Modes of Operation5
External Signals and Connections5
X100 (RF_in)5
X101 (RF_out)5
X500 to Junction Box (D25)5
DC Characteristics6
Supply Voltages and Power Consumption6
Control Signals6
AC Characteristics6
Tx Input from Phone6
Tx Output to Antenna6
Power Levels7
Power Levels Tolerance7
Spurious Signals at Antenna Connector X1007
Standby State7
Transmit State7
TXC Power Level Control Signal7
VC Booster Enable8
RX Branch from X100 to X1018
Functional Description8
General8
HFJ and Booster8
Booster8
I/O Map EEPROM Contents9
Circuit Description9
Receiver Path9
Original, 09/94Page 3
Page 4
Booster Kit BSH–1
Technical Documentation
Transmitter Path9
RF Circuits9
Power Level Control Circuit10
Transmitter Enable Circuit10
Power–off Circuit10
Watchdog Truth Table10
Supply Voltage Circuits11
HOOK/SDA Buffering11
Parts List15
Assembly Parts21
The Booster Kit comprises the following main items: Booster BSH–1;
Mounting Bracket MBM–3; Front Cable SCE–2; Extension Cable SCE–3;
and RF Extension Cable XRH–1. The Booster Kit upgrades the signal
output level of the phone to that of a full–powered mobile ie approx. 3W.
Note that only the Booster unit is covered in this booklet; the three cables
and the mounting bracket are included under non–serviceable
accessories.
Technical Specifications
Modes of Operation
With power off, only the VBAT supply (+12 V) is available; the VBAT
supply feeds the final amplifier stage.
Booster Kit BSH–1
With power on, mains switch (V218) is conducting, all voltages (+12 V, +8
V, +5 V) are on.
With the transmitter on, all voltages are on and the RF level is detected
from an input sense circuit, hence the TX control voltage to the power
amplifier primary stage is also switched on.
External Signals and Connections
X100 (RF_in)RF connector in
X101 (RF_out)RF connector out
X500 to Junction Box (D25)
PinNameDescription
1HOOK OUTHook line from hook–switch
3, 17GNDSupply ground (–)
4, 16+VBATSupply voltage from vehicle battery (+)
6VCHFJ supply voltage to HP, used to carry
”power_on” command to booster
11TXI/SCLEEPROM clock line in startup, transmitter error
line
18HOOK/SDAEEPROM data line from HFJ box startup, hook
line to HFJ.
23TXCPulse Width Modulated (PWM) power level
control from phone to booster.
24SGNDSignal ground to HFJ box.
Original, 09/94Page 5
Page 6
Booster Kit BSH–1
P
Level
Technical Documentation
DC Characteristics
Supply Voltages and Power Consumption
SignalMin,TypeMax.UnitNotes
+12V1.01.21.5A dcMaximum
+8V202530mA dc
+5V5710mA dc
Control Signals
SignalPinNotes
TXCX500/23TX power level control. HP control of booster gain.
Value is fed to booster by PWM signal. Line is taken
from processor port P92/PW1(pin 63) to bottom
connector J1/2
After Sales
ower
HOOKX500/18HOOK line to HFJ/EEPROM serial dataline, line is
acting as dateline during power up sequence and rest
of time it is a HOOK line.
TXI/SCLX500/11Transmitter error line/EEPROM serial clock line. TXI
indicates if the transmitter of the booster is working
properly (”0” means transmitter error and ”1” means no
transmitter error). During power up sequence the line is
reserved for EEPROM serial clock.
AC Characteristics
Tx Input from Phone
TypeAnalogue radio frequency signal
Frequency range872 – 905 MHz
Nominal Level34.5dBm
Tolerance
Tx Output to Antenna
Type
Analogue radio frequency signal
Frequency range872 – 905 MHz
Nominal Level34.5dBm
Tolerance
TypePWM
LevelCMOS
Frequency4.8 kHz
Load impedance>50k
Number of duty
cycle steps:
<–36 dBm
255
Original, 09/94Page 7
Page 8
Booster Kit BSH–1
VC Booster Enable
Typedc voltage
After Sales
Technical Documentation
Level PWR ON
PWR OFF
Load impedance>10k
RX Branch from X100 to X101
Frequency range917 to 950MHz
Gain ( typical)6dB
Gain (minimum)3.5dB
Noise Figure (typical)5 dB
7V to 12V
0V to 1V
Functional description
General
When the HF Junction box (HFJ) is connected and operational its output
line designated VC (+12 V d.c.) provides the power_on command to the
RF booster. The booster operates as follows.
