Philips Semiconductors Product specification
N-channel TrenchMOS transistor IRF530N
FEATURES SYMBOL QUICK REFERENCE DATA
• ’Trench’ technology
• Low on-state resistance V
d
= 100 V
DSS
• Fast switching
• Low thermal resistance I
g
s
R
DS(ON)
= 17 A
D
≤ 110 mΩ
GENERAL DESCRIPTION PINNING SOT78 (TO220AB)
N-channel enhancement mode PIN DESCRIPTION
field-effect power transistor in a
plastic envelope using ’trench’ 1 gate
technology.
2 drain
Applications:-
• d.c. to d.c. converters 3 source
• switched mode power supplies
tab drain
The IRF530N is supplied in the
SOT78 (TO220AB) conventional
leaded package.
tab
drain
123
gate source
drain
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
DSS
V
DGR
V
GS
I
D
Drain-source voltage Tj = 25 ˚C to 175˚C - 100 V
Drain-gate voltage Tj = 25 ˚C to 175˚C; RGS = 20 kΩ - 100 V
Gate-source voltage - ± 20 V
Continuous drain current Tmb = 25 ˚C; VGS = 10 V - 17 A
Tmb = 100 ˚C; VGS = 10 V - 12 A
I
DM
P
D
Tj, T
Pulsed drain current Tmb = 25 ˚C - 68 A
Total power dissipation Tmb = 25 ˚C - 79 W
Operating junction and - 55 175 ˚C
stg
storage temperature
AVALANCHE ENERGY LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
E
AS
I
AS
Non-repetitive avalanche Unclamped inductive load, IAS = 7.8 A; - 150 mJ
energy tp = 300 µs; Tj prior to avalanche = 25˚C;
VDD ≤ 25 V; RGS = 50 Ω; VGS = 10 V; refer
to fig:14
Peak non-repetitive - 17 A
avalanche current
August 1999 1 Rev 1.100
Philips Semiconductors Product specification
N-channel TrenchMOS transistor IRF530N
THERMAL RESISTANCES
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
R
th j-mb
R
th j-a
ELECTRICAL CHARACTERISTICS
Tj= 25˚C unless otherwise specified
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
(BR)DSS
V
GS(TO)
R
DS(ON)
g
fs
I
GSS
I
DSS
Q
g(tot)
Q
gs
Q
gd
t
d on
t
r
t
d off
t
f
L
d
L
d
L
s
C
iss
C
oss
C
rss
Thermal resistance junction - - 1.9 K/W
to mounting base
Thermal resistance junction SOT78 package, in free air - 60 - K/W
to ambient
Drain-source breakdown VGS = 0 V; ID = 0.25 mA; 100 - - V
voltage Tj = -55˚C 89 - - V
Gate threshold voltage VDS = VGS; ID = 1 mA 2 3 4 V
Tj = 175˚C 1 - - V
Tj = -55˚C - 6 V
Drain-source on-state VGS = 10 V; ID = 9 A - 80 110 mΩ
resistance Tj = 175˚C - - 275 mΩ
Forward transconductance VDS = 25 V; ID = 9 A 6.4 11 - S
Gate source leakage current VGS = ± 20 V; VDS = 0 V - 10 100 nA
Zero gate voltage drain VDS = 100 V; VGS = 0 V - 0.05 10 µA
current VDS = 80 V; VGS = 0 V; Tj = 175˚C - - 250 µA
Total gate charge ID = 9 A; V
= 80 V; VGS = 10 V - - 40 nC
DD
Gate-source charge - - 5.6 nC
Gate-drain (Miller) charge - - 19 nC
Turn-on delay time VDD = 50 V; RD = 2.7 Ω;-6-ns
Turn-on rise time VGS = 10 V; RG = 5.6 Ω -36-ns
Turn-off delay time Resistive load - 18 - ns
Turn-off fall time - 12 - ns
Internal drain inductance Measured tab to centre of die - 3.5 - nH
Internal drain inductance Measured from drain lead to centre of die - 4.5 - nH
(SOT78 package only)
Internal source inductance Measured from source lead to source - 7.5 - nH
bond pad
Input capacitance VGS = 0 V; VDS = 25 V; f = 1 MHz - 633 - pF
Output capacitance - 103 - pF
Feedback capacitance - 61 - pF
REVERSE DIODE LIMITING VALUES AND CHARACTERISTICS
Tj = 25˚C unless otherwise specified
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
I
S
I
SM
V
SD
t
rr
Q
rr
August 1999 2 Rev 1.100
Continuous source current - - 17 A
(body diode)
Pulsed source current (body - - 68 A
diode)
Diode forward voltage IF = 17 A; VGS = 0 V - 0.92 1.2 V
Reverse recovery time IF = 17 A; -dIF/dt = 100 A/µs; - 55 - ns
Reverse recovery charge VGS = 0 V; VR = 25 V - 135 - nC
Philips Semiconductors Product specification
N-channel TrenchMOS transistor IRF530N
Normalised Power Derating, PD (%)
100
90
80
70
60
50
40
30
20
10
0
0 25 50 75 100 125 150 175
Mounting Base temperature, Tmb (C)
Fig.1. Normalised power dissipation.
PD% = 100⋅PD/P
Normalised Current Derating, ID (%)
100
90
80
70
60
50
40
30
20
10
0
0 25 50 75 100 125 150 175
Mounting Base temperature, Tmb (C)
D 25 ˚C
= f(Tmb)
Fig.2. Normalised continuous drain current.
ID% = 100⋅ID/I
= f(Tmb); conditions: VGS ≥ 10 V
D 25 ˚C
Transient thermal impedance, Zth j-mb (K/W)
10
D = 0.5
1
0.2
0.1
0.1
0.01
0.05
0.02
single pulse
1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00
Pulse width, tp (s)
P
D
tp
D = tp/T
T
Fig.4. Transient thermal impedance.
Z
= f(t); parameter D = tp/T
th j-mb
Drain Current, ID (A)
20
18
Tj = 25 C
16
14
12
10
8
6
4
2
0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
VGS = 10V
Drain-Source Voltage, VDS (V)
8 V
4.6 V
6 V
5.4 V
5.2 V
5 V
4.8 V
4.4 V
Fig.5. Typical output characteristics, Tj = 25 ˚C
ID = f(VDS)
.
Peak Pulsed Drain Current, IDM (A)
100
RDS(on) = VDS/ ID
tp = 10 us
10
D.C.
1
0.1
1 10 100 1000
Drain-Source Voltage, VDS (V)
100 us
1 ms
10 ms
100 ms
Fig.3. Safe operating area. Tmb = 25 ˚C
ID & IDM = f(VDS); IDM single pulse; parameter t
p
Drain-Source On Resistance, RDS(on) (Ohms)
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
4.8V
4.6V
0
0 2 4 6 8 101214161820
5.2 V
5 V
Drain Current, ID (A)
Tj = 25 C
5.4 V
6V
VGS = 10V
Fig.6. Typical on-state resistance, Tj = 25 ˚C
R
= f(ID)
DS(ON)
8 V
.
August 1999 3 Rev 1.100