Bio-Rad MP-50 User Manual

AG®50W and AG MP-50
Cation Exchange Resins
Instruction Manual
Table of Contents
Section 1 Introduction ..........................................1
Section 3 Mechanism ............................................4
Section 4 Resin Conversion..................................7
5.1 Batch Method ...............................................10
5.2 Column Method............................................11
Section 6 Sample Protocol for
Section 7 Applications.........................................16
Section 8 Storage.................................................17
Section 9 Stability................................................17
Section 10 Product Information...........................27
Cation Exchange Resins.....................14
6.1 Determination of Total Salts
in Tap Water .................................................14
6.2 Materials .......................................................15
6.3 Protocol.........................................................15
6.4 Calculation....................................................15
6.5 Notes.............................................................16
Section 1 Introduction
AG 50W and AG MP-50 strong acid cation exchange resins are useful for single step purification methods, for concentrating cationic solutes, and for analytical determinations of various mixed cationic solutes.
Section 2 Technical Description
Strong acid cation exchange resin is available as Analytical Grade AG 50W resin, AG MP-50 macroporous resin, and Biotechnology Grade AG 50W resin. The Analytical Grade AG 50W resin has been exhaustively sized, purified, and converted to make it suitable for accurate, reproducible analytical techniques. Biotechnology Grade AG 50W resin is analytical grade resin which is certified to contain less than 100 microorganisms per gram of resin.
AG 50W strong acid cation exchange resin is composed of sulfonic acid functional groups attached to
1
a styrene divinylbenzene copolymer lattice. The amount of resin crosslinking determines the bead pore size. A resin with a lower crosslinkage has a more open structure permeable to higher molecular weight substances than a highly crosslinked resin. It also has a lower physical resistance to shrinking and swelling, so that it absorbs more water and swells to a larger wet diameter than a highly crosslinked resin of equivalent dry diameter. For example, typical applications of AG 50W-X2 2% crosslinked resin and AG 50W-X4 4% crosslinked resin include separation or concentration of peptides, nucleotides, and amino acids. In high percentage crosslinkage, (AG 50W-X8 8% resin, AG-50W-X12 12% resin, and AG 50W-X16 16% resin) applications include separation of small peptides and amino acids, removal of cations, and metal separations. Table 1 shows the approximate molecular weight exclusion limits in water for resins of various crosslinkages. All AG 50W resins are supplied in the hydrogen form, and selected AG 50W-X8 resins are available in sodium and ammonium forms.
Table 1. Approximate Molecular Weight Exclusion Limits for Ion Exchange Resins in Water
Percent Approximate MW Exclusion Limit
Crosslinking for Globular Molecules
2% 2,700 4% 1,400
8% 1,000 10% 800 12% 400
AG MP-50 resin is the macroporous equivalent of AG 50W resin. Its effective surface area approximates 35 square meters per dry gram, or 30-35% porosity.
The physical properties of the resins are listed in Table 2. The cation exchange resins are thermally stable and resistant to solvents (alcohols, hydrocarbons, etc.), reducing agents, and oxidizing agents.
2
3
Table 2. Summary of the Properties of AG 50 and AG MP 50 Resins
Active Resistance Resistance Group Thermal Solvent to Oxidizing to (X8 Resin) Stability Stability Agents Reducing
R-SO
- Good to Very good Slowly oxidizes in Very good
3
150 °C hot 15% HN0
3
Section 3 Mechanism
In an ion exchange procedure, the counterions on the resin are replaced by sample ions that have the same charge. In applications involving a cation exchange resin, such as AG 50 resin, neutral molecules and anions do not interact with the resin. AG 50 resin is available
+
with H
, Na+, or NH converted from one ionic form to another. Usually the resin is used in an ionic form with a lower selectivity for the functional group than the sample ions to be exchanged. The sample ions are then exchanged when introduced, and can be eluted by introducing an ion with higher affinity for the resin or a high concentration of an
+
counterions. A resin can be
3
ion with equivalent or lower affinity. Table 3 shows the relative selectivity of various counterions. In general, the lower the selectivity of the counterion the more readily it exchanges for another ion of like charge. The order of selectivity can also be used to estimate the effectiveness for different ions as eluants, with the most highly selective being the most efficient. Finally, the order of selectivity can be used to estimate the difficulty of converting the resin from one form to another. Conversion from a highly selected to a less highly selected form requires an excess of the new ion.
