Atmel ATmega48A, ATmega48PA, ATmega88A, ATmega88PA, ATmega168A Datasheet

...
Atmel 8-bit Microcontroller with 4/8/16/32KBytes In-
System Programmable Flash
ATmega48A; ATmega48PA; ATmega88A; ATmega88PA; ATmega168A; ATmega168PA; ATme ga 32 8; AT me ga 328P
Features
High Performance, Low Power Atmel
Advanced RISC Architecture
High Endurance Non-volatile Memory Segments
– 4/8/16/32KBytes of In-System Self-Programmable Flash program memory – 256/512/512/1KBytes EEPROM – 512/1K/1K/2KBytes Internal SRAM – Write/Erase Cycles: 10,000 Flash/100,000 EEPROM – Data retention: 20 years at 85C/100 years at 25C – Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program True Read-While-Write Operation
– Programming Lock for Software Security
Atmel
®
QTouch® library support – Capacitive touch buttons, sliders and wheels – QTouch and QMatrix – Up to 64 sense channels
®
acquisition
Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode – One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode – Real Time Counter with Separate Oscillator – Six PWM Channels – 8-channel 10-bit ADC in TQFP and QFN/MLF package
Temperature Measurement
– 6-channel 10-bit ADC in PDIP Package
Temperature Measurement – Programmable Serial USART – Master/Slave SPI Serial Interface – Byte-oriented 2-wire Serial Interface (Philips I – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator – Interrupt and Wake-up on Pin Change
Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection – Internal Calibrated Oscillator – External and Internal Interrupt Sources – Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and
Extended Standby
I/O and Packages
– 23 Programmable I/O Lines – 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF
®
AVR® 8-Bit Microcontroller Family
(1)
2
C compatible)
8271E–AVR–07/2012
Operating Voltage:
1 2 3 4 5 6 7 8
24 23 22 21 20 19 18 17
(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
GND VCC GND
VCC (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7
PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) ADC7 GND AREF ADC6 AVCC PB5 (SCK/PCINT5)
32313029282726
25
9101112131415
16
(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
(PCINT1/OC1A) PB1
(PCINT2/SS/OC1B) PB2
(PCINT3/OC2A/MOSI) PB3
(PCINT4/MISO) PB4
PD2 (INT0/PCINT18)
PD1 (TXD/PCINT17)
PD0 (RXD/PCINT16)
PC6 (RESET/PCINT14)
PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10)
32 TQFP Top View
1 2 3 4 5 6 7 8 9 10 11 12 13 14
28 27 26 25 24 23 22 21 20 19 18 17 16 15
(PCINT14/RESET) PC6
(PCINT16/RXD) PD0 (PCINT17/TXD) PD1 (PCINT18/INT0) PD2
(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
VCC
GND (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7
(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) GND AREF AVCC PB5 (SCK/PCINT5) PB4 (MISO/PCINT4) PB3 (MOSI/OC2A/PCINT3) PB2 (SS/OC1B/PCINT2) PB1 (OC1A/PCINT1)
28 PDIP
1 2 3 4 5 6 7 8
24 23 22 21 20 19 18 17
32313029282726
25
9101112131415
16
32 MLF Top View
(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
GND VCC GND
VCC (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7
PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) ADC7 GND AREF ADC6 AVCC PB5 (SCK/PCINT5)
(PCINT21/OC0B/T1) PD5
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
(PCINT1/OC1A) PB1
(PCINT2/SS/OC1B) PB2
(PCINT3/OC2A/MOSI) PB3
(PCINT4/MISO) PB4
PD2 (INT0/PCINT18)
PD1 (TXD/PCINT17)
PD0 (RXD/PCINT16)
PC6 (RESET/PCINT14)
PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10)
NOTE: Bottom pad should be soldered to ground.
1 2 3 4 5 6 7
21 20 19 18 17 16 15
28272625242322
891011121314
28 MLF Top View
(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4
VCC
GND (PCINT6/XTAL1/TOSC1) PB6 (PCINT7/XTAL2/TOSC2) PB7
(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6
(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0
(PCINT1/OC1A) PB1
(PCINT2/SS/OC1B) PB2
(PCINT3/OC2A/MOSI) PB3
(PCINT4/MISO) PB4
PD2 (INT0/PCINT18)
PD1 (TXD/PCINT17)
PD0 (RXD/PCINT16)
PC6 (RESET/PCINT14)
PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10) PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) GND AREF AVCC PB5 (SCK/PCINT5)
NOTE: Bottom pad should be soldered to ground.
