Datasheet FDB13AN06A0, FDP13AN06A0 Datasheet (Fairchild)

FDB13AN06A0 / FDP13AN06A0
N-Channel PowerTrench® MOSFET 60V, 62A, 13.5m
FDB13AN06A0 / FDP13AN06A0
July 2003
Features
•r
•Q
• Low Miller Charge
•Low Q
• UIS Capability (Single Pulse and Repetitive Pulse)
• Qualified to AEC Q101
Formerly developmental type 82555
DRAIN
(FLANGE)
MOSFET Maximum Ratings T
= 11.5mΩ (Typ.), V
DS(ON)
(tot) = 22nC (Typ.), V
g
Body Diode
RR
FDP SERIES
GS
TO-220AB
= 10V, ID = 62A
GS
= 10V
GATE
SOURCE
DRAIN
C
GATE
SOURCE
= 25°C unless otherwise noted
Applications
• Motor / Body Load Control
• ABS Systems
• Powertrain Management
• Injection Syste m s
• DC-DC converter s and Off-line UPS
• Distributed P ower Arc hitectures and VRMs
• Primary Switch for 12V and 24V systems
G
TO-263AB
FDB SERIES
DRAIN
(FLANGE)
D
S
Symbol Parameter Ratings Units
V
DSS
V
GS
Drain to Sou r c e Voltage 60 V Gate to Source Voltage ±20 V Drain Curr e nt Continuous (T
I
D
Continuous (T Continuous (T
= 25oC, VGS = 10V)
C
= 100oC, VGS = 10V) 44 A
C
= 25oC, VGS = 10V, R
A
= 43oC/W) 10.9 A
θJA
62 A
Pulsed Figure 4 A
E
AS
P
D
, T
T
J
STG
Single Pulse Avalanche Energy (Note 1) 56 mJ Power dissipation 115 W
o
Derate above 25
C0.77W/
Operating and Storage Temperature -5 5 to 175
o
C
o
C
Thermal Characteristics
R
θJC
R
θJA
R
θJA
This product ha s been des igned to me et the e xtr eme test c ondit ions and envir onment deman ded by the automot ive indus t ry. For a
All Fairchild Semiconductor prod ucts are manufactured, assembled and tested under ISO9000 and QS9000 quality systems
©2003 Fairchild Semiconductor Corporation
Thermal Resistance Junction to Case TO-220,TO-263 1.3 Thermal Resistance Junction to Ambient TO-220, TO-263 ( Note 2) 62 Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad ar ea 43
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
certification.
FDB13AN06A0 / FDP1 3AN06A0 Rev. A1
o
C/W
o
C/W
o
C/W
Package Marking and Ordering Information
Device Marking Device Package Reel Size Tape Width Quantity
FDB13AN06A0 FDB13AN06A0 TO-263AB 330mm 24mm 800 units FDP13AN06A0 FDP13AN06A0 TO-220AB Tube N/A 50 units
FDB13AN06A0 / FDP13AN06A0
Electrical Characteristics
TC = 25°C unless otherwise noted
Symbol Parameter Test Con ditions Min Typ Max Units
Off Characteristics
B I
DSS
I
GSS
VDSS
Drain to Sou r c e Br ea k down Voltag e ID = 250µA, VGS = 0V 60 - - V
V
= 50V - - 1
Zero Gate Voltage Drain Current
DS
= 0V TC = 150oC- -250
V
GS
Gate to Source Leakage Current VGS = ±20V - - ±100 nA
On Characteristics
V
GS(TH)
r
DS(ON)
Gate to Source Threshold Voltage VGS = VDS, ID = 250µA2-4V
I
= 62A, VGS = 10V - 0.0115 0.0135
D
I
= 31A, VGS = 6V - 0.022 0.034
Drain to S ou r c e On Re si st ance
D
= 62A, VGS = 10V,
I
D
T
= 175oC
J
- 0.026 0.030
Dynamic Characteristics
C C C Q Q Q Q Q
ISS OSS RSS
g(TOT) g(TH) gs gs2 gd
Input Capacitance Output Capacitance - 260 - pF Reverse Transfer Capacitance - 90 - pF
= 25V, VGS = 0V,
V
DS
f = 1MHz
Total Gate Charge at 10V VGS = 0V to 10V Threshold Gate Charge VGS = 0V to 2V - 2.6 3.4 nC Gate to Source Gate Charg e - 8.5 - nC Gate Charge Threshold to Plateau - 5.9 - nC
V
DD
I
= 62A
D
I
= 1.0m A
g
= 30V
Gate to Drain “Miller” Charge - 6.4 - nC
- 1350 - pF
22 29 nC
µA
Switching Characteristics
t
ON
t
d(ON)
t
r
t
d(OFF)
t
f
t
OFF
Turn-On Time Turn-On Delay Time - 9 - ns Rise Time - 96 - ns Turn-Off D elay Time - 24 - ns Fall Time - 26 - ns Turn-Off Time - - 74 ns
(VGS = 10V)
V
= 30V, ID = 62A
DD
V
= 10V, RGS = 12
GS
--158ns
Drain-Source Diode Characteristics
I
= 62A - - 1.2 5 V
V
SD
t
rr
Q
RR
Notes: 1: Starting T 2: Pulse width = 100s.