4
5
Table 3. Relative Selectivity of Various Counterions
Counterion for AG 50W-X8 Resin Counterion for AG 50W-X8 Resin
+
H
+
Li
+
Na
+
NH
4
+
K
+
Rb
+
Cs
+
Cu
+
Ag
2+
Mn
2+
Mg
Relative Selectivity Relative Selectivity
1.0 Fe
0.85 Zn
1.5 Co
1.95 Cu
2.5 Cd
2.6 Ni
2.7 Ca
5.3 Sr
7.6 Hg
2.35 Pb
2.5 Ba
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2.55
2.7
2.8
2.9
2.95
3.0
3.9
4.95
7.2
7.5
8.7
Large mesh material (20-50 and 50-100 mesh) is used primarily for large preparative applications and batch operations where the resin and sample are slurried together. Medium mesh resin (100-200 mesh) is used primarily in column chromatography for analytical and laboratory scale preparative applications. Fine mesh material (200-400 and minus 400 mesh) is used for high resolution analytical separations.
Table 4. Wet Mesh and Equivalent Micron Diameters
Wet Mesh
(U.S. Standard) 16 20 40 50 80 100 140 200 270 325 400
µm Diameter
(1 µm=0.001msm) 1,180 850 425 300 180 150 106 75 53 45 38
The AG 50 resins are available in several particle size ranges. The flow rate in a chromatographic column increases with increasing particle size. However, the attainable resolution increases with decreasing particle size and narrower size distribution ranges. Particle size is given either in mesh size or micron size. The larger the mesh size number, the smaller the particle size. Table 4 shows wet mesh and equivalent micron diameters.
6
Section 4 Resin Conversion
Table 5 outlines common techniques for converting ion exchange resins from one ionic form to another. Resin conversion is most efficiently carried out in the column mode. However, when choosing a column,
7
remember that the resin may shrink, or it may swell as much as 100%, depending on the conversion.
Conversions to ionic forms not listed in Table 5 can be achieved using the information supplied in Table 3, which lists relative selectivities of various counterions for AG 50 resin. To convert a resin to an ionic form with a higher selectivity, wash the resin with 2-3 bed volumes of a 1 M solution of the desired counterion. For conversion to an ionic form with a lower relative selectivity for the resin, the necessary volume of counterion solution will depend on the difference in selectivity. As a general rule, use 1 bed volume of 1 M counterion solution for each unit difference in relative selectivity. For example, converting AG 50W-X8 resin from the K
+
form (relative selectivity 2.5) to the H+form (relative selectivity 1.0) would require 2-3 bed volumes of 1 M HCl. The conversion is complete when all the K ions are displaced by the H+ions.
8
Table 5. Techniques for AG Resin Conversion
Bio-Rex
®
AG 50 resin MSZ 50 resin
Conversion H
Na
H+➝ pyridinium
+
+
from to Reagent used 1 M NaOH 1 M pyridine
(wash with H before pyridine)
O
2
Volumes of sol’n/ 22 vol. of resin
Flow rate ml/min/cm
Type of exchange Test for completeness pH 9
(2)
2
of bed
21
(1)
NN
(3)
of conversion
+
Rinse: vol. DI water/ 4— vol. resin
Test for completion pH<9 of rinsing
1. N = Neutralization
2. For 50-100 or finer mesh resin. For 20-50 mesh, about rate is recommended.
3. Test for pH 4.8 – pH paper or methyl orange (red pH 1, yellow pH 4.8). Test for pH 9 – pH paper or thymolphthalein (blue pH 10, colorless at pH 9).
9
1
5 the flow
Section 5 Instructions for Use
AG 50 and AG MP-50 resin may be used in either a batch method or a column method. The batch method consists of adding the resin directly to the sample and stirring. The column method requires preparing a column filled with resin, and passing the sample through.
5.1 Batch Method
The batch method is performed by adding the resin directly into the sample and stirring. The resin should be in the correct ionic form prior to beginning.
1. Weigh out about 5 grams of resin for every 100 ml of
sample. For larger scale applications or when an exact amount of resin is needed, calculate the resin volume based on the resin capacity.
2. Add resin to the sample and stir or shake gently for 1
hour.
3. Filter or decant the sample from the resin.
5.2 Column Method
The column method involves pouring a column with the resin and passing the sample through to achieve the separation. Particle size will determine the flow rate, which will affect the separation. The resin should be in the correct ionic form and equilibrated prior to adding the sample.
