ANALOG DEVICES AD5543 Service Manual

16-/14-Bit DACs
AD5543/AD5553
Rev. F
Trademarks and registered trademarks are the prop erty of their respective owner s.
Fax: 781.461.3113 ©2002–2012 Analog Devices, Inc. All rights reserved.
16-BIT/14- BIT SHIF T
REGISTER
DAC
REGISTER
AD5543/AD5553
DAC
V
DD
V
REF
R
FB
I
OUT
CS
CLK
SDI
GND
CONTROL
LOGIC
16 OR 14
16 OR 14
02917-001
CODE
1.0
4096
INL (LSB)
0.8
8152
12,288
16,384
20,480
24,575
28,672
32,768
36,864
40,960
45,056
49,152
53,248
57,344
61,440
65,536
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
–0.8 –1.0
0
02917-002
2
0
–2
–4
–6
–8
–10
–12
–14
10k 100k 1M 10M 100M
GAIN (dB)
FREQUENCY ( Hz )
02917-025
Data Sheet

FEATURES

16-bit resolution AD5543 14-bit resolution AD5553 ±1 LSB DNL ±1 LSB INL Low noise: 12 nV/√Hz Low power: I
0.5 µs settling time 4Q multiplying reference input 2 mA full-scale current ± 20%, with V Built-in RFB facilitates voltage conversion 3-wire interface Ultracompact 8-lead MSOP and 8-lead SOIC packages

APPLICATIONS

Automatic test equipment Instrumentation Digitally controlled calibration Industrial control PLCs
= 10 µA
DD
= 10 V
REF
Current Output/Serial Input,

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

GENERAL DESCRIPTION

The AD5543/AD5553 are precision 16-/14-bit, low power, current output, small form factor digital-to-analog converters (DACs). They are designed to operate from a single 5 V supply with a ±10 V multiplying reference.
The applied external reference, V output current. An internal feedback resistor (R R-2R and temperature tracking for voltage conversion when combined with an external op amp.
A serial-data interface offers high speed, 3-wire microcontroller­compatible inputs using serial data in (SDI), clock (CLK), and chip select (
CS
).
The AD5543/AD5553 are packaged in ultracompact (3 mm ×
4.7 mm) 8-lead MSOP and 8-lead SOIC packages.
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
, determines the full-scale
REF
) facilitates the
FB
Figure 2. Integral Nonlinearity
Figure 3. Reference Multiplying Bandwidth
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com
AD5543/AD5553 Data Sheet

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Timing Diagrams .......................................................................... 4
Absolute Maximum Ratings ............................................................ 5
ESD Caution .................................................................................. 5
Pin Configuration and Function Descriptions ............................. 6
Typical Performance Characteristics ............................................. 7
Circuit Operation ............................................................................. 9
DAC Section .................................................................................. 9
Serial Data Interface ....................................................................... 10
ESD Protection Circuits............................................................. 10
PCB Layout and Power Supply Bypassing .............................. 10
Applications Information .............................................................. 11
Stability ........................................................................................ 11
Positive Voltage Output ............................................................. 11
Bipolar Output ............................................................................ 11
Programmable Current Source ................................................ 12
Reference Selection .................................................................... 12
Amplifier Selection .................................................................... 12
Evaluation Board ............................................................................ 14
System Development Platform ................................................. 14
AD5543/AD5553 to SPORT Interface .................................... 14
Waveform Generator ................................................................. 14
Operating the Evaluation Board .............................................. 14
Bill of Materials ........................................................................... 18
Outline Dimensions ....................................................................... 19
Ordering Guide .......................................................................... 20

REVISION HISTORY

1/12—Rev. E to Rev. F
Added Figure 15, Renumbered Sequentially ................................ 8
Change to Table 9 ........................................................................... 13
Changes to Figure 27 ...................................................................... 15
Changes to Figure 28 ...................................................................... 16
Replaced Figure 29, Figure 30, and Figure 31 ............................. 17
2/11—Rev. D to Rev. E
Added Evaluation Board Section ................................................. 14
Updated Outline Dimensions ....................................................... 20
Changes to Ordering Guide .......................................................... 21
4/10—Rev. C to Rev. D
Changes to Figure 3 .......................................................................... 1
Changes to Table 1 ............................................................................ 3
Moved Timing Diagrams Section .................................................. 4
Moved Table 4 ................................................................................... 6
Delete Figure 13; Renumbered Sequentially ................................. 8
Changes to Figure 14 ........................................................................ 8
Changes to Figure 18 ........................................................................ 9
Moved Table 5 and Table 6 ............................................................ 10
Added Reference Selection Section and Amplifier Selection
Section .............................................................................................. 12
Added Table 7, Table 8, and Table 9;
Renumbered Sequentially .............................................................. 13
10/09—Rev. B to Rev. C
Updated Outline Dimensions ..................................................... 14
Changes to Ordering Guide .......................................................... 15
7/09—Rev. A to Rev. B
Updated Format .................................................................. Universal
Change to Features Section .............................................................. 1
Updated Outline Dimensions ....................................................... 14
Changes to Ordering Guide .......................................................... 15
2/03—Rev. 0 to Rev. A
Changes to Ordering Guide ............................................................. 3
12/02—Revision 0: Initial Version
Rev. F | Page 2 of 20
Data Sheet AD5543/AD5553
Resolution
N
1 LSB = V
/216 = 153 µV when V
= 10 V (AD5543)
16
Bits
Differential Nonlinearity
DNL
Monotonic
±1
LSB max
Data = 0x3FFF for AD5553
Logic Input Low Voltage
VIL 0.8
V max

