Datasheet FDB060AN08A0, FDP060AN08A0 Datasheet (Fairchild)

Page 1
FDB060AN08A0 / FDP060AN08A0
N-Channel PowerTrench® MOSFET 75V, 80A, 6.0m
FDB060AN08A0 / FDP060AN08A0
November 2002
•r
•Q
• Low Miller Charge
•Low Q
= 4.8mΩ (Typ .), V
DS(ON)
(tot) = 73nC (Typ.), V
g
Body Diode
RR
= 10V, ID = 80A
GS
= 10V
GS
Applications
• Elec tr on ic Valve Train Sys te m s
• DC-DC converters and Off -line UPS
• Distributed Power Architectures and VRMs
• Primary Switch for 24V and 48V systems
• UIS Capability (Single Pulse and Repetitive Pulse)
Formerly developmental type 82680
DRAIN
(FLANGE)
GATE
TO-220AB
FDP SERIES
MOSFET Maximum Ratings
SOURCE
DRAIN
GATE
SOURCE
TO-263AB
FDB SERIES
TC = 25°C unless otherwise noted
DRAIN
(FLANGE)
D
G
S
Symbol Parameter Ratings Units
V
DSS
V
GS
Drain to Sou r c e Voltage 75 V Gate to Source Voltage ±20 V Drain Curr e nt
I
D
Continuous (T Continuous (T
< 127oC, VGS = 10V)
C
= 25oC, VGS = 10V, with R
amb
= 43oC/W) 16 A
θJA
80 A
Pulsed Figure 4 A
E
AS
P
D
, T
T
J
STG
Single Pulse Avalanche Energy (Note 1) 350 mJ Power dissipation 255 W Derate above 25oC1.7W/ Operating and Storage Temperature -55 to 175
o
C
o
C
Thermal Characteristics
R
θJC
R
θJA
R
θJA
Thermal Resistance Junction to Case TO-220,TO-263 0.58 Thermal Resistance Junction to Ambien t TO-220,TO -263 (Note 2) 62 Thermal Resistan ce Junction to Ambient TO-263, 1in2 copper pad ar ea 43
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
o
C/W
o
C/W
o
C/W
FDB060AN08A0 / FDP060AN08A0 Rev. C2©2002 Fairchild Semiconductor Corporation
Page 2
Package Marking and Ordering Information
Device Marking Device Package Reel Size Tape Width Quantity
FDB060 AN08A0 FDB060AN08A0 TO-263AB 330mm 24mm 800 uni ts FDP060AN08A0 FDP060AN08A0 TO-220AB Tube N/A 50 unit s
FDB060AN08A0 / FDP060AN08A0
Electrical Characteristics
TC = 25°C unless othe rw ise noted
Symbol Parame ter Test Conditions Min Typ Max Units
Off Characteristics
B I
DSS
I
GSS
VDSS
Drain to Sou r c e Br ea k down Voltag e ID = 250µA, VGS = 0V 75 - - V
V
= 60V - - 1
Zero Gate Voltage Drain Current
DS
= 0V TC = 150oC- -250
V
GS
Gate to Source Leakage Current VGS = ±20V - - ±100 nA
On Characteristics
V
GS(TH)
r
DS(ON)
Gate to Source Threshold Voltage VGS = VDS, ID = 250µA2-4V
ID = 80A, VGS = 10V - 0.0048 0.006 I
= 40A, VGS = 6V - 0.0066 0.010
Drain to S ou r c e On Re si st ance
D
= 80A, VGS = 10V,
I
D
T
= 175oC
J
- 0.010 0.013
Dynamic Characteristics
C C C Q Q Q Q Q
ISS OSS RSS
g(TOT) g(TH) gs gs2 gd
Input Capacitance Output Capacitance - 800 - pF Reverse Transfer Capacitance - 230 - pF
V
= 25V, VGS = 0V,
DS
f = 1MHz
Total Gate Charge at 10V VGS = 0V to 10V Threshold Gate Charge VGS = 0V to 2V - 10 13 nC Gate to Source Gate Charg e - 2 9 - nC Gate Charge Threshold to Plateau - 19 - nC
VDD = 40V
= 80A
I
D
I
= 1.0m A
g
- 5150 - pF
73 95 nC
Gate to Drain “Miller” Charge - 16 - nC
µA
Switching Characteristics
t
ON
t
d(ON)
t
r
t
d(OFF)
t
f
t
OFF
Turn-On Time Turn-On Delay Time - 19 - ns Rise Time - 79 - ns Turn-Off Delay Time - 37 - ns Fall Time - 38 - ns Turn-Off Time - - 113 ns
(VGS = 10V)
Drain-Source Diode Characteristics
V
SD
t
rr
Q
RR
