ML361 Virtex-II Pro
DDR400/PC3200 Memory
Board User Guide
UG060 (v1.2) November 8, 2007
R
R
Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.
THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.
XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks
are the property of their respective owners.
ML361 Virtex-II Pro DDR400/PC3200 Memory Board User Guide
UG060 (v1.2) November 8, 2007
The following table shows the revision history for this document.
This document describes the design of the ML361 Virtex-II Pro™ DDR400/PC3200
Memory Board, which connects a Virtex-II Pro FPGA to DDR memories.
Guide Contents
This manual contains the following chapters:
•Chapter 1, “Introduction,” describes the purpose of the ML361 board and provides its
key features.
•Chapter 2, “Architecture,” provides a block diagram of the memory board and
describes the key components.
•Chapter 3, “Electrical Requirements,” lists the electrical specifications for the memory
board.
•Chapter 4, “Signal Integrity Recommendations and Simulations,” provides
information on termination, transmission lines, and duty cycles. It also gives the
results of several IBIS simulations.
•Chapter 5, “Board Layout Guidelines,” provides information on decoupling
capacitors, ground signals, and PCB layout.
•Appendix A, “Related Documentation,” lists data sheet and external website
references specific to the ML361 components.
•Appendix B, “FPGA Pinout,” provides the pinout of the Virtex-II Pro FPGA.
Preface
Additional Resources
For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this website. You can also directly access these
resources using the provided URLs.
ResourceDescription/URL
TutorialsTutorials covering Xilinx design flows, from design entry to verification
The following conventions are used in this document:
ConventionMeaning or UseExample
Blue text
Blue, underlined text
References to other manuals
Emphasis in text
Cross-reference link to a location
in the current document
Hyperlink to a website (URL)
See the Development System Reference Guide for more
information.
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.
See the section “Additional
Resources” for details.
Refer to “Title Formats” in
Chapter 1 for details.
Go to http://www.xilinx.com
for the latest speed files.
10www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Introduction
Overview
The ML361 Virtex-II Pro DDR400/PC3200 Memory Board provides a communications
platform between a Virtex-II Pro FPGA and high-speed double-data-rate (DDR) memories
with operating speeds up to 200 MHz. The ML361 has three major functions:
•Tests and verifies the interoperability of Virtex-II Pro devices with high-speed DDR
memories
•Serves as a development platform for Xilinx and its customers to use for building
memory controllers
•Provides a means by which Xilinx can demonstrate high-speed DDR memory
interoperability
Chapter 1
X-Ref Target - Figure 1-1
DDR
SDRAM DIMM
128MB
(MT4VDDT1664-AG-40BC3)
This document describes the functional blocks within the ML361. It also provides various
recommendations and requirements for usage of the board, including electrical
requirements, logic analyzer requirements, and signal integrity issues. Simulation results
using IBIS also are included.
Figure 1-1 shows a simplified block diagram of the ML361 memory interfaces.
DDR SDRAM
(MT46V32M8TG-5B)
Data (8 bits)
Data (72 bits)
Address/Control
Virtex-II Pro FPGA
XC2VP20FF1152-6
Address/Control
Data (72 bits)
Address/Control
DDR
SDRAMs
256Mb
(4 MT46V16M16TG-5B
and
1 MT46V32M8TG-5B)
ug060_c1_01_012104
Figure 1-1:Simplified Block Diagram of Memory Board Interfaces
ML361 Virtex-II Pro Memory Boardwww.xilinx.com11
UG060 (v1.2) November 8, 2007
Chapter 1: Introduction
Features
R
The ML361 demonstrates a 64-/72-bit interface to a 128 MByte, 200 MHz DDR SDRAM
DIMM, a 72-bit interface to five 256 Mbit, 200 MHz DDR SDRAM components, and an
additional 8-bit interface to a 256 Mbit, 200 MHz DDR SDRAM component on one of the
top banks.
The key features of the ML361 are summarized below:
•One Virtex-II Pro FPGA (XC2VP20FF1152-6)
•One DDR SDRAM DIMM (MT4VDDT1664-AG-40BC3)
♦128 MBytes
♦64-/72-bit data interface
•Five DDR SDRAMs (four MT46V16M16TG-5B devices and one MT46V32M8TG-5B
device)
♦1.28 Gbits
♦72-bit data interface
•One DDR SDRAM (MT46V32M8TG-5B)
♦256 Mbits
♦8-bit data interface
•Two separate controllers for each 72-bit memory interface
•200 MHz interface
•The memory interfaces are located on the FPGA left/right interface and top I/O
banks (banks 1, 2, 3, 6, and 7)
12www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Architecture
This chapter provides functional descriptions of the major blocks within the ML361 board
design. For more detailed information on the design, refer to the schematics, which are
located at http://www.xilinx.com/bvdocs/userguides/ug060.zip
ML361 Board Block Diagram
Figure 2-1 shows a block diagram of the ML361 board. Refer to the following section for
additional information on the major blocks.
X-Ref Target - Figure 2-1
5V
Input
Jack
JTAG Port
PROM
7-Segment Displays
DIP Switch
Chapter 2
.
Serial Port
3.3V Regulator
Switch
1.3V Regulator
2.6V Regulator
(5.5A)
2.6V Regulator
(10A)
(5.5A)
(10A)
GPIO HeaderGPIO Header
CLOCK
(200 MHz)
DDR SDRAM
(x16)
DDR SDRAM
(x16)
DDR SDRAM
(x16)
DDR SDRAM
(x16)
DDR SDRAM
(x8)
MICTOR (38-pin) MICTOR (38-pin)
XC2VP20FF1152C-6
DDR SDRAM
CLOCK
(166 MHz)
(x8)
Push1 Push2 Prgm Reset
Figure 2-1:ML361 Board Block Diagram
DDR
SDRAM
DIMM
(x64)
ug060_c2_01_121703
ML361 Virtex-II Pro Memory Boardwww.xilinx.com13
UG060 (v1.2) November 8, 2007
Chapter 2: Architecture
Block Descriptions
This section describes the major blocks of the ML361 board.
FPGA
The ML361 uses a Xilinx XC2VP20FF1152C-6 Virtex-II Pro device. This device is packaged
in a 1152-pin BGA package with a -6 speed grade. Refer to Appendix B, “FPGA Pinout,”for
a complete pinout of the Virtex-II Pro device.
Memories
The ML361 board supports two types of memories: DDR SDRAM DIMM and DDR
SDRAM.
DDR SDRAM DIMM (Banks 6 and 7)
The DDR SDRAM DIMM used on the ML361 board is a 184-pin, 200 MHz, unbuffered,
non-ECC Micron MT4VDDT1664-AG-40BC3 device. This DIMM module has a 64-bit wide
data interface. The board also has provisions to interface to a 72-bit wide DIMM.
