Atmel ATmega48P/V, ATmega88P/V, ATmega168P/V Datasheet

Features

High Performance, Low Power Atmel
Advanced RISC Architecture
– 131 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 20 MIPS Throughput at 20 MHz – On-chip 2-cycle Multiplier
High Endurance Non-volatile Memory Segments
– 4/8/16KBytes of In-System Self-Programmable Flash progam memory – 256/512/512Bytes EEPROM – 512/1K/1KBytes Internal SRAM – Write/Erase Cycles: 10,000 Flash/100,000 EEPROM – Data retention: 20 years at 85°C/100 years at 25°C – Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program True Read-While-Write Operation
– Programming Lock for Software Security
QTouch
Peripheral Features
Special Microcontroller Features
I/O and Packages
Operating Voltage:
Temperature Range:
Speed Grade:
Low Power Consumption at 1MHz, 1.8V, 25°C:
®
library support – Capacitive touch buttons, sliders and wheels – QTouch and QMatrix acquisition – Up to 64 sense channels
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode – One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode – Real Time Counter with Separate Oscillator – Six PWM Channels – 8-channel 10-bit ADC in TQFP and QFN/MLF package
Temperature Measurement
– 6-channel 10-bit ADC in PDIP Package
Temperature Measurement – Programmable Serial USART – Master/Slave SPI Serial Interface – Byte-oriented 2-wire Serial Interface (Philips I – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator – Interrupt and Wake-up on Pin Change
– Power-on Reset and Programmable Brown-out Detection – Internal Calibrated Oscillator – External and Internal Interrupt Sources – Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,
and Extended Standby
– 23 Programmable I/O Lines – 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF
– 1.8 - 5.5V for ATmega48P/88P/168PV – 2.7 - 5.5V for ATmega48P/88P/168P
–-40
°C to 85°C
– ATmega48P/88P/168PV: 0 - 4MHz @ 1.8 - 5.5V, 0 - 10MHz @ 2.7 - 5.5V – ATmega48P/88P/168P: 0 - 10MHz @ 2.7 - 5.5V, 0 - 20MHz @ 4.5 - 5.5V
– Active Mode: 0.3mA – Power-down Mode: 0.1µA – Power-save Mode: 0.8µA (Including 32kHz RTC)
®
AVR® 8-Bit Microcontroller
(1)
2
C compatible)
8-bit Atmel
Microcontroller with 4/8/16K Bytes In-System Programmable Flash
ATmega48P/V ATmega88P/V ATmega168P/V
Summary
Note: 1. See ”Data Retention” on page 8 for details.
Rev. 8025MS–AVR–6/11