Notes: 1: Starting TJ = 25°C, L = 109µH, IAS = 80A. 2: Pulse width = 100s
Source to Drain Diode V oltage Reverse Recovery Time ISD = 75A, dISD/dt = 100A/µs- -37ns
Reverse Recovered Charge ISD = 75A, dISD/dt = 100A/µs- -38nC
--147ns
VDD = 40V, ID = 80A VGS = 10V, RGS = 3.9
I
= 80A - - 1.25 V
SD
= 40A - - 1.0 V
I
SD
FDB060AN08A0 / FDP060AN08A0 Rev. C2©2002 Fairchild Semiconductor Corporation
Page 3
FDB060AN08A0 / FDP060AN08A0
Typical Characteristics
TC = 25°C unless othe rw ise noted
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0255075100 175
125
TC, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.01
-5
10
SINGLE PULSE
-4
10
10
150
125
100
75
50
, DRAIN CURRENT (A)
D
I
25
0
150
25 50 75 100 125 150 175
Figure 2. Maximum Continuous Drain Curr ent vs
-3
t, RECTANGULAR PULSE DURATION (s)
-2
10
CURRENT LIMITED BY PACKAGE
TC, CASE TEMPERATURE (oC)
Case Temperature
P
DM
NOTES: DUTY FACTOR: D = t1/t
PEAK TJ = PDM x Z
-1
10
θJC
10
0
x R
t
1
t
2
2
+ T
θJC
C
1
10
Figure 3. Normalized Maximum Transient Thermal Impedance
2000
TRANSCONDUCTANCE
1000
MAY LIMIT CURRENT IN THIS REGION
VGS = 10V
, PEAK CURRENT (A)
DM
I
100
70
-5
10
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS:
175 - T
I = I
25
10
C
150
0
1
10
Figure 4. Peak Current Capability
FDB060AN08A0 / FDP060AN08A0 Rev. C2©2002 Fairchild Semiconductor Corporation
Page 4
FDB060AN08A0 / FDP060AN08A0
Typical Characteristics
1000
100
OPERATION IN THIS
10
, DRAIN CURRENT (A)
D
I
0.1
AREA MAY BE
LIMITED BY r
1
SINGLE PULSE
TJ = MAX RATED TC = 25oC
110100
DS(ON)
VDS, DRAIN TO SOURCE VOLTAGE (V)
TC = 25°C unless othe rw ise noted
10µs
100µs
1ms
10ms
DC
Figure 5. Forward Bias Safe Operating Area
175
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
150
125
= 15V
V
DD
500
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R 0 t
= (L/R)ln[(IAS*R)/(1.3*RATED BV
AV
100
10
, AVALANCHE CURRENT (A)
AS
I
1
0.01 0.1 1 10 100
STARTING TJ = 150oC
tAV, TIME IN AVALANCHE (ms)
- VDD)
DSS
DSS
STARTING TJ = 25oC
- VDD) +1]
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching
Capability
175
150
125
VGS = 10V
V
= 7V
GS
VGS = 6V
100
75
, DRAIN CURRENT (A)
50
D
I
25
TJ = 25oC
0
3.5 4.0 4.5 5.0 5.5 6.0 VGS, GATE TO SOURCE VOLTAGE (V)
TJ = 175oC
TJ = -55oC
100
75
, DRAIN CURRENT (A)
50
D
I
25
0
0 0.5 1.0 1.5 2.0
VDS, DRAIN TO SOURCE VOLTAGE (V)
TC = 25oC
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics
7.5
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
7.0
6.5
6.0
5.5
5.0
4.5
DRAIN TO SOURCE ON RESISTANCE(mΩ)
4.0 0 20406080
VGS = 6V
VGS = 10V
ID, DRAIN CURRENT (A)
2.5
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
VGS = 5V
VGS = 10V, ID = 80A
Figure 9. Drain to So urce On Resistanc e v s Drai n
Current
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
FDB060AN08A0 / FDP060AN08A0 Rev. C2©2002 Fairchild Semiconductor Corporation
Page 5
FDB060AN08A0 / FDP060AN08A0
Typical Characteristics
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
0.4
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
TC = 25°C unless othe rw ise noted
VGS = VDS, ID = 250µA
Figure 11. Normalized G ate Threshol d Voltage vs
Junction Temperatur e
7000
C
= CGS + C
