figure 6. Data, Strobe and Mask Overshoot and Undershoot Definition
- 21 -
Rev. 1.0
Delta TRdiff
Delta TFdiff
V
IHdiffmin
0
V
ILdiffmax
Differential Input Voltage(i,e, CK_t - CK_c)
datasheet

12.4 Slew Rate Definitions

12.4.1 Slew Rate Definitions for Differential Input Signals (CK)

Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table 14 and Figure 7.
[Table 14] Differential Input Slew Rate Definition
Description
Differential input slew rate for rising edge (CK_t - CK_c)
Differential input slew rate for falling edge (CK_t - CK_c)
NOTE :
1) The differential signal (i,e.,CK_t - CK_c) must be linear between these thresholds.
Measured
from to
V
ILdiffmax
V
IHdiffmin
V
IHdiffmin
V
ILdiffmax
[V
[V
IHdiffmin
IHdiffmin
DDR4 SDRAMRegistered DIMM
Defined by
- V
ILdiffmax
- V
ILdiffmax
] / DeltaTRdiff
] / DeltaTFdiff
Figure 7. Differential Input Slew Rate Definition for CK_t, CK_c
- 22 -
Rev. 1.0
Delta TRsingle
Delta TFsingle
V
IHCA(AC) Min
V
IHCA(DC) Min
VREFCA(DC)
V
ILCA(DC) Max
V
ILCA(AC) Max
datasheet

12.4.2 Slew Rate Definition for Single-ended Input Signals (CMD/ADD)

DDR4 SDRAMRegistered DIMM
Figure 8. Single-ended Input Slew Rate definition for CMD and ADD
NOTE :
1) Single-ended input slew rate for rising edge = {VIHCA(AC)Min - VILCA(DC)Max} / Delta TR single.
2) Single-ended input slew rate for falling edge = {VIHCA(DC)Min - VILCA(AC)Max} / Delta TF single.
3) Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.
4) Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope.
- 23 -
Rev. 1.0
Vix
CK_t
VDD/2
VSS
VDD
CK_c
Vix
VSEL
VSEH
datasheet
DDR4 SDRAMRegistered DIMM

12.5 Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals (CK_t, CK_c) must meet the requirements in Table 15. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS.
Figure 9. Vix Definition (CK)
[Table 15] Cross Point Voltage for Differential Input Signals (CK)
Symbol Parameter
- Area of VSEH, VSEL
VlX(CK)
Symbol Parameter
VlX(CK)
Symbol Parameter
VlX(CK)
Differential Input Cross Point Voltage relative to VDD/2 for CK_t, CK_c
- Area of VSEH, VSEL
Differential Input Cross Point Voltage relative to VDD/2 for CK_t, CK_c
- Area of VSEH, VSEL
Differential Input Cross Point Voltage relative to VDD/2 for CK_t, CK_c
VSEL < VDD/2 -
145mV
-120mV
VSEL <
VDD/2 - 145 mV
-120mV
VSEL <
VDD/2 - 145 mV
-110 mV
DDR4-1600/1866/2133
min max
VDD/2 - 145mV =<
VSEL =< VDD/2 -
100mV
-(VDD/2 - VSEL) + 25mV
DDR4-2400
min max
VDD/2 - 145 mV
=< VSEL =<
VDD/2 - 100 mV
- (VDD/2 - VSEL) + 25 mV
DDR4-2666/2933
min max
VDD/2 - 145 mV
=< VSEL =<
VDD/2 - 100 mV
- (VDD/2 - VSEL) + 30 mV
VDD/2 + 100mV =<
VSEH =< VDD/2 +
(VSEH - VDD/2) -
VDD/2 + 100 mV
VDD/2 + 145 mV
(VSEH - VDD/2) -
VDD/2 + 100 mV
VDD/2 + 145 mV
(VSEH - VDD/2)
145mV
25mV
=< VSEH =<
25 mV
=< VSEH =<
- 30 mV
VDD/2 + 145mV <
VSEH
120mV
VDD/2 + 145 mV <
VSEH
120mV
VDD/2 + 145 mV
< VSEH
110mV
- 24 -
Rev. 1.0
0.8*VDD
TR_RESET
tPW_RESET
0.7*VDD
0.3*VDD
0.2*VDD
datasheet
DDR4 SDRAMRegistered DIMM

12.6 CMOS rail to rail Input Levels

12.6.1 CMOS rail to rail Input Levels for RESET_n

[Table 16] CMOS rail to rail Input Levels for RESET_n
Parameter Symbol Min Max Unit NOTE
AC Input High Voltage VIH(AC)_RESET 0.8*VDD VDD V 6
DC Input High Voltage VIH(DC)_RESET 0.7*VDD VDD V 2
DC Input Low Voltage VIL(DC)_RESET VSS 0.3*VDD V 1
AC Input Low Voltage VIL(AC)_RESET VSS 0.2*VDD V 7
Rising time TR_RESET - 1.0 us 4
RESET pulse width tPW_RESET 1.0 - us 3,5
NOTE :
1) After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET, otherwise, SDRAM may not be reset.
2) Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM operation will not be guaranteed until it is reset asserting RESET_n signal LOW.
3) RESET is destructive to data contents.
4) No slope reversal(ringback) requirement during its level transition from Low to High.
5) This definition is applied only “Reset Procedure at Power Stable”.
6) Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings.
7) Undershoot might occur. It should be limited by Absolute Maximum DC Ratings.
Figure 10. RESET_n Input Slew Rate Definition
- 25 -
Rev. 1.0
datasheet

12.7 AC and DC Logic Input Levels for DQS Signals

12.7.1 Differential signal definition

DDR4 SDRAMRegistered DIMM
Figure 11. Definition of differential DQS Signal AC-swing Level

12.7.2 Differential swing requirements for DQS (DQS_t - DQS_c)

[Table 17] Differential AC and DC Input Levels for DQS
DDR4-1600, 1866,
Symbol Parameter
VIHDiffPeak VIH.DIFF.Peak Voltage 186 Note2 160 Note2 150 Note2 145 Note2 mV 1
VILDiffPeak VIL.DIFF.Peak Voltage Note2 -186 Note2 -160 Note2 -150 Note2 -145 mV 1
NOTE :
1) Used to define a differential signal slew-rate.
2) These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective limits Overshoot, Undershoot Specification for single-ended signals.
2133
Min Max Min Max Min Max Min Max
DDR4-2400 DDR4-2666
DDR4-2933
Unit Note
- 26 -
Loading...
+ 58 hidden pages