HFJ and Booster
Booster
After the HFJ is turned on, it first checks whether the booster is connected
or not. This is done by reading the contents of the assumed booster
EEPROM. If the EEPROM contents identification part is recognized, the
HFJ sends an initialization message which indicates to the phone that the
HFJ and the booster are connected. The RSSI and power level
compensation values are also sent, together with the initialization
message. Following the initialization message, the HFJ reads the
TXI/SCL line after a set time period.
Before the power_on command is enabled, only the mains power switch is
operational. When the booster receives the power_on command, operation
is as follows – the mains power switch starts to conduct and +12 V is fed to
the +8 V regulator . The booster is ready for normal operation. Incoming TXC
(transmitter control, PWM) is initially fed through a CMOS Buffer D300 and
then converted to a d.c. level. This d.c. level is fed to a comparator/driver
which forms part of the RF amplifier feedback loop. The comparator/driver
controls the gain of the RF amplifier.
High RF output at low RF input, or vice versa, signifies a malfunction.
Mains power will be turned off by HFJ; mains power will be turned on
again only if the power_on command is repeated (low to high edge
transition).
Original, 09/94Page 8
Page 9
After Sales
Technical Documentation
I/O Map EEPROM Contents
The first sixteen (16) bytes carry the RF booster identification part (text
string ” RF booster 1.0 ”), the next ten (10) bytes carry power level
compensation values and the last ten (10) bytes, RSSI compensation
values.
When HFJ wants to read the contents of EEPROM, it has to disable the
HOOK/SDA and TXI/SCL lines first. After 10 ms, read operation the lines
will be back to normal.
Circuit Description
Receiver Path
The receiver signal path consists of two bandpass–filters, a RF amplifier
and its biasing circuit.
Booster Kit BSH–1
The RF signal from antenna connector X100 is received via RX filter
Z102. The signal is then amplified by V100. The amplified signal is then
fed through duplex filter Z105 to connector X101. Impedance matching
between V100 and the duplex filter is achieved with microstrip Z103 /
Z104.
Transmitter Path
RF Circuits
The fixed–level RF signal from the phone is applied to connector X101
before being fed through a duplex filter Z105. The filtered signal is fed
through an attenuator, comprising resistors R200, R201, R202 and R203,
to the input of a power amplifier hybrid N200. The hybrid, which is
controlled by the primary stage supply voltage, amplifies the signal to the
desired level. The hybrid is followed by a directional coupler, which is
needed for power control circuit feedback. Finally, the signal is fed
through TX filter Z105 to antenna connector X100.
Original, 09/94Page 9
Page 10
Booster Kit BSH–1
Power Level Control Circuit
The pulse–width modulated control signal TXC is initially fed through a
CMOS buffer D300 before being converted into a d.c. voltage by an RC
filter network comprising R301, R302, C300 and C301. This analogue
signal is fed through rectifier diode V603, and then to the non–inverting
input of a comparator N300. A voltage proportional to the output power is
rectified from the directional coupler (V202) by biased Schottky diode
V201. The rectified voltage is fed through R309 to the inverting input of
the comparator N300. The output signal from this comparator adjusts the
primary stage supply voltage of power hybrid N200 until both inputs of the
comparator have equal voltage levels. This ensures the power control
loop maintains the output power precisely at the desired value.
Transmitter Enable Circuit
The booster receives the transmitter enable command from the incoming
RF signal, which is rectified by Schottky diode pair V200. The rectified
signal is fed to the non–inverting input of a comparator N300. The
inverting input of the comparator has a fixed reference voltage, +4 V, so
when the rectified signal is higher than the reference the output of the
comparator goes high and the transmitter is switched on by transistors
V600 and V601.