1. Pin Configurations

1 2 3 4 5 6 7 8
24 23 22 21 20 19 18 17
(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
GND VCC GND
VCC (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7
PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) ADC7 GND AREF ADC6 AVC C PB5 (SCK/PCINT5)
32313029282726
25
9101112131415
16
(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
(PCINT1/OC1A) PB1
(PCINT2/SS/OC1B) PB2
(PCINT3/OC2A/MOSI) PB3
(PCINT4/MISO) PB4
PD2 (INT0/PCINT18)
PD1 (TXD/PCINT17)
PD0 (RXD/PCINT16)
PC6 (RESET/PCINT14)
PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10)
TQFP Top View
1 2 3 4 5 6 7 8 9 10 11 12 13 14
28 27 26 25 24 23 22 21 20 19 18 17 16 15
(PCINT14/RESET) PC6
(PCINT16/RXD) PD0 (PCINT17/TXD) PD1 (PCINT18/INT0) PD2
(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
VCC
GND (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7
(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) GND AREF AVCC PB5 (SCK/PCINT5) PB4 (MISO/PCINT4) PB3 (MOSI/OC2A/PCINT3) PB2 (SS/OC1B/PCINT2) PB1 (OC1A/PCINT1)
PDIP
1 2 3 4 5 6 7 8
24 23 22 21 20 19 18 17
32313029282726
25
9101112131415
16
32 MLF Top View
(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
GND VCC GND
VCC (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7
PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) ADC7 GND AREF ADC6 AVC C PB5 (SCK/PCINT5)
(PCINT21/OC0B/T1) PD5
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
(PCINT1/OC1A) PB1
(PCINT2/SS/OC1B) PB2
(PCINT3/OC2A/MOSI) PB3
(PCINT4/MISO) PB4
PD2 (INT0/PCINT18)
PD1 (TXD/PCINT17)
PD0 (RXD/PCINT16)
PC6 (RESET/PCINT14)
PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10)
NOTE: Bottom pad should be soldered to ground.
1 2 3 4 5 6 7
21 20 19 18 17 16 15
28272625242322
891011121314
28 MLF Top View
(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
VCC
GND (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7
(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
(PCINT1/OC1A) PB1
(PCINT2/SS/OC1B) PB2
(PCINT3/OC2A/MOSI) PB3
(PCINT4/MISO) PB4
PD2 (INT0/PCINT18)
PD1 (TXD/PCINT17)
PD0 (RXD/PCINT16)
PC6 (RESET/PCINT14)
PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10) PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) GND AREF AVCC PB5 (SCK/PCINT5)
NOTE: Bottom pad should be soldered to ground.
Figure 1-1. Pinout ATmega48P/88P/168P
ATmega48P/88P/168P
8025MS–AVR–6/11
2

1.1 Pin Descriptions

1.1.1 VCC

Digital supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscil­lator amplifier and input to the internal clock operating circuit.
Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.
ATmega48P/88P/168P

1.1.4 Port C (PC5:0)

1.1.5 PC6/RESET

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7:6 is used as TOSC2:1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.
The various special features of Port B are elaborated in ”Alternate Functions of Port B” on page
80 and ”System Clock and Clock Options” on page 27.
Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5:0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.
If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical char­acteristics of PC6 differ from those of the other pins of Port C.
If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 29-3 on page 314. Shorter pulses are not guaran­teed to generate a Reset.
The various special features of Port C are elaborated in ”Alternate Functions of Port C” on page
83.

1.1.6 Port D (PD7:0)

8025MS–AVR–6/11
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.
3
ATmega48P/88P/168P
The various special features of Port D are elaborated in ”Alternate Functions of Port D” on page
86.
1.1.7 AV

1.1.8 AREF

1.1.9 ADC7:6 (TQFP and QFN/MLF Package Only)

CC
AVCC is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally connected to V through a low-pass filter. Note that PC6:4 use digital supply voltage, VCC.
AREF is the analog reference pin for the A/D Converter.
In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels.
, even if the ADC is not used. If the ADC is used, it should be connected to V
CC

2. Overview

The ATmega48P/88P/168P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega48P/88P/168P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
CC
8025MS–AVR–6/11
4

2.1 Block Diagram

PORT C (7)PORT B (8)PORT D (8)
USART 0
8bit T/C 2
16bit T/C 18bit T/C 0 A/D Conv.
Internal
Bandgap
Analog
Comp.
SPI TWI
SRAMFlash
EEPROM
Watchdog
Oscillator
Watchdog
Timer
Oscillator
Circuits /
Clock
Generation
Power
Supervision
POR / BOD &
RESET
VCC
GND
PROGRAM
LOGIC
debugWIRE
2
GND
AREF
AVCC
DATA B U S
ADC[6..7]PC[0..6]PB[0..7]PD[0..7]
6
RESET
XTAL[1..2]
CPU
Figure 2-1. Block Diagram
ATmega48P/88P/168P
8025MS–AVR–6/11
5
ATmega48P/88P/168P
The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than con­ventional CISC microcontrollers.
The ATmega48P/88P/168P provides the following features: 4K/8K/16Kbytes of In-System Pro­grammable Flash with Read-While-Write capabilities, 256/512/512bytes EEPROM, 512/1K/1Kbytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial pro­grammable USART, a byte-oriented, 2-wire Serial Interface, an SPI serial port, a 6-channel 10­bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise dur­ing ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.
Atmel offers the QTouch functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression
®
(AKS) technology for unambiguous detection of key events. The easy-to-use
QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.
®
library for embedding capacitive touch buttons, sliders and wheels
The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot pro­gram running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega48P/88P/168P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.
The ATmega48P/88P/168P AVR is supported with a full suite of program and system develop­ment tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.
8025MS–AVR–6/11
6
ATmega48P/88P/168P

