Intel 80960HT, 80960HD, 80960HA User Manual

80960HA/HD/HT 32-Bit High-Performance Superscalar Pr ocessor
Datasheet
Product Features
32-Bit Parallel Architecture
—Load/Store Architecture —Sixteen 32-Bit Global Registers —Sixteen 32-Bit Local Registers —1.28 Gbyte Internal Bandwidth
(80 MHz)
—On-Chip Register Cache
Processor Core Clock
—80960HA is 1x Bus Clock —80960HD is 2x Bus Clock —80960HT is 3x Bus Clock
Binary Compatible with Other 80960
Processors
Issue Up To 150 Million Instructions per
Second
High-Performance On-Chip Storage
—16 Kbyte Four-Way Set-Associative
Instruction Cache
—8 Kbyte Four-Way Set-Associative Data
Cache
—2 Kbyte General Purpose RAM
Separate 128-Bit Internal Paths For
Instructions/Data
3.3 V Supply Voltage
—5 V Tolerant Inputs —TTL Compatible Outputs
Guarded Memory Unit
—Provides Memory Protection —User/Supervisor Read/Write/Execute
32-Bit Demultiplexed Burst Bus
—Per-Byte Parity Generation/Checking —Address Pipel ining Option —Fully Programmable W ait S tate Generator —Supports 8-, 16- or 32-Bit Bus Widths —160 Mbyte/s External Bandwidth
(40 MHz)
High-Speed Interrupt Controller
—Up to 240 External Interrupts —31 Fully Programmable Priori t ie s —Separate, Non-maskable Interrupt Pin
Dual On-Chip 32-Bit Timers
—Auto Reload Capability and One-Shot —CLKIN Prescaling, divided by 1, 2, 4 or 8 —JTAG Support - IEEE 1149.1 Compliant
Order Number: 272495-008
September 2002
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE F OR SUCH PRODUCTS, INTEL ASSUM ES NO LIABILITY WHATSOEVER, AND INTEL DISCL AIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING T O FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The 80960HA/HD/HT 32-Bit High-Performance Superscalar Processor may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com. Copyright © Intel Corporation, 2002 AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Connect, CT Media, Dialogic, DM3, EtherExpress,
ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, RemoteExpress, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of other s.
2 Datasheet
Contents
Contents
1.0 About This Document ...................................................................................................................9
2.0 Intel 80960Hx Processor...............................................................................................................9
2.1 The i960
®
Processor Family...............................................................................................10
2.2 Key 80960Hx Features.......................................................................................................10
2.2.1 Execution Architecture...........................................................................................10
2.2.2 Pipelined, Burst Bus ..............................................................................................10
2.2.3 On-Chip Caches and Data RAM.............................................. ....... ...... ....... ...... ....11
2.2.4 Priority Interrupt Controller.....................................................................................11
2.2.5 Guarded Memory Unit ...........................................................................................11
2.2.6 Dual Programmable Timers...................................................................................12
2.2.7 Processor Self Test ...............................................................................................12
2.3 Instruction Set Summary ....................................................................................................13
3.0 Package Information ...................................................................................................................14
3.1 Pin Descriptions..................................................................................................................15
3.2 80960Hx Mechanical Data..................................................................................................20
3.2.1 80960Hx PGA Pinout.............................................................................................20
3.2.2 80960Hx PQ4 Pinout.............................................................................................26
3.3 Package Thermal Specifications ........................................................................................31
3.4 Heat Sink Adhesives...........................................................................................................34
3.5 PowerQuad4 Plastic Package ............................................................................................34
3.6 Stepping Register Information............................................................................................34
3.7 Sources for Accessories .....................................................................................................36
4.0 Electrical Specifications.............................................................................................................37
4.1 Absolute Maximum Ratings................................................................................................37
4.2 Operating Conditions..........................................................................................................37
4.3 Recommended Connections ..............................................................................................38
4.4 VCC5 Pin Requirements (V
DIFF
) ........................................................................................38
4.5 VCCPLL Pin Requirements ................................................................................................39
4.6 DC Specifications ...............................................................................................................40
4.7 AC Specifications ..... .......................................................... ...... ....... ...... ....... ...... ....... ...... ....4 2
4.7.1 AC Test Conditions................................................................................................45
4.8 AC Timing Waveforms....................... ...... ....... ...... ...... ....... ...... ....... ...... ..............................46
5.0 Bus Waveforms ...........................................................................................................................54
5.1 80960Hx Boundary Scan Chain .........................................................................................84
5.2 Boundary Scan Description Language Example ................................................................88
Figures
1 80960Hx Block Diagram...............................................................................................................9
2 80960Hx 168-Pin PGA Pinout—View from Top (Pins Facing Down)........... ....... ...... ....... ...... ....20
3 80960Hx 168-Pin PGA Pinout—View from Bottom (Pins Facing Up) ........................................21
4 80960Hx 208-Pin PQ4 Pinout.....................................................................................................26
5 Measuring 80960Hx PGA Case Temperature............................................................................31
6 80960Hx Device Identification Register......................................................................................34
Datasheet 3
Contents
7 VCC5 Current-Limiting Resistor.................................................................................................38
8 AC Test Load............... ....... ...... ....... ...... ....... ...... ....... .......................................................... ...... .45
9 CLKIN Waveform........................................................................................................................46
10 Output Delay Waveform .............................................................................................................46
11 Output Delay Waveform .............................................................................................................46
12 Output Float Waveform ..............................................................................................................47
13 Input Setup and Hold Waveform ................................................................................................47
14 NMI, XINT7:0 Input Setup and Hold Waveform..........................................................................47
15 Hold Acknowledge Timings........................................................................................................48
16 Bus Backoff (BOFF) Timings......................................................................................................48
17 TCK Waveform...................................... ....... ...... ....... ...... ...... ....... ...... ....... ...... ...........................49
18 Input Setup and Hold Waveforms for T
BSIS1
and TBSIH1..........................................................49
19 Output Delay and Output Float for TBSOV1 and TBSOF1 ........................................................50
20 Output Delay and Output Float Waveform for TBSOV2 and TBSOF2 .......................................50
21 Input Setup and Hold Waveform for TBSIS2 and TBSIH2 .........................................................50
22 Rise and Fall Time Derating at 85 °C and Minimum VCC..........................................................51
23 I
CC
Active (Power Supply) vs. Frequency...................................................................................51
24 ICC Active (Thermal) vs. Frequency............................................................................................52
25 Output Delay or Hold vs. Load Capacitance ..............................................................................52
26 Output Delay vs. Temperature ................................................................................................... 53
27 Output Hold Times vs. Temperature ..........................................................................................53
28 Output Delay vs. VCC ................................................................................................................53
29 Cold Reset Waveform ................................................................................................................54
30 Warm Reset Waveform ..............................................................................................................55
31 Entering ONCE Mode.................................................................................................................56
32 Non-Burst, Non-Pipelined Requests without Wait States...........................................................57
33 Non-Burst, Non-Pipelined Read Request with Wait States ........................................................58
34 Non-Burst, Non-Pipelined Write Request with Wait States ........................................................59
35 Burst, Non-Pipelined Read Request without Wait States, 32-Bit Bus........................................60
36 Burst, Non-Pipelined Read Request with Wait States, 32-Bit Bus.............................................61
37 Burst, Non-Pipelined Write Request without Wait States, 32-Bit Bus ........................................62
38 Burst, Non-Pipelined Write Request with Wait States, 32-Bit Bus .............................................63
39 Burst, Non-Pipelined Read Request with Wait States, 16-Bit Bus.............................................64
40 Burst, Non-Pipelined Read Request with Wait States, 8-Bit Bus...............................................65
41 Non-Burst, Pipelined Read Request without Wait States, 32-Bit Bus ........................................66
42 Non-Burst, Pipelined Read Request with Wait States, 32-Bit Bus .............................................67
43 Burst, Pipelined Read Request without Wait States, 32-Bit Bus................................................68
44 Burst, Pipelined Read Request with Wait States, 32-Bit Bus.....................................................69
45 Burst, Pipelined Read Request with Wait States, 8-Bit Bus .......................................................70
46 Burst, Pipelined Read Request with Wait States, 16-Bit Bus.....................................................71
47 Using External READY...............................................................................................................72
48 Terminating a Burst with BTERM...............................................................................................73
49 BREQ and BSTALL Operation...................................................................................................74
50 BOFF Functional Timing. BOFF occurs during a burst or non-burst data cycle.........................75
51 HOLD Functional Timing ............................................................................................................76
52 LOCK Delays HOLDA Timing.....................................................................................................77
53 FAIL Functional Timing...............................................................................................................77
54 A Summary of Aligned and Unaligned Transfers for 32-Bit Regions..........................................78
55 A Summary of Aligned and Unaligned Transfers for 32-Bit Regions (Continued)......................79
56 A Summary of Aligned and Unaligned Transfers for 16-Bit Bus.................................................80
4 Datasheet
Contents
57 A Summary of Aligned and Unaligned Transfers for 8-Bit Bus...................................................81
58 Idle Bus Operation......................................................................................................................82
59 Bus States ..................................................................................................................................83
Tables
1 80960Hx Product Description.......................................................................................................9
2 Fail Codes For BIST (bit 7 = 1)...................................................................................................12
3 Remaining Fail Codes (bit 7 = 0)................................................................................................12
4 80960Hx Instruction Set .............................................................................................................13
5 80960HA/HD/HT Package Types and Speeds...........................................................................14
6 Pin Description Nomenclature....................................................................................................15
7 80960Hx Processor Family Pin Descriptions..............................................................................16
8 80960Hx 168-Pin PGA Pinout—Signal Name Order..................................................................22
9 80960Hx 168-Pin PGA Pinout—Pin Number Order ...................................................................24
10 80960Hx PQ4 Pinout—Signal Name Order................................................................................27
11 80960Hx PQ4 Pinout—Pin Number Order.................................................................................29
13 80960Hx 168-Pin PGA Package Thermal Characteristics .........................................................32
12 Maximum T
A
at Various Airflows in °C (PGA Package Only).....................................................32
15 80960Hx 208-Pin PQ4 Package Thermal Characteristics..........................................................33
14 Maximum T
A
at Various Airflows in °C (PQ4 Package Only)......................................................33
17 80960Hx Device ID Model Types...............................................................................................35
18 Device ID Version Numbers for Different Steppings...................................................................35
16 Fields of 80960Hx Device ID......................................................................................................35
19 Absolute Maximum Ratings........................................................................................................37
20 Operating Conditions..................................................................................................................37
21 V
DIFF
Specification for Dual Power Supply Requirements (3.3 V, 5 V) ......................................39
22 80960Hx DC Characteristics......................................................................................................40
23 80960Hx AC Characteristics.......................................................................................................42
25 80960Hx Boundary Scan Test Signal Timings ...........................................................................44
24 AC Characteristics Notes............................................................................................................44
26 80960Hx Boundary Scan Chain ............................. ...... ...... ....... .................................................84
Datasheet 5
Contents
Revision History
Date Revision History
September 2002 008
Formatted the datasheet in a new template. In “32-Bit Parallel Architecture” on page 1:
• Removed operating frequency of 16/32 (bus/core) from 80960HD.
• Removed operating frequency of 20/60 (bus/core) from 80960HT.
In
Table 5 “80960HA/HD/HT Package Types and Speeds” on page14:
• Removed core speed of 32 MHz and bus speed of 16 MHz, and order number A80960HD32-S-L2GG from the 168L PGA package, 80960HD device.
• Removed core speed of 60 MHz and bus speed of 20 MHz, and order number A80960HT60 from the 168L PGA package, 80960HT device.
• Removed core speed of 32 MHz and bus speed of 16 MHz, and order number FC80960HD32-S-L2GL from the 208L PQFP package, 80960HD device.
• Removed core speed of 60 MHz and bus speed of 20 MHz, and order number FC80960HT60-S-L2G2 from the 208L PQFP package, 80960HT device.
July 1998 007
In
“32-Bit Parallel Architecture” on page 1:
• Revised 1.2 Gbyte Internal Bandwidth (75 MHz) to 1.28 Gbyte Internal Bandwidth (80 MHz).
In
Section 3.0, “Package Information” on page 14:
• Added paragraph two and
Table 5 “80960HA/HD/HT Package Types
and Speeds” on page 14.
In
Table 7 “80960Hx Processor Family Pin Descriptions” on page 16:
• Corrected minor typeset and spacing errors.
• BREQ; Revised description.
• ONCE
; last sentence, changed ‘low’ to ‘high’.
• TDI and TMS; removed last sentence stating, “Pull this pin low when not in use.”
In
Figure 2 “80960Hx 168-Pin PGA Pinout—View from Top (Pins Facing
Down)” on page 20:
• Added insert package marking diagram.
In
Figure 4 “80960Hx 208-Pin PQ4 Pinout” on page 26:
• Added insert package marking diagram.
In
Table 10 “80960Hx PQ4 Pinout—Signal Name Order” on page 27:
• Corrected TDO (‘O’ was zero) and revised alphabetical ordering.
In
Table 11 “80960Hx PQ4 Pinout—Pin Number Order” on page 29:
• Corrected TDO (‘O’ was zero) and revised alphabetical ordering.
In
Section 4.1, “Absolute Maximum Ratings” on page 37:
• Revised V
CC
to VCC5 for Voltage on Other Pins with respect to VSS.
In
Section 4.5, “VCCPLL Pin Requirements” on page 39:
• Added section.
In
Table 22 “80960Hx DC Characteristics” on page 40:
• Added footnote (1) to I
LO
notes column for TDO pin.
• Added footnote (10) to CIN, C
OUT
and C
I/O
pin.
6 Datasheet
July 1998
(continued)
007
(continued)
In
Table 23 “80960Hx AC Characteristics” on page 42:
• Added overbars where required.
• Modified T
DVNH
to list separate specifications for 3.3 V and 5 V.
• Modified T
OV2
, T
OH2
and T
TVEL
to reflect specific 80960HA, 80960HD
and 80960HT values.
In
Figure 23 “ICC Active (Power Supply) vs. Frequency” on page 51:
• Changed ‘5’ to ‘0’ on the CLKIN Frequency axis.
In
Figure 49 “BREQ and BSTALL Operation” on page 74:
• Added figure and following text.
August 1997 006 Fixed several font and format issues.
Date Revision History
Contents
Datasheet 7
Contents
This page intentionally left blank.
8 Datasheet
Datasheet 9
1.0 About This Document
This document describes the parametric performance of Intel’s 80960Hx embedded superscalar microprocessors. Detailed descriptions for functional topics, other than parametric performance, are published in the i960
®
Hx Microprocessor User’s Guide (272484).
In this document, ‘80960Hx’ and ‘i960 Hx proce ssor’ refer to the products described in
Table 1.
Throughout this document, information that is specific to each is clearly indicated.
2.0 Intel 80960Hx Processor
The Intel 80960Hx processor provides new performance levels while maintaining backward compatibility (pin1 and software) with the i960 CA/CF processor. This newest member of the family of i960 32-bit, RISC-style, embedded processors allows customers to create scalable designs that meet multiple price and performance points. This is accomplished by pro vidin g processors that may run at the bus speed or faster using Intel’s clock multiplying technology (see
Table 1). The 80960Hx core is capable of issuing 150 million instructions per seco nd, using a
sophisticated instruction scheduler that allows the processor to sustain a throughput of two instructions every core clock, with a peak performance of three instructions per clock. The 80960Hx-series comprises three processo rs, which dif fer in the ratio of core clock s peed to external bus speed.
Figure 1. 80960Hx Block Diagram
Execution Unit
Programmable
Bus Controll er
Bus Request Queues
Six-Port Register File
32-bit Base Bus
Instruction Cache
128-Bit Cache Bus
Instruction Prefetch Queue
Interrupt Controller
Control
Address
Data
Memory-Side Machine Bus
Register-Side
Machine Bus
Memory Region Configuration
Multiply/Divide Unit
Interrupt
Port
Address Generation Unit
Data Cache
16 Kbyte, Four-Way Set-Associative
8 Kbyte, Four-Way Set-Associativ e
Guarded Memory Unit
Timers
JTAG Port
Parallel Instruction Scheduler
Data RAM - 2 Kbyte
Register Cache - 5 to 15 sets
64-bit SRC1 Bus 64-bit SRC2 Bus
64-bit DST Bus
128-bit Load Bus
128-bit Store Bus
1. The 80960Hx is not “drop-in” compatible in an 80960Cx-based system. Customers may design systems that accept either 80960Hx or Cx processors.
Table 1. 80960Hx Product Description
Product Core Voltage Operating Frequency (bus/core)
80960HA 1x 3.3 V
25/25, 33/33, 40/40
80960HD 2x 3.3 V
25/50, 33/66, 40/80
80960HT 3x 3.3 V
25/75
† Processor inputs are 5 V tolerant.
80960HA/HD/HT
80960HA/HD/HT
10 Datasheet
In addition to expanded clock frequency op tions, the 8096 0Hx provi des essential en hancements for an emerging class of high-performance embedded applications. Features include a larger instruction cache, data cache, and data RAM than any other 80960 processor to date. It also boasts a 32-bit demultiplexed and pipelined burst bus, fast interrupt mechanism, guarded memory unit, wait state generator, dual programmable timers , ONCE and IEEE 1149.1-compliant boundary scan test and debug support, and new instructions.
2.1 The i960® Processor Family
The i960® processor family is a 32-bit RISC architecture created by Intel to serve the needs of embedded applications. The embedded market includes applications as diverse as industrial automation, avionics, image processing, graphics and communications.
Because all members of the i960 processor family share a common core architecture, i960 applications are code-compatible. Each new processor in the family adds its own special set of functions to the core to satisfy the needs of a specific application or range of applications in the embedded market.