After Sales
Technical Documentation
Power–off Circuit
The booster unit is also provided with a ’watchdog’ function, which turns
off all supply voltages when a malfunction is detected. Comparator N300
detects the incoming RF signal and comparator N300 detects the output
signal of the booster. Both comparator output signals are fed through
voltage dividers to an EXOR time delay (approx 3s) circuit comprising
R511, C606 gate D300. The D300 output signal is fed via comparator
N400, which forms output TXI which in turn is fed to HFJ.
If TXI goes low, the HJF executes power off, i.e. removes VC. This, in
turn makes mains switch V218 non–conductive ensuring all supply
voltages disappear. When VC is removed, V219 becomes
non–conductive, which in turn makes V501 conduct. V501 discharges
C606 so that restarting the booster is possible when VC is reapplied.
Watchdog Truth Table
Input DetectorOutput DetectorStatusTXI
1
0
1
0
1
1
0
0
OK
Error
Error
OK
1
0
0
1
Original, 09/94Page 10
Page 11
After Sales
Technical Documentation
Supply Voltage Circuits
The supply from the vehicle battery is applied to connector X500. The
voltage is first fed through a fuse, followed by suppressor V212 which
protects the booster from overvoltages and transients. The voltage is
then fed through a filter (L210, C213) eliminating potential interference
generated by a vehicle’s electrical system (e.g. alternator). Following the
filter is a mains power switch V218, controlled by the PWRON signal via
transistor V219. After the switch there is a regulator which feeds an 8 V
supply to the main parts of the booster including N601, and the 5 V
regulator which provides the supply for D300, D500 and some biasing
circuits.
HOOK/SDA Buffering
The HOOK/SDA–line is normally used for carrying the
ONHOOK/OFFHOOK information from mount connector MCH–3 to the
CPU of the HFJ. During startup this line is also needed to carry the serial
data from EEPROM to the HFJ. During this operation the normal
operation of the HOOK/SDA–line must be disabled.
Booster Kit BSH–1
The TXI/SCL–line carries the serial clock from HFJ to EEPROM. When
no information is passed to/from EEPROM, TXI/SCL has a potential of
8 V. When data is being transferred, the potential varies between 0 V and
8 V. If the watchdog circuit finds a malfunction in the transmitter, TXI/SCL
goes permanently to 0 V, which inhibits the power–off cycle.
The TXI/SCL line is fed via R509 and C502 to pin 13 of D300. Normally it
has a potential of approx. 3.7 V, which is considered a logic 1 signal.
When pulses appear in the TXI/SCL–line, they loose their d.c. value in
capacitor C502. The positive part of the a.c. signal is grounded via V602
and R528. The negative part reduces the voltage in pin 13 to 1.2 V, which
is considered a logic 0 signal.
Since pin 12 of D300 is connected directly to 5V, the output of D300 rises
high during negative cycles. Output is charging via V505, R500 and
capacitor C503. V505 is also preventing the output of D300 from
discharging C503, therefore the voltage over C503 is gradually
approaching a value close to 5 V.
When the mount connector is ONHOOK, pin 10 of D300 is pulled to
ground via R501 (33 k). However, when TXI/SCL–pulses appear, the
voltage in pin 10 rises to a logic 1. Pin 9 has a pull–up to 5 V, therefore
the output drops to 0. This in turn pulls pin 10 of the open collector type
op.amp N400, to 0 V. Pin 11 of N400 is connected to 2.5 V potential and
therefore the output of N400 (pin 13) will go to Hi–Z mode, which in turn
allows the SDA–data from EEPROM to be transferred to HFJ.