©2003 Fairchild Semiconductor Corporation FDB13AN06A0 / FDP1 3AN06A0 Rev. A1
Source to Drain Diode Voltage Reverse Recovery Time ISD = 62A, dISD/dt = 100A/µs- -25ns
Reverse Recovered Charge ISD = 62A, dISD/dt = 100A/µs- -17nC
= 25°C, L = 45µH, IAS = 50A.
J
SD
I
= 31A - - 1.0 V
SD
FDB13AN06A0 / FDP13AN06A0
Typical Characteristics T
= 25°C unless otherwise noted
C
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 175
125
TC, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.01
-5
10
SINGLE PULSE
-4
10
10
80
60
40
, DRAIN CURRENT (A)
D
I
20
150
0
25 50 75 100 125 150 175
Figure 2. Maximum Continuous Drain Curr ent vs
-3
t, RECTANGULAR PULSE DURATION (s)
-2
10
TC, CASE TEMPERATURE (oC)
Case Temperature
P
DM
NOTES: DUTY FACTOR: D = t PEAK TJ = PDM x Z
-1
10
θJC
10
1/t2
0
x R
θJC
t
+ T
1
t
2
C
1
10
Figure 3. Normalized Maximum Transient Thermal Impedance
800
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
VGS = 10V
100
, PEAK CURRENT (A)
DM
I
30
-5
10
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
TC = 25oC FOR TEMPERATURES
o
ABOVE 25
C DERATE PEAK
CURRENT AS FOLLOWS:
175 - T
I = I
25
10
C
150
0
1
10
Figure 4. Peak Current Capability
©2003 Fairchild Semiconductor Corporation FDB13AN06A0 / FDP1 3AN06A0 Rev. A1
FDB13AN06A0 / FDP13AN06A0
Typical Characteristics T
1000
100
OPERATION IN THIS
10
AREA MAY BE
LIMITED BY r
, DRAIN CURRENT (A)
D
I
1
SINGLE PULSE TJ = MAX RATED
T
= 25oC
C
0.1 1 10 100
DS(ON)
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
= 25°C unless otherwise noted
C
10µs
100µs
1ms
DC
Figure 5. Forward Bias Safe Operating Area
100
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX V
= 15V
DD
80
10ms
100
10
, AVALANCHE CURRENT (A)
AS
I
1
0.01 0.1 1 10 100
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R
0
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
STARTING TJ = 150oC
tAV, TIME IN AVALANCHE (ms)
DSS
STARTING TJ = 25oC
- VDD)
- VDD) +1]
DSS
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching
Capability
100
TC = 25oC
80
VGS = 20V
VGS = 10V
60
40
, DRAIN CURRENT (A)
D
I
20
0
TJ = 25oC
34567
VGS, GATE TO SOURCE VOLTAGE (V)
TJ = 175oC
TJ = -55oC
Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics
30
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
25
VGS = 6V
20
15
VGS = 10V
DRAIN TO SOURCE ON RESISTANCE(mΩ)
10
0 10203040506070
I
, DRAIN CURRENT (A)
D
Figure 9. Drain to So urce On Resistanc e v s Drai n
Current
60
VGS = 6V
40
, DRAIN CURRENT (A)
D
I
20
0
0 0.5 1.0 1.5 2.0
VDS, DRAIN TO SOURCE VOLTAGE (V)
2.5
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
VGS = 5V
VGS = 10V, ID =62A
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
©2003 Fairchild Semiconductor Corporation FDB13AN06A0 / FDP1 3AN06A0 Rev. A1
FDB13AN06A0 / FDP13AN06A0
Typical Characteristics T
1.4
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
0.4
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
= 25°C unless otherwise noted
C
VGS = VDS, ID = 250µA
Figure 11. Normalized G ate Threshol d Voltage vs
Junction Temperatur e
3000
C
1000
C
C
+ C
OSS
DS
GD
= CGS + C
ISS
GD
1.2 ID = 250µA
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
10
VDD = 30V