SPECIFICATIONS

VDD = 5 V ± 10%, VSS = 0 V, I
Table 1.
Parameter Symbol Condition 5 V ± 10% Unit
STATIC PERFORMANCE1
1 LSB = V Relative Accuracy INL Grade: AD5553C ±1 LSB max Grade: AD5543C ±1 LSB max Grade: AD5543B ±2 LSB max
= virtual GND, GND = 0 V, V
OUT
= 10 V, TA = full operating temperature range, unless otherwise noted.
REF
REF
/214 = 610 µV when V
REF
REF
= 10 V (AD5553) 14 Bits
REF
Output Leakage Current I
Data = 0x0000, TA = 25°C 10 nA max
OUT
Data = 0x0000, TA = TA maximum 20 nA max Full-Scale Gain Error G
Data = 0xFFFF ±1/±4 mV typ/max
FSE
Full-Scale Temperature Coefficient2 TCVFS 1 ppm/°C typ
REFERENCE INPUT
V
Range V
REF
Input Resistance R Input Capacitance2 C
−15/+15 V min/max
REF
5 kΩ typ3
REF
5 pF typ
REF
ANALOG OUTPUT
Output Current I
Output Capacitance2 C
Data = 0xFFFF for AD5543 2 mA typ
OUT
Code dependent 200 pF typ
OUT
LOGIC INPUTS AND OUTPUT
Logic Input High Voltage VIH 2.4 V min Input Leakage Current IIL 10 µA max Input Capacitance2 CIL 10 pF max
INTERFACE TIMING
Clock Input Frequency f
2, 4
See Figure 4 and Figure 5
50 MHz
CLK
Clock Width High tCH 10 ns min Clock Width Low tCL 10 ns min
t
CS to Clock Setup Clock to CS Hold
0 ns min
CSS
t
10 ns min
CSH
Data Setup tDS 5 ns min Data Hold tDH 10 ns min
SUPPLY CHARACTERISTICS
Power Supply Range V
4.5/5.5 V min/max
DD RANGE
Positive Supply Current IDD Logic inputs = 0 V 10 µA max Power Dissipation P
Logic inputs = 0 V 0.055 mW max
DISS
Power Supply Sensitivity PSS ΔVDD = ±5% 0.006 %/% max
Rev. F | Page 3 of 20
AD5543/AD5553 Data Sheet
Reference Multiplying Bandwidth
BW
V
= 100 mV rms, data = 0xFFFF
6.6
MHz typ
SDI
CLK
CS
t
CSH
t
CSS
t
DS
t
DH
t
CH
t
CL
D15 D14 D13 D12 D11 D10
D9 D8 D1 D0
02917-016
t
CSH
t
CSS
t
DS
t
DH
t
CH
t
CL
SDI
CLK
CS
D13 D12 D11 D10 D9 D8 D7 D6 D1 D0
02917-017
Parameter Symbol Condition 5 V ± 10% Unit
AC CHARACTERISTICS4
Output Voltage Settling Time tS To ± 0.1% of full scale, 0.5 µs typ Data = 0x0000 to 0xFFFF to 0x0000 for AD5543 Data = 0x0000 to 0x3FFF to 0x0000 for AD5553
REF
DAC Glitch Impulse Q V Feedthrough Error V
OUT/VREF
Digital Feedthrough Q CS = 1 and f Total Harmonic Distortion THD V Output Spot Noise Voltage eN f = 1 kHz, BW = 1 Hz 12 nV/√Hz
1
All static performance tests (except I
tied to the amplifier output. The +IN op amp is grounded, and the DAC I
2
These parameters are guaranteed by design and are not subject to production testing.
3
All ac characteristic tests are performed in a closed-loop system using an AD8038 I-to-V converter amplifier except for THD where an AD8065 was used.
4
All input control signals are specified with tR = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.
) are performed in a closed-loop system using an external precision OP177 I-to-V converter amplifier. The AD5543 RFB terminal is
OUT

TIMING DIAGRAMS

= 0 V, data = 0x7FFF to 0x8000 for AD5543 7 nV-sec
REF
Data = 0x0000, V
= 5 V p-p, data = 0xFFFF, f = 1 kHz −103 dB typ
REF
is tied to the −IN op amp. Typical values represent average readings measured at 25°C.
OUT
= 100 mV rms, same channel −83 dB
REF
= 1 MHz 7 nV-sec
CLK
Figure 4. AD5543 Timing Diagram
Figure 5. AD5553 Timing Diagram
Rev. F | Page 4 of 20
Data Sheet AD5543/AD5553
V(I
) to GND
−0.3 V to VDD + 0.3 V
R-8, RM-8 (Vapor Phase, 60 sec)
215°C

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameter Rating
VDD to GND −0.3 V to +8 V V
to GND −18 V to +18 V
REF
Logic Inputs to GND −0.3 V to +8 V
OUT
Input Current to Any Pin Except Supplies ±50 mA Package Power Dissipation (T Thermal Resistance, θJA
8-Lead Surface Mount (MSOP) 150°C/W
8-Lead Surface Mount (SOIC) 100°C/W Maximum Junction Temperature (T Operating Temperature Range
Model B and Model C −40°C to +85°C Storage Temperature Range −65°C to +150°C Lead Temperature
R-8, RM-8 (Infrared, 15 sec) 220°C
) 150°C
J Max
− TA )/θJA
J Max
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. F | Page 5 of 20
AD5543/AD5553 Data Sheet
CLK
1
SDI
2
R
FB
3
V
REF
4
CS
8
V
DD
7
GND
6
I
OUT
5
AD5543/
AD5553
TOP VIEW
(Not to Scale)
02917-004
L
Shift register data advanced one bit
Latched