2.2 Key 80960Hx Features
2.2.1 Execution Architecture
Independent instruction paths inside the processor allow the execution of multiple, out-of-sequence instructions per clock. Register and resource scoreboarding interlocks maintain the logical integrity of sequential instructions that are being executed in parallel. To sustain execution of multiple instructions in each clock cycle, the processor decodes multiple instructions in parallel and simultaneously issues these instructions to parallel processing units. The various processing units are then able to independently access instruction operands in parallel from a common register set.
Local Register Cache integrated on-chip provides automatic register management on call /return instructions. Upon a call instruction, the processor allocates a set of local registers for the called procedure, then stores the registers for the previous procedure in the on-chip register cache. As additional procedures are called, the cache stores the associated registers such that the most recently called procedure is the first available by the next return (ret) instruction. The processor may store up to fifteen register sets, after which the oldest sets are stored (spilled) into external memory.
The 80960Hx supports the 80960 architecturally-defined branch prediction mechanism. This allows many branches to execute with no pipeline break. With the 80960Hx’s efficient pipeline, a branch may take as few as zero clocks to execute. The maximu m penalty for an inco rrect prediction is two core clocks.
2.2.2 Pipelined, Burst Bus
A 32-bit high performance bus controller interfaces the 80960Hx core to the external memory and peripherals. The Bus Control Unit features a maximum transfer rate of 160 Mbytes per second (at a 40 MHz external bus clock frequency). A key advantage of this design is its versatility. The user may independently program the physical and logical attributes of system memory. Physical attributes include wait state profile, bus width, and parity. Logical attributes include cacheability and Big or Little Endian byte order. Internally programmable wait states and 16 separately configurable physical memory regions allow the processor to interface with a variety of memory
Datasheet 11
subsystems with minimum system complexity . To reduce the effect of wait states, the bus design is decoupled from the core. This lets the processor execute instructions while the bus performs memory accesses independently.
The Bus Controller’s key features include:
Demultiplexed, Burst Bus to support most efficient DRAM access modes
Address Pipelining to reduce memory cost while m a intaining performance
32-, 16- and 8-bit modes to facilitate I/O interfacing
Full internal wait state generation to reduce sys tem cost
Little and Big Endian support
Unaligned Access support implemented in hardware
Three-deep request queue to decouple the bus from the core
Independent physical and logical address space characteristics
2.2.3 On-Chip Caches and Data RAM
As shown in Figure 1, the 80960Hx provides generous on-chip cache and storage features to decouple CPU execution from the external bus. The processor includes a 16 Kbyte instruction cache, an 8 Kbyte data cache and 2 Kbytes of Data RAM. The caches are organized as 4-way set associative. Stores that hit the data cache are written through to memory. The data cache performs write allocation on cache misses. A fifteen-set stack frame cache allows the processor to rapidly allocate and deallocate local registers. All of the on-chip RAM sustains a 4-word (128-bit) access every clock cycle.
2.2.4 Priority Interrupt Controller
The interrupt unit provides the mechanism for the low latency and high throughput interrupt service essential for embedded applications. A priority interrupt controller provides full programmability of 240 interrupt sources with a typical interrupt task switch (latency) time of 17 core clocks. The controller supports 31 priority levels. I nterrupts are prior itized and signaled within 10 core clocks of the request. When the interrupt has a higher priority than the processor priority, the context switch to the interrupt routine would typically complete in another seven bus clocks.
External agents post interrupts through the 8-bit external interrupt port. The Interrupt unit also handles the two internal sources from the Timers. Interrupts may be level- or edge-triggered.
2.2.5 Guarded Memory Unit
The Guarded Memory Unit (GMU) provides memory protection without the address transl ation found in Memory Management Units. The GMU contains two memory protection schemes: o ne prevents illegal memory accesses, the other detects memory access violations. Both signal a fault to the processor. The programmable protection modes are: user read, write or execute; and supervisor read, write or execute.
80960HA/HD/HT
80960HA/HD/HT
12 Datasheet
2.2.6 Dual Programmable Timers
The processor provides two independent 32-bit timers, with four programmable clock rates. The user configures the timers through the Timer Unit registers. These registers are memory-mapped within the 80960Hx, addressable on 32-bit boundaries. The timers have a single-shot mode and auto-reload capabilities for continuous operation. Each timer has an independent inte rrupt req ues t to the processor’s interrupt controller.
2.2.7 Processor Self Test
When a system error is detected, the FAIL pin is asserted, a fail code message is driven onto the address bus, and the processor stops execution at the point of failure. The only way to resume normal operation is to perform a RESET operation. Because System Error generation may occur sometime after the bus confidence test and even after initialization during normal processor operation, the FAIL
pin is HIGH (logic “1”) before the detection of a System Error.
The processor uses only one read bus-transactio n to signal the fail code mes sage; the addr ess of the bus transaction is the fail code itself. The fail code is of the form: 0xfeffffnn; bits 6 to 0 contain a mask recording the possible failures. Bit 7, when set to 1, indicates that the mask contains failures from the internal Built-In Self-Test (BIST); when 0, the mask indicates other failures.
Ignore reserved bits 0 and 1. Also ignore bits 5 and 6 when bit 7 is clear (=0). The mask is show n in
Table 2 and Table 3.
Table 2. Fail Codes For BIST (bit 7 = 1)
Bit When Set
6 On-chip Data-RAM failure detected by BIST. 5 Internal Microcode ROM failure detected by BIST. 4 Instruction cache failure detected by BIST. 3 Data cache failure detected by BIST. 2 Local-register cache or processor core failure detected by BIST. 1 Reserved. Always zero. 0 Reserved. Always zero.
Table 3. Remaining Fail Codes (bit 7 = 0)
Bit When Set
6 Reserved. Always one. 5 Reserved. Always one. 4 A data structure within the IMI is not aligned to a word boundary. 3 A System Error during normal operation has occurred. 2 The Bus Confidence test has failed. 1 Reserved. Always zero. 0 Reserved. Always zero.
Datasheet 13
2.3 Instruction Set Summary
Table 4 summarizes the 80960Hx instruction set by logical groupings.
Table 4. 80960Hx Instruction Set
Data Movement Arithmetic Logical Bit / Bit Field / Byte
Load Store Move Load Address Conditional Select
2
Add Subtract Multiply Divide Remainder Modulo Shift Extended Shift Extended Multiply Extended Divide Add with Carry Subtract with Carry Rotate Conditional Add
2
Conditional Subtract
2
And Not And And Not Or Exclusive Or Not Or Or Not Nor Exclusive Nor Not Nand
Set Bit Clear Bit Not Bit Alter Bit Scan For Bit Span Ove r Bit Extract Modify Scan Byte for Equal Byte Swap
2
Comparison Branch Call/Return Fault
Compare Conditional Compare Compare and Increment Compare and Decrement Compare Byte
2
Compare Short
2
Test Condition Code Check Bit
Unconditional Branch Conditional Branch Compare and Branch
Call Call Extended Call System Return Branch and Link
Conditional Fault Synchronize Faults
Debug Processor Mgmt Atomic Cache Control
Modify Trace Controls Mark Force Mark
Flush Local Registers Modify Arithmetic Controls Modify Process Controls Interrupt Enable/ Disable
1, 2
System Control
1
Atomic Add Atomic Modify
Instruction Cache Control
1, 2
Data Cache Control
1, 2
NOTES:
1. 80960Hx extensions to the 80960 core instruction set.
2. 80960Hx extensions to the 80960Cx instruction set.
80960HA/HD/HT
80960HA/HD/HT
14 Datasheet
3.0 Package Information
This section describes the pins, pinouts and ther mal characteri s tics for the 80 960 H x in the 168- pi n ceramic Pin Grid Array (PGA) package, 208-pin PowerQuad2* (PQ4). For complete package specifications and information, see the Intel Packaging Handbook (Order# 24080 0).
The 80960HA/HD/HT is offered with eight speeds and two package types (
Table 5). Both the
168-pin ceramic Pin Grid A rr ay (PGA) and the 208-pin Pow er Qu ad2 * (P Q4) dev i ces are specified for operation at V
CC
= 3.3 V ± 0.15 V over a case temperature range of 0 °C to 85 °C.
Table 5. 80960HA/HD/HT Package Types and Speeds
Package/Name Device
Core Speed
(MHz)
Bus Speed
(MHz)
Order #
168L PGA
80960HA
25 A80960HA25 S L2GX 33 A80960HA33 S L2GY 40 A80960HA40 S L2GZ
80960HD
50 25 A80960HD50 S L2GH 66 33 A80960HD66 S L2GJ 80 40 A80960HD80 S L2GK
80960HT 75 25 A80960HT75 S L2GP
208L PQFP
(also known as PQ4)
80960HA
25 FC80960HA25 S L2GU 33 FC80960HA33 S L2GV 40 FC80960HA40 S L2GW
80960HD
50 25 FC80960HD50 S L2GM 66 33 FC80960HD66 S L2GN 80 40 FC80960HD80 S L2LZ
80960HT 75 25 FC80960HT75 S L2GT
Datasheet 15
3.1 Pin Descriptions
This section defines the 80960Hx pins. Table 6 presents the legend for interpreting the pin descriptions in
Table 7. All pins float while the processor is in the ONCE mode, except TDO,
which may be driven active according to normal JTAG specifications.
Table 6. Pin Description Nomenclature
Symbol Description
I Input only pin.
O Output only pin.
I/O Pin may be input or output.
- Pin must be connected as indicated for proper device functionality.
S(E)
Synchronous edge sensitive input. This input must meet the setup and hold times relative to CLKIN to ensure proper operation of the processor.
S(L)
Synchronous level sensitive input. This input must meet the setup and hold times relative to CLKIN to ensure proper operation of the processor.
A(E) Asynchronous edge-sensitive input. A(L) Asynchronous level-sensitive input.
H(...)
While the processor bus is in the HOLD state (HOLDA asserted), the pin:
H(1) is driven to V
CC
H(0) is driven to V
SS
H(Z) floats H(Q) continues to be a valid output
B(...)
While the processor is in the bus backoff state (BOFF
asserted), the pin:
B(1) is driven to V
CC
B(0) is driven to V
SS
B(Z) floats B(Q) continues to be a valid output
R(...)
While the processor’s RESET
pin is asserted, the pin:
R(1) is driven to V
CC
R(0) is driven to V
SS
R(Z) floats R(Q) continues to be a valid output
80960HA/HD/HT
80960HA/HD/HT
16 Datasheet
Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 1 of 4)
Name Type Description
A31:2
O
H(Z)
B(Z)
R(Z)
ADDRESS BUS carries the upper 30 bits of the physical address. A31 is the most significant address bit and A2 is the least significant. During a bus access, A31:2 identify all external addresses to word (4-byte) boundaries. The byte enable signals indicate the selected byte in each word. During burst accesses, A3 and A2 increment to indicate successive addresses.
D31:0
I/O
S(L)
H(Z)
B(Z)
R(Z)
DATA BUS carries 32, 16, or 8-bit data quantities depending on bus width configuration. The least significant bit of the data is carried on D0 and the most significant on D31. The lower eight data lines (D7:0) are used when the bus is configured for 8-bit data. When configured for 16-bit data, D15:0 are used.
DP3:0
I/O
S(L)
H(Z)
B(Z)
R(Z)
DATA PARITY carries parity information for the data bus. Each parity bit is assigned a group of eight data bus pins as follows:
DP3 generates/checks parity for D31:24 DP2 generates/checks parity for D23:16 DP1 generates/checks parity for D15:8 DP0 generates/checks parity for D7:0
Parity information is generated for a processor write cycle and is checked for a processor read cycle. Parity checking and polarity are programmable. Parity generation/checking is only performed for the size of the data accessed.
PCHK
O
H(Q) B(Q)
R(1)
PARITY CHECK indicates the result of a parity check operation. An asserted PCHK
indicates that the previous bus read access resulted in a parity check error.
BE3:0
O
H(Z)
B(Z) R(1)
BYTE ENABLES select which of the four bytes addressed by A31:2 are active during a bus access. Byte enable encoding is dependent on the bus width of the memory region accessed:
32-bit bus:
BE3
enables D31:24 BE2 enables D23:16 BE1 enables D15:8 BE0 enables D7:0
16-bit bus:
BE3
becomes Byte High Enable (enables D15:8) BE2 is not used (state is undefined) BE1 becomes Address Bit 1 (A1) BE0 becomes Byte Low Enable (enables D7:0)
8-bit bus:
BE3
is not used (state is undefined) BE2 is not used (state is undefined) BE1
Address Bit 1 (A1) BE0 Address Bit 0 (A0)
W/R
O
H(Z)
B(Z) R(0)
WRITE/READ is low for read accesses and high for write accesses. W/R
becomes valid during the address phase of a bus cycle and remains valid until the end of the cycle for non-pipelined accesses. For pipelined accesses, W/ R
changes state when the next address is presented.
0= Read 1= Write
D/C
O
H(Z)
B(Z) R(0)
DATA/CODE indicates that a bus access is a data access or an instruction access. D/C
has the same timing as W/R.
0 = Code 1 = Data
Datasheet 17
SUP
O
H(Z) B(Z) R(1)
SUPERVISOR ACCESS indicates whether the current bus access originates from a request issued while in supervisor mode or user mode. SUP
may be used by the memory subsystem to isolate supervisor code and data structures from non-supervisor access.
0 = Supervisor Mode 1 = User Mode
ADS
O
H(Z) B(Z) R(1)
ADDRESS STROBE indicates a valid address and the start of a new bus access. ADS
is asserted for the first clock of a bus access.
READY
I
S(L)
READY
, when enabled for a memory region, is asserted by the memory
subsystem to indicate the completion of a data transfer. READY
is used to indicate that read data on the bus is valid, or that a write transfer has completed. READY
works in conjunction with the internal wait state generator to accommodate various memory speeds. READY is sampled after any programmed wait states:
During each data cycle of a burst access During the data cycle of a non-burst access
BTERM
I
S(L)
BURST TERMINATE, when enabled for a memory region, is asserted by the memory subsystem to terminate a burst access in progress. When BTERM
is asserted, the current burst access is terminated and another address cycle occurs.
WAIT
O
H(Z) B(Z) R(1)
WAIT
indicates the status of the internal wait-state generator. WAIT is asserted
when the internal wait state generator generates N
WAD
, N
RAD
, N
WDD
and N
RDD
wait states. WAIT may be used to derive a write data strobe.
BLAST
O
H(Z) B(Z) R(1)
BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the last data transfer of burst and non-burst accesses after the internal wait-state generator reaches zero. BLAST remains active as long as wait states are inserted through the READY
pin. BLAST becomes inactive after the final data transfer in a
bus cycle.
DT/R
O
H(Z) B(Z) R(0)
DATA TRANSMIT/RECEIVE indicates direction for data transceivers. DT/R
is used with DEN to provide control for data transceivers connected to the data bus. DT/R is driven low to indicate the processor expects data (a read cycle). DT/R is driven high when the processor is “transmitting” data (a store cycle). DT/R only changes state when DEN
is high.
0 = Data Receive 1 = Data Transmit
DEN
O
H(Z) B(Z) R(1)
DATA ENABLE indicates data transfer cycles during a bus access. DEN
is asserted at the start of the first data cycle in a bus access and de-asserted at the end of the last data cycle. DEN
remains asserted for an entire bus request, even when that request spans several bus accesses. For example, a ldq instruction starting at an unaligned quad word boundary is one bus request spanning at least two bus accesses. DEN
remains asserted throughout all the accesses (including
ADS
states) and de-asserts when the Iqd instruction request is satisfied. DEN is used with DT/R to provide control for data transceivers connected to the data bus. DEN
remains asserted for sequential reads from pipelined memory regions.
LOCK
O
H(Z) B(Z) R(1)
BUS LOCK indicates that an atomic read-modify-write operation is in progress. LOCK
may be used by the memory subsystem to prevent external agents from accessing memory that is currently involved in an atomic operation (e.g., a semaphore). LOCK
is asserted in the first clock of an atomic operation and de-
asserted when BLAST is deasserted in the last bus cycle.
Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 2 of 4)
Name Type Description
80960HA/HD/HT
80960HA/HD/HT
18 Datasheet
HOLD
I
S(L)
HOLD REQUEST signals that an external agent requests access to the processor’s address, data, and control buses. When HOLD is asserted, the processor:
Completes the current bus request. Asserts HOLDA and floats the address, data, and control buses. When HOLD is deasserted, the HOLDA pin is deasserted and the processor
reassumes control of the address, data, and control pins.
HOLDA
O
H(1) B(0)
R(Q)
HOLD ACKNOWLEDGE indicates to an external master that the processor has relinquished control of the bus. The processor grants HOLD requests and enters the HOLDA state while the RESET
pin is asserted.
HOLDA is never granted while LOCK
is asserted.
BOFF
I
S(L)
BUS BACKOFF forces the processor to immediately relinquish control of the bus on the next clock cycle. When READY
/BTERM is enabled and:
When BOFF
is asserted, the address, data, and control buses are floated on the
next clock cycle and the current access is aborted. When BOFF
is deasserted, the processor resumes by regenerating the aborted
bus access. See
Figure 16 on page 48 fo r BOFF
timing requirements.
BREQ
O
H(Q) B(Q)
R(0)
BUS REQUEST indicates that a bus request is pending in the bus controller. BREQ does not indicate whether or not the processor is stalled. See BSTALL for processor stall status. BREQ may be used with BSTALL to indicate to an external bus arbiter the processor’s bus ownership requirements.
BSTALL
O
H(Q) B(Q)
R(0)
BUS STALL indicates that the processor has stalled pending the result of a request in the bus controller. When BSTALL is asserted, the processor must regain bus ownership to continue processing (i.e., it may no longer execute strictly out of on-chip cache memory).