1000
ISS
C
C
+ C
OSS
DS
GD
C
= C
RSS
GD
GD
1.2 ID = 250µA
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 200 T
, JUNCTION TEMPERATURE (oC)
J
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
10
VDD = 40V
8
6
4
C, CAPACITANCE (pF)
V
= 0V, f = 1MHz
GS
100
0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V)
Figure 13. Capacitance vs Drain to Sour ce
Voltage
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
75
0 20406080
Qg, GATE CHARGE (nC)
WAVEFORMS IN DESCENDING ORDER:
ID = 80A ID = 16A
Figure 14. Gat e Charge Waveforms for Constant
Gate Current
FDB060AN08A0 / FDP060AN08A0 Rev. C2©2002 Fairchild Semiconductor Corporation
Page 6
Test Circuits and Waveforms
V
DS
L
TO OBTAIN
VARY t
P
REQUIRED PEAK I
V
GS
R
AS
G
+
V
DD
-
I
AS
DUT
t
0V
P
I
AS
0.01
0
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Wavef orm s
V
DS
V
DD
V
Q
I
g(REF)
L
V
GS
DUT
+
V
DD
-
V
GS
0
I
g(REF)
= 2V
Q
gs2
Q
g(TH)
Q
gs
0
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
BV
DSS
t
P
t
AV
Q
g(TOT)
DS
gd
V
V
GS
FDB060AN08A0 / FDP060AN08A0
DS
V
DD
V
= 10V
GS
V
DS
R
L
V
GS
R
GS
V
GS
DUT
+
V
DD
-
V
DS
0
V
GS
10%
0
t
d(ON)
90%
t
ON
t
t
r
10%
PULSE WIDTH
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
FDB060AN08A0 / FDP060AN08A0 Rev. C2©2002 Fairchild Semiconductor Corporation
d(OFF)
90%
t
OFF
t
f
90%
10%
50%50%
Page 7
Thermal Resistance vs. Mounting Pad Area
80
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, T must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serve s as the basis for establishing the rating of the part.
P
DM
In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power d issipati on rating s. Precise d etermin ation of P comple x and infl uenced by many factors :
1. Mou nting pa d area onto which the device is a ttached and whet her the re is copp er on one s ide or both side s of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orie ntation .
6. For no n steady state applic ations, th e pulse widt h, the duty cycle and the transi ent thermal response of the part, the boa rd and the environment they are in.
Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the R copper (component side) area. This is for a horizontally positi on ed FR-4 board w ith 1oz c o pp er after 1 00 0 se c onds of stea dy st ate pow er w ith n o air flow . Th is gr aph prov ides the necessary information for calculation of the steady s tate junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice t hermal model or manu ally utilizing the no rmalized maximum transient thermal impedance curve.
(oC), and th ermal res istance R
A
TJMTA–()
----------------- ------------=
R
θJA
for the device as a function of the top
θJA
(oC/W)
θJA
(EQ. 1)
DM
is
60
C/W)
o
(
θJA
R
40
20
Figure 21. Thermal Resistance vs Mounting
R
= 26.51+ 19.84/(0.262+Area) EQ.2
θJA
R
= 26.51+ 128/(1.69+Area) EQ.3
θJA
(0.645) (6.45) (64.5)
AREA, TOP COPPER AREA in2 (cm2)
1100.1
Pad Area
FDB060AN08A0 / FDP060AN08A0
Therma l resistances corresp onding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inch es squ are and equ ation 3 is for area in cent imeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.