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 6. Pin Configuration
Table 3. Pin Function Descriptions
Pin No. Mnemonic Description
1 CLK Clock Input. Positive-edge triggered, clocks data into shift register. 2 SDI Serial Register Input. Data loads directly into the shift register MSB first. Extra leading bits are ignored. 3 RFB Internal Matching Feedback Resistor. This pin connects to an external op amp for voltage output. 4 V 5 I
DAC Reference Input Pin. Establishes DAC full-scale voltage. Constant input resistance vs. code.
REF
OUT
DAC Current Output. This pin connects to the inverting terminal of the external precision I-to-V op amp for
voltage output. 6 GND Analog and Digital Ground. 7 VDD Positive Power Supply Input. Specified range of operation at 5 V ± 10%. 8
CS Chip Select. Active low digital input. Transfers shift-register data to DAC register on rising edge.
See Table 4 for operation.
Table 4. Control-Logic Truth Table
CLK
CS
Serial Shift Register Function DAC Register
X H No effect Latched
+1 X1 H No effect Latched X1
1
+ = positive logic transition; X = don't care.
Shift register data transferred to DAC register New data loaded from serial register
+1
Rev. F | Page 6 of 20
Data Sheet AD5543/AD5553
CODE (Decimal )
1.0
INL (LSB)
0.8
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
–0.8 –1.0
0 65,5368192 16,384 57,34449,15240,96032,76824,576
02917-005
CODE (Decimal )
1.0
0 65,5368192
DNL (LSB)
16,384
0.8
0.6
0.4
0.2 0
–0.2
–0.4 –0.6
–0.8 –1.0
57,34449,15240,96032,76824,576
02917-006
CODE (Decimal )
1.0
0 14,336
INL (LSB)
16,384
0.8
0.6
0.4
0.2 0
–0.2
–0.4 –0.6
–0.8 –1.0
12,28810,2408192614440962048
02917-007
DNL (LSB)
CODE (Decimal )
0
–1.0
–0.8
–0.6
–0.4
–0.2
0
0.2
0.4
0.6
0.8
1.0
16,3842048 4096 14,33612,28810,24081926144
02917-008
SUPPLY VOLTAGE V
DD
(V)
1.5
1.0
–1.5
012 4
LINEARITY ERROR (LSB)
6 8
0.5
0
–0.5
–1.0
INL
DNL
GE
V
REF
= 2.5V
T
A
= 25°C
02917-009
LOGIC INPUTVOLTAGEVIH (V)
5
4
0
SUPPLY CURRENT I
DD
(mA)
3
2
1
0
0.5 1.0 5.0
VDD = 5V TA = 25°C
2.01.5 2.5 3.0 3.5 4.0 4.5
02917-010

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. AD5543 Integral Nonlinearity Error
Figure 8. AD5543 Differential Nonlinearity Error
Figure 10. AD5553 Differential Nonlinearity Error
Figure 11. Linearity Error vs. VD
D
Figure 9. AD5553 Integral Nonlinearity Error
Rev. F | Page 7 of 20
Figure 12. Supply Current vs. Logic Input Voltage
AD5543/AD5553 Data Sheet
CLOCK FREQUENCY ( Hz )
3.0
2.5
0
100M10k 100k
SUPPLY CURRENT ( mA)
1M 10M
2.0
1.5
1.0
0.5
02917-011
0xFFFF
0x0000
0x8000
0x5555
FREQUENCY (Hz)
90
80
30
10k
PSRR (dB)
1M
70
60
50
40
20
10
0
1k10010
V
DD
= 5V ± 10%
V
REF
= 10V
100k
02917-012
20
–160
–140
–120
–100
–80
–60
–40
–20
0
0 252015105
POWER SPECTRUM (dB)
FREQUENCY (kHz )
02917-200
5V
A2
–5V 67.72µs
DLY
2V
136ns
02917-014
–3.65
–3.70
–3.75
–3.80
–3.85
–3.90
–3.95
–4.05
–4.00
–20 –10 0 10 20 30 40
V
OUT
(V)
TIME (ns)
02917-026
Figure 13. AD5543 Supply Current vs. Clock Frequency
Figure 14. Power Supply Rejection Ratio (PSRR) vs. Frequency
Figure 16. Settling Time
Figure 17. Midscale Transition and Digital Feedthrough
Figure 15. AD5543/AD5553 Analog THD
Rev. F | Page 8 of 20
Data Sheet AD5543/AD5553
V
REF
V
DD
R
FB
I
OUT
R R R
GND
2R 2R 2R
S1S2
DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY; SWITCHE S S 1 AND S 2 ARE CLOSED, V
DD
MUST BE POWERED.
5kΩR
02917-018
02917-019
R
FB
I
OUT
1
GND
SCLK
SDIN
V
REF
V
REF
R1
SYNC
AD5543/ AD5553
V
DD
V
DD
AGND
C1
A1
R2
V
OUT
= 0 TO –V
REF
µCONTROLLER
NOTES
1. R1 AND R2 USE D ONLY IF GAIN ADJUSTME NT IS REQUIRED.
2. C1 PHAS E COMPENSATION (4pF TO 6pF) M AY BE RE QUIRED IF A1 IS A HIGH SPEED AMPLIFIER.