CT3:0
O
H(Z)
B(Z)
R(Z)
CYCLE TYPE indicates the type of bus cycle currently being started or processor state. CT3:0 encoding follows:
Cycle Type ADSCT3:0
Program-initiated access using 8-bit bus 00000 Program-initiated access using 16-bit bus 00001 Program-initiated access using 32-bit bus 00010 Event-initiated access using 8-bit bus 00100 Event-initiated access using 16-bit bus 00101 Event-initiated access using 32-bit bus 00110 Reserved 00X11 Reserved for future products 01XXX Reserved 1XXXX
XINT7:0
I
A(E)
A(L)
EXTERNAL INTERRUPT pins are used to request interrupt service. These pins may be configured in three modes:
Dedicated Mode: Each pin is assigned a dedicated interrupt level. Dedicated inputs may be programmed to be level (low or high) or edge (rising or falling) sensitive.
Expanded Mode: All eight pins act as a vectored interrupt source. The interrupt pins are level sensitive in this mode.
Mixed Mode: The XINT7:5
pins act as dedicated sources and the XINT4:0 pins act as the five most significant bits of a vectored source. The least significant bits of the vectored source are set to “010” internally.
NMI
I
A(E)
NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur. NMI
is the highest priority interrupt source. NMI is falling edge triggered.
Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 3 of 4)
Name Type Description
Datasheet 19
CLKIN I
CLOCK INPUT provides the time base for the 80960Hx. All internal circuitry is
synchronized to CLKIN. All input and output timings are specified relative to CLKIN.
For the 80960HD, the 2x internal clock is derived by multiplying the CLKIN frequency by two. For the 80960HT, the 3x internal clock is derived by multiplying the CLKIN frequency by three.
RESET
I
A(L)
RESET
forces the device into reset. RESET causes all external and internal signals to return to their reset state (when defined). The rising edge of RESET starts the processor boot sequence.
STEST
I
S(L)
SELF TEST, when asserted during the rising edge of RESET, causes the processor to execute its built in self-test.
FAIL
O
H(Q)
B(Q) R(0)
FAIL
indicates a failure of the processor’s built-in self-test performed during
initialization. F AIL
is asserted immediately out of reset and toggles during self-test
to indicate the status of individual tests. When self-test passes, FAIL
is de­asserted and the processor branches to the user’s initialization code. When self­test fails, the FAIL pin asserts and the processor ceases execution.
ONCE
I
ON-CIRCUIT EMULA TION control: the processor samples this pin during reset.
When it is asserted low at the end of reset, the processor enters ONCE mode. In ONCE mode, the processor stops all clocks and floats all output pins except the TDO pin. ONCE
uses an internal pull-up resistor; see RPU definition in Table 22,
“80960Hx DC Characteristics” on page 40. Pull this pin high when not in use.
TCK I
TEST CLOCK provides the clocking function for IEEE 1149.1 Boundary Scan
testing.
TDI I
TEST DAT A INPUT is the serial input pin for IEEE 1 149. 1 Boundary Scan testing.
TDI uses an internal pull-up resistor; see R
PU
definition in
Table 22, “80960Hx DC
Characteristics” on page 40.
TDO O
TEST DATA OUTPUT is the serial output pin for IEEE 1149.1 Boundary Scan
testing. ONCE does not disable this pin.
TRST
I
TEST RESET asynchronously resets the T est Access Port (TAP) controller. TRST
must be held low at least 10,000 clock cycles after power-up. One method is to provide TRST
with a separate power-on-reset circuit. TRST includes an internal pull-up resistor; see RPU definition in Table 22, “80960Hx DC Characteristics” on
page 40. Pull this pin low when not in use.
TMS I
TEST MODE SELECT is sampled at the rising edge of TCK. TCK controls the
sequence of TAP controller state changes for IEEE 1149.1 Boundary Scan testing. TMS uses an internal pull-up resistor; see R
PU
definition in
Table 22,
“80960Hx DC Characteristics” on page 40.
VCC5 I
5 V REFERENCE VOLTAGE input is t he reference voltage for the 5V-tolerant I/O
buffers. Connect this signal to +5 V for use with inputs which exceed 3.3 V. When all inputs are from 3.3 V components, connect this signal to 3.3 V.
VCCPLL I PLL VOLTAGE is the +3.3 VDC analog input for the PLL.
VOLDET O
VOLTAGE DETECT signal allows external system logic to distinguish between a
5 V 80960Cx processor and the 3.3 V 80960Hx processor. This signal is active low for a 3.3 V 80960Hx (it is high impedance for 5 V 80960Cx). This pin is available only on the PGA version.
0 = 80960Hx 1 = 80960Cx
Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 4 of 4)
Name Type Description
80960HA/HD/HT
80960HA/HD/HT
20 Datasheet
3.2 80960Hx Mechanical Data
3.2.1 80960Hx PGA Pinout
Figure 2
depicts the complete 80960Hx PGA pinout as viewed from the top side of the compon ent
(i.e., pins facing down).
Figure 3 shows the complete 80960Hx PGA pinout as viewed from the
pin-side of the package (i.e., pins facing up).
Table 9 lists the 80960Hx pin names with package
location. See
Section 4.3, “R ecommended Connections” on page 38 for specifications and
recommended connections.
Figure 2. 80960Hx 168-Pin PGA Pinout—View from Top (Pins Facing Down)
D5D7D8D9D11D12D13D15D16D17D19D21D24D25
D2D4D6V
CC
D10V
CC
V
CC
D14V
CC
D18D20D23D27D29
NCD0V
CC
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
CC
D22D31READY D26
D28BTERM
HOLDA
D30HOLD
BE3
V
CC
ADSBE2
V
SS
V
CC
BE1
V
SS
V
CC
BLAST
V
SS
BE0
DEN
V
SS
V
CC
W/R
V
SS
V
CC
DT/R
A29LOCK
SUPWAIT BSTALL
A28
A30BREQD/C
D3
D1
ONCE
V
SS
VCC5
V
CC
V
SS
V
SS
V
SS
V
SS
V
SS
CLKIN
V
CC
V
SS
BOFF
STEST
DP1
DP3
TCK
TMS
V
CC
PCHK
VCC
VCCPLL
V
CC
NC
NC
V
CC
V
SS
FAIL
DP0
DP2
VOLDET
TRST
TDI
TDO
NC
NC
CTO
CT2
CT3
CT1
V
SS
A2
V
CC
A22A25
A20 V
SS
A3A5
NMIV
CC
V
SS
V
SS
V
SS
VSSV
SS
A24A31 A26
A4V
CC
A6A8A9A10A11A12A14A15A17A18
V
CC
V
CC
V
CC
A13V
CC
A16A19A21A23A27 A7
XINT6
XINT7
XINT4
XINT3
XINT5
XINT0
RESET
XINT2
XINT1
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
ABCDEFGHJKLMNPQRS
ABCDEFGHJKLMNPQRS
i
© 19xx
A80960Hx
XXXXXXXX SS
M
Datasheet 21
Figure 3. 80960Hx 168-Pin PGA Pinout—View from Bottom (Pins Facing Up)
D5 D7 D8 D9 D11 D12 D13 D15 D16 D17 D19 D21 D24 D25
D2 D4 D6 V
CC
D10 VCCVCCD14 VCCD18 D20 D23 D27 D29
NC D0 VCCVSSVSSVSSVSSVSSVSSVCCD22 D31 READY
D26
D28 BTERM
HOLDA
D30 HOLD BE3
VCCADS BE2
VSSVCCBE1
VSSVCCBLAST
V
SS
BE0
DEN
VSSVCCW/R
VSSVCCDT/R
A29 LOCK
SUP WAITBSTALL
A28
A30 BREQ D/C
D3
D1
ONCE
V
SS
VCC5
V
CC
V
SS
V
SS
V
SS
V
SS
V
SS
CLKIN
V
CC
V
SS
BOFF
STEST
DP1
DP3
TCK
TMS
V
CC
PCHK
VCC
VCCPLL
V
CC
NC
NC
V
CC
V
SS
FAIL
DP0
DP2
VOLDET
TRST
TDI
TDO
NC
NC
CT0
CT2
CT3
CT1
V
SS
A2
V
CC
A22 A25
A20V
SS
A3 A5
NMI
VCCV
SS
VSSV
SS
V
SS
V
SS
A24 A31A26
A4 V
CC
A6 A8 A9 A10 A11 A12 A14 A15 A17 A18
V
CCVCCVCC
A13 VCCA16 A19 A21
A23
A27A7
XINT6
XINT7
XINT4
XINT3
XINT5
XINT0
RESET
XINT2
XINT1
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
ABCDEFGHJKLMNPQRS
ABCDEFGHJKLMNPQRS
Package Lid
80960HA/HD/HT
80960HA/HD/HT
22 Datasheet
Table 8. 80960Hx 168-Pin PGA Pinout—Signal Name Order (Sheet 1 of 2)
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
A2 D16 ADS
R6 D14 L2 LOCK S14
A3 D17 BE0
R9 D15 L1 NC A9
A4 E16 BE1
S7 D16 M1 NC A10
A5 E17 BE2
S6 D17 N1 NC B13
A6 F17 BE3
S5 D18 N2 NC B14
A7 G16 BLAST
S8 D19 P1 NC D3
A8 G17 BOFF
B1 D20 P2 NMI D15
A9 H17 BREQ R13 D21 Q1 ONCE
C3
A10 J17 BSTALL R12 D22 P3 PCHK
B8
A11 K17 BTERM
R4 D23 Q2 READY S3
A12 L17 CLKIN C13 D24 R1 RESET
A16
A13 L16 CT0 A11 D25 S1 STEST B2 A14 M17 CT1 A12 D26 Q3 SUP
Q12
A15 N17 CT2 A13 D27 R2 TCK B5 A16 N16 CT3 A14 D28 Q4 TDI A7 A17 P17 D/C
S13 D29 S2 TDO A8 A18 Q17 D0 E3 D30 Q5 TMS B6 A19 P16 D1 C2 D31 R3 TRST
A6
A20 P15 D2 D2 DEN
S9 V
CC
B7
A21 Q16 D3 C1 DP0 A3 V
CC
B9
A22 R17 D4 E2 DP1 B3 V
CC
B11
A23 R16 D5 D1 DP2 A4 V
CC
B12
A24 Q15 D6 F2 DP3 B4 V
CC
C6
A25 S17 D7 E1 DT/R
S11 V
CC
C14
A26 R15 D8 F1 FAIL
A2 V
CC
E15
A27 S16 D9 G1 ——V
CC
F3
A28 Q14 D10 H2 ——V
CC
F16
A29 R14 D11 H1 ——V
CC
G2
A30 Q13 D12 J1 HOLD R5 V
CC
H16
A31 S15 D13 K1 HOLDA S4 V
CC
J2
Datasheet 23
V
CC
J16 VCCPLL B10 V
SS
H3 V
SS
Q10
V
CC
K2 VOLDET A5 V
SS
H15 V
SS
Q11
V
CC
K16 V
SS
A1 V
SS
J3 W/R
S10
V
CC
M2 V
SS
C4 V
SS
J15 WAIT
S12
V
CC
M16 V
SS
C7 V
SS
K3 XINT0
B15
V
CC
N3 V
SS
C8 V
SS
K15 XINT1
A15
V
CC
N15 V
SS
C9 V
SS
L3 XINT2
A17
V
CC
Q6 V
SS
C10 V
SS
L15 XINT3
B16
V
CC
R7 V
SS
C11 V
SS
M3 XINT4
C15
V
CC
R8 V
SS
C12 V
SS
M15 XINT5
B17
V
CC
R10 V
SS
F15 V
SS
Q7 XINT6
C16
V
CC
R11 V
SS
G3 V
SS
Q8 XINT7
C17
VCC5 C5 V
SS
G15 V
SS
Q9 ——
Table 8. 80960Hx 168-Pin PGA Pinout—Signal Name Order (Sheet 2 of 2)
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
80960HA/HD/HT
80960HA/HD/HT
24 Datasheet
Table 9. 80960Hx 168-Pin PGA Pinout—Pin Number Order (Sheet 1 of 2)
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
A1 V
SS
B14 NC E15 V
CC
K15 V
SS
A2 FAIL
B15 XINT0 E16 A4 K16 V
CC
A3 DP0 B16 XINT3
E17 A5 K17 A11
A4 DP2 B17 XINT5
F1 D8 L1 D15 A5 VOLDET C1 D3 F2 D6 L2 D14 A6 TRST
C2 D1 F3 V
CC
L3 V
SS
A7 TDI C3 ONCE
F15 V
SS
L15 V
SS
A8 TDO C4 V
SS
F16 V
CC
L16 A13
A9 NC C5 VCC5 F17 A6 L17 A12
A10 NC C6 V
CC
G1 D9 M1 D16
A11 CT0 C7 V
SS
G2 V
CC
M2 V
CC
A12 CT1 C8 V
SS
G3 V
SS
M3 V
SS
A13 CT2 C9 V
SS
G15 V
SS
M15 V
SS
A14 CT3 C10 V
SS
G16 A7 M16 V
CC
A15 XINT1
C11 V
SS
G17 A8 M17 A14
A16 RESET
C12 V
SS
H1 D11 N1 D17
A17 XINT2
C13 CLKIN H2 D10 N2 D18
B1 BOFF
C14 V
CC
H3 V
SS
N3 V
CC
B2 STEST C15 XINT4
H15 V
SS
N15 V
CC
B3 DP1 C16 XINT6
H16 V
CC
N16 A16
B4 DP3 C17 XINT7
H17 A9 N17 A15 B5 TCK D1 D5 J1 D12 P1 D19 B6 TMS D2 D2 J2 V
CC
P2 D20
B7 V
CC
D3 NC J3 V
SS
P3 D22
B8 PCHK
D15 NMI J15 V
SS
P15 A20
B9 V
CC
D16 A2 J16 V
CC
P16 A19 B10 VCCPLL D17 A3 J17 A10 P17 A17 B11 V
CC
E1 D7 K1 D13 Q1 D21
B12 V
CC
E2 D4 K2 V
CC
Q2 D23
B13 NC E3 D0 K3 V
SS
Q3 D26
Datasheet 25
Q4 D28 Q16 A21 R11 V
CC
S6 BE2 Q5 D30 Q17 A18 R12 BSTALL S7 BE1 Q6 V
CC
R1 D24 R13 BREQ S8 BLAST
Q7 V
SS
R2 D27 R14 A29 S9 DEN
Q8 V
SS
R3 D31 R15 A26 S10 W/R
Q9 V
SS
R4 BTERM R16 A23 S11 DT/R
Q10 V
SS
R5 HOLD R17 A22 S12 WAIT
Q11 V
SS
R6 ADS S1 D25 S13 D/C
Q12 SUP R7 V
CC
S2 D29 S14 LOCK
Q13 A30 R8 V
CC
S3 READY S15 A31
Q14 A28 R9 BE0
S4 HOLDA S16 A27
Q15 A24 R10 V
CC
S5 BE3
S17 A25
Table 9. 80960Hx 168-Pin PGA Pinout—Pin Number Order (Sheet 2 of 2)
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
80960HA/HD/HT
80960HA/HD/HT
26 Datasheet
3.2.2 80960Hx PQ4 Pinout
Figure 4. 80960Hx 208-Pin PQ4 Pinout
PIN 1
PIN 208
PIN 52
PIN 53
PIN 104
PIN 157
PIN 156
V
CC
VSSV
SS
V
CC
FAIL
ONCE
V
SS
V
CC
BOFF
V
CC
D0D1D2
D3
V
SS
V
CC
V
SS
V
CC
D4D5D6
D7
V
SS
V
CC
D8
D9
D10
V
CC
V
SS
VCCD12
D13
D14
D15
VCCD16
D17
D18
D19
V
SS
VCCD21
D22
D23
PIN 105
V
SS
D24
D25
D26
D27
V
SS
V
CC
V
CC
D28
D29
D30
D31
V
SS
V
CC
BTERM
READY
HOLD
HOLDA
V
SS
V
CC
V
SS
V
CC
V
SS
V
CC
ADS
BE3
BE2
V
SS
V
CC
BE1
BE0
BLAST
DEN
V
SS
V
CC
W/R
DT/R
WAIT
BSTALL
V
CC
V
SS
V
SS
V
CC
D/C
SUP
V
SS
LOCK
BREQ
V
CC
V
CC
V
SS
VSSVSSVCCVCCVSSA2A3VCCVSSA4A5A6A7VCCVSSA8A9A10
A11
VCCVSSA12
A13
A14
A15
VCCVSSVSSVCCA16
A17
A18
A19
VCCVSSA20
A21
A22
A23
VCCVSSVCCVSSA24
A25
A26
A27
VCCVSSA28
A29
A30
V
SS
V
CC
NMI XINT7 XINT6 XINT5 XINT4
V
SS
V
CC
XINT3 XINT2 XINT1 XINT0
V
SS
V
CC
V
SS
V
CC
RESET
CLKIN
VCCPLL
V
SS
V
CC
CT3
CT2
CT1
CT0
V
SS
V
CC
V
SS
V
CC
TDO
PCHK
V
SS
TDI
TMS
TRST
TCK
V
SS
V
CC
VCC5
V
CC
V
SS
V
CC
DP3 DP2
V
CC
V
SS
DP0 DP1
STEST
D11
V
SS
A31
V
SS
V
CC
D20
V
CC
V
SS
V
SS
i
XXXXXXXX SS
M
© 19xx
i960
®
FC80960Hx
V
CC
V
SS
Datasheet 27
Table 10. 80960Hx PQ4 Pinout—Signal Name Order (Sheet 1 of 2)
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
A2 151 BE0
83 D16 39 PCHK 189
A3 150 BE1
82 D17 40 READY 68
A4 147 BE2
79 D18 41 RESET 174
A5 146 BE3
78 D19 42 STEST 208
A6 145 BLAST
84 D20 45 SUP 97
A7 144 BOFF
10 D21 50 TCK 194 A8 141 BREQ 100 D22 51 TDI 191 A9 140 BSTALL 91 D23 52 TDO 188
A10 139 BTERM
67 D24 54 TMS 192
A11 138 CLKIN 175 D25 55 TRST
193
A12 135 CT0 183 D26 56 V
CC
1
A13 134 CT1 182 D27 57 V
CC
4
A14 133 CT2 181 D28 61 V
CC
9
A15 132 CT3 180 D29 62 V
CC
11
A16 127 D/C
96 D30 63 V
CC
17
A17 126 D0 12 D31 64 V
CC
19
A18 125 D1 13 DEN
85 V
CC
25
A19 124 D2 14 DP0 206 V
CC
31
A20 121 D3 15 DP1 207 V
CC
33
A21 120 D4 20 DP2 203 V
CC
38
A22 119 D5 21 DP3 202 V
CC
44
A23 118 D6 22 DT/R
89 V
CC
46
A24 113 D7 23 FAIL
5 V
CC
49
A25 112 D8 26 ——V
CC
59
A26 111 D9 27 ——V
CC
60
A27 110 D10 28 ——V
CC
66
A28 107 D11 29 HOLD 69 V
CC
71
A29 106 D12 34 HOLDA 72 V
CC
74
A30 105 D13 35 LOCK
99 V
CC
76
A31 104 D14 36 NMI
159 V
CC
81
ADS
77 D15 37 ONCE 6 V
CC
87
80960HA/HD/HT
80960HA/HD/HT
28 Datasheet
V
CC
92 V
CC
187 V
SS
70 V
SS
164
V
CC
95 V
CC
196 V
SS
73 V
SS
170
V
CC
101 V
CC
199 V
SS
75 V
SS
172
V
CC
102 V
CC
201 V
SS
80 V
SS
178
V
CC
109 V
CC
204 V
SS
86 V
SS
184
V
CC
115 VCC5 197 V
SS
93 V
SS
186