19.84
=
R
R
θJA
θJA
=
26.51
26.51
-------------------------------------+
0.262 Area+()
Area in Inches Squared
128
----------------------------------+
1.69 Area+()
Area in Centimeters Squared
(EQ. 2)
(EQ. 3)
FDB060AN08A0 / FDP060AN08A0 Rev. C2©2002 Fairchild Semiconductor Corporation
Page 8
PSPICE Electrical Mod el
.SUBCKT FDP060AN08 A0 2 1 3 ; rev Oct ober 2002 Ca 12 8 2.5e-9 Cb 15 14 2.1e-9 Cin 6 8 4.7e-9
Dbod y 7 5 DbodyM OD Dbreak 5 11 Db reakMOD Dplcap 10 5 DplcapMOD
Ebreak 11 7 17 18 82.1 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1
ESG
Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1
It 8 17 1 Lgat e 1 9 5.3e-9
GATE
1
LGATE
RLGATE
RGATE
9
EVTEMP
+
20
18 22
Ldrain 2 5 1.0e -9 Lsou rce 3 7 5e-9
RLgate 1 9 53 RLdr ai n 2 5 10
S1A
12
RLsource 3 7 50 Mmed 16 6 8 8 M m edMOD
Mstro 16 6 8 8 MstroMOD
S1B
CA
Mweak 16 21 8 8 MweakMOD Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 9e-4 Rgate 9 20 1.4 RSLC1 5 51 RSL CM OD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 3e-3 Rvthres 22 8 RvthresMO D 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BM OD S2a 6 15 14 13 S2AM OD S2b 13 15 14 13 S2BM OD
Vbat 22 19 DC 1 ESLC 51 50 VALUE = {(V(5,51)/ ABS(V(5,51)))*(PWR (V (5,51)/(1 e-6*350),5) )}
.MODEL DbodyMOD D (IS=2E-11 N=1.04 RS=1.76e-3 TRS1=2.7e-3 TRS2=1e-6 + CJO=3.2e-9 M= 5.6e-1 TT=3e-10 XTI=3.9) .MODEL DbreakMOD D (RS= 3e-1 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=1.56e-9 IS=1e-30 N=10 M=0.53)
.MODEL MmedMOD NMOS (VTO=3.6 KP=6 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.4) .MODEL Mstro M OD NMOS (VTO=4.22 K P =220 IS=1e-30 N=10 T OX=1 L=1u W=1u) .MODEL MweakMOD NMOS (VTO=3 KP=0.03 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=14 RS=0.1)
DPLCAP
10
RSLC2
­6
8
EVTHRES
+
+
19
6
-
S2A
13
14
8
13
S2B
13
+
+
6
EGS EDS
8
-
-
5
RSLC1
51
+
5
ESLC
51
­50
RDRAIN
16
21
-
8
MSTRO
CIN
15
CB
8
14
+
5 8
-
DBREAK
EBREAK
MWEAK
MMED
RSOURCE
17 18
IT
8
11
+
17 18
-
RBREAK
RVTHRES
7
RVTEMP 19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
FDB060AN08A0 / FDP060AN08A0
.MODEL RbreakMOD RES (TC1=9.4e-4 TC2=-9e-7) .MODEL Rd rai nMOD RES (TC1=2.2e-2 TC2=6e-5) .MODEL RSLCMOD RES (TC1=2e-3 TC2=1e-5) .MODEL RsourceMOD RES (TC1=1e-3 TC2=1 e-6) .MODEL RvthresMOD RE S (TC1=-6e-3 T C2=-1.6e-5 ) .MODEL RvtempMOD RES (T C1=-2.4e-3 TC 2=1e-6)
.MODEL S1AMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 8 VOFF =-5 ) .MODEL S1BMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 5 VOFF =-8 ) .MODEL S2AMOD VSWITC H (RON =1e - 5 ROFF= 0. 1 VON=- 4 VOFF =-3 .5 ) .MODEL S2BMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 3.5 VO FF=- 4) .ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, wri t ten by William J. Hepp and C. Frank Wheatley.
FDB060AN08A0 / FDP060AN08A0 Rev. C2©2002 Fairchild Semiconductor Corporation
Page 9
SABER Electrical Model
rev October 2002 template FDP 060AN08A0 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=2e-11,nl=1.04,rs=1.76e-3,trs1=2.7e-3,trs2=1e-6,cjo=3.2e-9,m=5.6e-1,tt=3e-10,xti=3.9) dp..model dbreakmod = (rs=3e -1, trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=1.56e-9,isl=10e-30,nl=10,m=0.53) m..model mmedmod = (type=_n,vto=3.6,kp=6,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=4.22,kp=220,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=3,kp=0.03,is=1e-30, tox=1,rs=0.1) sw_vcsp.. mo del s1amod = (ron=1e-5,roff=0.1, von=-8,voff=-5) sw_vcsp.. mo del s1bmod = (ron=1e-5,roff=0.1, von=-5,voff=-8) sw_vcsp.. mo del s2amod = (ron=1e-5,roff=0.1, von=-4,voff=-3.5) sw_vcsp.. mo del s2bmod = (ron=1e-5,roff=0.1, von=-3.5,voff=-4) c.ca n12 n8 = 2.5e-9 c.cb n15 n14 = 2.1e-9 c.cin n6 n8 = 4.7e -9
dp.dbody n7 n5 = model=dbodym od dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplca pm od
spe.ebreak n11 n7 n17 n18 = 82.1 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1