R
DDR SDRAM Components (Banks 2 and 3)
DDR SDRAM Component (Bank 1)
RS232
Clocks
200 MHz LVDS Clock
The ML361 board contains five 200 MHz DDR SDRAM components that provide a 72-bit
interface. These devices include four 16-bit Micron MT46V16M16TG-5B devices and one
MT46V32M8TG-5B DDR SDRAM devices. They are packaged in 66-pin TSOP packages.
They share a common address and control bus and have separate clocks and DQS/DQ
signals.
The ML361 board contains one 8-bit Micron MT46V32M8TG-5B device on the top bank of
the FPGA.
The ML361 board provides an RS232 serial interface using a Texas Instruments
MAX3221CDBR device. The maximum speed of this device is 250 Kb/s. The RS232
interface is accessible through a female DB9 RA connector.
The ML361 board contains 166 MHz and 200 MHz LVDS clock oscillators and connectors
for external LVDS clock inputs.
The LVDS clock is a Pletronics LV1145BW-200.0M oscillator with a differential output. The
oscillator runs at 200 MHz ± 50 PPM with an operating voltage of 2.5 V ± 5%. It is
terminated at the FPGA with a 100
CLK_200_LVDSP and CLK_200_LVDSN inputs, respectively.
14www.xilinx.comML361 Virtex-II Pro Memory Board
Ω resistor. FPGA pins J17 and H17 in Bank 1 serve as the
UG060 (v1.2) November 8, 2007
R
166 MHz LVDS Test Clock
SMA Clock
User I/Os
Mictor Connectors
Block Descriptions
The LVDS test clock is a Pletronics SM7745DW-100.0M clock oscillator with a single-ended
output. This oscillator runs at 166 MHz ± 50 PPM with an operating voltage of 2.5 V ± 5%.
FPGA pins E17 and D17 in Bank 1 serve as the CLK_166_LVDSP and CLK_166_LVDSN
inputs, respectively.
Two SMA connectors are provided for the input of an off-board differential clock. The
traces from the SMAs are run as a pair to the FPGA where they are terminated with a
100 ohm resistor. AK18 serves as the CLK_SMAP input, and AL18 serves as the
CLK_SMAN input for the SMA connector pair.
This subsection describes the devices that connect to the User I/Os of the ML361 board.
The FPGA interfaces to two 38-pin Mictor connectors. They can be used to hook up to a
logic analyzer. All signals from the FPGA to the connectors are matched closely. Refer to
the Xilinx data sheets in Appendix A, “Related Documentation,” for more information.
GPIO
The ML361 board contains 16 general-purpose I/Os (GPIOs), which are accessible through
two 2 x 8 0.100" pin headers (see Ta bl e 2 -1 and Tab le 2 - 2). The even-numbered pins on each
header are connected to ground. The GPIO header pins can be accessed through I/Os in
Bank 0.
Table 2-1:GPIO Header 1
GPIO Pin #FPGA I/O Pin
G00F22
G01E22
G02E25
G03D25
G04H21
G05D22
G06D23
G07D24
ML361 Virtex-II Pro Memory Boardwww.xilinx.com15
UG060 (v1.2) November 8, 2007
Chapter 2: Architecture
DIP Switch
II
Table 2-2:GPIO Header 2
GPIO Pin #FPGA I/O Pin
G08D30
G09D29
G10K23
G11J23
G12H22
G13G22
G14D26
G15C26
One eight-position DIP switch is connected to the FPGA I/Os as shown in Ta bl e 2 -3 . These
switches can be used to externally pull up or pull down any signal on the FPGA.
R
Table 2-3:DIP Switch Connections
DIP Switch InputFPGA I/O Pin #
DIP1G26
DIP2H25
DIP3G25
DIP4J25
DIP5K24
DIP6J24
DIP7F26
DIP8E26
Seven-Segment Displays
Two seven-segment displays connect to the FPGA I/Os (see Tab le 2- 4 and Ta bl e 2 - 5). The
red displays are active Low. The decimal points are not connected.
Table 2-4:Display 1
DIsplay InputFPGA I/O Pin #
Display1AC21
Display1BE21
Display1CF21
Display1DJ20
Display1EK20
16www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Block Descriptions
Table 2-4:Display 1
DIsplay InputFPGA I/O Pin #
Display1FC24
Display1GD24
Table 2-5:Display 2
DIsplay InputFPGA I/O Pin #
Display2AD20
Display2BD21
Display2CF20
Display2DG20
Display2EK19
Display2FL19
Display2GC22
LEDs
Four green LEDs connect to the FPGA I/Os as indicated in Ta bl e 2 -6 . The LEDs are active
Low.
Table 2-6:LED Connections to FPGA
LED #FPGA I/O Pin #
LED1L18
LED2K18
LED3G18
LED4F18
Push Buttons
The ML361 board contains four momentary push buttons. Their functions are as follows:
•Program the FPGA
•Reset the board
•User function 1
•User function 2
Grounded I/Os
Unused I/Os are connected to GND in all FPGA banks. However, all memory banks have
eight unused I/Os connected to GND through 0
Ω resistors. These can be depopulated
when needed for test purposes. Care must be taken to not drive any unused I/Os
connected to GND.
ML361 Virtex-II Pro Memory Boardwww.xilinx.com17
UG060 (v1.2) November 8, 2007
Chapter 2: Architecture
Power
Power Distribution
Input Voltage
3.3 V Generation
2.6 V Generation
R
The ML361 board uses a 5V input voltage source to generate all the on-board voltages
(1.3V, 1.5V, 2.6V, and 3.3V, and the 2.5V for the MGTs)
The input voltage is specified at 5 V @ 6.5 A. The recommended power supply is a CUI Inc.
DTS050650UTC-PSP-SZ. The jack used is a 4-pin barrel jack, CUI stack PJ-002A-SMT. The
slide switch is a CW Industries G1123-0009. This power input has alternate input solder
pads.
The Texas Instruments PTH05000WAH voltage regulator generates the 3.3 V @ 5.5 A
power. This power input has alternate input solder pads.
The Texas Instruments PTH05010WAS voltage regulator generates the 2.6 V @ 10 A power.
This regulator provides 2.5 Vout with ± 10% trim. This power input has alternate input
solder pads.
1.5 V Generation
The Texas Instruments PTH05000WAH voltage regulator generates the 1.5 V @ 5.5 A
power. This power input has alternate input solder pads.
1.3 V Generation
The Texas Instruments PTH05000WAH voltage regulator generates the 1.3 V @ 1.5 A
power.