V
CC
117 VCCPLL 177 V
SS
94 V
SS
190
V
CC
123 V
SS
2 V
SS
98 V
SS
195
V
CC
128 V
SS
3 V
SS
103 V
SS
198
V
CC
131 V
SS
7VSS108 V
SS
200
V
CC
137 V
SS
8 V
SS
114 V
SS
205
V
CC
143 V
SS
16 V
SS
116 W/R
88
V
CC
149 V
SS
18 V
SS
122 WAIT
90
V
CC
153 V
SS
24 V
SS
129 XINT0
169
V
CC
154 V
SS
30 V
SS
130 XINT1
168
V
CC
158 V
SS
32 V
SS
136 XINT2
167
V
CC
165 V
SS
43 V
SS
142 XINT3
166
V
CC
171 V
SS
47 V
SS
148 XINT4
163
V
CC
173 V
SS
48 V
SS
152 XINT5
162
V
CC
176 V
SS
53 V
SS
155 XINT6
161
V
CC
179 V
SS
58 V
SS
156 XINT7
160
V
CC
185 V
SS
65 V
SS
157 ——
Table 10. 80960Hx PQ4 Pinout—Signal Name Order (Sheet 2 of 2)
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Datasheet 29
Table 11. 80960Hx PQ4 Pinout—Pin Number Order (Sheet 1 of 2)
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
1 V
CC
31 V
CC
61 D28 91 BSTALL
2 V
SS
32 V
SS
62 D29 92 V
CC
3 V
SS
33 V
CC
63 D30 93 V
SS
4 V
CC
34 D12 64 D31 94 V
SS
5 FAIL
35 D13 65 V
SS
95 V
CC
6 ONCE
36 D14 66 V
CC
96 D/C
7 V
SS
37 D15 67 BTERM 97 SUP
8 V
SS
38 V
CC
68 READY 98 V
SS
9 V
CC
39 D16 69 HOLD 99 LOCK
10 BOFF 40 D17 70 V
SS
100 BREQ
11 V
CC
41 D18 71 V
CC
101 V
CC
12 D0 42 D19 72 HOLDA 102 V
CC
13 D1 43 V
SS
73 V
SS
103 V
SS
14 D2 44 V
CC
74 V
CC
104 A31
15 D3 45 D20 75 V
SS
105 A30
16 V
SS
46 V
CC
76 V
CC
106 A29
17 V
CC
47 V
SS
77 ADS
107 A28
18 V
SS
48 V
SS
78 BE3
108 V
SS
19 V
CC
49 V
CC
79 BE2
109 V
CC
20 D4 50 D21 80 V
SS
110 A27
21 D5 51 D22 81 V
CC
111 A26
22 D6 52 D23 82 BE1
112 A25
23 D7 53 V
SS
83 BE0
113 A24
24 V
SS
54 D24 84 BLAST
114 V
SS
25 V
CC
55 D25 85 DEN
115 V
CC
26 D8 56 D26 86 V
SS
116 V
SS
27 D9 57 D27 87 V
CC
117 V
CC
28 D10 58 V
SS
88 W/R
118 A23
29 D11 59 V
CC
89 DT/R
119 A22
30 V
SS
60 V
CC
90 WAIT
120 A21
80960HA/HD/HT
80960HA/HD/HT
30 Datasheet
121 A20 143 V
CC
165 V
CC
187 V
CC
122 V
SS
144 A7 166 XINT3
188 TDO
123 V
CC
145 A6 167 XINT2
189 PCHK
124 A19 146 A5 168 XINT1 190 V
SS
125 A18 147 A4 169 XINT0
191 TDI
126 A17 148 V
SS
170 V
SS
192 TMS
127 A16 149 V
CC
171 V
CC
193 TRST
128 V
CC
150 A3 172 V
SS
194 TCK
129 V
SS
151 A2 173 V
CC
195 V
SS
130 V
SS
152 V
SS
174 RESET
196 V
CC
131 V
CC
153 V
CC
175 CLKIN 197 VCC5
132 A15 154 V
CC
176 V
CC
198 V
SS
133 A14 155 V
SS
177 VCCPLL 199 V
CC
134 A13 156 V
SS
178 V
SS
200 V
SS
135 A12 157 V
SS
179 V
CC
201 V
CC
136 V
SS
158 V
CC
180 CT3 202 DP3
137 V
CC
159 NMI
181 CT2 203 DP2
138 A11 160 XINT7
182 CT1 204 V
CC
139 A10 161 XINT6
183 CT0 205 V
SS
140 A9 162 XINT5
184 V
SS
206 DP0
141 A8 163 XINT4
185 V
CC
207 DP1
142 V
SS
164 V
SS
186 V
SS
208 STEST
Table 11. 80960Hx PQ4 Pinout—Pin Number Order (Sheet 2 of 2)
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
Datasheet 31
3.3 Package Thermal Specifications
The 80960Hx is specified for operation when TC (case temperature) is within the range of 0 °C to 85 °C. T
C
may be measured in any environment to determine whether the 80960Hx is within the specified operating range. Measure the case temperature at the center of the top surface, opposite the pins. Refer to
Figure 5.
T
A
(ambient temperature) is calculated from θCA (thermal resistance from case to ambient) using
Equation 1:
Equation 1. Calculation of Ambient Temperature (T
A
)
Table 12
shows the maximum TA allowable (without exceeding TC) at various airflows and
operating frequencies (f
CLKIN
).
Note that T
A
is greatly improved by attaching fins or a heatsink to the package. P (maximum power
consumption) is calculated by using the typical ICC as tabulated in
Section 4.6, “DC
Specifications” on page 40
and V
CC
of 3.3 V.
TATCP θCA⋅()=
Figure 5. Measuring 80960Hx PGA Case Temperature
Measure PGA/PQ4 temperature at center of top surface
80960HA/HD/HT
80960HA/HD/HT
32 Datasheet
Table 12. Maximum TA at Various Airflows in °C (PGA Package Only)
Airflow-ft/min (m/sec)
f
CLKIN
(MHz)
0
(0)
200
(1.01)
400
(2.03)
600
(3.04)
800
(4.06)
1000
(5.07)
Core 1X Bus Clock
T
A
with
Heatsink
25 33 40
69 63 59
74 70 67
78 75 73
79 77 75
80 79 77
80 79 77
T
A
without Heatsink
25 33 40
64 56 50
67 62 56
71 67 63
74 70 67
75 72 69
76 74 71
Core 2X Bus Clock
T
A
with
Heatsink
16 25 33 40
68 58 49 41
73 66 60 55
77 73 69 65
79 75 71 68
80 77 74 72
80 77 74 72
T
A
without Heatsink
16 25 33 40
62 49 38 27
66 56 46 38
71 62 55 48
73 66 60 55
75 68 63 58
76 71 66 62
Core 3X Bus Clock
T
A
with
Heatsink
20 25
53 45
63 58
71 67
73 70
76 73
76 73
TA without Heatsink
20 25
43 33
51 42
58 51
63 58
66 61
68 64
† *0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).
Table 13. 80960Hx 168-Pin PGA Package Thermal Characteristics
Thermal Resistance — ° C/Watt
Parameter
Airflow — ft./min (m/sec)
0
(0)
200
(1.01)
400
(2.03)
600
(3.07)
800
(4.06)
1000
(5.07)
θ Junction-to-Case
(Case measured as shown in Figure 5.)
1.5 1.5 1.5 1.5 1.5 1.5
θ Case-to-Ambient
(No Heatsink)
17 14 11 9 8 7
θ Case-to-Ambient
(With Heatsink)
3
1396544
NOTES:
1. This table applies to 80960Hx PGA plugged into socket or soldered directly to board.
2.
θ
JA
= θJC + θ
CA
3. 0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).
θ
JC
θ
JA
Datasheet 33
Table 14. Maximum TA at Various Airflows in ° C (PQ4 Package Only)
Airflow-ft/min (m/sec)
f
CLKIN
(MHz)
0
(0)
200
(1.01)
400
(2.03)
600
(3.04)
800
(4.06)
1000
(5.07)
Core 1X Bus Clock
T
A
with
Heatsink
25 33 40
71 67 63
76 74 71
79 77 75
79 77 75
80 79 77
80 79 77
T
A
without Heatsink
25 33 40
70 65 61
73 68 65
75 72 69
75 72 69
76 74 71
76 74 71
Core 2X Bus Clock
T
A
with
Heatsink
16 25 33 40
71 62 55 48
76 71 66 62
79 75 71 68
79 75 71 68
80 77 74 72
80 77 74 72
T
A
without Heatsink
16 25 33 40
69 60 52 42
72 64 57 51
75 68 63 58
75 68 63 58
76 71 66 62
76 71 66 62
Core 3X Bus Clock
T
A
with
Heatsink
20 25
58 51
68 64
73 70
73 70
76 73
76 73
TA without Heatsink
20 25
56 48
61 55
66 61
66 61
68 64
68 64
† 0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).
Table 15. 80960Hx 208-Pin PQ4 Package Thermal Characteristics
Thermal Resistance — °C/Watt
Parameter
Airflow — ft./min (m/sec)
0
(0)
200
(1.01)
400
(2.03)
600
(3.07)
800
(4.06)
1000
(5.07)
θ Junction-to-Case
(Case measured as shown in Figure 5.)
111111
θ Case-to-Ambient
(No Heatsink)
12108877
θ Case-to-Ambient
(With Heatsink)
3
1175544
NOTES:
1. This table applies to 80960Hx PQ4 plugged into socket or soldered directly to board.
2.
θ
JA
= θJC + θ
CA
3. 0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).
θ
JC
θ
JA
80960HA/HD/HT
80960HA/HD/HT
34 Datasheet
3.4 Heat Sink Adhesives
Intel recommends silicone-based adhesives to attach heat sinks to the PGA package. There is no particular recommendation concerning the PQ4 package.
3.5 PowerQuad4 Plastic Package
The 80960Hx family is available in an improved version of the common 208-lead SQFP plastic package called the PowerQuad4* (PQ4). The PQ4 pack age d i mensions and lead pitch are identical to the SQFP package and the former PQ2 package, so the PQ4 fits into the same board footprint. The advantage of the PQ4 package is the superior thermal conductivity that allows the plastic version of the 80960Hx to operate with the same 0 °C to 85 °C temperature specifications as the more expensive ceramic PGA package.
The PQ4 package integrates a copper heat sink within the package to dissipate heat ef fectively. See
Table 14 and Table 15 for more information.
3.6 Stepping Register Information
The memory-mapped register at FF008710H contains the 80960Hx Device ID. The ID is identical to the ID obtained from a JTAG Query.
Figure 6 defines the current 80960Hx Device IDs. The
value for device identification is compliant with the IEEE 1149.1 specification and Intel standards.
Table 16 describes the fields of the device ID.
Figure 6. 80960Hx Device Identification Register
28 24 20
40
16 12 8
110010000000
Manufacturer ID
Part Number
Version ModelGen
Product TypeV
CC
01000010001
1
Datasheet 35
Table 16. Fields of 80960Hx Device ID
Field Value Definition
Version See Table 18. Indicates major stepping changes. V
CC
1 = 3.3 V device Indicates that a device is 3.3 V.
Product Type
00 0100 (Indicates i960 CPU)
Designates type of product. Generation Type 0010 = H-series Indicates the generation (or series) the product belongs to.
Model See
Table 17.
Indicates member within a series and specific model
information.
Manufacturer ID
000 0000 1001 (Indicates Intel)
Manufacturer ID assigned by IEEE.
Table 17. 80960Hx Device ID Model Types
Device Version V
CC
Product Gen. Model Manufacturer ID ‘1’
80960HA
See
Table 18.
1 000100 0010 00000 00000001001 1 80960HD 1 000100 0010 00001 00000001001 1 80960HT 1 000100 0010 00010 00000001001 1
Ta ble 18. Device ID Version Numbers for Different Steppings
Stepping Version
A0 0000 A1 0001 A2 0001
B0, B2 0010
NOTE: This data sheet applies to the B2 stepping.
80960HA/HD/HT
80960HA/HD/HT
36 Datasheet
3.7 Sources for Accessories
The following is a list of suggested sources for 80960Hx accessories. This is neither an endorsement nor a warranty of the performance of any of the listed products and/or companies.
Sockets
3M Textool Test and Interconnection Products
6801 River Place Blvd. MS 130-3N-29 Austin, TX 78726-9000 (800) 328-0411 FAX: (800) 932-9373
Concept Mfg, Inc. (Decoupling Sockets)
400 Walnut St. Suite 609 Redwood City, CA 94063 (415) 365-1162 FAX: (415) 365-1164
Heatsinks/Fins
Thermalloy, Inc.
2021 West Valley View Lane Dallas, TX 75234-8993 (972) 243-4321 FAX: (972) 241-4656
Wakefield Engineering, Inc.
60 Audubon Road Wakefield, MA 01880 (617) 245-5900 FAX: (617) 246-0874
Aavid Thermal Technologies, Inc.
One Kool Path Laconia, NH 03247-0400 (603) 523-3400
80960HA/HD/HT
Datasheet 37
4.0 Electrical Specifications
4.1 Absolute Maximum Ratings
Warning: Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage.
These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended and extended exposure beyond the “Operating Conditions” may aff ect device reliability.
4.2 Operatin g Conditions
Ta ble 19. Absolute Maximum Ratings
Parameter Maximum Rating
Storage Temperature –65 ºC to +150 ºC Case Temperature Under Bias –65 ºC to +110 ºC Supply Voltage with respect to V
SS
–0.5 V to + 4.6 V
Voltage on VCC5 with respect to V
SS
–0.5 V to + 6.5 V
Voltage on Other Pins with respect to V
SS
–0.5V to VCC5 + 0.5V
Table 20. Operating Conditions
Symbol Parameter Min Max Units
V
CC
Supply Voltage 3.15 3.45 V VCC5 Input Protection Bias 3.15 5.5 V f
CLKIN
1xcore Input Clock Frequency - 1x Core (80960HA) 16 40 MHz
f
CLKIN
2xcore Input Clock Frequency - 2x Core (80960HD) 16 40 MHz
f
CLKIN
3xcore Input Clock Frequency - 3x Core (80960HT) 16 25 MHz
T
C
Case Temp Under Bias (PGA and PQ4 Packages) 0 85
o
C
80960HA/HD/HT
38 Datasheet
4.3 Recommended Connections
Power and ground connections must be made to multiple VCC and VSS (GND) pins. Every 80960Hx-based circuit board should include power (V
CC
) and ground (VSS) planes for power
distribution. Every VCC pin must be connected to the power plane; every VSS pin must be connected to the ground plane. Pins identified as “NC” —no conn ect pins—must not be conn ected in the system.
Liberal decoupling capacitance should be placed near the 80960Hx. The processor may cause transient power surges when its output buffers transition, particularly when connected to large capacitive loads.
Low inductance capacitors and interconnects are recommended for best high-frequency electrical performance. Inductance may be red uced by s hortening the board tr aces between the processo r and decoupling capacitors as much as possible. Capacitors specifically designed for PGA packages offer the lowest possible inductance.
For reliable operation, always connect unused inputs to an appropriate signal level. In particular, any unused interrupt (XINT7:0
, NMI) input should be co nnected t o VCC through a pull-u p r esis tor,
as should BTERM
when not used. Pull-up resistors should be in the range of 20 Kfor each pin
tied high. When READY
or HOLD are not used, the unused input should be connected to ground.
N.C. pins must always remain unconnected.
4.4 VCC5 Pin Requirements (V
DIFF
)
In mixed-voltage systems that drive 80960Hx processor inputs in excess of 3.3 V, the VCC5 pin must be connected to the system’s 5 V supply. To limit current flow into the VCC5 pin, there is a limit to the voltage differential between the VCC5 pin and the other V
CC
pins. The voltage differential between the 80960Hx VCC5 pin and its 3.3 V VCC pins should never exceed 2.25 V. This limit applies to power-up, power-down, and steady-state operation.
Table 21 outlines this
requirement. Meeting this requirement ensures proper operation and ensures th at the current draw into the VC C5
pin does not exceed the I
CC5
specification.