CIRCUIT OPERATION

The AD5543/AD5553 contain 16-/14-bit current output, DACs, serial input registers, and DAC registers. Both converters use a 3-wire serial data interface.

DAC SECTION

The DAC architecture uses a current steering R-2R ladder design. Figure 18 shows the typical equivalent DAC structure. The DAC contains a matching feedback resistor for use with an external op amp (see Figure 19). With RFB and IOUT terminals connected to the op amp output and inverting node, respectively, a precision voltage output is achieved as
V
= −V
OUT
= −V
V
OUT
Note that the output voltage polarity is the opposite of the V polarity for dc reference voltages.
These DACs are designed to operate with either negative or positive reference voltages. The V by the internal logic to drive the on and off states of the DAC switches.
× D/65,536 (AD5543) (1)
REF
× D/16,384 (AD5553) (2)
REF
power pin is only used
DD
Figure 18. Equivalent R-2R DAC Circuit
REF
Note that a matching switch is used in series with the internal 5 kΩ feedback resistor. If users attempt to measure R must be applied to V
to achieve continuity.
DD
Figure 19. Voltage Output Configuration
, power
FB
These DACs are also designed to accommodate ac reference input signals. The AD5543 accommodates input reference voltages in the range of −12 V to +12 V. The reference voltage inputs exhibit a constant nominal input resistance value of 5 kΩ ± 30%. The DAC output (I
) is code dependent, producing
OUT
various resistances and capacitances. External amplifier choice should take into account the variation in impedance generated by the AD5543 on the inverting input node of the amplifier. The feedback resistance, in parallel with the DAC ladder resistance, dominates output voltage noise. To maintain good analog performance, power supply bypassing of 0.01 µF to 0.1 µF ceramic or chip capacitors, in parallel with a 1 µF tantalum capacitor, is recommended. Due to degradation of PSRR in frequency, users must avoid using switching power supplies.
Rev. F | Page 9 of 20
AD5543/AD5553 Data Sheet
V

SERIAL DATA INTERFACE

The AD5543/AD5553 use a 3-wire (CS, SDI, CLK) serial data interface. New serial data is clocked into the serial input register in a 16-bit data-word format for the AD5543. The MSB is loaded first. Table 5 defines the 16 data-word bits. Data is placed on the SDI pin and clocked into the register on the positive clock edge of CLK, subject to the data setup-and-hold time requirements that are specified in the interface timing specifications. Only the last 16 bits clocked into the serial register are interrogated when
CS
the
pin is strobed to transfer the serial register data to the DAC register. Because most microcontrollers output serial data in 8­bit bytes, two data bytes can be written to the AD5543/AD5553. After loading the serial register, the rising edge of
CS
transfers the serial register data to the DAC register; during this strobe, the CLK should not be toggled. For the AD5553, with 16-bit clock cycles, the two LSBs are ignored.

ESD PROTECTION CIRCUITS

All logic input pins contain back-biased ESD protection Zener diodes that are connected to ground (DGND) and V shown in Figure 20.
DD
, as

PCB LAYOUT AND POWER SUPPLY BYPASSING

It is a good practice to employ compact, minimum lead length PCB layout design. The leads to the input should be as short as possible to minimize IR drop and stray inductance.
It is also essential to bypass the power supplies with quality capacitors for optimum stability. Supply leads to the device should be bypassed with 0.01 μF to 0.1 μF disc or chip ceramic capacitors. Low ESR 1 μF to 10 μF tantalum or electrolytic capacitors should also be applied at the supplies to minimize transient disturbance and filter out low frequency ripple.
The PCB metal traces between V matched to minimize gain error.
DD
DIGITAL INPUTS
5k
DGND
Figure 20. Equivalent ESD Protection Circuits
and RFB should also be
REF
2917-020
Table 5. AD5543 Serial Input Register Data Format; Data Loaded MSB-First Format
B15 (MSB) B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 (LSB)
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Table 6. AD5553 Serial Input Register Data Format; Data Loaded MSB-First Format
B13 (MSB)1 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 (LSB)
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
1
A full 16-bit data-word can be loaded into the AD5553 serial input register, but only the last 14 bits entered are transferred to the DAC register when CS returns to
logic high.
Rev. F | Page 10 of 20
Data Sheet AD5543/AD5553
V
DD
V
REF
V
REF
V
DD
U2
U1
AD5543/AD5553
V
O
GND
I
OUT
R
FB
AD8628
C1
02917-021
V
REF
V
DD
U2
U1
AD5543/AD5553
V
O
GND
I
OUT
R
FB
1/2AD8628
1/2AD8620
V
OUT
V
IN
GND
V+
V–
+5V
–5V
ADR03
+5V
–2.5V
U3
U4
C1
0V < V
O
< +2.5V
02917-022
V
REF
V
DD
U2
U1
AD5553 ONLY
V
O
GND
I
OUT
R
FB
1/2AD8620
V
OUT
V
IN
GND
ADR03
U3
1/2AD8620
V+
V–
+5V
–5V
+5V
U4
C1
–2.5V < V
O
< +2.5V
C2
R3
R1
10kΩ ± 0.01%
5kΩ ± 0.01%
10kΩ ± 0.01%
+5V
R2
02917-023

APPLICATIONS INFORMATION

STABILITY

Figure 21. Optional Compensation Capacitor for Gain Peaking Prevention
In the I-to-V configuration, the I
of the DAC and the inverting
OUT
node of the op amp must be connected as close as possible to each other, and proper PCB layout technique must be employed. Because every code change corresponds to a step function, gain peaking may occur if the op amp has limited GBP and there is excessive parasitic capacitance at the inverting node.
An optional compensation capacitor, C1, can be added for stability, as shown in Figure 21. C1 should be found empirically, but 20 pF is generally adequate for the compensation.