Linear Regulators for the MGTs
The Texas Instruments TPS78625 voltage regulator generates 2.5 V @ 1.5 A power for the
Multi Gigabit Transceivers (MGTs).
FPGA Configuration
The Virtex-II Pro FPGA can be programmed through either the JTAG interface or three onboard PROMs.
JTAG
Two headers are used for JTAG: a standard header and a parallel-IV header.
Standard Header
The standard JTAG header is a 1 x 7 0.100" RA header.
Parallel-IV Header
The parallel-IV headers is a 2 x 7 2 mm RA shrouded header.
18www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Block Descriptions
PROMs
The ML361 board contains XCF04S PROMs that can be used to program the
Virtex-II Pro FPGA. The PROM operates with a 3.3 V core voltage and a 2.5 V I/O voltage.
ML361 Virtex-II Pro Memory Boardwww.xilinx.com19
UG060 (v1.2) November 8, 2007
Chapter 2: Architecture
R
20www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Electrical Requirements
Power Consumption
Tab le 3- 1 lists the operating voltages, maximum currents, and power consumption used by
the ML361 board devices. Refer to Appendix A, “Related Documentation,” for more
information on the source material.
Table 3-1: ML361 Power Consumption
Chapter 3
DeviceQuantity
Total Available Power
Power Supply15650032.5
FPGA Power (Based on Design)
FPGA (XC2VP20-6 FF1152)16.873Power Estimator Tool
Board Power
Static Power-on Termination
Resistors (50Ω)
DDR SDRAM (72-bit interface)52.62603.38Micron DDR SDRAM Data Sheet
DDR SDRAM (8-bit interface)12.62600.676
DDR SDRAM DIMM12.610402.704Micron DDR SDRAM DIMM Data
200 MHz LVDS Clock Oscillator13.3400.132Pletronics LV1145B-200 Data Sheet
166 MHz LVDS Clock Oscillator13.3400.132Pletronics LV1145B-166 Data Sheet
PROMs (XCF04SV020C)32.6250.2Estimated
3751.316.24.92Virtex-II Pro User Guide (SSTL2
33.3250.25Estimated
Volt ag e
(V)
Current
(mA)
Power
(W)
Source
current specification)
Sheet
8-pin GPIO Header22.61600.416Average 10 mA * 16 pins
The following tables show the power consumption values inside the FPGA based on the
complete DDR design. These results are derived using the Xilinx Power Estimator tool.
Block Select RAM, Block Multiplier, Processor, and MGT Power tables are not included in
this section as they are not used in this application.
•Tab le 3- 2, “XC2VP20FF1152 Estimated Power Consumption,” page 22
•Tab le 3- 3, “XC2VP20FF1152 Temperature Specifications,” page 22
•Tab le 3- 4, “Device Quiescent Power,” page 22
•Tab le 3- 5, “CLB Logic Power,” page 23
•Tab le 3- 6, “Digital Clock Manager Power,” page 23
•Tab le 3- 7, “Input/Output Power,” page 24
Table 3-2:XC2VP20FF1152 Estimated Power Consumption
ParameterValueUnits
Total Estimated Design Power6873mW
R
Estimated Design VCC
Estimated Design VCC
1.5 V Power3811mW
INT
2.5 V Power417mW
AUX
Estimated Design VCCO 3.3 V Power0mW
Estimated Design VCCO 2.5 V Power2645mW
Estimated Design VCCO 1.8V Power0mW
Estimated Design VCCO 1.5 V Power0mW
Estimated Design VCCO 1.2 V Power0mW
Estimated Design VCC
Estimated Design VCC
Estimated Design VT
Estimated Design VT
RX 2.5 V Power0mW
AUX
TX 2.5 V Power0mW
AUX
2.5 V Power0mW
RX
2.5 V Power0mW
TX
Table 3-3:XC2VP20FF1152 Temperature Specifications
ParameterValueUnits
Ambient Temperature 25•C
Air Flow 0LFM
Junction Temperature107•C
Table 3-4:Device Quiescent Power
VCC
Subtotal (mW)VCC
INT
Subtotal (mW)
AUX
450417
22www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Table 3-5: CLB Logic Power
FPGA Internal Power Budget
Tot al
Name
User Module 1200259726030108840%High2439
User Module 2000000%Low0
User Module 3000000%Low0
User Module 4000000%Low0
User Module 5000000%Low0
User Module 6000000%Low0
User Module 7000000%Low0
User Module 8000000%Low0
User Module 9000000%Low0
User Module 10000000%Low0
User Module 11000000%Low0
User Module 12000000%Low0
Frequency
(MHz)
Number
of CLB
Slices
Tot al
Number of
Flip/Flop or
Latches
Tota l N u m be r
of Shift
Register LUTs
Tot al Numbe r
of Select
RAM LUTs
Average
Toggle
Rate
%
Amount of
Routing
Used
Total2439
VCC
Subtotal
(mW)
INT
Table 3-6:Digital Clock Manager Power
Name
Clock Input
Frequency (MHz)
DCM Frequency Mode
VCC
INT
User DCM 1200Low6
User DCM 2200Low6
User DCM 30Low0
User DCM 40Low0
User DCM 50Low0
User DCM 60Low0
User DCM 70Low0
User DCM 80Low0
User DCM 90Low0
User DCM 100Low0
User DCM 110Low0
User DCM 120Low0
To t al1 2
Subtotal
(mW)
ML361 Virtex-II Pro Memory Boardwww.xilinx.com23
UG060 (v1.2) November 8, 2007
Chapter 3: Electrical Requirements
Table 3-7: Input/Output Power
Average
Output
Enable
Rate
%
Average
Output
Load
(pF)
IOB
Registers
VCC
INT
Subtotal
(mW)
VCCO
Subtotal
Name
Frequency
(MHz)
I/O Standard
Typ e
Tot al
Number
of Inputs
Tot al
Number
Outputs
of
Average
IOB
Tog gle
Rate
%
Jpheader200LVCMOS25_1201625%100%0SDR230
ddr_dq200SSTL2_II13813880%50%5DDR462877
ddr_dqs2000SSTL2_II181880%50%5DDR335363
ddr_address200SSTL2_II01525%100%3SDR1106
ddr_control200SSTL2_II0525%100%3SDR035
dimm_address200SSTL2_I_DCI01525%100%12SDR13157
dimm_control200SSTL2_I_DCI0450%100%12SDR1296
ddr_clks200SSTL2_II02100%100%3DDR042
Display200LVCMOS25_120146%100%0SDR16
dimm_control_1200SSTL2_II0350%100%12SDR028
ddr_dm200SSTL2_II01710%100%5SDR2100
R
(mW)
dimm_clks200SSTL2_II06100%100%12SDR182
top_dq200SSTL2_II_DCI8880%50%5DDR39366
top_dqs200SSTL2_II_DCI1180%50%5DDR15103
top_address200SSTL2_I_DCI01525%100%5SDR13153
top_control200SSTL2_I_DCI0525%100%5SDR1295
Total9102645
24www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Chapter 4
Signal Integrity Recommendations and
Simulations
This chapter provides the following information:
•Summary of the termination schemes for various signals (“Termination and
Transmission Line Summaries,” page 25)
•Summary of the observed duty cycles for all signals in the IBIS simulations (“Duty
Cycle Summary,” page 27)
•IBIS simulations and duty cycle measurements (“IBIS Simulations,” page 29)
Termination and Transmission Line Summaries
Tab le 4- 1 summarizes the terminations for the five DDR SDRAM components at the FPGA
and at memory.