When the voltage difference requirements cannot be met due to system design limitations, an alternate solution may be employed. As shown in
Figure 7, a minimum of 100 series resistor
may be used to limit the current into the VCC5 pin. This resistor ensures that current drawn by the VCC5 pin does not exceed the maximum rating for this pin.
This resistor is not necessary in systems that may ensure the V
DIFF
specification.
In 3.3 V-only systems and systems that drive 80960Hx pins from 3.3 V logic, connect the VCC5 pin directly to the 3.3 V V
CC
plane.
Figure 7. VCC5 Current-Limiting Resistor
+5 V (±0.25 V)
VCC5 Pin
100
(±5%, 0.5 W)
80960HA/HD/HT
Datasheet 39
4.5 VCCPLL Pin Requirements
When the voltage on the VCCPLL power supply pin exceeds the VCC pin voltage by 0.5 V at any time, including the power up and power down sequences, excessive currents may permanently damage on-chip electrostatic discharg e (ESD) pr otection diodes. The damage ma y accumulate over multiple episodes.
Pragmatically, this problem only occurs when the VCCPLL and V
CC
pins are driven by separate power supplies or voltage regulators. Applications that use one power supply for VCCPLL and VCC are not typically at risk. Verify that your application does not allow the VCCPLL voltage to exceed V
CC
by 0.5 V.
The VCCPL low-pass filter recommended in the Developer’s Manual does not promote this problem.
Table 21. V
DIFF
Specification for Dual Power Supply Requirements (3.3 V, 5 V)
Sym Parameter Min Max Units Notes
V
DIFF
VCC5-VCC Difference
2.25 V
VCC5 input should not exceed VCC by more than 2.25 V during power-up and power-down, or during steady-state operation.
80960HA/HD/HT
40 Datasheet
4.6 D.C. Specifications
Table 22. 80960Hx D.C. Characteristics (Sheet 1 of 2)
Per the conditions described in Section 4.3, “Recommended Connections” on page 38.
Symbol Parameter Min Typ Max Units Notes
V
IL
Input Low Voltage – 0.3 +0. 8 V
V
IH
Input High Voltage 2.0 VCC5 + 0.3 V
V
OL
Output Low Voltage All outputs except FAIL
0.4
0.2
V
IOL = 3 mA I
OL
= 100 µA
V
OL
Output Low Voltage FAIL
pin 0.4 V I
OL
= 5 mA
V
OH
Output High Voltage
2.4
V
CC
– 0.2
VVI
OH
= –3 mA
IOH = –100 µA
I
LI
Input Leakage Current
Non-Test Inputs
TDI, TMS, TRST
and ONCE
-1 1
-110
µAµA0 VIN VCC
V
IN
= 0 V
I
LO
Output Leakage Current
Non-Test Outputs
TDO pin
1 5
µA µA
0.45 V
OUT
V
CC
0.45 V
OUT
V
CC
ICC Active (Power Supply)
80960HA 25
33 40
80960HD 32
50 66 80
80960HT 60
75
579 765 927
631
985 1300 1578
1165 1455
mA
4, 5
I
CC
Active
(Thermal)
80960HA 25
33 40
80960HD 32
50 66 80
80960HT 60
75
392 518 628
413 645 851
1034
752 938
mA
4, 6
I
CC
Test (Reset Mode)
80960HA 25
33 40
80960HD 32
50 66 80
80960HT 60
75
330 436 528
382 595 785 955
702 878
mA
7, 8
I
CC
Test (ONCE mode)
25 mA
7
Datasheet 41
I
CC5
Current on the VCC5 Pin
80960HA 80960HD
80960HT
200 200 200
µA
9
C
IN
Input Capacitance for:
PQ4
PGA
12 12
pF pF
F
C
= 1 MHz
10
C
OUT
Output Capacitance of each output pin
12 pF F
C
= 1 MHz
3, 10
C
I/O
I/O Pin Capacitance 12 pF FC = 1 MHz
10
R
PU
Internal Pull-Up Resistance for ONCE
, TMS, TDI and
TRST
30 65 100 k
NOTES:
1. I
CC
Maximum is measured at worst case frequency, VCC, and temperature, with device operating and
outputs loaded to the test conditions described in
Section 4.7.1, “AC Test Conditions” on page 45.
2. I
CC
Typical is not tested.
3. Output Capacitance is the capacitive load of a floating output.
4. Measured with device operating and outputs loaded to the test conditions in
Figure 8, “AC Test Load” on
page 45. Input signals rise to V
CC
and fall to VSS.
5. ICC Active (Power Supply) value is provided for selecting your system’s power supply. It is measured using one of the worst case instruction mixes with V
CC
= 3.45 V. This parameter is characterized but not tested.
6. ICC Active (Thermal) value is provided for your system’s thermal management. Typical ICC is measured with V
CC
= 3.3 V and temperature = 25°C. This parameter is characterized but not tested.
7. ICC T est (Power modes) refers to the ICC values that are tested when the 80960HA/HD/HT is in Reset mode or ONCE mode with V
CC
= 3.45 V.
8. Worst case is VCC = 3.45 V, 0 °C.
9. I
CC5
is tested at VCC = 3.0 V, VCC5 = 5.25 V.
10.Pin capacitance is characterized, but not tested.
Table 22. 80960Hx D.C. Characteristics (Sheet 2 of 2)
Per the conditions described in Section 4.3, “Recommended Connections” on page 38.
Symbol Parameter Min Typ Max Units Notes
80960HA/HD/HT
80960HA/HD/HT
42 Datasheet
4.7 A.C. Specifications
Table 23. 80960Hx A.C. Characteristics (Sheet 1 of 2)
Per conditions in Section 4.2, “Operating Conditions” on page 37 and Section 4.7.1, “AC Test Conditions” on page 45.
Symbol Parameter Min Max Units Notes
Input Clock
1, 7
T
F
CLKIN Frequency 80960HA 80960HD
80960HT
16 16 16
40 40 25
MHz MHz MHz
T
CLKIN Period 80960HA
80960HD
80960HT
25 25 40
62.5
62.5
62.5
ns ns ns
T
CS
CLKIN Period Stability -250 +250 ps
11
T
CH
CLKIN High Time 8 ns 11
T
CL
CLKIN Low Time 80960HA 80960HD
80960HT
8 8 8
ns ns ns
11
T
CR
CLKIN Rise Time 0 4 ns 11
T
CF
CLKIN Fall Time 0 4 ns 11
Synchronous Outputs
1, 2, 3, 6
T
OV1
, T
OH1
Output Valid Delay and Output Hold for all outputs except DT/R
, BLAST and BREQ for
3.3 V and 5 V inputs and I/Os.
1.5 9.5 ns
T
OV2
, T
OH2
Output V a lid Delay and Output Hold for DT/R
80960HA 80960HD
80960HT
T/2 + 1.5 3T/4 + 1.5 5T/6 + 1.5
T/2 + 9.5 3T/4 + 9.5 5T/6 + 9.5
ns ns ns
T
OV3
, T
OH3
Output Valid Delay and Output Hold for BLAST
1.5 9 ns
T
OV4
, T
OH4
Output Valid Delay and Output Hold for BREQ 0.5 9 ns
T
OV5
, T
OH5
Output Valid Delay and Output Hold for A3:2 1.5 8.5
T
OF
Output Float for all outputs 1.5 9 ns
11
Synchronous Inputs
1, 7, 8, 9
T
IS1
Input Setup for all inputs except READY
, BTERM,
HOLD, and BOFF
2.5 ns
T
IH1
Input Hold for all inputs except READY
, BTERM,
HOLD, and BOFF
2.5 ns
NOTE: See
Table 24, “AC Characteristics Notes” on page 44 for all notes related to AC specifications.
80960HA/HD/HT
Datasheet 43
T
IS2
Input Setup for READY
, BTERM, HOLD, and
BOFF
6ns
T
IH2
Input Hold for READY
, BTERM, HOLD, and
BOFF
2.5 ns
Relative Output Timings
1, 2, 3, 6, 10
T
AVSH1
A31:2 Valid to ADS Rising T – 5T + 5ns10
T
AVSH2
BE3:0, W/R, SUP, D/C Valid to ADS Rising T – 5T + 5ns10
T
AVEL1
A31:2 Valid to DEN Falling T – 5T + 5ns10
T
AVEL2
BE3:0, W/R, SUP Valid to DEN Falling T – 5T + 5ns10
T
NLQV
WAIT Falling to Output Data Valid -5 5 ns 10
T
DVNH
Output Data Valid to WAIT Rising -5 + N*T 5 + N*T ns 4, 10
T
NLNH
WAIT Falling to WAIT Rising -4 + N*T 4 + N*T ns 4, 10
T
NHQX
Output Data Hold after WAIT Rising
-5 +
(N+1)*T
5 + (N+1)*T ns 5, 10
T
EHTV
DT/R Hold after DEN High T/2 – 5 Infinite ns 10
T
TVEL
DT/R
Valid to DEN Falling
80960HA
80960HD
80960HT
T/2 – 4 T/4 – 4 T/6 – 4
ns ns ns
10
Relative Input Timings
1, 7, 10
T
IS7
XINT7:0, NMI Input Setup 6 ns 9
T
IH7
XINT7:0, NMI Input Hold 2.5 ns 9
T
IS8
RESET Input Setup 3 ns 8
T
IH8
RESET Input Hold T/4 + 1 ns 8
Table 23. 80960Hx A.C. Characteristics (Sheet 2 of 2)
Per conditions in Section 4.2, “Operating Conditions” on page 37 and Section 4.7.1, “AC Test Conditions” on page 45.
Symbol Parameter Min Max Units Notes
NOTE: See Table 24, “AC Characteristics No t es” on page 44 for all notes related to AC specifications.
80960HA/HD/HT
44 Datasheet
Table 24. A.C. Characteristics Notes
NOTES:
1. See Section 4.8, “AC Timing Waveforms” on page46 for waveform s and definitions.
2. See
Figure 25, “Output Delay or Hold vs. Load Capacitance” on page 52 for capacitive derating information
for output delays and hold times.
3. See Figure 22, “Rise and Fall Time Derating at 85 °C and Minimum VCC” on page 51 for capaciti ve derating information for rise and fall times.
4. Where N is the number of N
RAD
, N
RDD
, N
WAD
or N
WDD
wait states that are programmed in the Bus
Controller Region Table. WAIT
never goes active when there are no wait states in an access.
5. N = Number of wait states inserted with READY.
6. These specifications are ensured by the processor.
7. These specifications must be met by the system for proper operation of the processor.
8. RESET
is an asynchronous input that has no required setup and hold time for proper operation. However, to ensure the device exits the reset mode synchronized to a particular clock edge, the rising edge of RESET must meet setup and hold times to the rising edge of the CLKIN.
9. The interrupt pins are synchronized internally by the 80960Hx. They have no required setup or hold times for proper operation. These pins are sampled by the interrupt controller every clock and must be active for at least two consecutive CLKIN rising edges when asserting them asynchronously. To ensure recognition at a particular clock edge, the setup and hold times shown must be met.
10.Relative Output timings are not tested.
11.Not tested.
12.The processor minimizes changes to the bus signals when transitioning from a bus cycle to an idle bus for the following signals: A31:4, SUP
, CT3:0, D/C, LOCK, W/R, BE3:0.
Ta ble 25. 80960Hx Boundary Scan Test Signal Timings
Symbol Parameter Min Max Units Notes
T
BSF
TCK Frequency 0 8 MHz
T
BSC
TCK Period 125 Infinite ns
T
BSCH
TCK High Time 40 ns Measured at 1.5 V
T
BSCL
TCK Low Time 40 ns Meas ured at 1.5 V
T
BSCR
TCK Rise Time 8 ns 0.8 V to 2.0 V
T
BSCF
TCK Fall Time 8 ns 2.0 V to 0.8 V
T
BSIS1
Input Setup to TCK — TDI, TMS
8ns
T
BSIH1
Input Hold from TCK — TDI, TMS
10 ns
T
BSOV1
TDO Valid Delay 3 30 ns
T
BSOF1
TDO Float Delay 36 ns
T
BSOV2
All Outputs (Non-Test) Valid Delay
330ns
Relative to TCK
T
BSOF2
All Outputs (Non-Test) Float Delay
36 ns
Relative to TCK
T
BSIS2
Input Setup to TCK - All Inputs (Non-Test)
8ns
T
BSIH2
Input Hold from TCK - All Inputs (Non-Test)
10 ns
† Not tested.
Datasheet 45
4.7.1 A.C. Test Conditions
A.C. values are derived using the 50 pF load shown in Figure 8. Figure 25, “Output Delay or Hold vs.
Load Capacitance” on page 52
, shows how timings vary with load capacitance. Input waveforms
(except for CLKIN) are assumed to have a rise and fall time of 2ns from 0.8V to 2.0V.
Figure 8. A.C. Test Load
Output Pin
C
L
= 50 pF for all signals
C
L
80960HA/HD/HT
80960HA/HD/HT
46 Datasheet
4.8 A.C. Timing Waveforms
Figure 9. CLKIN Waveform
Figure 10. Output Delay Waveform
Figure 11. Output Delay Waveform
2.0 V
1.5 V
0.8 V
T
CF
T
CH
T
CL
T
T
CR
CLKIN
Outputs:
1.5 V
1.5 V
T
OV1
Min
Max
T
OH1
1.5 V
1.5 V
A31:2, D31:0 write only,
DP3:0 write only
PCHK
, BE3:0, W/R, D/C,
SUP
, ADS, DEN,
LOCK
, HOLDA, BREQ, BSTALL,
CT3:0, FAIL
, WAIT, BLAST
CLKIN
1.5 V
1.5 V
DT/R
Min
Max
T
OH2
1.5 V
1.5 V
T
OV2
Datasheet 47
Figure 12. Output Float Waveform
Figure 13. Input Setup and Hold Waveform
Figure 14. NMI
, XINT7:0 Input Setup and Hold Waveform
Min
Max
T
OF
Outputs:
A31:2, D31:0 write only,
DP3:0 write only
PCHK
, BE3:0, W/R, D/C,
SUP, ADS, DEN,
LOCK, HOLDA,
CT3:0, WAIT
, BLAST, DT/R
CLKIN
1.5 V
1.5 V
CLKIN
Inputs:
1.5 V1.5 V1.5 V
Valid
T
IS
T
IH
READY, HOLD, BTERM,
BOFF
, D31:0 on reads,
Min
Min
DP3:0 on reads, RESET
CLKIN
1.5 V1.5 V1.5 V
Valid
T
IS
T
IH
NMI, XINT7:0
Min
Min
1.5 V
1.5 V
A
B
A
NOTE: A and B edges are established by de-assertion of RESET. See Figure 29, “Cold Reset Waveform” on page 54.
80960HA/HD/HT
80960HA/HD/HT
48 Datasheet
Figure 15. Hold Acknowledge Timings
Figure 16. Bus Backoff (BOFF) Timings
CLKIN
1.5 V
1.5 V
1.5 V
HOLD
T
IS
T
IH
1.5 V
T
IH
T
IS
HOLDA
T
OV1
Min
Min
Min
Min
T
OV1
Max
Min
Max
Min
T
OH1
T
OH1
TOV TOH — OUTPUT DELAY - The maximum output delay is referred to as the Output Valid Delay (TOV).
The minimum output delay is referred to as the Output Hold (TOH).
T
IS TIH
— INPUT SETUP AND HOLD - The input setup and hold requirements specify the sampling window
during which synchronous inputs must be stable for correct processor operation.
1.5 V
1.5 V
1.5 V
1.5 V
1.5 V
CLKIN
1.5 V
1.5V 1.5V
BOFF
T
IS
T
IH
T
IH
T
IS
1.5 V 1.5 V
1.5 V
Datasheet 49
Figure 17. TCK Waveform
Figure 18. Input Setup and Hold Waveforms for T
BSIS1
and T
BSIH1
2.0 V
1.5 V
0.8 V
T
BSCF
T
BSCH
T
BSCL
T
BSC
T
BSCR
TCLK
Inputs:
TMS
1.5 V1.5 V1.5 V
TDI
1.5 V
1.5 V
Valid
T
BSIS1
T
BSIH1
80960HA/HD/HT
80960HA/HD/HT
50 Datasheet
Figure 19. Output Delay and Output Float for T
BSOV1
and T
BSOF1
Figure 20. Output Delay and Output Float Waveform for T
BSOV2
and T
BSOF2
Figure 21. Input Setup and Hold Waveform for T
BSIS2
and T
BSIH2
TCK
1.5 V
1.5 V
1.5 V
1.5 V
T
BSOV1
TDO
Valid
T
BSOF1
TCK
1.5 V
1.5 V
1.5 V
1.5 V
T
BSOV2
Non-Test
Valid
T
BSOF2
Outputs
TCK
Non-Test
1.5 V
1.5 V
1.5 V
1.5 V
1.5 V
Valid
T
BSIS2
T
BSIH2
Inputs
80960HA/HD/HT
Datasheet 51
Figure 22. Rise and Fall Time Derating at 85 ° C and Minimum V
CC
Figure 23. ICC Active (Power Supply) vs. Frequency
50pF 100pF 150pF
Time (ns)
CL (pF)
5
4
3
2
1
2.0 to 0.8 V
0.8 to 2.0 V
0
I
CC
Active (Power Supply) (mA)
CLKIN Frequency (MHz)
200
1800 1600 1400 1200 1000
800 600 400
10 20 30 40
HA
HT
HD
0
80960HA/HD/HT
52 Datasheet
Figure 24. ICC Active (Thermal) vs. Frequency
Figure 25. Output Delay or Hold vs. Load Capacitance
I
CC
Active (Thermal) (mA)
CLKIN Frequency (MHz)
200
1400
1200
1000
800
600
400
10 20 30 40
HA
HT
HD
50 100 150
C
L
(pF)
nom + 10
nom + 5
nom
Output Valid Delays (ns) @ 1.5 V
5.5 V Input Signals
3.3 V Input Signals
Datasheet 53
Figure 26. Output Delay vs. Temperature
Figure 27. Output Hold Times vs. Temperature
Figure 28. Output Delay vs. VCC
nom - 0.0
nom - 0.4
nom - 0.5
Output Valid Delays (ns) @ 1.5 V
nom - 0.3
nom - 0.2
nom - 0.1
Processor Case Temperature (°C)
85° C0° C
nom + 0.5
nom + 0.1
nom + 0
Output Hold Times (ns) @ 1.5 V
nom + 0.2
nom + 0.3
nom + 0.4
Processor Case Temperature (°C)
85° C0° C
nom + 0.5
-nom + 0.3
-nom + 0.5
Output Valid or Hold Delays (ns) @ 1.5 V
-nom + 0.1
nom + 0.1
nom + 0.3
VCC (volts)
3.15 3.45
80960HA/HD/HT
54 Datasheet
5.0 Bus Waveforms
Figure 29. Cold Reset Waveform
CLKIN
CT3:0, ADS
,
W/R
, DT/R,
D31:0,
STEST
RESET
V
CC,
VCC5,
LOCK, WAIT,
DEN
, BLAST
BREQ, FAIL,
DP3:0
Invalid
Valid
Inputs
Tsetup 1CLKIN
Thold
1CLKIN
A31:2, SUP
D/C, BE3:0
BABA
~
~
ONCE
NOTE: VCC stable: As specified in Table 21, “VDIFF Spe cification for Dual Power Supply Requirements (3.3 V, 5 V)” on page 39
RESET high to First Bus Activity, HA=67, HD=34, HT=23 CLKIN periods
CLKIN and VCC Stable to RESET high, minimum 10,000 CLKIN per iod s for PLL stabilization.