8
6
C
= C
RSS
GD
C, CAPACITANCE (pF)
100
V
= 0V, f = 1MHz
GS
40
0.1 1 10 60 VDS, DRAIN TO SOURCE VOLTAGE (V)
Figure 13. Capacitance vs Drain to Sour ce
Voltage
4
WAVEFORMS IN
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
0 5 10 15 20 25
Qg, GATE CHARGE (nC)
DESCENDING ORDER:
ID = 62A
= 31A
I
D
Figure 14. Gat e Charge Waveforms for Constant
Gate Current
©2003 Fairchild Semiconductor Corporation FDB13AN06A0 / FDP1 3AN06A0 Rev. A1
Test Circuits and Waveforms
V
DS
L
TO OBTAIN
VARY t
P
REQUIRED PEAK I
V
GS
R
AS
G
+
V
DD
-
I
AS
DUT
t
0V
P
I
AS
0.01
0
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Wavef orm s
V
DS
V
DD
V
Q
I
g(REF)
L
V
GS
DUT
+
V
DD
-
V
0
I
g(REF)
GS
= 2V
Q
gs2
Q
g(TH)
Q
gs
0
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
BV
DSS
t
P
t
AV
Q
g(TOT)
DS
gd
V
GS
FDB13AN06A0 / FDP13AN06A0
V
DS
V
DD
V
= 10V
GS
V
DS
R
L
V
GS
R
GS
V
GS
DUT
+
V
DD
-
V
DS
0
V
GS
10%
0
t
d(ON)
90%
t
ON
t
r
t
d(OFF)
t
OFF
t
f
90%
10%
10%
90%
PULSE WIDTH
50%50%
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
©2003 Fairchild Semiconductor Corporation FDB13AN06A0 / FDP1 3AN06A0 Rev. A1
Thermal Resistance vs. Mounting Pad Area
80
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maxi mum al lowab le de vice p ower di ssip ation, P application. Therefore the applications ambient temperature, T must be reviewed to ensure that T Equation 1 mathematically represents the relationship and
(oC), and th ermal res istance R
A
is never exceeded.
JM
serve s as the basis for establ ishing the rating of the part.
TJMTA–()
----------------- ------------=
P
DM
R
θJA
DM
(oC/W)
θJA
(EQ. 1)
, in an
60
C/W)
o
(
θJA
R
40
R
= 26.51+ 19.84/(0.262+Area) EQ.2
θJA
R
= 26.51+ 128/(1.69+Area) EQ.3
θJA
FDB13AN06A0 / FDP13AN06A0
In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the parts current and maximum power d issipati on rating s. Precise d etermin ation of P comple x and influenced by many factors:
DM
is
1. Mou nting pad area ont o which the device is attached and whet her the re is copp er on one s ide or both side s of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For no n steady state applic ations, th e pulse widt h, the duty cycle and the transient thermal response of the part, the boa rd and the environment they are in.
Fairchild provides thermal information to assist the designers preliminary application evaluation. Figure 21 defines the R copper (component side) area. This is for a horizontally
for the device as a function of the top
θJA
positi on ed FR-4 board w ith 1oz co pp er af t er 1 0 0 0 se c onds of stea dy st ate pow er w ith n o air flow . Th is gr aph prov ides the necessary inf ormation for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice t hermal model or manu ally utilizing the no rmalized maximum transient thermal impedance curve.
20
1100.1
(0.645) (6.45) (64.5)
AREA, TOP COPPER AREA in2 (cm2)
Figure 21. Thermal Resistance vs Mounting
Pad Area
Therma l resi stances correspondi ng to other copper are as can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inch es squ are and equ ation 3 is for area in cent imeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.