POSITIVE VOLTAGE OUTPUT

To achieve the positive voltage output, an applied negative reference to the input of the DAC is preferred over the output inversion through an inverting amplifier because of the tolerance errors of the resistors. To generate a negative reference, the reference can be level-shifted by an op amp such that the VOUT and GND pins of the reference become the virtual ground and
−2.5 V, respectively (see Figure 22).

BIPOLAR OUTPUT

The AD5543/AD5553 are inherently 2-quadrant multiplying DACs. That is, they can easily be set up for unipolar output operation. The full-scale output polarity is the inverse of the reference input voltage.
In some applications, it may be necessary to generate the full 4-quadrant multiplying capability or a bipolar output swing, which is easily accomplished by using an additional U4 external amplifier configured as a summing amplifier (see Figure 23). In this circuit, the second amplifier, U4, provides a gain of 2 that increases the output span magnitude to 5 V. Biasing the external amplifier with a 2.5 V offset from the reference voltage results in a full 4-quadrant multiplying circuit. The transfer equation of this circuit shows that both negative and positive output voltages are created as the input data (D) is incremented from code zero (V
= −2.5 V) to midscale (V
OUT
+2.5 V).
V
= (D/32,768 − 1) × V
OUT
= (D/16,384 − 1) × V
V
OUT
For the AD5543, the resistance tolerance becomes the dominant error of which users should be aware.
= 0 V) to full-scale (V
OUT
(AD5543) (3)
REF
(AD5553) (4)
REF
OUT
=
Figure 22. Positive Voltage Output Configuration
Figure 23. 4-Quadrant Multiplying Application Circuit
Rev. F | Page 11 of 20
AD5543/AD5553 Data Sheet
( )
R3
+
( )
+
U2
U1
AD5543/AD5553
V
L
GND
I
OUT
R
FB
AD8628
AD8510
V+
V–
V
REF
V
REF
LOAD
U3
V
DD
V
SS
I
L
V
DD
V
DD
C1
10pF
R2'
15kΩ
R3'
50Ω
R3
50Ω
R1'
150kΩ
R2
15kΩ
R1
150kΩ
02917-024

PROGRAMMABLE CURRENT SOURCE

Figure 24 shows a versatile V-I conversion circuit using an improved Howland current pump. In addition to the precision current conversion it provides, this circuit enables a bidirectional current flow and high voltage compliance. This circuit can be used in 4 mA to 20 mA current transmitters with up to 500 Ω of load. In Figure 24, it can be shown that if the resistor network is matched, the load current is
R1R3R2
I
=
/
REFL
R3 in theory can be made small to achieve the current needed within the U3 output current driving capability. This circuit is versatile such that
AD8510 can deliver ±20 mA in both directions
and the voltage compliance approaches 15 V, which is limited mainly by the supply voltages of U3. However, users must pay attention to the compensation. Without C1, it can be shown that the output impedance becomes
'
Z
=
O
R3R1
( ) ( )
If the resistors are perfectly matched, ZO is infinite, which is desirable, and behaves as an ideal current source. On the other hand, if they are not matched, Z Negative can cause oscillation. As a result, C1 is needed to prevent the oscillation. For critical applications, C1 could be found empirically but typically falls in the range of a few picofarads (pF).
(5)
DV
××
R2R1
'''
can be either positive or negative.
O
(6)
R3R2R1R3R2R1
++

REFERENCE SELECTION

When selecting a reference for use with the AD55xx series of current output DACs, pay attention to the output voltage, temperature coefficient specification of the reference. Choosing a precision reference with a low output temperature coefficient minimizes error sources. Ta b le 7 lists some of the references available from Analog Devices, Inc., that are suitable for use with this range of current output DACs.