Table 4-1: DDR SDRAM Terminations
No.Signal
1Data (DQ)SSTL2_C2 50Ω pull up to 1.3 V50Ω pull-up to 1.3 V
2Data Strobe (DQS)SSTL2_C2 50Ω pull up to 1.3 V50Ω pull-up to 1.3 V
3Data Mask (DM)SSTL2_C2 50Ω pull up to 1.3 V50Ω pull-up to 1.3 V
4Clock (CK, CKn)SSTL2_C2 50Ω pull up to 1.3 V50Ω pull-up to 1.3 V
5Address (A, BA)SSTL2_C2 No termination50Ω pull-up to 1.3 V after the
6Control (RASn, CASn, WEn,
CSn, CKE)
Tab le 4- 2 summarizes the terminations for the DIMM at the FPGA and at memory.
Table 4-2: DIMM Terminations
No.Signal
Drivers at the
FPGA
SSTL2_C2 No termination 50Ω pull-up to 1.3 V after the
Drivers at the
FPGA
Termination at FPGATermination at Memory
last component
last component
Termination at FPGATermination at Memory
1Data (DQ)SSTL2_C2 50Ω pull-up to 1.3 V50Ω pull-up to 1.3 V
2Data Strobe (DQS)SSTL2_C2 50Ω pull-up to 1.3 V50Ω pull-up to 1.3 V
3Data Mask (DM)SSTL2_C2 50Ω pull-up to 1.3 V50Ω pull-up to 1.3 V
ML361 Virtex-II Pro Memory Boardwww.xilinx.com25
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Table 4-2: DIMM Terminations
R
No.Signal
43 pairs of Clocks (CK, CKn)SSTL2_C2 50Ω pull-up to 1.3 V50Ω pull-up to 1.3 V
5Address (A, BA)SSTL2_C2_DCI No terminationNo termination
6Control (RASn, CASn, WEn,
CSn, CKE and others)
Drivers at the
FPGA
SSTL2_C2_DCI No termination No termination
Termination at FPGATermination at Memory
Terminations and Transmission Lines for DDR Components
Data and Clock Signals (DQ, DQS, DM, CLK)
For these DDR signals, the terminations at the FPGA and memory consist of a 50Ω parallel
termination pulled up to 1.3 V.
Use 50
Ω transmission lines with less than ± 1% tolerance on the transmission line
impedance. The recommendations for the transmission line lengths are as follows:
•All these data and clock signals are point-to-point from the FPGA to each DDR
component. All signals going to one individual DDR SDRAM component need to be
matched with respect to each other with a ± 2% tolerance.
•All signals going to the first component are matched to a trace length of 2.8 inches
with a ± 2% tolerance. The 2.5 inch requirement includes the FPGA internal package
skew (available on the pinout table) and the skew between the ball of the FPGA to the
resistor pack as well as the length of the actual trace.
•The trace length variation on these signals across the five DDR components is kept as
small as possible to enable data capture while also ensuring they fall within the
address window. The trace lengths on all five DDR components are: 2.8 inches, 2.8
inches, 3.5 inches, 3.8 inches, and 3.8 inches. All signals corresponding to the same
DDR component are matched as close as ± 1% of the above mentioned trace lengths.
Microstrip is used to model the transmission lines in the IBIS simulations.
Address and Control Signals (A, BA, RASn, CASn, WEn, CSn, CKE)
For the address and control signals, no termination is required at the FPGA. At memory, a
50
Ω resistor pulled up to 1.3 V at the end of the daisy chain is required (after the last DDR
component).
Use 50
Ω transmission lines with ± 5% tolerance from the FPGA to all the memory
components. The recommendations for the transmission line lengths are as follows:
•All the signals are routed in a daisy chain fashion.
•There is a maximum of 2.5 inch trace with ± 2% tolerance from the FPGA to the first
DDR component. The 2.5 inch requirement includes the FPGA internal package skew
(that is available on the pinout table) and the skew between the ball of the FPGA to
the resistor pack as well as the length of the actual trace.
•0.6 inches of distance with ± 2% tolerance is used in the trace length calculations
below between the individual components. Ideally, straight line routing is desired.
During placement, the components are placed as close as 0.5 inches or lesser by
straight line routing, if possible. The main requirement is that all signals going to each
DDR component must be matched by ± 2% tolerance.
26www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
•There is a total of 4.9 inches of trace from the FPGA to the last component assuming
the DDR memory components are 0.6 inch apart.
Microstrip is used to model the transmission lines for the first DDR component. All other
DDR components use Buried Microstrip to model the transmission lines.
Terminations and Transmission Lines for the DIMM
Data and Clock Signals (DQ, DQS, DM, CLK)
For these DIMM signals, the terminations at the FPGA and memory consist of a 50Ω
parallel termination pulled up to 1.3 V.
50
Ω transmission lines are used with less than ± 1% tolerance on the transmission line
impedance. The transmission line lengths are as follows:
•There is a 65 mm trace length from FPGA to memory with ± 0.5 mm tolerance.
•A maximum of 1 inch tolerance is allowed to include the FPGA internal package skew
and the skew between the ball of the FPGA to the resistor pack. Package deskew is
necessary if the 1 inch tolerance is not met.
Duty Cycle Summary
Address and Control Signals (A, BA, RASn, CASn, WEn, CSn, CKE)
For the address and control signals, no termination is required at the FPGA or DIMM.
Use 50
Ω transmission lines with less than ± 5% tolerance on the transmission line
impedance. The recommendations for the transmission line lengths are as follows:
•There must be a 65 mm trace length from FPGA to memory with ± 5 mm tolerance.
•Use a maximum of 1 inch tolerance to include the FPGA internal package skew and
the skew between the ball of the FPGA to the resistor pack. Package deskew is
necessary if the 1 inch tolerance is not met.
Duty Cycle Summary
Tab le 4- 3 summarizes the duty cycle measurements taken from prelayout simulations on
50
Ω transmission lines. Refer to “IBIS Simulations,” page 29 for more simulation results.