Original, 09/94Page 11
Page 12
Booster Kit BSH–1
Figure 1: Block Diagram
After Sales
Technical Documentation
Original, 09/94Page 12
Page 13
After Sales
Technical Documentation
Booster Kit BSH–1
Figure 2: Component Layout Diagram (side 1) Version 05
9853883
Original, 09/94Page 13
Page 14
Booster Kit BSH–1
After Sales
Technical Documentation
Figure 3: Component Layout Diagram (side 2) Version 05
9853883
Original, 09/94Page 14
Page 15
After Sales
Technical Documentation
Booster Kit BSH–1
Parts List6E 0200100
ITEMCODEDESCRIPTIONVALUETYPE
R2011411388 Chip resistor33 5 % 0.12 W 1206
R2021411429 Chip resistor47 5 % 0.12 W 1206
R2001411490 Chip resistor100 5 % 0.12 W 1206
R2031411490 Chip resistor100 5 % 0.12 W 1206
R5051411684 Chip resistor1.0 k5 % 0.12 W 1206
R5061411684 Chip resistor1.0 k5 % 0.12 W 1206
R5071411684 Chip resistor1.0 k5 % 0.12 W 1206
R2061412198 Chip resistor56 5 % 0.063 W 0805
R1041412208 Chip resistor12 5 % 0.063 W 0805
R5211412303 Chip resistor330 5 % 0.063 W 0805
R1031412310 Chip resistor470 5 % 0.063 W 0805
R1051412310 Chip resistor470 5 % 0.063 W 0805
R3041412335 Chip resistor1.0 k5 % 0.063 W 0805
R5001412335 Chip resistor1.0 k5 % 0.063 W 0805
R5271412409 Chip resistor1.5 k5 % 0.063 W 0805
R1011412416 Chip resistor2.2 k5 % 0.063 W 0805
R5281412416 Chip resistor2.2 k5 % 0.063 W 0805
R3131412423 Chip resistor4.7 k5 % 0.063 W 0805
R5081412423 Chip resistor4.7 k5 % 0.063 W 0805
R2121412430 Chip resistor10 k5 % 0.063 W 0805
R2171412430 Chip resistor10 k5 % 0.063 W 0805
R3001412430 Chip resistor10 k5 % 0.063 W 0805
R3071412430 Chip resistor10 k5 % 0.063 W 0805
R4001412430 Chip resistor10 k5 % 0.063 W 0805
R4031412430 Chip resistor10 k5 % 0.063 W 0805
R4081412430 Chip resistor10 k5 % 0.063 W 0805
R5021412430 Chip resistor10 k5 % 0.063 W 0805
R5041412430 Chip resistor10 k5 % 0.063 W 0805
R5161412430 Chip resistor10 k5 % 0.063 W 0805
R5171412430 Chip resistor10 k5 % 0.063 W 0805
R5191412430 Chip resistor10 k5 % 0.063 W 0805
R5201412430 Chip resistor10 k5 % 0.063 W 0805
R5231412430 Chip resistor10 k5 % 0.063 W 0805
R5241412430 Chip resistor10 k5 % 0.063 W 0805
R5031412430 Chip resistor10 k5 % 0.063 W 0805
R5251412430 Chip resistor10 k5 % 0.063 W 0805
R5341412430 Chip resistor10 k5 % 0.063 W 0805
R3011412511 Chip resistor18 k5 % 0.063 W 0805
Original, 09/94Page 15
Page 16
Booster Kit BSH–1
Technical Documentation
ITEMCODEDESCRIPTIONVALUETYPE
R3021412511 Chip resistor18 k5 % 0.063 W 0805
R4101412536 Chip resistor22 k5 % 0.063 W 0805
R5331412536 Chip resistor22 k5 % 0.063 W 0805
R3081412729 Chip resistor33 k5 % 0.063 W 0805
R5011412729 Chip resistor33 k5 % 0.063 W 0805
R2071413635 Chip resistor100 k5 % 0.063 W 0805