1. Calculate the amount of resin required based on the
expected resin capacity and sample concentration. If the sample ionic concentration is unknown, begin with 5 grams of resin for 100 ml of sample, and then optimize the volumes after obtaining the results.
2. Insure that the resin is in the ionic form which will
allow the sample ions to be exchanged onto the resin. If conversion of the resin into another ionic form is necessary, use the guidelines described above for resin conversion (see Table 5).
3. Prepare the initial buffer, so that the pH and ionic
concentration will allow the sample ions to be exchanged onto the column. For unknown solutions, use deionized water.
10
11
4. Slurry and pour the resin into the column. Equilibrate the resin in the initial buffer using 3 bed volumes of buffer. Poorly equilibrated resin will not give reproducible results. Alternatively, equilibration can be done by the batch technique, prior to pouring the column. First, convert the resin to the appropriate form, then suspend it in the starting buffer. Check the pH with a pH meter while stirring continuously. Adjust the pH by adding acid or base dropwise to the buffer until the desired pH is obtained. Then transfer the resin to the column, and pass 1 bed volume of the starting buffer through the column.
5. Add the initial buffer and allow excess buffer to pass through the column, leaving enough buffer to just cover the top of the resin bed.
6. Apply the sample dropwise to the top of the column without disturbing the resin bed. Drain the sample into the top of the bed and apply several small portions of starting eluant, being very careful to rinse down the sides of the column and to avoid stirring up the bed. Drain each portion to the level of the resin bed before the next portion is added. Never allow the liquid level to drain below the top of the resin bed.
7. The actual flow rate that is used will depend upon the application, the resin, and the column cross section. To obtain flow rates for any given size column, multiply the suggested flow rates in Table 6 by the column cross-sectional area. Table 6 gives typical flow rates of analytical grade resins.
8. If a cation-free solution is the goal, collect the effluent. If the concentrated cations are of interest, allow all of the sample to pass through the column, then elute the metals with a solution containing a counterion of higher selectivity than the bound cation.
Table 6. Suggested Flow Rates for Ion Exchange Resin Columns
Flow Rates
Application cm/min
Removing trace ions 5-10 Separations with very few components 1-3 Separations of multi-component samples 0.3-1.0 Using high resolution resins
with small particle size 0.1-0.2
12
13
Section 6 Sample Protocol for Cation Exchange Resins
6.1 Determination of Total Salts in Tap Water
Approximately 85% of the Continental United States is afflicted with hard water (3 grains or greater/gal). The following is a rapid method of determining the total ionic content of tap water as well as a good illustration of the potential of ion exchange techniques. If the water containing dissolved ions is allowed to flow over a cation exchange resin, the metal ions will be quantitatively exchanged for the hydrogen ions of the resin. These hydrogen ions will appear in the eluant and may then be titrated with standardized NaOH. Because of the electroneutrality of the dissolved salts, the milliequivalents of cations also represent the milliequivalents of salts.
6.2 Materials
AG 50W-X8 resin, 50-100 mesh, hydrogen form–10 grams Econo-Column®chromatography column, 1.0 x 0.79 cm Methyl orange indicator solution (0.1%) 20 mM NaOH standard solution 3 M HCl Flask–250 ml
6.3 Protocol
1. Pass approximately 150 ml of tap water through the resin column.
2. Discard the first 20 ml of effluent.
3. Collect a 100 ml aliquot of effluent in a 250 ml flask.
4. Titrate with 20 mM NaOH to methyl orange end point (yellow).
5. Calculate the salt content from the equivalents of base used.
6.4 Calculation
Meq dissolved salts = ml of base x normality of base.
14
15
6.5 Notes
The experimental error is only that inherent in the titration procedure. The error due to the ion exchange itself is less than that of the titration. To avoid the error due to interfering carbonate ions, neutralize alkaline tap water with 0.1 M HCl, one drop at at time, to the methyl orange end point.
The column may be used several times before regeneration is necessary. To regenerate the resin, wash it by passing approximately 50 ml of 3 M HCl through the column, followed by 75 ml of distilled water.
Section 7 Applications
Strong cation exchange resins are used for sample preparation, metal separations, weak acid separations, peptide separations, amino acid separations, and nucleotide separations. Tables 7-10 summarize the applications.