– 1.8 - 5.5V
Temperature Range:
C to 85C
–-40
Speed Grade:
– 0 - 4MHz@1.8 - 5.5V, 0 - 10MHz@2.7 - 5.5.V, 0 - 20MHz @ 4.5 - 5.5V
Power Consumption at 1MHz, 1.8V, 25C
– Active Mode: 0.2mA – Power-down Mode: 0.1µA – Power-save Mode: 0.75µA (Including 32kHz RTC)
1. Pin Configurations
Figure 1-1. Pinout ATmega48A/PA/88A/PA/168A/PA/328/P
ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
2
8271E–AVR–07/2012
Table 1-1. 32UFBGA - Pinout ATmega48A/48PA/88A/88PA/168A/168PA
123456
A PD2 PD1 PC6 PC4 PC2 PC1
B PD3 PD4 PD0 PC5 PC3 PC0
C GND GND
ADC7 GND
D VDD VDD
E PB6 PD6 PB0 PB2 AVDD PB5
F PB7 PD5 PD7 PB1 PB3 PB4
1.1 Pin Descriptions
1.1.1 VCC
Digital supply voltage.
1.1.2 GND
Ground.
1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buf­fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.
If the Internal Calibrated RC Oscillator is used as chip clock source, PB7...6 is used as TOSC2...1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.
AREF ADC6
The various special features of Port B are elaborated in ”Alternate Functions of Port B” on page 83 and ”System
Clock and Clock Options” on page 26.
1.1.4 Port C (PC5:0)
Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5...0 output buf­fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.
1.1.5 PC6/RESET
If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 dif­fer from those of the other pins of Port C.
If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in
Table 29-12 on page 310. Shorter pulses are not guaranteed to generate a Reset.
The various special features of Port C are elaborated in ”Alternate Functions of Port C” on page 86.
ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012
3
1.1.6 Port D (PD7:0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buf­fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.
The various special features of Port D are elaborated in ”Alternate Functions of Port D” on page 89.
1.1.7 AV
CC
AVCC is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to V PC6...4 use digital supply voltage, V
CC
.
1.1.8 AREF
AREF is the analog reference pin for the A/D Converter.
1.1.9 ADC7:6 (TQFP and QFN/MLF Package Only)
In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels.
through a low-pass filter. Note that
CC
ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012
4
2. Overview
The ATmega48A/PA/88A/PA/168A/PA/328/P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega48A/PA/88A/PA/168A/PA/328/P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
2.1 Block Diagram
Figure 2-1. Block Diagram
Comp.
VCC
debugWIRE
PROGRAM
CPU
Internal
Bandgap
LOGIC
SRAMFlash
AVC C
AREF
GND
2
6
GND
Watchdog
Timer
Watchdog
Oscillator
Oscillator
Circuits /
Clock
Generation
EEPROM
8bit T/C 2
DATA B US
Powe r
Supervision
POR / BOD &
RESET
16bit T/C 18bit T/C 0 A/D Conv.
Analog
USART 0
SPI TWI
PORT C (7)PORT B (8)PORT D (8)
RESET
XTAL[1..2]
ADC[6..7]PC[0..6]PB[0..7]PD[0..7]
The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012
5
The ATmega48A/PA/88A/PA/168A/PA/328/P provides the following features: 4K/8Kbytes of In-System Program­mable Flash with Read-While-Write capabilities, 256/512/512/1Kbytes EEPROM, 512/1K/1K/2Kbytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte-oriented 2-wire Serial Interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to con­tinue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleep­ing. This allows very fast start-up combined with low power consumption.
®
Atmel AVR debounced reporting of touch keys and includes Adjacent Key Suppression
offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels functionality into
®
microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully
®
(AKS) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.
The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non­volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write opera­tion. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega48A/PA/88A/PA/168A/PA/328/P is a powerful microcontroller that provides a highly flexible and cost effec­tive solution to many embedded control applications.
The ATmega48A/PA/88A/PA/168A/PA/328/P AVR is supported with a full suite of program and system develop­ment tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.
2.2 Comparison Between Processors
The ATmega48A/PA/88A/PA/168A/PA/328/P differ only in memory sizes, boot loader support, and interrupt vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes for the devices.
Table 2-1. Memory Size Summary
Device Flash EEPROM RAM Interrupt Vector Size
ATmega48A 4KBytes 256Bytes 512Bytes 1 instruction word/vector
ATmega48PA 4KBytes 256Bytes 512Bytes 1 instruction word/vector
ATmega88A 8KBytes 512Bytes 1KBytes 1 instruction word/vector
ATmega88PA 8KBytes 512Bytes 1KBytes 1 instruction word/vector
ATmega168A 16KBytes 512Bytes 1KBytes 2 instruction words/vector
ATmega168PA 16KBytes 512Bytes 1KBytes 2 instruction words/vector
ATmega328 32KBytes 1KBytes 2KBytes 2 instruction words/vector
ATmega328P 32KBytes 1KBytes 2KBytes 2 instruction words/vector
ATmega48A/PA/88A/PA/168A/PA/328/P support a real Read-While-Write Self-Programming mechanism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega 48A/48PA there
ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
8271E–AVR–07/2012
6
Loading...