R2161413635 Chip resistor100 k5 % 0.063 W 0805
R3101413635 Chip resistor100 k5 % 0.063 W 0805
R3111413635 Chip resistor100 k5 % 0.063 W 0805
R3121413635 Chip resistor100 k5 % 0.063 W 0805
R4011413635 Chip resistor100 k5 % 0.063 W 0805
R4021413635 Chip resistor100 k5 % 0.063 W 0805
R4091413635 Chip resistor100 k5 % 0.063 W 0805
R5121413635 Chip resistor100 k5 % 0.063 W 0805
R5131413635 Chip resistor100 k5 % 0.063 W 0805
R5141413635 Chip resistor100 k5 % 0.063 W 0805
R5301413635 Chip resistor100 k5 % 0.063 W 0805
R5311413635 Chip resistor100 k5 % 0.063 W 0805
R5221413642 Chip resistor56 k5 % 0.063 W 0805
R5261413709 Chip resistor150 k5 % 0.063 W 0805
R5111413804 Chip resistor1.0 M5 % 0.063 W 0805
R1021413924 Chip resistor220 5 % 0.063 W 0805
R3141413924 Chip resistor220 5 % 0.063 W 0805
R5181414011 Chip resistor1.2 k5 % 0.063 W 0805
R2051414029 Chip resistor3.3 k5 % 0.063 W 0805
R5091414029 Chip resistor3.3 k5 % 0.063 W 0805
R2081414036 Chip resistor8.2 k5 % 0.063 W 0805
R3091414036 Chip resistor8.2 k5 % 0.063 W 0805
R1001414043 Chip resistor1.8 k5 % 0.063 W 0805
R2041414406 Chip resistor5.6 k5 % 0.063 W 0805
C3002309517 Ceramic cap.100 n10 % 50 V 1206
C3012309517 Ceramic cap.100 n10 % 50 V 1206
C6032309517 Ceramic cap.100 n10 % 50 V 1206
C2002310336 Ceramic cap.18 p5 % 50 V 0805
C2012310336 Ceramic cap.18 p5 % 50 V 0805
C2052310375 Ceramic cap.39 p5 % 50 V 0805
C2062310375 Ceramic cap.39 p5 % 50 V 0805
C6102310375 Ceramic cap.39 p5 % 50 V 0805
C1002310544 Ceramic cap.1.0 n5 % 50 V 0805
C1012310544 Ceramic cap.1.0 n5 % 50 V 0805
After Sales
Original, 09/94Page 16
Page 17
After Sales
Technical Documentation
ITEMCODEDESCRIPTIONVALUETYPE
R2011411388 Chip resistor33 5 % 0.12 W 1206
R2021411429 Chip resistor47 5 % 0.12 W 1206
R2001411490 Chip resistor100 5 % 0.12 W 1206
R2031411490 Chip resistor100 5 % 0.12 W 1206
R5051411684 Chip resistor1.0 k5 % 0.12 W 1206
R5061411684 Chip resistor1.0 k5 % 0.12 W 1206
R5071411684 Chip resistor1.0 k5 % 0.12 W 1206
R2061412198 Chip resistor56 5 % 0.063 W 0805
R1041412208 Chip resistor12 5 % 0.063 W 0805
R5211412303 Chip resistor330 5 % 0.063 W 0805
R1031412310 Chip resistor470 5 % 0.063 W 0805
R1051412310 Chip resistor470 5 % 0.063 W 0805
R3041412335 Chip resistor1.0 k5 % 0.063 W 0805
R5001412335 Chip resistor1.0 k5 % 0.063 W 0805
R5271412409 Chip resistor1.5 k5 % 0.063 W 0805
R1011412416 Chip resistor2.2 k5 % 0.063 W 0805
R5281412416 Chip resistor2.2 k5 % 0.063 W 0805
R3131412423 Chip resistor4.7 k5 % 0.063 W 0805
R5081412423 Chip resistor4.7 k5 % 0.063 W 0805
R2121412430 Chip resistor10 k5 % 0.063 W 0805
R2171412430 Chip resistor10 k5 % 0.063 W 0805