16
Section 8 Storage
The resins are stable for at least 2 years when stored in the original, unopened container at room temperature and protected from ultraviolet light.
Section 9 Stability
The resins are stable in acid, base, and organic solvents, and may be autoclaved. To prevent bacterial growth during prolonged storage of a poured column, use a preservative such as 0.05% sodium azide or thimerosol or 20% organic solvent such as methanol or ethanol.
Table 7. Cation Exchangers for Sample Preparation
Application Resin Reference
Cation removal from AG 50W-X8 Ochiai, M.,
monosaccharides resin 224 (1980). Removal of cations AG 50W-X8 Hoffer, E. M., Kothny, E. L. and
from sulfate resin Appel, B. R., Atmospheric
Environment, 13, 303 (1979).
17
J. Chromatog., 194,
Table 7 (Continued)
Application Resin Reference
Metal removal AG 50W-X8 Siemer, D. D., Anal. Chem., 52,
Cyclic nucleotide AG 50W-X8 Schwartz, J. P., Morris, N. R. and extraction resin Breckenridge, B. M., J. Biol.
Concentration of AG 50W-X8 Tryfiates, G. P. and Sattsangi, S., J. vitamin B-6 resin Chromatog., 227, 181 (1982).
Concentration of AG 50W-X8 Ford, C. W., J. Sci. Food Agric., 35, amino acids resin 881 (1984).
Removal of contami- AG 50W-X8 Auf’mkolk, M., Koehrle, J., Hesch, nants from I
Concentration of AG 50W-X8 Schwartz, D. P. and McDonough, chloramphenicol resin F. E., J. Assoc. Off. Anal. Chem.,
Removal of ethidium AG 50W-X8 Rodriguez, R. L. and Tait, R. C., bromide from resin Recombinant DNA Techniques: An plasmids
Concentration of AG 50W-X8 Linblad, W. J. and Diegelmann, isomers of trans-2, resin R. F., J. Chromatog., 315, 447 3-cis-3,4-dihydroxyl- (1984). L-proline
Isolation of neutral AG 50W-X8 Terry, R. C. and Simon, M., J. and cationic resin; AG Chromatog., 232, 261(1982). metabolites 1-X8 resin
125
resin 1874 (1980).
Chem., 248, 2699 (1973); Kuo, W., Hodgins, D. S. and Kuo, J. F., J. Biol. Chem., 248, 2705 (1973).
resin R. D. and Cody, V., J. Biol. Chem.,
261, 11623 (1986).
67, 583 (1984).
Introduction, p. 153-154 Addison­Wesley Publishing Company (1983).
18
Table 7 (Continued)
Application Resin Reference
Deionization of AG 50W-X8 Wigfield, Y. Y. and Lanouette, M., N-nitro-sodiethanol- resin J. Assoc. Off. Anal. Chem., 68, amine 1142 (1985).
Deionization of AG 50W-X8 Cullen, M. P., Turner, C. and Hay­carbohydrates resin; AG cock, G. B., J. Chromatog., 337, 29
Concentration of AG 50W-X2 Kapian, B. B., Schachter, B. S., nucleotide fragments resin Osterburg, H. H., de Velis, J. S. and
Concentration of 3- AG 50W-X4 Robert, J. C. and Serog, P., Clin. methyl-L-histidine resin Chim. Acta, 142, 161 (1984).
Separation of adeno- AG 50W-X4 Miura, G. A. and Chiang, D. K., syl-L-methionine resin Anal. Biochem., 147, 217 (1985). from amino-cyclo­propane carboxylic acid
N-acetyl-L-[ purification resin J. Biol.Chem., 262, 6350 (1987).
Nitrite determination AG 50W-X12 Kordorouba, V. and Pelletier, M., in meat resin Mitt. Geb. Lebensmitteiunters.
Glycopeptide and AG 50W-X2 Nishikawa, Y., et al., J. Biol Chem., oligosaccharide resin 263, 8270 (1988). purification
Aldehyde and ketone AG 50W-X2 Rendina, A. R. and Cleland, W. W., separation resin Anal. Biochem., 117, 213 (1981).
Diethyl acetal AG 50W-X8 Cho, Y. K., et al., Biochemistry, 27, purification resin 3320 (1988).
35
2-X8 resin (1985).
Finch, C. E., Biochemistry, 17, 5516 (1978).