Table 4-3: Duty Cycle Summary
No.SignalDDR ComponentCase
1Address/controlLast component
(farthest from FPGA)
Typical49.22/50.92NA
Slow weak49.22/50.63NA
Duty Cycle
Measured at
Memory(%)
Duty Cycle
Measured at
FPGA (%)
Fast strong49.22/51.2NA
2Address/controlFirst component
(closest to FPGA)
ML361 Virtex-II Pro Memory Boardwww.xilinx.com27
UG060 (v1.2) November 8, 2007
Typical48.94/51.2NA
Slow weak49.22/51.48NA
Fast strong48.66/51.2NA
Chapter 4: Signal Integrity Recommendations and Simulations
This section summarizes various simulations run on the Memory Board using IBIS. It
defines the test conditions and provides color-coded screen captures of the results. The
resulting signal duty cycles are given also.
The simulations have been divided into the following categories:
1.Data Signal Simulations
2.Clock Signal Simulations
3.Address and Control Signal Simulations
4.Typical Case Simulations with 10% Tolerance for:
IBIS Simulations
a.Data Signals from the FPGA to the Last Memory Component
-Typical Case
-Slow Weak Case
-Fast Strong Case
-Eye Diagram
b.Data Signals from the Last Memory Component to the FPGA
-Typical Case
-Slow Weak Case
-Fast Strong Case
-Eye Diagram
a.Clock Signals from the FPGA to the Last Memory Component
-Typical Case
-Slow Weak Case
-Fast Strong Case
-Eye Diagram
a.Address and Control Signals from the FPGA to the First/Last/Middle Memory
Component
-All Memory Components (Typical Case)
-First DDR Component (Typical, Slow Weak, Fast Strong Cases)
-Last DDR Component (Typical, Fast Strong, Slow Weak Cases)
-Middle DDR Component (Typical, Slow Weak, Fast Strong Cases)
a.Data Signals
-Data Signals from the Last DDR Memory to the FPGA with 45
Ω Transmission
Lines (Typical)
-Data Signals from the Last DDR Memory to the FPGA with 55
Ω Transmission
Lines (Typical)
-Data Signals from the FPGA to the Last DDR Memory with 45
Ω Transmission
Lines (Typical)
-Data Signals from Memory to the FPGA with 55
Ω transmission lines (Typical)
b.Clock Signals
-Clock Signals with 45
-Clock Signals with 55
Ω Transmission Lines (Typical)
Ω Transmission Lines (Typical)
ML361 Virtex-II Pro Memory Boardwww.xilinx.com29
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
c.Address and Control Signals
-Address and Control Signals with 45
DDR Component (Typical)
-Address and Control Signals with 55
DDR Component (Typical)
Notes on the Simulation Results
The provided screen captures show the results of each simulation. The signals in these
screen captures are color-coded as follows:
•Red signal – at FPGA
•Yellow signal – at memory
R
Ω Transmission Lines Measured at First
Ω Transmission Lines Measured at First
The two horizontal yellow lines are V
± 100 mV where V
ref
=1.3 V.
ref
30www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Data Signal Simulations
All data signal simulations below have the following test conditions for typical, slow
weak, and fast strong cases:
IBIS Simulations
•Topology for data signals: 50
•At memory (yellow signal): 50
•At FPGA (red signal): 50
Ω Transmission lines
Ω parallel termination pulled up to 1.3 V
Ω parallel termination pulled up to 1.3 V (SSTL2C2 drivers at
FPGA).
Figure 4-1 shows the data signal terminations.
X-Ref Target - Figure 4-1
ug060_c5_01_091003
Figure 4-1:Data Signal Terminations
ML361 Virtex-II Pro Memory Boardwww.xilinx.com31
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Data Signals from the FPGA to Memory (SSTL2_C2 at FPGA)
The simulations in this subsection test the data signals from the FPGA to memory.
Simulations were performed for the following cases: typical, slow weak, fast strong. An
eye diagram is provided also.
Typical Case Simulation for Data Signals from the FPGA to the Last DDR
Component
For the typical case simulation, the resulting duty cycle is 47.24/52.62. Figure 4-2 shows
the simulation screen capture for the typical case.
X-Ref Target - Figure 4-2
R
ug060_c5_02_091003
Figure 4-2:Data Signal from FPGA to Memory (Typical Case)
32www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Slow Weak Corner Case for Data from the FPGA to the Last DDR Component
For the slow weak case simulation, the resulting duty cycle is 47.52/52.06. Figure 4-3
shows the simulation screen capture for this case.
X-Ref Target - Figure 4-3
ug060_c5_03_091003
Figure 4-3:Data Signal from FPGA to Memory (Slow Weak Case)
ML361 Virtex-II Pro Memory Boardwww.xilinx.com33
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Fast Strong Case for Data Signals from the FPGA to the Last DDR Component
For the fast strong case simulation, the resulting duty cycle is 46.4/52.9. Figure 4-4 shows
the simulation screen capture for this case.
X-Ref Target - Figure 4-4
R
ug060_c5_04_091003
Figure 4-4:Data Signal from FPGA to Memory (Fast Strong Case)
34www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Eye Diagram
Figure 4-5 shows the eye diagram for the data signals from the FPGA to the last memory
component.
X-Ref Target - Figure 4-5
ug060_c5_05_091003
Figure 4-5:Eye Diagram for Data from the FPGA to Last Memory Component
ML361 Virtex-II Pro Memory Boardwww.xilinx.com35
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Data Signals from the Last Memory to the FPGA: Measured at FPGA
The simulations in this subsection test the data signals from the last memory to the FPGA.
Simulations were performed for the following cases: typical, slow weak, and fast strong.
An eye diagram is provided also.
Typical Case for Data from the Last DDR Memory Device to the FPGA
For the typical case simulation, the resulting duty cycle is 48.64/51.78. Figure 4-6 shows
the simulation screen capture for this case.
X-Ref Target - Figure 4-6
R
ug060_c5_06_031204
Figure 4-6:Data Signal from Last Memory at FPGA (Typical Case)
36www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Slow Weak Corner Case for Data Signals from the Last DDR Memory to the FPGA
For the slow weak case simulation, the resulting duty cycle is 49.52/50.64. Figure 4-7
shows the simulation screen capture for this case.
X-Ref Target - Figure 4-7
ug060_c5_07_031204
Figure 4-7:Data Signal from Last Memory at FPGA (Slow Weak Corner Case)
ML361 Virtex-II Pro Memory Boardwww.xilinx.com37
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Fast Strong Corner Case for Data from Memory to the FPGA
For the fast strong case simulation, the resulting duty cycle is 48.38/51.76. Figure 4-8
shows the simulation screen capture for this case.