BSTALL
80960HA/HD/HT
Datasheet 55
Figure 30. Warm Reset Waveform
Maximum RESET Low to RESET State
16 CLKIN Periods
1 CLKIN
CLKIN
ADS
,
DT/R
SUP,
D31:0,
STEST
RESET
LOCK, WAIT, DEN
, BLAST,
A31:2,
D/C
, BE3:0
DP3:0
Valid
Thold
Tsetup
1 CLKIN
W/R, BREQ, FAIL,
BSTALL
Minimum RESET Low Time 16 CLKIN Periods
RESET High to First Bus Activity,
HA=67, HD=34, HT=23 CLKIN Periods
80960HA/HD/HT
56 Datasheet
Figure 31. Entering ONCE Mode
CLKIN
ADS, BE3:0, A31:2,
RESET
ONCE
CLKIN and VCC Stable and RESET low and ONCE low to RESET
high, minimum
10,000 CLKIN Periods.
D31:0, LOCK
, WAIT,
BLAST
,W/R, D/C, DEN,
DT/R
, HOLDA,
CT3:0, BSTALL, DP3:0,
PCHK
BLAST, FAIL, SUP,BREQ,
V
CC,
VCC5
ONCE mode is entered within 1 CLKIN period after ONCE
becomes low while
RESET
is low.
CLKIN may neither float nor remain idle. It must continue to run.
NOTES:
1. ONCE mode may be entered prior to the rising edge of RESET
: ONCE input is not latched until the rising
edge of RESET.
2. The ONCE input may be removed after the processor enters ONCE mode.
80960HA/HD/HT
Datasheet 57
Figure 32. Non-Burst, Non-Pipelined Requests without Wait States
In
ADS
A31:2, SUP,
D/C
,
LOCK, CT3:0
W/R
BLAST
DT/R
DEN
WAIT
D31:0,
CLKIN
AD ADAD
In
Valid
Valid
Valid
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Disabled
0
OFF
0
0
0000
X
xx
XxEnabled
1
0
00
0
00000
0
00
Disabled
0
0
00000
Out
Function
Bit
Value
BE3:0,
DP3:0
PCHK
External
Ready
Control
Pipe-
Lining P arity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
PMCON
80960HA/HD/HT
80960HA/HD/HT
58 Datasheet
Figure 33. Non-Burst, Non-Pipelined Read Request with Wait States
ADS
A31:2, BE3:0
W/R
BLAST
DT/R
DEN
WAIT
D31:0,
CLKIN
A
3
21
D1
In
Valid
Valid
A
DP3:0
PCHK
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Disabled
0
OFF
0
1
0001
X
xx
X
x
Enabled
1
X xx
X
xxxxx
X
xx
Disabled
0
3
00011
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
PMCON
D/C
, SUP,
LOCK, CT3:0
Datasheet 59
Figure 34. Non-Burst, Non-Pipelined Write Request with Wait States
ADS
A31:2,
W/R
BLAST
DT/R
DEN
WAIT
D31:0,
CLKIN
A3 21 D1
Out
A
Valid
Valid
BE3:0
DP3:0
PCHK
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Disabled
0
OFF
0
1
0001
X xx
X x
Enabled
1
X
xxxxx
3
00011
X
xx
Disabled
0
X
xxxxx
Function
Bit
Value
External
Ready
Control
Pipe-
Lining P arity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 ar e reserved.
PMCON
D/C, SUP,
LOCK, CT3:0
80960HA/HD/HT
80960HA/HD/HT
60 Datasheet
Figure 35. Burst, Non-Pipelined Read Request without Wait States, 32-Bit Bus
In0
ADS
A31:4, SUP,
CT3:0,D/C,
BE3:0, LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
AD
DD
DA
In3In2In1
Valid
00 01 10 11
DP3:0
PCHK
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
OFF
0
0
0000
32-Bit
10
X x
Enabled
1
X
xx
X
xxxxx
0
00
Disabled
0
0
00000
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
PMCON
Datasheet 61
Figure 36. Burst, Non-Pipelined Read Request with Wait States, 32-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C,
BE3:0
, LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
A21 D 1D1 D1D 1 A
In1
In2
In3
In0
Valid
00 1101 10
DP3:0
PCHK
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
OFF
0
1
0001
32-Bit
10
XxEnabled
1
X
xx
X
xxxxx
1
01
Disabled
0
2
00010
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
PMCON
80960HA/HD/HT
80960HA/HD/HT
62 Datasheet
Figure 37. Burst, Non-Pipelined Write Request without Wait States, 32-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C
,
BE3:0, LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
AD
DD
DA
00 01 10 11
Out0
Out3
Out2
DP3:0
PCHK
Out1
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
OFF
0
0
0000
32-Bit
10
X x
Enabled
1
0
00
0
00000
X
xx
Disabled
0
X
xxxxx
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
PMCON
Valid
Datasheet 63
Figure 38. Burst, Non-Pipelined Write Request with Wait States, 32-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C
,
BE3:0
, LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
A21 D 1D1D 1D1 A
Out0
Valid
00 1101 10
Out1
Out2
Out3
DP3:0
PCHK
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
OFF 32-bit
0
1
0001
10
X x
Enabled
1
1
01
2
00010
X
xx
Disabled
0
X
xxxxx
Function
Bit
Value
External
Ready
Control
Pipe-
Lining Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
PMCON
80960HA/HD/HT
80960HA/HD/HT
64 Datasheet
Figure 39. Burst, Non-Pipelined Read Request with Wait States, 16-Bit Bus
ADS
SUP, CT3:0,
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
A21 D 1D1D 1D1 A
Valid
A3:2 = 00 or 10 A3:2 = 01 or 11
D15:0
A1=0
D15:0
A1=1
D15:0
A1=0
D15:0
A1=1
D/C
, LOCK,
A31:4, BE3
/BHE,
BE1/A1
BE0/BLE
DP3:0
PCHK
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
OFF
0
1
0001
16-Bit
X
x
Enabled
1
X
xx
X
xxxxx
1
01
Disabled
0
2
00010
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
01
PMCON
Datasheet 65
Figure 40. Burst, Non-Pipelined Read Request with Wait States, 8-Bit Bus
ADS
SUP, CT3:0,
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
A21 D 1D1 D1D 1 A
Valid
A3:2 = 00, 01, 10 or 11
D7:0
Byte 0
D7:0
Byte 1
D7:0
Byte 2
D7:0
Byte 3
D/C
, LOCK,
A31:4
BE1
/A1,
A1:0 = 00 A1:0 = 01 A1:0 = 10 A1:0 =11
BE0/A0
DP3:0
PCHK
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
OFF
0
1
0001
8-Bit
X
x
Enabled
1
X
xx
X
xxxxx
1
01
Disabled
0
2
00010
Function
Bit
Value
External
Ready
Control
Pipe-
Lining Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
00
PMCON
80960HA/HD/HT
80960HA/HD/HT
66 Datasheet
Figure 41. Non-Burst, Pipelined Read Request without Wait States, 32-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C,
LOCK
BLAST
WAIT
D31:0,
CLKIN
IN
D
IN
D’
IN D’’
IN D’’’
IN D’’’’
A
A’ D
A’’ D’
A’’’ D’’
A’’’’ D’’’
D’’’’
Valid Valid Valid Valid Valid Invalid
DT/R
DEN
A3:2
BE3:0
Valid Valid Valid Valid Valid Invalid
W/R
DP3:0
PCHK
1. Non-pipelined request concludes, pipelined reads begin.
2. Pipelined reads conclude, non-pipelined requests begin.
1
2
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Disabled
0
ON
1
X
xxxx
32-Bit
XxEnabled
1
X
xx
X
xxxxx
X
xx
X x
0
00000
Function
Bit
Value
External
Ready
Control
Pipe-
Lining Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
10
Invalid
PMCON
Datasheet 67
Figure 42. Non-Burst, Pipelined Read Request with Wait States, 32-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C
,
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
BE3:0
A1
A’ D
1
D
IN
D’
Valid Valid Invalid
IN
D
LOCK
Valid Valid Invalid
DP3:0
1. Non-pipelined request concludes, pipelined reads begin
2. Pipelined reads conclude, non-pipelined requests begin
PCHK
2
1
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Disabled
0
ON
1
X
xxxx
32-Bit
X
x
Enabled
1
X
xx
X
xxxxx
X
xx
X x
1
00001
Function
Bit
Value
External
Ready
Control
Pipe-
Lining Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
10
Invalid
PMCON
80960HA/HD/HT
80960HA/HD/HT
68 Datasheet
Figure 43. Burst, Pipelined Read Request without Wait States, 32-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C,
BE3:0
, LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
ADDDA D’D’
Valid Valid
In-
ValidValid01 10 1100
IN
D
IN
D
IN D
IN
D
IN
D
IN
D
Valid
D
In-
Valid
DP3:0
PCHK
1
2
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
ON
1
X
xxxx
32-Bit
X x
Enabled
1
X
xx
X
xxxxx
0
00
X x
0
00000
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
10
PMCON
1. Non-pipelined request concludes, pipelined reads beg in
2. Pipel ined reads conclude, non-pipelined requests begin
Datasheet 69
Figure 44. Burst, Pipelined Read Request with Wait States, 32-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C,
BE3:0
, LOCK
W/R
A3:2
D31:0,
WAIT
BLAST
DT/R
DEN
CLKIN
IN
D
IN
D
IN
D
IN
D
IN
D’
A
21 D 1D1D1
A’
21
Valid
D
D’
Valid
In-
valid
In-
valid
00 01 10 11 Valid
In-
valid
DP3:0
PCHK
1. Non-pipelined request concludes, pipelined reads begin.
2. Pipelined reads conclude, non-pipelined requests begin.
2
1
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
ON
1
X
xxxx
32-Bit
X
x
Enabled
1
X
xx
X
xxxxx
1
01
X x
2
00010
Function
Bit
Value
External
Ready
Control
Pipe-
Lining Parity Enable
N
RAD
10
PMCON
80960HA/HD/HT
80960HA/HD/HT
70 Datasheet
Figure 45. Burst, Pipelined Read Request with Wait States, 8-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C,
LOCK
W/R
A3:2
BE1
/A1,
WAIT
BLAST
DT/R
DEN
CLKIN
D7:0
Byte 0
D7:0
Byte 1
D7:0
Byte 2
D7:0
Byte 3
D7:0
D’
A21 D 1D1D1
A’
21
D
D’
In-
valid
Valid
In-
valid
BE0/A0
D31:0,
A3:2 = 00, 01, 10, or 11
Valid
In-
valid
A1:0 = 00 A1:0 = 01 A1:0 = 10 A1:0 = 11
Valid
Valid
In-
valid
DP3:0
1. Non-pipelined request concludes, pipelined reads begin
2. Pipelined reads conclude, non-pipelined requests begin
PCHK
2
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
ON
1
X
xxxx
8-Bit
X
x
Enabled
1
X
xx
X
xxxxx
1
01
X
x
2
00010
Function
Bit
Value
External
Ready
Control
Pipe-
Lining Parity Enable
N
RAD
00
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
PMCON
1
Datasheet 71
Figure 46. Burst, Pipelined Read Request with Wait States, 16-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C,
BE0
/BLC,
W/R
A3:2
BE1
/A1
WAIT
BLAST
DT/R
DEN
CLKIN
D15:0
A1=0
D15:0
A1=1
D15:0
A1=0
D15:0 A1=1
D15:0
D’
A21 D 1D1D1
A’
21
Valid
D
D’
Valid
In-
valid
In-
valid
A3:2 = 00 or 10 A3:2 = 01 or 11 Valid
In-
valid
Valid
In-
valid
BE3/BHE,
D31:0,
LOCK
DP3:0
PCHK
2
1
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
ON
1
X
xxxx
16-Bit
X
x
Enabled
1
X
xx
X
xxxxx
1
01
X
x
2
00010
Function
Bit
Value
External
Ready
Control
Pipe-
Lining Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
01
PMCON
1. Non-pipelined request concludes, pipelined reads begin
2. Pipelined reads conclude, non-pipelined requests begin
80960HA/HD/HT
80960HA/HD/HT
72 Datasheet
Figure 47. Using External READY
CLKIN
ADS
A31:4, SUP,
DT/R
DEN
READY
W/R
CT3:0, D/C,
BLAST
BTERM
A3:2
WAIT
D31:0,
BE3:0, LOCK
D0 D1 D2 D3 D0 D1 D2 D3
00 01 10 11 00 01 10 11
ValidValid
Quad-Word Read Request
N
RAD
= 0, N
RDD
= 0, N
XDA
= 0
Ready Enabled
Quad-Word Write Re quest
N
WAD
= 1, N
WDD
= 0, N
WDA
= 0
Ready Enabled
DP3:0
PCHK
A 1 D D D D1A 2D1 D1 D1D
NOTE: Pipelining must be disabled to use READY
.
Datasheet 73
Figure 48. Terminating a Burst with BTERM
CLKIN
ADS
A31:4, SUP,
DT/R
DEN
READY
W/R
CT3:0, D/C,
BLAST
BTERM
A3:2
WAIT
D31:0,
BE3:0, LOCK
D0
D1 D2 D3
Valid
Quad-Word Read Request
N
RAD
= 0, N
RDD
= 0, N
RDA
= 0
Ready Enabled
00 01 10 11
Note: READY adds memory access time to data transfers, whether or not the bus access is a burst access. BTERM
interrupts a bus access, whether or not the bus access has more data transfers pending. Either the READY signal or the BTERM signal terminates a bus access when the signal is asserted during the last (or only) data transfer of the bus access.
See Note
DP3:0
PCHK
D1 AD1 DAA1D1
80960HA/HD/HT
80960HA/HD/HT
74 Datasheet
The processor may stall (BSTALL asserted) even with an empty bus queue (BREQ deasserted). Depending on the instruction stream and memory wait states, the two signals may be separated by several CLKIN cycles.
Bus arbitration logic that logically ‘ANDs’ BSTALL and BREQ will not correctly grant the bus to the processor in all stall cases, potentially degrading processor performance.
Do not logically ‘AND’ BSTALL and BREQ together in arbitration logic. Instead, the simplest bus arbitration should logically “OR” BSTALL and BREQ to determine the processor’s bus ownership requirements.
More sophisticated arbitration should recognize the priority nature of these two signals. Using a traffic light analogy , BREQ is a ‘yellow light’ warning of a possible processor stall and BSTALL is a ‘red light’ indicating a stall in progress.
Figure 49. BREQ and BSTALL Operation
CLKIN
ADS
BLAST
BREQ
BSTALL
80960HA/HD/HT
Datasheet 75
Figure 50. BOFF Functional Timing. BOFF occurs during a burst or non-burst data cycle.
ADS
BLAST
READY
BOFF
A31:2, SUP,
DP3:0 & D31:0,
BOFF may not
be asserted
BOFF
may not
be asserted
BOFF
may be asserted to suspend request
Begin Request
End Request
Suspend Request
Non-Burst
CT3:0, D/C,
BE3:0, WAIT,
DEN, DT/R
(WRITES)
Burst
Resume Request
Note: READY/BTERM must be enabled; N
RAD
, N
RDD
, N
WAD
, N
WDD
= 0
Valid Valid
CLKIN
PCHK
A D A
May Change
BOFF Mode
Regenerate ADS
80960HA/HD/HT
76 Datasheet
Figure 51. HOLD Functional Timing
Word Read Request
N
RAD
=1, N
XDA
=1
Word Read
Request
N
RAD
=0,
N
XDA
=0
Hold State Hold State
CLKIN
ADS
A31:2, SUP,
CT3:0, D/C,
BE3:0, WAIT,
DEN, DT/R
BLAST
HOLD
HOLDA
ValidValid
LOCK
Datasheet 77
Figure 52. LOCK Delays HOLDA Timing
Figure 53. FAIL Functional Timing
CLKIN
ADS
BLAST
HOLD
HOLDA
LOCK
W/R
RESET
FAIL
257,517 Cycles 30 Cycles
113 Cycles
(Bus Test)
Pass
(Internal Self-Test)
Pass
~
~
~
~
~
~
~
~
Fail
Fail
80960HA:
80960HD:
128,761 Cycles
15 Cycles
94 Cycles
80960HT:
85,840 Cycles
10 Cycles
90 Cycles
80960HA/HD/HT
80960HA/HD/HT
78 Datasheet
Figure 54. A Summary of Aligned and Unaligned Transfers for 32-Bit Regions
04 812162024
0123456
One Double-Word
Short-Word Load/Store
Word Load/Store
Double-Word Load/Store
Short Requests (Unaligned)
Short Request (Aligned)
Short Request (Aligned)
Byte, Byte Requests
Word Request (Aligned)
Trey, Byte, Requests
Short, Short Requests
Byte, Trey, Requests
Byte Offset
Word Offset
One Double-Word Burst (Aligned)
Trey, Byte, Trey, Byte, Requests
Short, Short, Short, Short Requests
Byte, Trey, Byte, Trey, Requests
Word, Word Requests
Request (Aligned)
NOTES:
1. All requests that are less than a word in size and are cacheable will be promoted to a word to be cached. This causes adjacent requests to occur for full words to the same address.