GATE
1
LGATE
RLGATE
RGATE
9
EVTEMP +
20
spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1 l.lgate n1 n9 = 5.3e-9
l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 5e-9
res.rlgate n1 n9 = 53
CA
S1A
12
S1B
res.rldrai n n2 n5 = 10 res.rlsource n3 n7 = 50
m.mmed n16 n6 n8 n8 = m odel=mmedm od, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mwea kmod, l=1u, w=1u
ESG
18 22
DPLCAP
10
RSLC2
­6
8
EVTHRES
+
+
19
8
6
-
S2A
13
14
8
13
S2B
13
+
+
6
EGS EDS
8
-
-
15
CIN
CB
-
+
-
5
MSTRO
14
5 8
RSLC1
51
ISCL
50 RDRAIN
16
21
8
MMED
8
DBREAK
11
MWEAK
EBREAK
+
RSOURCE
RBREAK
17 18
IT
RVTHRES
17 18
­7
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
RVTEMP 19
VBAT
DRAIN
2
SOURCE
3
FDB060AN08A0 / FDP060AN08A0
res.rbreak n17 n18 = 1, tc1=9.4e- 4, tc 2=-9e-7 res.rdrain n50 n16 = 9e-4, tc1=2 .2e-2,tc2=6e-5 res.rgate n9 n20 = 1.4 res.rslc1 n5 n51 = 1e-6, tc1=2e -3, tc2=1e-5 res.rslc2 n5 n50 = 1e3 res.rsour ce n8 n7 = 3e-3, tc1=1e- 3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-6e- 3, tc 2=-1.6e-5 res.rvtemp n18 n19 = 1, tc1=-2.4e-3,tc2=1e-6 sw_vcsp.s1 a n6 n12 n13 n8 = model= s1amod sw_vcsp.s1 b n13 n12 n13 n8 = model =s1bmod sw_vcsp.s2 a n6 n15 n14 n13 = model =s2amod sw_vcsp.s2 b n13 n15 n14 n13 = model =s2bmod
v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/350 ))** 5)) } }
FDB060AN08A0 / FDP060AN08A0 Rev. C2©2002 Fairchild Semiconductor Corporation
Page 10
FDB060AN08A0 / FDP060AN08A0
PSPICE Thermal Model
REV 23 October 2002 FDP060AN08A0T CTHERM1 TH 6 9.6e-3
CTHERM2 6 5 9. 7e-3 CTHERM3 5 4 9. 8e-3 CTHERM4 4 3 1e-2 CTHERM5 3 2 3e-2 CTHERM6 2 TL 9e-2
RTHERM1 TH 6 3.2e-3 RTHERM2 6 5 8. 1e-3 RTHERM3 5 4 2. 3e-2 RTHERM4 4 3 1. 2e-1 RTHERM5 3 2 1. 5e-1 RTHERM6 2 TL 1.6e-1
SABER Thermal Model
SABER therm al m odel F DP060AN08A0T template thermal_model th tl thermal_ c th , tl { ctherm.c th erm 1 th 6 =9.6e-3 ctherm.ctherm2 6 5 =9.7e-3 ctherm.ctherm3 5 4 =9.8e-3 ctherm.ctherm4 4 3 =1e-2 ctherm.ctherm5 3 2 =3e-2 ctherm.ctherm6 2 tl =9e-2
rtherm.rtherm1 th 6 =3.2e-3 rtherm.rtherm2 6 5 =8.1e-3 rtherm.rtherm3 5 4 =2.3e-2 rtherm.rtherm4 4 3 =1.2e-1 rtherm.rtherm5 3 2 =1.5e-1 rthe r m.rtherm6 2 tl =1 . 6 e-1 }
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
RTHERM6
2
CTHERM6
tl
CASE
FDB060AN08A0 / FDP060AN08A0 Rev. C2©2002 Fairchild Semiconductor Corporation
Page 11
TRADEMARKS
The following ar e registered and unregistered tra demarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™ ActiveArray™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ EcoSPARK™
2
E
CMOS™ EnSigna™ Across the board. Around the world.™ The Power Franchise™ Programma ble Active Droop™
FACT™ FACT Quiet Series™
®
FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™
2
I
C™
ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC
®
OPTOPLANAR™
PACMAN™ POP™ Power247™ PowerTrench
®
QFET™ QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SILENT SWITCHER SMART START™
SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET
®
VCX™
®
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) ar e int ende d fo r s urgic al i mpla nt into the bo dy, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A c r it ic al c om ponent i s an y compo ne n t o f a l ife supp ort device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Adva nce Inf ormation Formative or In
Design
Preliminary First Production This datasheet contains prel iminary dat a, and
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Obsolete Not In Production This datasheet contains speci ficatio ns on a product
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
supple m entary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improv e design.
Semiconductor reserves the right to make changes at any time without notice in order to improve design.
that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I1
Loading...