X-Ref Target - Figure 4-8
R
ug060_c5_08_031204
Figure 4-8:Data Signal from Memory at FPGA (Fast Strong Corner Case)
38www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Eye Diagram for Data Signal Measured at the FPGA
Figure 4-9 shows the eye diagram for the data signals from the FPGA to the last memory
component.
X-Ref Target - Figure 4-9
ug060_c5_09_031504
Figure 4-9:Eye Diagram for Data at the FPGA to the Last Memory Component
ML361 Virtex-II Pro Memory Boardwww.xilinx.com39
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Clock Signal Simulations
The simulations in this subsection test the unidirectional clock signals from the FPGA to
memory. Simulations were performed for the following cases: typical, slow weak, and fast
strong. An eye diagram is provided also.
All clock signal simulations below have the following test conditions for typical, slow
weak, and fast strong cases:
R
•Topology for clock signals: 50
•At memory (yellow signal): 50
•At FPGA (red signal): 50
Ω transmission lines
Ω parallel termination pulled up to 1.3 V
Ω parallel termination pulled up to 1.3 V (SSTL2C2 drivers at
FPGA).
Figure 4-10 shows the clock signal terminations.
X-Ref Target - Figure 4-10
ug060_c5_10_091003
Figure 4-10:Clock Signal Terminations
40www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Typical Case for Clock Signals
For the typical case simulation, the resulting duty cycle is 48.1/52.04. Figure 4-11 shows the
simulation screen capture for this case.
X-Ref Target - Figure 4-11
ug060_c5_12_091003
Figure 4-11:Clock Signal from FPGA to Memory (Typical Case)
ML361 Virtex-II Pro Memory Boardwww.xilinx.com41
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Slow Weak Case for Clock Signals
For the slow weak case simulation, the resulting duty cycle is 48.66/51.48. Figure 4-12
shows the simulation screen capture for this case.
X-Ref Target - Figure 4-12
R
ug060_c5_13_091003
Figure 4-12:Clock Signal from FPGA to Memory (Slow Weak Case)
42www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Fast Strong Case for Clock Signals
For the fast strong case simulation, the resulting duty cycle is 48.1/51.48. Figure 4-13
shows the simulation screen capture for this case.
X-Ref Target - Figure 4-13
ug060_c5_11_091003
Figure 4-13:Clock Signal from FPGA to Memory (Fast Strong Case)
ML361 Virtex-II Pro Memory Boardwww.xilinx.com43
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Eye Diagram of Clock Signals at Memory
Figure 4-14 shows the eye diagram for the clock signals at memory.
X-Ref Target - Figure 4-14
R
Figure 4-14:Eye Diagram for Clock at Memory
ug060_c5_14_091003
44www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Address and Control Signal Simulations
The simulations in this subsection test the unidirectional address and control signals from
the FPGA to five DDR memory components. Simulations were performed on the first,
middle, and last DDR memory component for the following cases: typical, slow weak, and
fast strong.
All clock signal simulations below have the following test conditions for typical, slow
weak, and fast strong cases:
•Topology: The FPGA and the five DDR components are placed in a straight line in a
daisy chain configuration.
♦The distance between the FPGA and the first DDR component – 2.1 inches
♦The distance between adjacent DDR components – 0.7 inches
♦The distance between the FPGA and the last DDR component – 4.8 inches
•At memory (yellow signal): 50
component.
•At FPGA (red signal): 50
Figure 4-15 shows the address and control signal terminations.
X-Ref Target - Figure 4-15
Ω resistor pulled up to 1.3 V after the last DDR SDRAM
Ω transmission line is used (SSTL2C2 drivers at the FPGA).
IBIS Simulations
ug060_c5_15_091003
Figure 4-15:Address and Control Signal Terminations
ML361 Virtex-II Pro Memory Boardwww.xilinx.com45
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Typical Case Simulation at All Memory Components
Figure 4-16 shows the simulation screen capture for the typical case for all memory
components.
X-Ref Target - Figure 4-16
R
Figure 4-16:Address/Control Signals for All Memories
ug060_c5_16_091003
46www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Typical Case Simulation at First DDR Component
For the typical case simulation at the first DDR component, the resulting duty cycle is
48.94/51.2. Figure 4-17 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-17
ug060_c5_17_091003
Figure 4-17:Address/Control Signals at First DDR Memory (Typical Case)
ML361 Virtex-II Pro Memory Boardwww.xilinx.com47
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Slow Weak Corner Case Simulation at First DDR Component
For the slow weak corner case simulation at the first DDR component, the resulting duty
cycle is 49.22/51.48. Figure 4-18 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-18
R
ug060_c5_18_091003
Figure 4-18:Address/Control Signals at First DDR Memory (Slow Weak Case)
48www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Fast Strong Corner Case Simulation at First DDR Component
For the fast strong corner case simulation at the first DDR component, the resulting duty
cycle is 48.66/51.2. Figure 4-19 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-19
ug060_c5_19_091003
Figure 4-19:Address/Control Signals at First DDR Memory (Fast Strong Case)
ML361 Virtex-II Pro Memory Boardwww.xilinx.com49
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Typical Case Simulation at Last DDR Component
For the typical case simulation at the last DDR component, the resulting duty cycle is
49.22/50.92. Figure 4-20 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-20
R
ug060_c5_20_091003
Figure 4-20:Address/Control Signals at Last DDR Memory (Typical Case)
50www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Slow Weak Case Simulation at Last DDR Component
For the slow weak case simulation at the last DDR component, the resulting duty cycle is
49.22/50.63. Figure 4-21 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-21
ug060_c5_22_091003
Figure 4-21:Address/Control Signals at Last DDR Memory (Slow Weak Case)
ML361 Virtex-II Pro Memory Boardwww.xilinx.com51
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Fast Strong Corner Case Simulation at Last DDR Component
For the fast strong corner case simulation at the last DDR component, the resulting duty
cycle is 49.22/51.2. Figure 4-22 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-22
R
ug060_c5_21_091003
Figure 4-22:Address/Control Signals at Last DDR Memory (Fast Strong Corner
Case)
52www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Typical Case Simulation at Middle DDR Component
For the typical case simulation at the middle DDR component, the resulting duty cycle is
49.23/51.49. Figure 4-23 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-23
ug060_c5_23_091003
Figure 4-23:Address/Control Signals at Middle DDR Memory (Typical Case)
ML361 Virtex-II Pro Memory Boardwww.xilinx.com53
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Slow Weak Corner Case Simulation at Middle DDR Component
For the slow weak corner case simulation at the middle DDR component, the resulting
duty cycle is 49.22/50.64. Figure 4-24 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-24
R
ug060_c5_24_091003
Figure 4-24:Address/Control Signals at Middle DDR Memory (Slow Weak Corner
Case)
54www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Fast Strong Corner Case Simulation at Middle DDR Component
For the fast strong corner case simulation at the middle DDR component, the resulting
duty cycle is 48.94/51.2. Figure 4-25 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-25
ug060_c5_25_091003
Figure 4-25:Address/Control Signals at Middle DDR Memory (Fast Strong Corner
Case)
ML361 Virtex-II Pro Memory Boardwww.xilinx.com55
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Simulations with 10% Tolerance on the Transmission Line Impedance
These simulations illustrate the typical cases for data, clock, and address and control
signals.