S] Met AG 50W Martin, D. J. and Rubenstein, P. A.,
Hyg., 79, 90 (1988).
19
Table 7 (Continued)
Application Resin Reference
Ammonia determina- AG 50W-X8 Forman, D. T., Clinical Chem., 10, tion in plasma resin 497 (1964).
Metal removal AG 50W-X8 Graf, E., J. Agric. Food Chem., 31,
Boron cleanup AG 50W-X8 Gregorie, D., Anal. Chem., 59,
Amino acid AG 50W-X8 concentration resin 162, 185 (1987).
Peptide-Ch 6-S AG 50W-X8 Takagaki, K., et al., J. Biol. Chem., purification resin 263, 7000 (1988).
Cationic metabolite AG 50W-X8 isolation resin matog., 232, 261 (1982).
Deionization of N-ni AG 50W-X8 Wigfield, Y. Y. and Lanouette, M., trosodiethanolamine resin J. Assoc. Off. Anal. Chem., 68,
Free calcium AG SCW-X8 Zimmerle, C. T. and Frieden, C., removal from bound resin Biochemistry, 27, 7759 (1988). Ca-G-actin
Aspartic acid AG 50 resin MacKenzie, S. L. and Tenaschuk, purification J., J. Chromatog., 322, 228 (1985).
Glutamic acid K AG 50 resin MacKenzie, S. L. and Tenaschuk,
Tetrabutylammonium AG 50W-X2 fluoride removal resin 2422 (1989).
Peptide cleanup AG 50W-X2 Schiffmann, E., et al., J. Immunol.,
resin 851 (1983).
resin 2479 (1987).
Stabler, S. P., et al., Anal. Biochem.,
Terry R. C. and Simon, M., J. Chro-
1142 (1985).
J., J. Chromatog., 322, 228 (1985). Chou, S-H., et al., Biochemistry, 28,
resin 114, 1831 (1975).
Table 7 (Continued)
Application Resin Reference
L-Tryptophan AG 50W-X2 purification resin 2819 (1988).
Iron detection in wine AG 50W-X8 Ajlec, R. and Stupar, J., Analyst,
Taurine cleanup AG 50W-X8 Stephan, Z. F., et al., J. Biol.
Glyphosate AG 50W-X8 Thompson, et al., JAOAC, 72, 355 quantitation resin (1989).
cAMP purification AG 50W-X8 Nemecek, G. M., et al., J. Biol.
resin 114, 137 (1989).
resin Chem., 262, 6069 (1987).
resin Chem., 254, 598 (1979).
Yoshida, R., et al., J. Immunol., 141,
Table 8. Metal Separations on Cation Exchangers
Metals Resin Eluted ions Reference
Bi, Cd, Fe, AG 50W-X8 Bi-50% acetone, Fritz, J. S. and Fettig, Cu, Mn, Ni resin 0.1 M HCl; Cd-70%
Recommended Eluant and
acetone, 0.2 M 1562 (1962). HCI; Fe - 80% acetone, 0.5 M HCI; Cu-90% acetone, 0.5 M HCI; Mn-92% acetone, 1 M HCI; Ni-aqueous 3 M HCI
T. A., Anal. Chem., 34,
20
21
Table 8 (Continued)
Metals Resin Eluted ions Reference
V, U, Sc, Y AG 50W-X8 V - 0.25 M H
Be, Ba, Sr AG 50W X8 Be, Ba-9 M HCl0
K, Ti, Sc AG 50W X8 K-9 M HClO
Application Resin Reference
Metal separation (Pm, AG 50W-X12 Jerome, S. M., The Science of the Y, Eu, Co, Fe, Am, Cm, resin Total Environment, 70, 275 Nd) (1988).
III
ln separated from AG 50W-X4 Van der Walt, T. N., et al., Int. J.
cyclotron target resin Appl. Radiat. Isot., 36 (6), 501
Cobalt separation AG 50W-X4
Trace metal separation AG 50W-X4 Van der Walt, T. N. and Strelow,
Thorium detection AG 50W-X4 Victor, A. H. and Strelow, F. W.
Recommended Eluant and
; Strelow, F. W. E.,
resin U - 0.5 M H2SO4; Rethemeyer, R. and
Sc - 1 M H2SO4; Bothma,C. J. C., Anal. Y 4 N HCI Chem., 37, 106 (1965).
resin Sr-5 M HN0
resin Ti-9 M HCI; and Kraus, K. A., J.