19.84
26.51
=
R
θJA
26.51
=
R
θJA
©2003 Fairchild Semiconductor Corporation FDB13AN06A0 / FDP1 3AN06A0 Rev. A1
-------------------------------------+
0.262 Area+()
Area in Inches Squared
128
----------------------------------+
1.69 Area+()
Area in Centimeters Squared
(EQ. 2)
(EQ. 3)
PSPICE Electrical Model
.SUBCKT FDB13AN06A0 2 1 3 ; rev August 2002 Ca 12 8 5.1e-10 Cb 15 14 5.1e-10 Cin 6 8 1.3e-9
Dbod y 7 5 DbodyMOD Dbreak 5 11 Db reakMOD Dplcap 10 5 DplcapMOD
Ebreak 11 7 17 18 65.40 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1
It 8 17 1 Lgat e 1 9 6.9e-9
Ldrain 2 5 1.0e -9 Lsource 3 7 2.91e-9
RLgate 1 9 69 RLdr ai n 2 5 10 RLsource 3 7 29.1
Mmed 16 6 8 8 M m edMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD
Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 3.0e-3 Rgate 9 20 3.77 RSLC1 5 51 RSL CM OD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 5.5e-3 Rvthres 22 8 RvthresMO D 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BM OD S2a 6 15 14 13 S2AM OD S2b 13 15 14 13 S2BM OD
Vbat 22 19 DC 1
GATE
1
LGATE
RLGATE
RGATE
9
CA
ESG
+
EVTEMP
+
-
18 22
20
S1A
12
13
8
S1B
EGS EDS
­6
8
13
10
RSLC2
6
14 13
+
+
6 8
-
-
DPLCAP
EVTHRES
+
19
8
S2A
S2B
15
CIN
CB
-
+
-
5
51
5
51
21
MSTRO
14
5 8
RSLC1
+
ESLC
­50
RDRAIN
16
8
MMED
8
DBREAK
11
+
17
EBREAK
IT
18
-
MWEAK
RSOURCE
RBREAK
17 18
RVTHRES
7
+
RVTEMP 19
-
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
FDB13AN06A0 / FDP13AN06A0
ESLC 51 50 VALUE = {(V(5,51)/ ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*160), 6))} .MODEL DbodyMOD D (IS=1.5E-11 N=1.08 RS=3.3e-3 TRS1=2.2e-3 TRS2=2.5e-9
+ CJO=0.9e-9 M= 5.1e-1 TT=1e-9 XTI=3.9) .MODEL DbreakMOD D (RS= 1.5e-1 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=4.1e-10 IS=1e-30 N=10 M=0.45)
.MODEL MmedMOD NMOS (VTO=3.5 KP=6 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=3.77) .MODEL MstroMOD NMOS (VTO=4.3 KP=50 IS=1e-30 N=10 TOX=1 L= 1u W=1u) .MODEL Mwe akMOD NMOS (VTO=2.88 KP=0. 05 I S=1e-30 N=10 TOX = 1 L=1u W=1u RG=3. 77e+1 RS=0.1)
.MODEL Rb reakMOD RES (T C1=9e-4 TC2=-5e-7) .MODEL Rd rai nMOD RES (TC 1=1.5e-2 TC2=4e-5) .MODEL RSLCMOD RES (TC1=1.8e-3 TC2=1.7e-5) .MODEL RsourceMOD RES (TC 1=1e-3 TC2=1e-6) .MODEL RvthresMOD RES (T C1=-5.3e-3 TC 2=-1.0e-5) .MODEL RvtempMOD RES (T C1=-2.5e-3 TC 2=1e-6)
.MODEL S1AMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 5 VOFF =-2 ) .MODEL S1BMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 2 VOFF =-5 ) .MODEL S2AMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 1.5 VO FF=0.5) .MODEL S2BMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= 0 .5 VOFF= -1.5)
.ENDS *Not e: For fu rthe r dis cu ssi on of t he PS P IC E mod el , co ns ul t A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Powe r Electronic s S pecialist Conf erence Recor ds, 1991, written by Wi l liam J. Hepp and C. F rank Wheatley.
©2003 Fairchild Semiconductor Corporation FDB13AN06A0 / FDP1 3AN06A0 Rev. A1
SABER Electrical Model
rev August 2002 template FDB 13AN06A0 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=1.5e-11,nl=1.08,rs=3.3e-3,trs1=2.2e-3,trs2=2.5e-9,cjo=0.9e-9,m=5.1e-1,tt=1e-9,xti=3.9) dp..model dbreakmod = (rs=1.5e-1,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=4.1e-10,isl=10e-30,nl=10,m=0.45) m..model mmedmod = (type=_n,vto=3.5,kp=6,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=4.3,kp=50,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=2.88,kp=0.05,is=1e-30, tox=1,rs=0.1) sw_vcsp.. mo del s1amod = (ron=1e-5,roff=0.1, von=-5,voff=-2) sw_vcsp.. mo del s1bmod = (ron=1e-5,roff=0.1, von=-2,voff=-5) sw_vcsp.. mo del s2amod = (ron=1e-5,roff=0.1, von=-1.5,voff =0.5) sw_vcsp.. mo del s2bmod = (ron=1e-5,roff=0.1, von=0.5,voff= -1.5) c.ca n12 n8 = 5.1e -10 c.cb n15 n14 = 5.1e-10 c.cin n6 n8 = 1.3e -9
dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplca pm od
spe.ebreak n11 n7 n17 n18 = 65.40 spe.eds n14 n8 n5 n8 = 1
GATE
spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1
LGATE
1
RLGATE
9
RGATE
ESG
EVTEMP +
20
spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1 l.lgate n1 n9 = 6.9e-9
l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 2.91e-9
res.rlgate n1 n9 = 69
CA
S1A
12
S1B
res.rldrai n n2 n5 = 10 res.rlsource n3 n7 = 29.1
m.mmed n16 n6 n8 n8 = m odel=mmedm od, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=ms trongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mwea kmod, l=1u, w=1u
18 22
DPLCAP
10
RSLC2
­6
8
EVTHRES
+
+
19
6
-
S2A
13
14
8
13
S2B
13
+
+
6
EGS EDS
8
-
-
5
RSLC1
51
ISCL
MMED
8
DBREAK
11
MWEAK
EBREAK
+
-
RSOURCE
RBREAK
17 18
IT
RVTHRES
17 18
7
RVTEMP 19
-
+
22
50 RDRAIN
16
21
-
8
MSTRO
CIN
15
CB
8
14
+
5 8
-
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
FDB13AN06A0 / FDP13AN06A0
res.rbreak n17 n18 = 1, tc1=9e-4,tc 2=-5e-7 res.rdrain n50 n16 = 3.0e-3, tc1=1.5e-2,tc2= 4e-5 res.rgate n9 n20 = 3.77 res.rslc1 n5 n51 = 1e-6, tc1=1.8e-3,tc2=1.7e-5 res.rslc2 n5 n50 = 1e3 res.rsour ce n8 n7 = 5.5e-3, tc1=1e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-5.3e-3,tc2=-1.0e-5 res.rvtemp n18 n19 = 1, tc1=-2.5e-3,tc2=1e-6 sw_vcsp.s1 a n6 n12 n13 n8 = model= s1amod sw_vcsp.s1 b n13 n12 n13 n8 = model =s1bmod sw_vcsp.s2 a n6 n15 n14 n13 = model =s2amod sw_vcsp.s2 b n13 n15 n14 n13 = model =s2bmod
v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n 51))))*((abs(v(n5,n51)* 1e6/160))** 6)) }
©2003 Fairchild Semiconductor Corporation FDB13AN06A0 / FDP1 3AN06A0 Rev. A1
FDB13AN06A0 / FDP13AN06A0
PSPICE Thermal Model
REV 23 March 2002 FDB13AN06A0T
CTHERM1 TH 6 9.7e-4 CTHERM2 6 5 6. 2e-3 CTHERM3 5 4 4. 6e-3 CTHERM4 4 3 4. 9e-3 CTHERM5 3 2 8e-3 CTHERM6 2 TL 4.2e-2
RTHERM1 TH 6 5.24e-2 RTHERM2 6 5 10.08e-2 RTHERM3 5 4 4. 28e-1 RTHERM4 4 3 1. 8e-1 RTHERM5 3 2 1. 9e-1 RTHERM6 2 TL 2.1e-1
SABER Thermal Model
SABER thermal model FDB14AN06A0T template thermal_model th tl thermal_ c th , tl { ctherm.c th erm 1 th 6 =9.7e-4 ctherm.ctherm2 6 5 =6.2e-3 ctherm.ctherm3 5 4 =4.6e-3 ctherm.ctherm4 4 3 =4.9e-3 ctherm.ctherm5 3 2 =8e-3 ctherm.ctherm6 2 tl =4.2e-2
rtherm.rth erm1 th 6 =5.24e- 2 rtherm.rtherm2 6 5 =10.08e-2 rtherm.rt herm3 5 4 =4.28e-1 rtherm.rt herm4 4 3 =1.8e-1 rtherm.rt herm5 3 2 =1.9e-1 rthe r m.rtherm6 2 tl =2.1 e-1 }
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
RTHERM6
2
CTHERM6
CASE
tl
©2003 Fairchild Semiconductor Corporation FDB13AN06A0 / FDP1 3AN06A0 Rev. A1
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™ ActiveArray™ Bottomless™ CoolFET™ CROSSVOL T™ DOME™ EcoSPARK™ E2CMOS EnSigna
TM
TM
FACT™ FACT Quiet Series™
FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™
I2C™ Across the board. Around the world.™ The Power Franchise™ Programmable Active Droop™
ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC
OPTOPLANAR™
PACMAN™ POP™ Power247™ PowerTrench QFET
QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SILENT SWITCHER SMART START™
SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic TruTranslation™ UHC™ UltraFET
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Formative or In Design
First Production
Full Production
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or
effectiveness.
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I3
Loading...