80960HA/HD/HT
Datasheet 79
Figure 55. A Summary of Aligned and Unaligned Tra nsf ers for 32-Bit Regions (Continued)
04812162024
0123456
Triple-Word Load/Store
Quad-Word Load/Store
Word, Word, Word Requests
Requests
4 Word Requests
Byte Offset
Word Offset
One Three-Word Request (Aligned)
Trey, Byte, Trey, Byte, Trey, Byte Requests
Short, Short, Short Requests
Short, Short, Short, Short
Byte, Trey, Byte, Trey, Byte, Trey Requests
Word, Word, Word Requests
One Four-Word Request (Aligned)
Trey, Byte, Trey, Byte, Trey, Byte Trey, Byte Requests
8 Short Requests
Byte, Trey, Byte, Trey, Byte, Trey, Byte, Trey, Requests
Requests
Word, Word
Word,
4 Word
NOTES:
1. All requests that are less than a word in size and are cacheable will be promoted to a word to be cached. This causes adjacent requests to occur for full words to the same address.
80960HA/HD/HT
80 Datasheet
Figure 56. A Summary of Aligned and Unaligned Transfers for 16-Bit Bus
04812162024
0123456
Byte Offset
Word Offset
Double Word
16-Bit Bus
Triple Word
16-Bit Bus
Quad Word
16-Bit Bus
Short
16-Bit Bus
Word
16-Bit Bus
Short
Four Short Burst
(Byte, Short, Byte) *2
(Short) *4
(Byte, Short, Byte)*2
Four Short Burst, Two Short Burst
(Byte, Short, Byte) *3
(Short) *6
(Byte, Short, Byte) *3
(Two Short Burst) *3
(Two Short Burst) *3
(Four Short Burst)*2
(Byte, Short, Byte) *4
(Short) *8
(Two Short Burst)*4
(Two Short Burst) *4
Short
Byte, Byte
(Byte, Short, Byte) *4
Four Short Burst
Two Short Burst
Byte, Short, Byte
(Short)*2
Two Short Burst
Byte, Short, Byte
Byte, Byte
(Two Short Burst)*2
Datasheet 81
Figure 57. A Summary of Aligned and Unaligned Transfers for 8-Bit Bus
04812162024
0123456
Byte Offset
Word Offset
Short
8-Bit Bus
Word
8-Bit Bus
Triple Word
8-Bit Bus
Double Word
8-Bit Bus
Quad Word
16-Bit Bus
Two Byte Burst
Two Byte Burst
Two Byte Burst
Byte, Byte
Four Byte Burst
Three Byte Burst, Byte
(Two Byte Burst)*2
(Four Byte Burst)*3
(Two Byte Burst) *6
(Four Byte Burst)*3
Four Byte Burst
(Four Byte Burst) *2
(Three Byte Burst, Byte)*2
(Four Byte Burst) *2
(Two Byte Burst) *4
(Four Byte Burst) *2
(Three Byte Burst, Byte)*3
(Byte, Three Byte Burst) *3
(Four Byte Burst)*3
(Four Byte Burst)*4
(Two Byte Burst) *8
(Four Byte Burst)*4
(Four Byte Burst) *4
(Three Byte Burst, Byte)*4
(Byte, Three Byte Burst) *4
Byte, Three Byte Burst
(Byte, Three Byte Burst) *2
80960HA/HD/HT
80960HA/HD/HT
82 Datasheet
Figure 58. Idle Bus Operation
CLKIN
ADS
A31:4, SUP, D/C,
LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
READY
,
BTERM
Write Request
N
WAD
=2, N
XDA
= 0
Ready Disabled
Idle Bus
(not in Hold Acknowledge state)
Read Request
N
RAD
=2, N
XDA
= 0
Ready Disabled
In
Out
Valid
Valid
Valid
Valid
Valid
Valid
PCHK
Valid
Valid
BE3:0, CT3:0
Datasheet 83
Figure 59. Bus States
Ti = IDLE Th = HOLD Ta = ADDRESS Td = DATA Tb = BOFF’ed Taw= address to data wait
To = ONCE
Ta
Tb
Td
1
Taw
2
Trw
4
Tdw
3
Th
Ti
To
Tdw= data to data wait Tdw= data to address wait
!BOFF and READ and N
rdd
= 0
READ and N
rdd
> 0 or
WRITE and N
wdd
> 0
BOFF
WdCNT = 1
!BOFF
and
WaCNT = 1
WxCNT=1 and
HOLD
WxCNT > 1
BOFF
!BOFF
HOLD
HOLD
!HOLD
NOTES:
1. When the PMCON for the region has External Ready Control enabled, wait states are inserted as long as READY
and BTERM are de-asserted. When Read Pipelining is enabled, the Ta state of the subsequent read access is concurrent with the last data cycle of the access. Because External Ready Control is disabled for Read Pipelining, the address cycle occurs during BLAST
.
2. W
a
CNT is decremented during T
aw.
3. WdCNT is decremented during T
dw.
4. WxCNT is decremented during T
rw.
!HOLD and WxCNT=1 and !REQUEST
!HOLD and WxCNT=1 and REQUEST
!RESET
and !HOLD and REQUEST
RESET
and
ONCE
and
RESET
WaCNT > 1
READ and N
rad
> 0 or
WRITE and N
wad
> 0
!BOFF
and READ and N
rad
= 0 or
!BOFF
and WRITE and N
wad
= 0
!BOFF
and READY and !BLAST or
!HOLD and BLAST
and REQUEST and N
XDA
= 0
WdCNT > 1
KEY:
!BOFF and and N
xda
= 0
HOLD and BLAST
!BOFF and !HOLD and
N
xda
= 0
BLAST
and
and !BLAST or !BOFF and WRITE and N
wdd
= 0 and !BLAST
or
N
xda
> 0
REQUEST= One or more requests in the bus queue. READ= The current access is a read.
WRITE= The current access is a write.
RESET
BLAST and
BOFF
and !REQUEST
!ONCE
READY!
!BOFF and BTERM and !BLAST or !BOFF and
80960HA/HD/HT
80960HA/HD/HT
84 Datasheet
5.1 80960Hx Boundary Scan Chain
Table 26. 80960Hx Boundary Scan Chain (Sheet 1 of 4)
# Boundary Scan Cell Cell Type Comment
DP3 Bidirectional DP2 Bidirectional DP0 Bidirectional DP1 Bidirectional STEST Input FAILBAR Output Enable for FAILBAR, BST A LL and
BREQ
Control
ONCEBAR Input BOFFBAR Input D0 Bidirectional D1 Bidirectional D2 Bidirectional D3 Bidirectional D4 Bidirectional D5 Bidirectional D6 Bidirectional D7 Bidirectional Enable for DP(3:0) and D(31:0) Control D8 Bidirectional D9 Bidirectional D10 B idirec tional D11 B idirec tional D12 B idirec tional D13 B idirec tional D14 B idirec tional D15 B idirec tional D16 B idirec tional D17 B idirec tional D18 B idirec tional D19 B idirec tional D20 B idirec tional
NOTES:
1. Cell#1 connects to TDO and cell #112 connects to TDI.
2. All outputs are tri-state.
3. In output and bidirectional signals, a logical 1 on the enable signal enables the output. A logical 0 tri-states the output.
Datasheet 85
D21 Bidirectional D22 Bidirectional D23 Bidirectional D24 Bidirectional D25 Bidirectional D26 Bidirectional D27 Bidirectional D28 Bidirectional D29 Bidirectional D30 Bidirectional D31 Bidirectional BTERMBAR Input
RDYBAR Input
Appears as READYBAR in BSDL
file. HOLD Input HOLDA Output Enable for HOLDA control Control ADSBAR Output
BE3BAR Output
Appears as BEBAR(3:0) in BSDL
file. BE2BAR Output BE1BAR Output BE0BAR Output BLASTBAR Output DENBAR Output WRRDBAR Output Appears as WRBAR in BSDL file. DTRBAR Output Enable for DTRBAR Control WAITBAR Output BSTALL Output DATACODBAR Output Appears as DCBAR in BSDL file. USERSUPBAR O ut put Appears as SUPBA R in BSDL file. Enable for ADSBAR, BEBAR,
BLASTBAR, DEN B AR , WR RDBAR, WAITBAR, DCBAR, SUPBAR and LOCKBAR,
Control
Table 26. 80960Hx Boundary Scan Chain (Sheet 2 of 4)
# Boundary Scan Cell Cell Type Comment
NOTES:
1. Cell#1 connects to TDO and cell #112 connects to TDI.
2. All outputs are tri-state.
3. In output and bidirectional signals, a logical 1 on the enable signal enables the output. A logical 0 tri-states the output.
80960HA/HD/HT
80960HA/HD/HT
86 Datasheet
LOCKBAR Output BREQ Output A31 Output A30 Output A29 Output A28 Output A27 Output A26 Output A25 Output A24 Output A23 Output A22 Output A21 Output A20 Output A19 Output A18 Output A17 Output A16 Output Enable for A(31:0) and CT(3:0) Control A15 Output A14 Output A13 Output A12 Output A11 Output A10 Output A9 Output A8 Output A7 Output A6 Output A5 Output A4 Output A3 Output A2 Output NMIBAR Input
Table 26. 80960Hx Boundary Scan Chain (Sheet 3 of 4)
# Boundary Scan Cell Cell Type Comment
NOTES:
1. Cell#1 connects to TDO and cell #112 connects to TDI.
2. All outputs are tri-state.
3. In output and bidirectional signals, a logical 1 on the enable signal enables the output. A logical 0 tri-states the output.
Datasheet 87
XINT7BAR Input
Appears as XINTBAR(7:0) in
BSDL file. XINT6BAR Input XINT5BAR Input XINT4BAR Input XINT3BAR Input XINT2BAR Input XINT1BAR Input XINT0BAR Input RESETBAR Input CLKIN Input CT3 Output Appears as CT(3:0) in BSDL file. CT2 Output CT1 Output CT0 Output
PCHK Output
Appears as PCHKBAR in BSDL
file.
PCHK enable Control
Table 26. 80960Hx Boundary Scan Chain (Sheet 4 of 4)
# Boundary Scan Cell Cell Type Comment
NOTES:
1. Cell#1 connects to TDO and cell #112 connects to TDI.
2. All outputs are tri-state.
3. In output and bidirectional signals, a logical 1 on the enable signal enables the output. A logical 0 tri-states the output.
80960HA/HD/HT
80960HA/HD/HT
88 Datasheet
5.2 Boundary Scan Description Language Example
The Boundary-Scan Description Language (BSDL) for PGA Package Example, as shown in
Example 1, meets the de-facto standard means of describing essential features of ANSI/IEEE
1149.1-1993 compliant devices. The Boundary-Scan Description Language (BSDL) for PQ2 Package Example is shown in
Example 2 on page 96.
Example 1. Boundary-Scan Description Language (BSDL) for PGA
Package Example (Sheet 1 of 8)
-- Copyright Intel Corp. 1995
- - ***************************************************************************
- - Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein.
- - ***************************************************************************
- - Boundary-Scan Description Language (BSDL Version 0.0) is a de-facto standard means of describing essential features of ANSI/IEEE 1149.1-1990 compliant devices. This language is under consideration by the IEEE for formal inclusion within a supplement to the 1149.1-1990 standard. The generation of the supplement entails an extensive IEEE review and a formal acceptance balloting procedure which may change the resultant form of the language. Be aware that this process may extend well into 1993, and at this time the IEEE does not endorse or hold an opinion on the language.
- - ***************************************************************************
--
-- i960(R) Processor BSDL Model
Datasheet 89
-- Project code HA
-- File **NOT** verified electrically
-- ------------------------------------------------
-- Rev 0.7 18 Dec 1995 Updated for A-1 stepping.