R3001412430 Chip resistor10 k5 % 0.063 W 0805
R3071412430 Chip resistor10 k5 % 0.063 W 0805
R4001412430 Chip resistor10 k5 % 0.063 W 0805
R4031412430 Chip resistor10 k5 % 0.063 W 0805
R4081412430 Chip resistor10 k5 % 0.063 W 0805
R5021412430 Chip resistor10 k5 % 0.063 W 0805
R5041412430 Chip resistor10 k5 % 0.063 W 0805
R5161412430 Chip resistor10 k5 % 0.063 W 0805
R5171412430 Chip resistor10 k5 % 0.063 W 0805
R5191412430 Chip resistor10 k5 % 0.063 W 0805
R5201412430 Chip resistor10 k5 % 0.063 W 0805
R5231412430 Chip resistor10 k5 % 0.063 W 0805
R5241412430 Chip resistor10 k5 % 0.063 W 0805
R5031412430 Chip resistor10 k5 % 0.063 W 0805
R5251412430 Chip resistor10 k5 % 0.063 W 0805
R5341412430 Chip resistor10 k5 % 0.063 W 0805
R3011412511 Chip resistor18 k5 % 0.063 W 0805
R3021412511 Chip resistor18 k5 % 0.063 W 0805
R4101412536 Chip resistor22 k5 % 0.063 W 0805
R3081412729 Chip resistor33 k5 % 0.063 W 0805
R5011412729 Chip resistor33 k5 % 0.063 W 0805
R5331412729 Chip resistor33 k5 % 0.063 W 0805
R2071413635 Chip resistor100 k5 % 0.063 W 0805
Booster Kit BSH–1
Original, 09/94Page 17
Page 18
Booster Kit BSH–1
Technical Documentation
ITEMCODEDESCRIPTIONVALUETYPE
R2161413635 Chip resistor100 k5 % 0.063 W 0805
R3101413635 Chip resistor100 k5 % 0.063 W 0805
R3111413635 Chip resistor100 k5 % 0.063 W 0805
R3121413635 Chip resistor100 k5 % 0.063 W 0805
R4011413635 Chip resistor100 k5 % 0.063 W 0805
R4021413635 Chip resistor100 k5 % 0.063 W 0805
R4091413635 Chip resistor100 k5 % 0.063 W 0805
R5121413635 Chip resistor100 k5 % 0.063 W 0805
R5131413635 Chip resistor100 k5 % 0.063 W 0805
R5141413635 Chip resistor100 k5 % 0.063 W 0805
R5301413635 Chip resistor100 k5 % 0.063 W 0805
R5311413635 Chip resistor100 k5 % 0.063 W 0805
R5221413642 Chip resistor56 k5 % 0.063 W 0805
R5261413709 Chip resistor150 k5 % 0.063 W 0805
R5111413804 Chip resistor1.0 M5 % 0.063 W 0805
R1021413924 Chip resistor220 5 % 0.063 W 0805
R3141413924 Chip resistor220 5 % 0.063 W 0805
R5181414011 Chip resistor1.2 k5 % 0.063 W 0805
R2051414029 Chip resistor3.3 k5 % 0.063 W 0805
R5091414029 Chip resistor3.3 k5 % 0.063 W 0805
R2081414036 Chip resistor8.2 k5 % 0.063 W 0805
R3091414036 Chip resistor8.2 k5 % 0.063 W 0805
R1001414043 Chip resistor1.8 k5 % 0.063 W 0805
R2041414406 Chip resistor5.6 k5 % 0.063 W 0805
C3002309517 Ceramic cap.100 n10 % 50 V 1206
C3012309517 Ceramic cap.100 n10 % 50 V 1206
C6032309517 Ceramic cap.100 n10 % 50 V 1206
C2002310336 Ceramic cap.18 p5 % 50 V 0805
C2012310336 Ceramic cap.18 p5 % 50 V 0805
C2052310375 Ceramic cap.39 p5 % 50 V 0805
C2062310375 Ceramic cap.39 p5 % 50 V 0805
C6102310375 Ceramic cap.39 p5 % 50 V 0805