Sc-4 M HCI, Chromatog., 13, 504
0.1 M HF (1964).
2SO4
; Nelson, F., Murase, T.
4
and Kraus, K. A., J.
3
Chromatog., 13, 503 (1984).
; Nelson, F., Murase, T.
4
(1985).
resin (2), 76 (1983).
resin F. W. E., Anal. Chem., 55 (2),
resin E., Anal. Chim. Acta, 138, 285
Victor, A. H., S. Afr. J. Chem., 36
212 (1983).
(1982).
22
Table 8 (Continued)
Application Resin Reference
Trace element separa- AG 50W-X8 Faisca, A. M. M. M., et al., Anal. tion from manganese resin Chim. Acta, 215, 317 (1988).
Rare earth element AG 50W-X8 Juras, S. J., et al., Chem. Geol., separation resin 64 (1-2), 143 (1987).
Platinum and palla- AG 50W-X8 Brown, R. J. and Biggs, W. R., dium determination resin Anal. Chem., 56 (4), 646 (1984).
Chromium thiocyanate AG 50W-X8 Collins, C. H. and Lancas, F. M., hydrate analysis resin Radiochem. Radioanal. Lett., 56
Copper determination AG 50W-X8
Rare earth element AG 50W-X8 Savoyant, L., Persin, F. and determination resin Dupuy, C., Geostsnd. Newsl., 8
Lead separations AG MP-50
resin (1), 227 (1983).
resin (12), 2268 (1985).
Copper detection AG 50 resin Lazaro, F., et al., Anal. Chim.
Iron detection in wine AG 50W-X8 Ajlec, R. and Stupar, J., Analyst,
Rare earth metal AG 50W-X8 Hiramatsu, K. and Yamada, T., separation resin Jpn. Kokai Tokkyo Koho,
resin 114, 137 (1989).
(2), 117 (1983). Victor, A. H., Geostand. Newsl., 7
(2), 159 (1984). Strelow, F. W. E., Anal. Chem., 57
Acta, 214, 217 (1988).
September 1988.
23
Table 9. Cation Exchange Resins in Nucleic Acid Analysis
Application Resin Reference
Separation of adeno- AG 50W-X4 Brunius, G ., J. Chromatog., 170, sine and riboflavin resin 486 (1979). nucleotides
Separation of cyclic AG 50W-X8 Swartzel, E. H., Bachman, S. and nucleotides from gas- resin trointestinal tissues 395 (1977). and fluids
Preparation of chroma- AG 50W-X2 Goel, S. B. and Modak, S. P., tin from chick embryo resin Nucleic Acids Res., 12, 1391 Iivers (1984).
Purification of AG 50W-X2 chromatin resin (1985).
Separation of nucleo- AG 50W-X4 side mono-, di-, and resin J. Chromatog., 192, 490 (1980). triphosphates on ion exclusion exchange columns
Purification of AG MP-50 gramicidin resin Biochemistry, 28, 4355 (1989).
Nucleic acid stripping AG 50W-X2
Nucleotide separation AG 50W-X4
resin and Marx, W., Prep. Biochem.,
resin Anal. Biochem., 18, 220 (1967).
Levine, R. A., Anal. Biochem., 78,
Nielsen, P. E., Biochem., 24, 2298
Leigh, C. P. H. and Cashion, P. J.,
Rottenberg, H. and Koeppe, R. E.,
Chandrasekaran, E. V., Spolter, L. 5, 281 (1975).
Blattner, F. R. and Erickson, H. P.,
24
Table 10. Separation of Organic Acids and Amines
Application Resin Reference
Separation of maleic AG 50W-X4 Richards, M., J. Chromatog., and fumaric acids resin 115, 259 (1975).
Separation of 1-amino AG 50W-X4 Miura, G. A. and Chiang, P. K., cyclopropane-1-car- resin boxylic acid from S-adenosyl-L (carboxyl) methionine
Separation of diamino- AG 50W-X8 pimelate from Iysine resin and, M. A. and Vederas, J. C.,
Separation of AG 50W-X2 Ito, S. and Fujita, K., J. cysteinyl-dopamine and resin Chromatog., 375, 134 (1986). dicysteinyl-dopamine
Concentration of dop- AG 50W- Miller, S. M. and Klinman, J. P., amine hydrochloride X12 resin Biochemistry, 24, 2114 (1985).