2.2 Comparison Between ATmega48P, ATmega88P and ATmega168P

The ATmega48P, ATmega88P and ATmega168P differ only in memory sizes, boot loader sup­port, and interrupt vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes for the three devices.
Table 2-1. Memory Size Summary
Device Flash EEPROM RAM Interrupt Vector Size
ATmega48P 4KBytes 256Bytes 512Bytes 1 instruction word/vector
ATmega88P 8KBytes 512Bytes 1KBytes 1 instruction word/vector
ATmega168P 16KBytes 512Bytes 1KBytes 2 instruction words/vector
ATmega88P and ATmega168P support a real Read-While-Write Self-Programming mechanism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega48P, there is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can execute from the entire Flash.
8025MS–AVR–6/11
7

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.
Note: 1.

4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen­tation for more details.
ATmega48P/88P/168P
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

6. Capacitive touch sensing

The Atmel® QTouch® Library provides a simple to use solution to realize touch sensitive inter­faces on most Atmel AVR QTouch and QMatrix
Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch chan­nels and sensors, and then calling the touch sensing API’s to retrieve the channel information and determine the touch sensor states.
The QTouch Library is FREE and downloadable from the Atmel website at the following location:
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch Library User Guide - also available for download from the Atmel website.
®
®
microcontrollers. The QTouch Library includes support for the
acquisition methods.
8025MS–AVR–6/11
8
ATmega48P/88P/168P

7. Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
(0xFF) Reserved
(0xFE) Reserved
(0xFD) Reserved
(0xFC) Reserved
(0xFB) Reserved
(0xFA) Reserved
(0xF9) Reserved
(0xF8) Reserved
(0xF7) Reserved
(0xF6) Reserved
(0xF5) Reserved
(0xF4) Reserved
(0xF3) Reserved
(0xF2) Reserved
(0xF1) Reserved
(0xF0) Reserved
(0xEF) Reserved
(0xEE) Reserved
(0xED) Reserved
(0xEC) Reserved
(0xEB) Reserved
(0xEA) Reserved
(0xE9) Reserved
(0xE8) Reserved
(0xE7) Reserved
(0xE6) Reserved
(0xE5) Reserved
(0xE4) Reserved
(0xE3) Reserved
(0xE2) Reserved
(0xE1) Reserved
(0xE0) Reserved
(0xDF) Reserved
(0xDE) Reserved
(0xDD) Reserved
(0xDC) Reserved
(0xDB) Reserved
(0xDA) Reserved
(0xD9) Reserved
(0xD8) Reserved
(0xD7) Reserved
(0xD6) Reserved
(0xD5) Reserved
(0xD4) Reserved
(0xD3) Reserved
(0xD2) Reserved
(0xD1) Reserved
(0xD0) Reserved
(0xCF) Reserved
(0xCE) Reserved
(0xCD) Reserved
(0xCC) Reserved
(0xCB) Reserved
(0xCA) Reserved
(0xC9) Reserved
(0xC8) Reserved
(0xC7) Reserved
(0xC6) UDR0 USART I/O Data Register 193
(0xC5) UBRR0H USART Baud Rate Register High 197
(0xC4) UBRR0L USART Baud Rate Register Low 197
(0xC3) Reserved
(0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0
UCSZ01 /UDORD0 UCSZ00 / UCPHA0
UCPOL0 195/210
8025MS–AVR–6/11
9
Loading...
+ 18 hidden pages