C1002310544 Ceramic cap.1.0 n5 % 50 V 0805
C1012310544 Ceramic cap.1.0 n5 % 50 V 0805
C1022310544 Ceramic cap.1.0 n5 % 50 V 0805
C1042310544 Ceramic cap.1.0 n5 % 50 V 0805
C1052310544 Ceramic cap.1.0 n5 % 50 V 0805
C1062310544 Ceramic cap.1.0 n5 % 50 V 0805
C3022310544 Ceramic cap.1.0 n5 % 50 V 0805
C5002310544 Ceramic cap.1.0 n5 % 50 V 0805
C6092310713 Ceramic cap.2.2 n20 % 50 V 0805
C2022310752 Ceramic cap.10 n20 % 50 V 0805
C2032310752 Ceramic cap.10 n20 % 50 V 0805
C5022310752 Ceramic cap.10 n20 % 50 V 0805
C3062310791 Ceramic cap.33 n20 % 50 V 0805
C5012310791 Ceramic cap.33 n20 % 50 V 0805
After Sales
Original, 09/94Page 18
Page 19
After Sales
Technical Documentation
ITEMCODEDESCRIPTIONVALUETYPE
C5032310791 Ceramic cap.33 n20 % 50 V 0805
C5202310791 Ceramic cap.33 n20 % 50 V 0805
C2132501605 Electrol. cap.100 m20 % 35 V RM3.5
C2162503803 Electrol. cap.1000 m20 % 25 V H
C2042604110 Tantalum cap.10 m20 % 25 V 7.3x4.4x2.8
C3032604209 Tantalum cap.1.0 m20 % 16 V 3.2x1.6x1.8
C4002604209 Tantalum cap.1.0 m20 % 16 V 3.2x1.6x1.8
C4012604209 Tantalum cap.1.0 m20 % 16 V 3.2x1.6x1.8
C6072604209 Tantalum cap.1.0 m20 % 16 V 3.2x1.6x1.8
C6082604209 Tantalum cap.1.0 m20 % 16 V 3.2x1.6x1.8
C6062604287 Tantalum cap.3.3 m20 % 16 V 3.5x2.8x2.1
C6042604431 Tantalum cap.10 m20 % 16 V 6.0x3.2x2.8
C6052604431 Tantalum cap.10 m20 % 16 V 6.0x3.2x2.8
L2013606921 Choke10..220 MHz2.5 turns
L2103607898 Choke2 A900 mH/1 kHzDH–TS582
L2003608206 Chip coil100 n10 % 1206
V2124100218 Trans. supr.100 V 30A/40 msLDP24A
V2004100567 Sch. diode x 2BAS70–0470 V 15 mA SERSOT23
V2014100567 Sch. diode x 2BAS70–0470 V 15 mA SERSOT23
V6034100567 Sch. diode x 2BAS70–0470 V 15 mA SERSOT23
V5064106769 Zener diodeBZX845 % 4.7 V 0.3 W SOT23
V5074106769 Zener diodeBZX845 % 4.7 V 0.3 W SOT23
V2154107027 Zener diodeBZX845 % 16 V 0.3 W SOT23
V5034108639 Diode x 2BAS2875 V 250 mA SOT143
V5044108639 Diode x 2BAS2875 V 250 mA SOT143
V5054108639 Diode x 2BAS2875 V 250 mA SOT143
V6024108639 Diode x 2BAS2875 V 250 mA SOT143
V2144200603 TransistorBCX17pnp 45 V 500 mA SOT23
V2194200836 TransistorBCX19npn 50 V 0.5 A SOT23
V2024200909 TransistorBC858B/BCW30pnp 30 V 100 mA
V6004200909 TransistorBC858B/BCW30pnp 30 V 100 mA
V5014200917 TransistorBC848B/BCW32npn 30 V 100 mA
V6014200917 TransistorBC848B/BCW32npn 30 V 100 mA
V2184209990 MosFetIRF9530 p–ch 10 V 12 A TO220
V1004210010 TransistorBFP183npn 12 V 65 mA SOT143
N6014301062 IC, regulatorLP2951ACSO8S
D3004301217 IC, 4xexor 2 input74HC86SO14
D5004303077 IC, EEPROM128x8 bit DIL8
N3004305733 IC, 4 x compLM2901SO14
N4004305733 IC, 4 x compLM2901SO14
N6004306287 IC, regulator78L08CSO8
N2004350012 IC, pow.amp.3 WETACS