Separation of oxo-L- AG 50W-X8 Seddon, A. P. and Meister, A., J. proline from proline resin Biol. Chem., 261, 11538 (1986).
Amine separation AG 50W-X8 Charest, R. and Dunn, A., Anal.
Diaminopimelate from AG 50W-X8 Kelland, J. G., et al., Bio- Iysine separation resin chemistry, 24, 3263 (1985).
Trimethyllysine separa- AG 50W-X8 Lehman, L. J., et al., Anal. Bio- tion from trimethyl- resin chem., 162, 137 (1987). ornithine
Dihydroxyl-L-proline AG 50W-X8 isomer concentration resin
resin Biochem., 136 (2), 421(1984).
Anal. Biochem., 147, 217 (1985).
Kelland, J. G., Palcic, M. M., Pick­Biochemistry, 24, 3263 (1985).
Linblad, W. J. and Diegelmann, R. F., J. Chromatog., 315, 447 (1984).
25
Table 11. Cation Exchange Resins in Enzymatic Assays
Application Resin Reference
Separation of acetyl- AG 50W-X8 Alonso, E. and Rubio, V., Anal. glutamate from resin Biochem., 146, 252 (1985). glutamate
Adenylate cyclase AG 50W-X4 Marcus, R. and Orner, F., Endo- assay resin crinol., 101, 1570 (1977).
Adenylate cyclase AG 50W-X4 Salomon, Y., et al., Anal. assay resin Biochem., 58, 541 (1974).
GABA aminotrans- AG 50W-X8 Silverman, R. S. and George, C., ferase assay resin Biochemistry, 27, 3285 (1988).
cAMP separation from AG 50W-X4 Kowluru, R. A., et al., Bio- ATP resin chemistry, 28, 2220 (1989).
Metal separation (Th, AG 50W-X8 Paunescu, N., J. Radioanal. Fr, UO) resin Nucl. Chem., 104, 205 (1986).
Section 10 Product Information
Catalog Mesh Ionic Pkg. (meq/ml) Diameter (g/ml) Number Size Form Size Nominal (µm) Nominal
AG 50W-X2 Resin
142-1231 50-100 Hydrogen 500 g 0.6 300-1,180 0.70 142-1241 100-200 Hydrogen 500 g 0.6 106-300 0.70 142-1251 200-400 Hydrogen 500 g 0.6 075-180 0.70
AG 50W-X4 Resin
142-1331 50-100 Hydrogen 500 g 1.1 180-425 0.80 142-1341 100-200 Hydrogen 500 g 1.1 106-250 0.80 142-1351 200-400 Hydrogen 500 g 1.1 075-150 0.80
AG 50W-X8 Resin
142-1421 20-50 Hydrogen 500 g 1.7 0,300-1,180 0.80 142-1431 50-100 Hydrogen 500 g 1.7 180-425 0.80 142-1441 100-200 Hydrogen 500 g 1.7 106-250 0.80 142-1451 200-400 Hydrogen 500 g 1.7 063-150 0.80
Capacity Density
26
27
Catalog Mesh Ionic Pkg. (meq/ml) Diameter (g/ml) Number Size Form Size Nominal (µm) Nominal
AG 50W-X12 Resin
142-1641 100-200 Hydrogen 500 g 2.1 106-250 0.85 142-1651 200-400 Hydrogen 500 g 2.1 053-106 0.85
AG 50W-X16 Resin
142-1751 200-400 Hydrogen 500 g 2.4 053-106 0.85
AG 50W-X2 Resin, Biotechnology Grade
143-5241 100-200 Hydrogen 100 g 0.6 106-300 0.70
AG 50W-X4 Resin, Biotechnology Grade
143-5341 200-400 Hydrogen 100 g 1.1 075-150 0.80
AG 50W-X8 Resin, Biotechnology Grade
143-5441 100-200 Hydrogen 100 g 1.7 106-250 0.80
AG 50W-X8 Resin, Biotechnology Grade
143-5451 200-400 Hydrogen 100 g 1.7 063-150 0.80
AG MP-5O Resin
143-0841 100-200 Hydrogen 500 g 1.5 075-150 0.80
Capacity Density
28
Bio-Rad Laboratories, 2000 Alfred Nobel Dr., Hercules, CA 94547
LIT203 Rev B
Loading...