-- Rev 0.6 08 Dec 1994
-- Rev 0.5 21 Nov 1994
-- Rev 0.4 31 Oct 1994
-- Rev 0.3 26 July 1994
-- Rev 0.2 22 June 1994
-- Rev 0.1 16 Mar 1994
-- Rev 0.0 30 Aug 1993 entity Ha_Processor is generic(PHYSICAL_PIN_MAP : string:= “PGA”);
port (A : out bit_vector(2 to 31); ADSBAR : out bit; BEBAR : out bit_vector(0 to 3); BLASTBAR : out bit; BOFFBAR : in bit; BREQ : out bit; BSTALL : out bit; BTERMBAR : in bit; CT : out bit_vector(0 to 3); CLKIN : in bit; D : inout bit_vector(0 to 31); DENBAR : out bit; DP : inout bit_vector(0 to 3); DTRBAR : out bit; DCBAR : out bit; FAILBAR : out bit; HOLD : in bit; HOLDA : out bit; LOCKBAR : out bit; NMIBAR : in bit; ONCEBAR : in bit; PCHKBAR : out bit; READYBAR : in bit; RESETBAR : in bit; STEST : in bit;
Example 1. Boundary-S can Description L anguage (BSDL ) for PGA
Package Example (Sheet 2 of 8)
80960HA/HD/HT
80960HA/HD/HT
90 Datasheet
SUPBAR : out bit; TCK : in bit; TDI : in bit; TDO : out bit; TMS : in bit; TRST : in bit; WAITBAR : out bit; WRBAR : out bit; XINTBAR : in bit_vector(0 to 7); FIVEVREF : linkage bit; VCCPLL : linkage bit; VOLTDET : out bit; VCC1 : linkage bit_vector(0 to 23); VCC2 : linkage bit_vector(0 to 20); VSS1 : linkage bit_vector(0 to 25); VSS2 : linkage bit_vector(0 to 22); NC : linkage bit_vector(0 to 4)
);
use STD_1149_1_1990.all; use i960ha_a.all;
attribute PIN_MAP of Ha_Processor : entity is PHYSICAL_PIN_MAP; constant PGA:PIN_MAP_STRING :=
“A : (D16, D17, E16, E17, F17, G16, G17, H17, J17,”& “ K17, L17, L16, M17, N17, N16, P17, Q17, P16,”& “ P15, Q16, R17, R16, Q15, S17, R15, S16, Q14, ”& “ R14, Q13, S15), “ADSBAR : R06,”& “BEBAR : (R09, S07, S06, S05),”& “BLASTBAR : S08,”& “BOFFBAR : B01,”& “BREQ : R13,”& “BSTALL : R12,”& “BTERMBAR : R04,”& “CT : (A11, A12, A13, A14),”& “CLKIN : C13,”&
Example 1. Boundary-Scan Description Language (BSDL) for PGA
Package Example (Sheet 3 of 8)
Datasheet 91
“D : (E03, C02, D02, C01, E02, D01, F02, E01, F01,”& “ G01, H02, H01, J01, K01, L02, L01, M01, N01,”& “ N02, P01, P02, Q01, P03, Q02, R01, S01, Q03,”& “ R02, Q04, S02, Q05, R03),”& “DENBAR : S09,”& “DP : (A03, B03, A04, B04),”& “DTRBAR : S11,”& “DCBAR : S13,”& “FAILBAR : A02,”& “HOLD : R05,”& “HOLDA : S04,”& “LOCKBAR : S14,”& “NMIBAR : D15,”& “ONCEBAR : C03,”& “PCHKBAR : B08,”& “READYBAR : S03,”& “RESETBAR : A16,”& “STEST : B02,”& “SUPBAR : Q12,”& “TCK : B05,”& “TDI : A07,”& “TDO : A08,”& “TMS : B06,”& “TRST : A06,”& “WAITBAR : S12,”& “WRBAR : S10,”& “ XINTBAR : (B15, A15, A17, B16, C15, B17, C16, C17),”& “FIVEVREF : C05,”& “VOLTDET : A05,”& “VCCPLL : B10,”& “ VCC1 : (M02, K02, J02, G02, N03, F03, C06, B07, B09, B11,”& “ B12, C14, E15, F16, H16, J16, K16, M16, N15, Q06,”& “ R07, R08, R10, R11),”& “ VSS1 : (G03, H03, J03, K03, L03, M03, C07, C08, C09, C10,”& “ C11, C12, Q07, Q08, Q09, Q10, Q11, F15, G15, H15,”& “ J15, K15, L15, M15, A01, C04),”& “NC : (A09, A10, B13, B14, D03)”;
Example 1. Boundary-S can Description L anguage (BSDL ) for PGA
Package Example (Sheet 4 of 8)
80960HA/HD/HT
80960HA/HD/HT
92 Datasheet
attribute Tap_Scan_In of TDI : signal is true; attribute Tap_Scan_Mode of TMS : signal is true; attribute Tap_Scan_Out of TDO : signal is true; attribute Tap_Scan_Reset of TRST : signal is true; attribute Tap_Scan_Clock of TCK : signal is (66.0e6, BOTH);
attribute Instruction_Length of Ha_Processor: entity is 4;
attribute Instruction_Opcode of Ha_Processor: entity is
“BYPASS (1111),” & “EXTEST (0000),” & “SAMPLE (0001),” & “IDCODE (0010),” & “RUBIST (0111),” & “CLAMP (0100),” & “HIGHZ (1000),” & “Reserved (1011, 1100)”;
attribute Instruction_Capture of Ha_Processor: entity is “0001”;
attribute Instruction_Private of Ha_Processor: entity is “Reserved” ;
attribute Idcode_Register of Ha_Processor: entity is
“0010” & --version, “1000100001000000” & --part number “00000001001” & --manufacturers identity “1”; --required by the standard
attribute Register_Access of Ha_Processor: entity is
“Runbist[32] (RUBIST),” & “Bypass (CLAMP, HIGHZ)”;
{***************************************************************************} { The first cell, cell 0, is closest to TDO } { BC_1:Control, Output3 CBSC_1:Bidir BC_4: Input, Clock } {***************************************************************************}
Example 1. Boundary-Scan Description Language (BSDL) for PGA
Package Example (Sheet 5 of 8)
Datasheet 93
attribute Boundary_Cells of Ha_Processor: entity is “BC_4, BC_1, CBSC_1”; attribute Boundary_Length of Ha_Processor: entity is 112; attribute Boundary_Register of Ha_Processor: entity is
“0 (CBSC_1, DP(3), bidir, X, 17, 1, Z),” & “1 (CBSC_1, DP(2), bidir, X, 17, 1, Z),” & “2 (CBSC_1, DP(0), bidir, X, 17, 1, Z),” & “3 (CBSC_1, DP(1), bidir, X, 17, 1, Z),” & “4 (BC_4, STEST, input, X),” & “5 (BC_1, FAILBAR, output3, X, 6, 1, Z),” & “6 (BC_1, *, control, 1),” & “7 (BC_4, ONCEBAR, input, X),” & “8 (BC_4, BOFFBAR, input, X),” & “9 (CBSC_1, D(0), bidir, X, 17, 1, Z),” & “10 (CBSC_1, D(1), bidir, X, 17, 1, Z),” & “11 (CBSC_1, D(2), bidir, X, 17, 1, Z),” & “12 (CBSC_1, D(3), bidir, X, 17, 1, Z),” & “13 (CBSC_1, D(4), bidir, X, 17, 1, Z),” & “14 (CBSC_1, D(5), bidir, X, 17, 1, Z),” & “15 (CBSC_1, D(6), bidir, X, 17, 1, Z),” & “16 (CBSC_1, D(7), bidir, X, 17, 1, Z),” & “17 (BC_1, *, control, 1),” & “18 (CBSC_1, D(8), bidir, X, 17, 1, Z),” & “19 (CBSC_1, D(9), bidir, X, 17, 1, Z),” & “20 (CBSC_1, D(10), bidir, X, 17, 1, Z),” & “21 (CBSC_1, D(11), bidir, X, 17, 1, Z),” & “22 (CBSC_1, D(12), bidir, X, 17, 1, Z),” & “23 (CBSC_1, D(13), bidir, X, 17, 1, Z),” & “24 (CBSC_1, D(14), bidir, X, 17, 1, Z),” & “25 (CBSC_1, D(15), bidir, X, 17, 1, Z),” & “26 (CBSC_1, D(16), bidir, X, 17, 1, Z),” & “27 (CBSC_1, D(17), bidir, X, 17, 1, Z),” & “28 (CBSC_1, D(18), bidir, X, 17, 1, Z),” & “29 (CBSC_1, D(19), bidir, X, 17, 1, Z),” & “30 (CBSC_1, D(20), bidir, X, 17, 1, Z),” & “31 (CBSC_1, D(21), bidir, X, 17, 1, Z),” & “32 (CBSC_1, D(22), bidir, X, 17, 1, Z),” & “33 (CBSC_1, D(23), bidir, X, 17, 1, Z),” &
“34 (CBSC_1, D(24), bidir, X, 17, 1, Z),” &
Example 1. Boundary-S can Description L anguage (BSDL ) for PGA
Package Example (Sheet 6 of 8)
80960HA/HD/HT
80960HA/HD/HT
94 Datasheet
“35 (CBSC_1, D(25), bidir, X, 17, 1, Z),” & “36 (CBSC_1, D(26), bidir, X, 17, 1, Z),” & “37 (CBSC_1, D(27), bidir, X, 17, 1, Z),” & “38 (CBSC_1, D(28), bidir, X, 17, 1, Z),” & “39 (CBSC_1, D(29), bidir, X, 17, 1, Z),” & “40 (CBSC_1, D(30), bidir, X, 17, 1, Z),” & “41 (CBSC_1, D(31), bidir, X, 17, 1, Z),” & “42 (BC_4, BTERMBAR, input, X),” & “43 (BC_4, READYBAR, input, X),” & “44 (BC_4, HOLD, input, X),” & “45 (BC_1, HOLDA, output3, X, 46, 1, Z),” & “46 (BC_1, *, control, 1),” & “47 (BC_1, ADSBAR, output3, X, 61, 1, Z),” & “48 (BC_1, BEBAR(3), output3, X, 61, 1, Z),” & “49 (BC_1, BEBAR(2), output3, X, 61, 1, Z),” & “50 (BC_1, BEBAR(1), output3, X, 61, 1, Z),” & “51 (BC_1, BEBAR(0), output3, X, 61, 1, Z),” & “52 (BC_1, BLASTBAR, output3, X, 61, 1, Z),” & “53 (BC_1, DENBAR, output3, X, 61, 1, Z),” & “54 (BC_1, WRBAR, output3, X, 61, 1, Z),” & “55 (BC_1, DTRBAR, output3, X, 56, 1, Z),” & “56 (BC_1, *, control, 1),” & “57 (BC_1, WAITBAR, output3, X, 61, 1, Z),” & “58 (BC_1, BSTALL, output3, X, 6, 1, Z),” & “59 (BC_1, DCBAR, output3, X, 61, 1, Z),” & “60 (BC_1, SUPBAR, output3, X, 61, 1, Z),” & “61 (BC_1, *, control, 1),” & “62 (BC_1, LOCKBAR, output3, X, 61, 1, Z),” & “63 (BC_1, BREQ, output3, X, 6, 1, Z),” & “64 (BC_1, A(31), output3, X, 80, 1, Z),” & “65 (BC_1, A(30), output3, X, 80, 1, Z),” & “66 (BC_1, A(29), output3, X, 80, 1, Z),” & “67 (BC_1, A(28), output3, X, 80, 1, Z),” & “68 (BC_1, A(27), output3, X, 80, 1, Z),” & “69 (BC_1, A(26), output3, X, 80, 1, Z),” & “70 (BC_1, A(25), output3, X, 80, 1, Z),” & “71 (BC_1, A(24), output3, X, 80, 1, Z),” &
“72 (BC_1, A(23), output3, X, 80, 1, Z),” &
“73 (BC_1, A(22), output3, X, 80, 1, Z),” &
Example 1. Boundary-Scan Description Language (BSDL) for PGA
Package Example (Sheet 7 of 8)
Datasheet 95
“74 (BC_1, A(21), output3, X, 80, 1, Z),” & “75 (BC_1, A(20), output3, X, 80, 1, Z),” & “76 (BC_1, A(19), output3, X, 80, 1, Z),” & “77 (BC_1, A(18), output3, X, 80, 1, Z),” & “78 (BC_1, A(17), output3, X, 80, 1, Z),” & “79 (BC_1, A(16), output3, X, 80, 1, Z),” & “80 (BC_1, *, control, 1),” & “81 (BC_1, A(15), output3, X, 80, 1, Z),” & “82 (BC_1, A(14), output3, X, 80, 1, Z),” & “83 (BC_1, A(13), output3, X, 80, 1, Z),” & “84 (BC_1, A(12), output3, X, 80, 1, Z),” & “85 (BC_1, A(11), output3, X, 80, 1, Z),” & “86 (BC_1, A(10), output3, X, 80, 1, Z),” & “87 (BC_1, A(9), output3, X, 80, 1, Z),” & “88 (BC_1, A(8), output3, X, 80, 1, Z),” & “89 (BC_1, A(7), output3, X, 80, 1, Z),” & “90 (BC_1, A(6), output3, X, 80, 1, Z),” & “91 (BC_1, A(5), output3, X, 80, 1, Z),” & “92 (BC_1, A(4), output3, X, 80, 1, Z),” & “93 (BC_1, A(3), output3, X, 80, 1, Z),” & “94 (BC_1, A(2), output3, X, 80, 1, Z),” & “95 (BC_4, NMIBAR, input, X),” & “96 (BC_4, XINTBAR(7), input, X),” & “97 (BC_4, XINTBAR(6), input, X),” & “98 (BC_4, XINTBAR(5), input, X),” & “99 (BC_4, XINTBAR(4), input, X),” & “100(BC_4, XINTBAR(3), input, X),” & “101(BC_4, XINTBAR(2), input, X),” & “102(BC_4, XINTBAR(1), input, X),” & “103(BC_4, XINTBAR(0), input, X),” & “104(BC_4, RESETBAR, input, X),” & “105(BC_4, CLKIN, input, X),” & “106(BC_1, CT(3), output3, X, 80, 1, Z),” & “107(BC_1, CT(2), output3, X, 80, 1, Z),” & “108(BC_1, CT(1), output3, X, 80, 1, Z),” & “109(BC_1, CT(0), output3, X, 80, 1, Z),” & “110(BC_1, PCHKBAR, output3, X, 111, 1, Z),” & “111(BC_1, *, control, 1)”; end Ha_Processor;
Example 1. Boundary-S can Description L anguage (BSDL ) for PGA
Package Example (Sheet 8 of 8)
80960HA/HD/HT
80960HA/HD/HT
96 Datasheet
Example 2. Boundary-Scan Description Language (BSDL) for PQ2
Package Example (Sheet 1 of 8)
-- Copyright Intel Corporation 1995, 1996
-- *****************************************************************************
-- Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein.
-- *****************************************************************************
-- Boundary-Scan Description Language (BSDL Version 0.0) is a de-facto
-- standard means of describing essential features of ANSI/IEEE 1149.1-1990 compliant devices. This language is under consideration by the IEEE for formal inclusion within a supplement to the 1149.1-1990 standard. The generation of the supplement entails an extensive IEEE review and a formal acceptance balloting procedure which may change the resultant form of the language. Be aware that this process may extend well into 1993, and at this time the IEEE does not endorse or hold an opinion on the language.
-- i960(R) Processor BSDL Model
-- Project code HA
-- File **NOT** verified electrically
-- -----------------------------------------------
-- Rev 0.8 4 Apr 1996 Changed for PQ2 Package
-- Rev 0.7 18 Dec 1995 Updated for A-1 stepping.
-- Rev 0.6 08 Dec 1994
-- Rev 0.5 21 Nov 1994
-- Rev 0.4 31 Oct 1994
-- Rev 0.3 26 July 1994
-- Rev 0.2 22 June 1994
-- Rev 0.1 16 Mar 1994
-- Rev 0.0 30 Aug 1993
Datasheet 97
entity Ha_Processor is generic(PHYSICAL_PIN_MAP : string:= “PQ2”); port (A : out bit_vector(2 to 31); ADSBAR : out bit; BEBAR : out bit_vector(0 to 3); BLASTBAR : out bit; BOFFBAR : in bit; BREQ : out bit; BSTALL : out bit; BTERMBAR : in bit; CT : out bit_vector(0 to 3); CLKIN : in bit; D : inout bit_vector(0 to 31); DENBAR : out bit; DP : inout bit_vector(0 to 3); DTRBAR : out bit; DCBAR : out bit; FAILBAR : out bit; HOLD : in bit; HOLDA : out bit; LOCKBAR : out bit; NMIBAR : in bit; ONCEBAR : in bit; PCHKBAR : out bit; READYBAR : in bit; RESETBAR : in bit; STEST : in bit; SUPBAR : out bit; TCK : in bit; TDI : in bit; TDO : out bit; TMS : in bit; TRST : in bit; WAITBAR : out bit; WRBAR : out bit; XINTBAR : in bit_vector(0 to 7); FIVEVREF : linkage bit; VCCPLL : linkage bit;
Example 2. Boundary-S can Description L anguage (BSDL ) for PQ2
Package Example (Sheet 2 of 8)
80960HA/HD/HT
80960HA/HD/HT
98 Datasheet
VCC1 : linkage bit_vector(0 to 23); VCC2 : linkage bit_vector(0 to 23); VSS1 : linkage bit_vector(0 to 23); VSS2 : linkage bit_vector(0 to 23)
);
use STD_1149_1_1990.all; use i960ha_a.all;
attribute PIN_MAP of Ha_Processor : entity is PHYSICAL_PIN_MAP; constant PQ2:PIN_MAP_STRING :=
“A : (151, 150, 147, 146, 145, 144, 141, 140, 139, 138,”& “ 135, 134, 133, 132, 127, 126, 125, 124, 121, 120,”& “ 119, 118, 113, 112, 111, 110, 107, 106, 105, 104),”& “ADSBAR : 77,”& “BEBAR : (83, 82, 79, 78),”& “BLASTBAR : 84,”& “BOFFBAR : 10,”& “BREQ : 100,”& “BSTALL : 91,”& “BTERMBAR : 67,”& “CT : (183, 182, 181, 180),”& “CLKIN : 175,”& “D : (12, 13, 14, 15, 20, 21, 22, 23, 26, 27, 28, 29,”& “ 34, 35, 36, 37, 39, 40, 41, 42, 45, 50, 51, 52,”& “ 54, 55, 56, 57, 61, 62, 63, 64),”& “DENBAR : 85,”& “DP : (206, 207, 203, 202),”& “DTRBAR : 89,”& “DCBAR : 96,”& “FAILBAR : 5,”& “HOLD : 69,”& “HOLDA : 72,”& “LOCKBAR : 99,”& “NMIBAR : 159,”&
Example 2. Boundary-Scan Description Language (BSDL) for PQ2
Package Example (Sheet 3 of 8)
Datasheet 99
“ONCEBAR : 6,”& “PCHKBAR : 189,”& “READYBAR : 68,”& “RESETBAR : 174,”& “STEST : 208,”& “SUPBAR : 97,”& “TCK : 194,”& “TDI : 191,”& “TDO : 188,”& “TMS : 192,”& “TRST : 193,”& “WAITBAR : 90,”& “WRBAR : 88,”& “XINTBAR : (169, 168, 167, 166, 163, 162, 161, 160),”& “FIVEVREF : 197,”& “VCCPLL : 177,”& “VCC1 : (1, 4, 9, 11, 17, 19, 25, 31, 33, 38, 44, 46,”& “ 49, 59, 60, 66, 71, 74, 76, 81, 87, 92, 95, 101),”& “VCC2 : (102, 109, 115, 117, 123, 128, 131, 137, 143, 149,”& “ 153, 154, 158, 165, 171, 173, 176, 179, 185, 187,”& “ 196, 199, 201, 204),”& “VSS1 : (2, 3, 7, 8, 16, 18, 24, 30, 32, 43, 47, 48,”& “ 53, 58, 65, 70, 73, 75, 80, 86, 93, 94, 98, 103),”& “VSS2 : (108, 114, 116, 122, 129, 130, 136, 142, 148, 152,”& “ 155, 156, 157, 164, 170, 172, 178, 184, 186, 190,”& “ 195, 198, 200, 205)”;
attribute Tap_Scan_In of TDI : signal is true; attribute Tap_Scan_Mode of TMS : signal is true; attribute Tap_Scan_Out of TDO : signal is true; attribute Tap_Scan_Reset of TRST : signal is true; attribute Tap_Scan_Clock of TCK : signal is (66.0e6, BOTH);
attribute Instruction_Length of Ha_Processor: entity is 4;
attribute Instruction_Opcode of Ha_Processor: entity is
Example 2. Boundary-S can Description L anguage (BSDL ) for PQ2
Package Example (Sheet 4 of 8)
80960HA/HD/HT
80960HA/HD/HT
100 Datasheet
“BYPASS (1111),” & “EXTEST (0000),” & “SAMPLE (0001),” & “IDCODE (0010),” & “RUBIST (0111),” & “CLAMP (0100),” & “HIGHZ (1000),” & “Reserved (1011, 1100)”;
attribute Instruction_Capture of Ha_Processor: entity is “0001”;
attribute Instruction_Private of Ha_Processor: entity is “Reserved” ;
attribute Idcode_Register of Ha_Processor: entity is
“0001” & version, “1000100001000000” & part number “00000001001”& manufacturers identity “1”; required by the standard
attribute Register_Access of Ha_Processor: entity is
“Runbist[32] (RUBIST),” &
“Bypass (CLAMP, HIGHZ)”; ******************************************************************************* { The first cell, cell 0, is closest to TDO } { BC_1:Control, Output3 CBSC_1:Bidir BC_4: Input, Clock } *******************************************************************************
attribute Boundary_Cells of Ha_Processor: entity is “BC_4, BC_1, CBSC_1”; attribute Boundary_Length of Ha_Processor: entity is 112; attribute Boundary_Register of Ha_Processor: entity is
“0 (CBSC_1, DP(3), bidir, X, 17, 1, Z),” &
“1 (CBSC_1, DP(2), bidir, X, 17, 1, Z),” &
“2 (CBSC_1, DP(0), bidir, X, 17, 1, Z),” &
“3 (CBSC_1, DP(1), bidir, X, 17, 1, Z),” &
“4 (BC_4, STEST, input, X),” &
“5 (BC_1, FAILBAR, output3, X, 6, 1, Z),” &
Example 2. Boundary-Scan Description Language (BSDL) for PQ2
Package Example (Sheet 5 of 8)
Loading...