AMPLIFIER SELECTION

The primary requirement for the current-steering mode is an amplifier with low input bias currents and low input offset voltage. Because of the code-dependent output resistance of the DAC, the input offset voltage of an op amp is multiplied by the variable gain of the circuit. A change in this noise gain between two adjacent digital fractions produces a step change in the output voltage due to the amplifier’s input offset voltage. This output voltage change is superimposed upon the desired change in output between the two codes and gives rise to a differential linearity error, which, if large enough, can cause the DAC to be nonmonotonic.
The input bias current of an op amp also generates an offset at the voltage output because of the bias current flowing in the feedback resistor, R
Common-mode rejection of the op amp is important in voltage­switching circuits because it produces a code-dependent error at the voltage output of the circuit.
Provided that the DAC switches are driven from true wideband low impedance sources (V Consequently, the slew rate and settling time of a voltage­switching DAC circuit is determined largely by the output op amp. To obtain minimum settling time in this configuration, minimize capacitance at the V in this application) of the DAC. This is done by using low input capacitance buffer amplifiers and careful board design.
Analog Devices offers a wide range of amplifiers for both precision dc and ac applications, as listed in Ta bl e 8 and Tab l e 9.
.
FB
and AGND), they settle quickly.
IN
node (the voltage output node
REF
Figure 24. Programmable Current Source with Bidirectional Current Control
and High Voltage Compliance Capabilities
Rev. F | Page 12 of 20
Data Sheet AD5543/AD5553
Table 7. Suitable Analog Devices Precision References
Maximum Temperature
Part No. Output Voltage (V) Initial Tolerance (%)
ADR01 ADR01 ADR02 ADR02 ADR03 ADR03 ADR06 ADR06 ADR420 ADR421 ADR423 ADR425 ADR431 ADR435 ADR391 ADR395
10 0.05 3 1 20 SOIC-8 10 0.05 9 1 20 TSOT-5, SC70-5
5.0 0.06 3 1 10 SOIC-8
5.0 0.06 9 1 10 TSOT-5, SC70-5
2.5 0.1 3 1 6 SOIC-8
2.5 0.1 9 1 6 TSOT-5, SC70-5
3.0 0.1 3 1 10 SOIC-8
3.0 0.1 9 1 10 TSOT-5, SC70-5
2.048 0.05 3 0.5 1.75 SOIC-8, MSOP-8
2.50 0.04 3 0.5 1.75 SOIC-8, MSOP-8
3.00 0.04 3 0.5 2 SOIC-8, MSOP-8
5.00 0.04 3 0.5 3.4 SOIC-8, MSOP-8
2.500 0.04 3 0.8 3.5 SOIC-8, MSOP-8
5.000 0.04 3 0.8 8 SOIC-8, MSOP-8
2.5 0.16 9 0.12 5 TSOT-5
5.0 0.10 9 0.12 8 TSOT-5
Table 8. Suitable Analog Devices Precision Op Amps
V
Maximum
Part No. Supply Voltage (V)
OP97 OP1177 AD8675 AD8671 ADA4004-1 AD8603 AD8607 AD8605 AD8615 AD8616
±2 to ±20 25 0.1 0.5 600 SOIC-8 , PDIP-8 ±2.5 to ±15 60 2 0.4 500 MSOP-8, SOIC-8 ±5 to ±18 75 2 0.1 2300 MSOP-8, SOIC-8 ±5 to ±15 75 12 0.077 3000 MSOP-8, SOIC-8 ±5 to ±15 125 90 0.1 2000 SOIC-8, SOT-23-5
1.8 to 5 50 0.001 2.3 40 TSOT-5
1.8 to 5 50 0.001 2.3 40 MSOP-8, SOIC-8
2.7 to 5 65 0.001 2.3 1000 WLCSP-5, SOT-23-5
2.7 to 5 65 0.001 2.4 2000 TSOT-5
2.7 to 5 65 0.001 2.4 2000 MSOP-8, SOIC-8
OS
(μV)
Drift (ppm/°C)
IB Maximum (nA)
ISS (mA) Output Noise (μV p-p) Package(s)
0.1 Hz to 10 Hz Noise (μV p-p) Supply Current (μA) Package(s)
Table 9. Suitable Analog Devices High Speed Op Amps
Part No. Supply Voltage (V) BW @ ACL (MHz) Slew Rate (V/μs) VOS (Max) (μV) IB (Max) (nA) Package(s)
AD8065 AD8066 AD8021 AD8038 ADA4899-1 AD8057 AD8058 AD8061 AD8062 AD9631
5 to 24 145 180 1500 0.006 SOIC-8, SOT-23-5 5 to 24 145 180 1500 0.006 SOIC-8, MSOP-8 5 to 24 490 120 1000 10,500 SOIC-8, MSOP-8 3 to 12 350 425 3000 750 SOIC-8, SC70-5 5 to 12 600 310 35 100 LFCSP-8, SOIC-8 3 to 12 325 1000 5000 500 SOT-23-5, SOIC-8 3 to 12 325 850 5000 500 SOIC-8, MSOP-8
2.7 to 8 320 650 6000 350 SOT-23-5, SOIC-8
2.7 to 8 320 650 6000 350 SOIC-8, MSOP-8 ±3 to ±6 320 1300 10,000 7000 SOIC-8, PDIP-8
Rev. F | Page 13 of 20
AD5543/AD5553 Data Sheet

EVALUATION BOARD

The EVAL-AD5543/EVAL-AD5553 is used in conjunction with an SDP1Z system development platform board available from Analog Devices, which is purchased separately from the evaluation board. The USB-to-SPI communication to the AD5543 is completed using this Blackfin-based development board. The software offers a waveform generator.

SYSTEM DEVELOPMENT PLATFORM

The system development platform (SDP) is a hardware and software evaluation tool for use in conjunction with product evaluation boards. The SDP board is based on the Blackfin BF527 processor with USB connectivity to the PC through a USB 2.0 high speed port. For more information about this device, see the system development platform web page
.

AD5543/AD5553 TO SPORT INTERFACE

The Analog Devices SDP has one SPORT serial port. The SPORT interface is used to control the AD5543/AD5553, allowing clock frequencies up to 30 MHz.

WAVEFORM GENERATOR

The evaluation board software offers a waveform generator to show every change introduced and transmitted to the output.