Data Signals
This subsection provides the data simulation results for the following typical cases:
R
•From the last DDR memory to the FPGA (45
•From the last DDR memory to the FPGA (55
•From the FPGA to the last DDR memory (45
•From the memory to the FPGA (55
Ω transmission line impedance)
Ω transmission line impedance)
Ω transmission line impedance)
Ω transmission line impedance)
Data Signals from the Last DDR Memory to the FPGA with 45Ω Transmission Line
Impedance
For the typical case simulation from the last DDR component to the FPGA, the resulting
duty cycle is 48.66/51.48. Figure 4-26 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-26
ug060_c5_26_031204
Figure 4-26:Data Signals from Last DDR Memory to FPGA (45Ω Impedance)
56www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Data Signals from the Last DDR Memory to the FPGA with 55Ω Transmission Line
Impedance
For the typical case simulation from the last DDR component to the FPGA, the resulting
duty cycle is 46.4/52.62. Figure 4-27 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-27
ug060_c5_27_031204
Figure 4-27:Data Signals from Last DDR Memory to FPGA (55Ω Impedance)
ML361 Virtex-II Pro Memory Boardwww.xilinx.com57
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Data Signals from FPGA to the Last DDR Memory Component with 45Ω
Transmission Line Impedance
For the typical case simulation from the FPGA to the last DDR component, the resulting
duty cycle is 46.96/53.18. Figure 4-28 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-28
R
ug060_c5_28_091003
Figure 4-28:Data Signals from FPGA to Last DDR Memory (45Ω Impedance)
58www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Data Signals from Memory to the FPGA with 55Ω Transmission Line Impedance
For the typical case simulation from memory to the FPGA, the resulting duty cycle is
48.66/51.48. Figure 4-29 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-29
ug060_c5_29_091003
Figure 4-29:Data Signals from Memory to FPGA (55Ω Impedance)
ML361 Virtex-II Pro Memory Boardwww.xilinx.com59
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Clock Signals
This subsection provides the clock simulation results for the following typical cases:
R
•With 45
•With 55
Ω transmission line impedance
Ω transmission line impedance
Clock Signals with 45Ω Transmission Line Impedance
For the typical case simulation with a 45Ω transmission line impedance, the resulting duty
cycle is 48.66/ 52.04. Figure 4-30 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-30
ug060_c5_30_091003
Figure 4-30:Clock Signals with 45Ω Impedance
60www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Clock Signals with 55Ω Transmission Line Impedance
For the typical case simulation with a 55Ω transmission line impedance, the resulting duty
cycle is 48.1/51.48. Figure 4-31 shows the simulation screen capture for this case.
X-Ref Target - Figure 4-31
Figure 4-31:Clock Signals with 55Ω Impedance
ug060_c5_31_091003
ML361 Virtex-II Pro Memory Boardwww.xilinx.com61
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Address/Control Signals
This subsection provides the address and control simulation results for the following
typical cases:
R
•With 45
•With 55
Ω transmission line impedance measured at the first DDR component
Ω transmission line impedance measured at the first DDR component
Address and Control Signals with 45Ω Transmission Lines Measured at the First
DDR Component
For the typical case simulation with a 45Ω transmission line impedance measured at the
first DDR component, the resulting duty cycle is 48.94/51.2. Figure 4-32 shows the
simulation screen capture for this case.
X-Ref Target - Figure 4-32
ug060_c5_32_091003
Figure 4-32:Address/Control Signals with 45Ω Impedance Measured at First DDR
Component
62www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
IBIS Simulations
Address and Control Signals with 55Ω Transmission Lines Measured at the First
DDR Component
For the typical case simulation with a 55Ω transmission line impedance measured at the
first DDR component, the resulting duty cycle is 48.66/51.48. Figure 4-33 shows the
simulation screen capture for this case.
X-Ref Target - Figure 4-33
ug060_c5_33_091003
Figure 4-33:Address/Control Signals with 55Ω Impedance Measured at First DDR
Component
ML361 Virtex-II Pro Memory Boardwww.xilinx.com63
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
R
64www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Board Layout Guidelines
This chapter provides information on decoupling capacitors, ground signals, and PCB
layout.
Decoupling Guidelines
This section lists the decoupling capacitors used with the major components of the ML361
board. Refer to the board schematics for exact placement.
Tab le 5- 1 lists the decoupling capacitors for the Virtex-II Pro FPGA. Refer to the Xilinx
XAPP623
implemented for each bank, VCCI, VAUX, and VREF.
application note for the methodology. A balanced decoupling network is
Chapter 5
Table 5-1: FPGA Decoupling Capacitors
Pin(s)Capacitor ValueDistribution
VCCI
1 capacitor per
pin, in a
balanced
decoupling
network.
VA U X
1 capacitor per
pin, in a
balanced
decoupling
network.
Tab le B -1 summarizes the pinout of the XC2VP20FF1152-6 FPGA in the ML361 board. The
slice coordinates mentioned in Tab le B -1 refer to the RPM grid coordinates corresponding
to the respective I/O pin location. I/O pin names marked as GND refer to unused I/Os
that are directly connected to GND. I/O pin names marked as PULLDOWN refer to
unused I/Os that are connected to GND through a zero ohm resistor. The 0
be removed to use the corresponding I/O for any test purposes.