OPERATING THE EVALUATION BOARD

The evaluation board requires ±12 V and +5 V supplies. The +12 V V the +5 V is used to power the DAC (V
DD
SPORT_TFS
SPORT_TSCLK
SPORT_DTO
ADSP-BF527
Figure 25. AD5543/AD5553 to SPORT Interface
CS
SCLK
SDIN
AD5543/AD5553
02917-124
and VSS are used to power the output amplifier, while
).
DD1
02917-125
Figure 26. Evaluation Board Software—Waveform Generator
Rev. F | Page 14 of 20
Data Sheet AD5543/AD5553
02917-126
VOUT
SCLK
SDIN
/CS
AGND
+
C1
10uF
C2
0.1uF
VREF
+
C8
10uF
C9
0.1uF
C10
0.1uF
J3
C3
5.6pF
VOUT
2
­3
+
6
OP
4
V-
7 V+
8
DIS
U3
+
C4
10uF
C5
0.1uF
+
C6 10uF
C7
0.1uF
J4
5
IOUT
3
RFB
6
AGND
1
SCLK2SDIN
8
CS
7
VDD
4
VREF
U1
2
+VIN
5
TRIM
6
VOUT
4
GND
U2
ADR435
J1-1
J1-5
J1-4
J1-3
J1-2
LK1
DVDD
VDD
VDD
VSS
VSS
VDD
DVDD
SCLK
SDIN
/CS
DGND
DAC + VIN FO R S DP
OP AMP + REFERENCE SUPPLY
AD5543_53
Figure 27. Schematic of AD5543/AD5553 Evaluation Board
Rev. F | Page 15 of 20
AD5543/AD5553 Data Sheet
02917-127
VIN: USE THIS PI N TO POWER THE SDP REQUIRES 4-7V 200mA
VIO: USE TO SET I O VOLTAGE MAX DRAW 20mA
BOARD ID EEPRO M (24LC64 ) MUST BE O N I2C BUS 0, ADDRESS IS AT USER DISCRETION
I2C BUS 1 IS COMMON ACROSS BO TH CONNECTORS O N SDP - PULL UP RESIST ORS REQUIRE D
BMODE1: PUL L UP WIT H A 10k RE S ISTOR T O SET SDP TO BOOT FROM A S P I FLASH O N THE DAUGHTER BOARD
(CONNECTED TO BLACKFIN G PIO - USE I2C_0 FI RST )
MAIN I2 C BUS (CONNECTED TO BLACKFIN TWI - PULL UP RESISTORS NO T REQUIRED)
CONNECTOR
STANDARD
SDP
PARALLEL
PORT
SPORT
SPI
I2C
GENERAL
INPUT/OUTPUT
TIMERS
* *
* *
*
* * * *
* * * *
*NC ON BLACKFI N S DP
120
NC
119
NC
118
GND
117
GND
116
VIO(+3.3V)
115
GND
114
PAR_D22
113
PAR_D20
112
PAR_D18
111
PAR_D16
110
PAR_D15
109
GND
108
PAR_D12
107
PAR_D10
106
PAR_D8
105
PAR_D6
104
GND
103
PAR_D4
102
PAR_D2
101
PAR_D0
100
PAR_WR
99
PAR_INT
98
GND
97
PAR_A2
96
PAR_A0
95
PAR_FS2
94
PAR_CLK
93
GND
92
SPORT_RSCLK
91
SPORT_DR0
90
SPORT_RFS
89
SPORT_TFS
88
SPORT_DT0
87
SPORT_TSCLK
86
GND
85
SPI_SEL_A
84
SPI_MOSI
83
SPI_MISO
82
SPI_CLK
81
GND
80
SDA_0
79
SCL_0
78
GPIO1
77
GPIO3
76
GPIO5
75
GND
74
GPIO7
73
TMR_B
72
TMR_D
71
NC
70
NC
69
GND
68
NC
67
NC
66
NC
65
NC
64
NC
63
GND
62
UART_TX
61
BMODE1
60
RESET_IN
59
UART_RX
58
GND
57
NC
56
NC
55
NC
54
NC
53
NC
52
GND
51
NC
50
NC
49
TMR_C
48
TMR_A
47
GPIO6
46
GND
45
GPIO4
44
GPIO2
43
GPIO0
42
SCL_1
41
SDA_1
40
GND
39
SPI_SEL1/SPI_SS
38
SPI_SEL_C
37
SPI_SEL_B
36
GND
35
SPORT_INT
34
SPORT_DT3
33
SPORT_DT2
32
SPORT_DT1
31
SPORT_DR1
30
SPORT_DR2
29
SPORT_DR3
28
GND
27
PAR_FS1
26
PAR_FS3
25
PAR_A1
24
PAR_A3
23
GND
22
PAR_CS
21
PAR_RD
20
PAR_D1
19
PAR_D3
18
PAR_D5
17
GND
16
PAR_D7
15
PAR_D9
14
PAR_D11
13
PAR_D13
12
PAR_D14
11
GND
10
PAR_D17
9
PAR_D19
8
PAR_D21
7
PAR_D23
6
GND
5
USB_VBUS
4
GND
3
GND
2
NC
1
VIN
J2
1
A0
2
A1
3
A2
4
VSS
8
VCC
7
WP
6
SCL
5
SDA
U4
24LC64
USB_VBUS
3.3V_BF
SCLK SDIN /CS
START
3.3V_BF
STATUS
Figure 28. Schematic of SDP Interface
Rev. F | Page 16 of 20
Data Sheet AD5543/AD5553
02917-128
02917-129
02917-130
Figure 29. Silkscreen—Component Side View (Top Layer)
Figure 30 Component Side Artwork
Figure 31. Solder Side Artwork
Rev. F | Page 17 of 20
AD5543/AD5553 Data Sheet
C1
Capacitor+
10 µF
RTAJ_A
10 V SMD tantalum capacitor
C12
Capacitor
0.1 µF
C0603
50 V X7R ceramic capacitor
U4
24LC64
MSO8
64K I2C serial EEPROM MSOP8

BILL OF MATERIALS

Table 10.
Name Part Description Value PCB Decal Part Description
CS AGND Testpoint Testpoint Black testpoint
C2 Capacitor 0.1 µF C0603 50 V X7R ceramic capacitor C3 Capacitor 5.6 pF C0603 Multilayer ceramic capacitor C4 Capacitor+ 10 µF R TAJ_B 16 V tantalum capacitor C5 Capacitor 0.1 µF C0603 50 V X7R ceramic capacitor C6 Capacitor+ 10 µF R TAJ_B 16 V tantalum capacitor C7 Capacitor 0.1 µF C0603 50 V X7R ceramic capacitor C8 Capacitor+ 10 µF R TAJ_B 16 V tantalum capacitor C9 Capacitor 0.1 µF C0603 50 V X7R ceramic capacitor C10 Capacitor 0.1 µF C0603 50 V X7R ceramic capacitor C11 Capacitor 10 µF C0805 10 V 10 µF ceramic capacitor 10% X5R 0805
GL1 Ground link Component link Copper short J1 CON\POWER5 CON\POWER5 5-pin terminal block J2 SDP-STANDARD-CONN CON-120/FX8-120S-SV 120-way connector, 0.6 mm pitch, receptacle J3 SMB SMB Straight PCB mount SMB jack—50 Ω J4 SMB SMB Straight PCB mount SMB jack—50 Ω SCLK Testpoint Testpoint Red testpoint SDIN Testpoint Testpoint Red testpoint U1 AD5543/AD5553 SO8NB Digital-to-analog converter U2 ADR435 SO8NB 5 V reference U3 AD8038 SO8NB Single op amp 8-pin
Testpoint Testpoint Red testpoint
USB_VBUS Testpoint Testpoint Black testpoint VOUT Testpoint Testpoint Red testpoint VREF Testpoint Testpoint Red testpoint X1 MTHOLE-3MM MTHOLE-3MM 3 mm NPTH hole X2 MTHOLE-3MM MTHOLE-3MM 3 mm NPTH hole
Rev. F | Page 18 of 20
Data Sheet AD5543/AD5553
COMPLIANT TO JEDEC STANDA
RDS MO-187-AA
6° 0°
0.80
0.55
0.40
4
8
1
5
0.65 BSC
0.40
0.25
1.10 MAX
3.20
3.00
2.80
COPLANARITY
0.
10
0.23
0.09
3.20
3.00
2.80
5.15
4.90
4.65
PIN 1
IDENTIFIER
15° MAX
0.95
0.85
0.75
0.15
0.05
10-07-2009-B
CONTROLLING DIMENSIONS
ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHE
SES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
R
EFERENCE ONLYAND ARE NOT APPROPRIATE FOR USE IN DES
IGN.
COMPLIANT TO JEDEC STANDARDSMS-012-AA
012407-A
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
0.50 (0.0196)
0.25 (0.0099)
45°
8° 0°
1.75 (0.0688)
1.35 (0.0532)
SEATING
PLANE
0.25 (0.0098)
0.10 (0.0040)
4
1
8 5
5.00(0.1968)
4.80(0.1890)
4.00 (0.1574)
3.80 (0.1497)
1.27 (0.0500) BSC
6.20 (0.2441)
5.80 (0.2284)
0.51 (0.0201)
0.31 (0.0122)
COPLANARITY
0.10

OUTLINE DIMENSIONS

Figure 32. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
Figure 33. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
Rev. F | Page 19 of 20
AD5543/AD5553 Data Sheet
Model
INL (LSB)
RES (LSB)
Temperature Range
Package Description
Package Option
Branding
AD5543CRMZ-REEL7
±1
16
−40°C to +85°C
8-Lead MSOP
RM-8
DEV
©2002–2012 Analog Devices, Inc. All rights reserved. Trademarks and

ORDERING GUIDE

1, 2
AD5543CRMZ ±1 16 −40°C to +85°C 8-Lead MSOP RM-8 DEV
AD5543BR ±2 16 −40°C to +85°C 8-Lead SOIC_N R-8 AD5543BRZ ±2 16 −40°C to +85°C 8-Lead SOIC_N R-8 AD5543BRM ±2 16 −40°C to +85°C 8-Lead MSOP RM-8 DXB AD5543BRM-REEL7 ±2 16 −40°C to +85°C 8-Lead MSOP RM-8 DXB AD5543BRMZ ±2 16 −40°C to +85°C 8-Lead MSOP RM-8 DXB# AD5543BRMZ-REEL7 ±2 16 −40°C to +85°C 8-Lead MSOP RM-8 DXB# AD5553CRM ±1 14 −40°C to +85°C 8-Lead MSOP RM-8 DUC AD5553CRM-REEL7 ±1 14 −40°C to +85°C 8-Lead MSOP RM-8 DUC AD5553CRMZ ±1 14 −40°C to +85°C 8-Lead MSOP RM-8 DUC# AD5553CRMZ-REEL7 ±1 14 −40°C to +85°C 8-Lead MSOP RM-8 DUC# EVAL-AD5543SDZ Evaluation Board
1
The AD5543 contains 1040 transistors. The die size measures 55 mil × 73 mil or 4,015 sq. mil.
2
Z = RoHS Compliant Part, # denotes RoHS-compliant product may be top or bottom marked.
registered trademarks are the property of their respective owners. D02917-0-1/12(F)
Rev. F | Page 20 of 20
Loading...