Table B-1: FPGA Pinout
Appendix B
Ω resistor can
Pin
Numbers
U237VCCO_7
E290IO_L01N_0/VRP_0 RXD11097.26
E280IO_L01P_0/VRN_0 TXD10150.32
H260IO_L02N_0resetN 6327.18
G260IO_L02P_0DIP17905.95
H250IO_L03N_0DIP2 5691.71
G250IO_L03P_0/VREF_0DIP36996.94
J250IODIP45273.75
K240IO_L06N_0DIP5 3344.34
J240IO_L06P_0DIP64601.94
F260IO_L07N_0DIP7 9207.2
E260IO_L07P_0DIP8 10718.03
D300IO_L08N_0GPIO08 15834.96
D290IO_L08P_0GPIO09 14848.81
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
K230IO_L09N_0GPIO10 3066.04
J230IO_L09P_0/VREF_0GPIO11 4323.64
H220IO_L37N_0GPIO124727.82
G220IO_L37P_0GPIO13 5923
D260IO_L38N_0GPIO1415218.77
C260IO_L38P_0GPIO1515469.57
ML361 Virtex-II Pro Memory Boardwww.xilinx.com71
UG060 (v1.2) November 8, 2007
Table B-1: FPGA Pinout (Cont’d)
R
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
K210IO_L39N_0GND 5505.04
J210IO_L39P_0GND 4965.14
F220IO_L43N_0GPIO00 7541.44
E220IO_L43P_0GPIO01 8910.89
E250IO_L44N_0GPIO02 12735.3
D250IO_L44P_0GPIO03 13832.18
H210IO_L45N_0GPIO04 6364.26
G210IO_L45P_0/VREF_0GPIO05 7704.24
D220IO_L46N_0GPIO06 9988.1
D230IO_L46P_0GPIO07 11050.72
D240IO_L47N_0DISPLAY1G 12302.96
C240IO_L47P_0DISPLAY1F 13516.13
K200IO_L48N_0DISPLAY1E 3126.3
J200IO_L48P_0DISPLAY1D 4150.17
F210IO_L49N_0DISPLAY1C 7682.05
E210IO_L49P_0DISPLAY1B 8634.04
C210IODISPLAY1A 13499.9
C220IODISPLAY2G 15061.08
L190IO_L54N_0DISPLAY2F 2263.39
K190IO_L54P_0DISPLAY2E 3226.4
G200IO_L55N_0DISPLAY2D 6227.05
F200IO_L55P_0DISPLAY2C 7549.54
D210IO_L56N_0DISPLAY2B 10983.43
D200IO_L56P_0DISPLAY2A 10275.3
J190IO_L57N_0GND 3969.14
H190IO_L57P_0/VREF_0GND 5173.85
G190IO_L67N_0GND 6064.32
F190IO_L67P_0GND 8063.93
E190IO_L68N_0GND 9549.27
D190IO_L68P_0GND 10957.97
L180IO_L69N_0LED1 2444
K180IO_L69P_0/VREF_0 LED2 3320.11
G180IO_L73N_0LED3 5890.16
72www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Table B-1: FPGA Pinout (Cont’d)
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
F180IO_L73P_0LED4 7223.69
E180IO_L74N_0/GCLK7PGND 8692.96
D180IO_L74P_0/GCLK6SGND 9819.09
J180IO_L75N_0/GCLK5PGND 3858.95
H180IO_L75P_0/GCLK4SGND 5131.43
H171IO_L75N_1/GCLK3PCLK_200_LVDSN 5131.43
J171IO_L75P_1/GCLK2SCLK_200_LVDSP 3858.95
D171IO_L74N_1/GCLK1PCLK_166_LDVSN 10242.07
E171IO_L74P_1/GCLK0SCLK_166_LVDSP 8752.34
F171IO_L73N_1top_clkb 7223.69
G171IO_L73P_1top_clk 5890.16
K171IO_L69N_1/VREF_1Vref = 1.3V 3320.11
L171IO_L69P_1top_dqs 2444
D161IO_L68N_1top_dq(0) 10931.46
E161IO_L68P_1top_dq(1) 9549.27
F161IO_L67N_1top_dq(2) 8063.93
G161IO_L67P_1top_dq(3) 6064.32
H161IO_L57N_1/VREF_1Vref = 1.3V 5173.85
J161IO_L57P_1top_dq(4) 3969.14
D151IO_L56N_1top_dq(5) 10275.3
D141IO_L56P_1top_dq(6) 10983.43
F151IO_L55N_1top_dq(7) 7549.54
G151IO_L55P_1top_dm 6227.05
K161IO_L54N_1top_cke 3226.4
L161IO_L54P_1 top_address(0) 2263.39
C131IOtop_address(1) 15102.5
C141IOtop_address(2) 13541.32
E141IO_L49N_1top_address(3) 8634.04
F141IO_L49P_1 top_address(4) 7682.05
J151IO_L48N_1top_address(5) 4150.17
K151IO_L48P_1 top_address(6) 3084.88
C111IO_L47N_1top_address(7) 13513.12
D111IO_L47P_1top_address(8) 12295.94
ML361 Virtex-II Pro Memory Boardwww.xilinx.com73
UG060 (v1.2) November 8, 2007
Table B-1: FPGA Pinout (Cont’d)
R
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
D121IO_L46N_1top_address(9) 11050.72
D131IO_L46P_1top_address(10) 9988.1
G141IO_L45N_1/VREF_1Vref = 1.3V 7704.24
H141IO_L45P_1top_address(11) 6364.26
D101IO_L44N_1top_address(12) 13570.63
E101IO_L44P_1top_ba(0) 12296.5
E131IO_L43N_1top_ba(1) 8910.89
F131IO_L43P_1top_csb 7591.45
J141IO_L39N_1GND 4903.25
K141IO_L39P_1GND 5404.41
C91IO_L38N_1top_rasb 15339.71
D91IO_L38P_1top_casb 14631.43
G131IO_L37N_1top_web 5923
H131IO_L37P_1GND 4727.82
J121IO_L09N_1/VREF_1Vref = 1.3V 4323.64
K121IO_L09P_1top_rst_dqs_div_out 3066.04
D61IO_L08N_1top_rst_dqs_div_in 15105.89
D51IO_L08P_1GND 16085.61
E91IO_L07N_1PULLDOWN 10718.03
F91IO_L07P_1PULLDOWN 9223.77
J111IO_L06N_1PULLDOWN 4601.94
K111IO_L06P_1PULLDOWN 3344.34
J101IOPULLDOWN 5273.75
G101IO_L03N_1/VREF_1Vref = 1.3V 6996.94
H101IO_L03P_1PULLDOWN 5691.71
G91IO_L02N_1PULLDOWN 7905.95
H91IO_L02P_1PULLDOWN 6327.18
E71IO_L01N_1/VRP_1Pulldown to GND for DCI10150.32
E61IO_L01P_1/VRN_1Pullup to 2.6V for DCI11097.26
D22IO_L01N_2/VRP_2Pulldown to GND for DCI7113.13
D12IO_L01P_2/VRN_2Pullup to 2.6V for DCI4624.16
F82IO_L02N_2ddr1_ckn0 3390.64
F72IO_L02P_2ddr1_ck0 5566.52
74www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Table B-1: FPGA Pinout (Cont’d)
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
E42IO_L03N_2ddr1_ckn1 6738.57
E32IO_L03P_2ddr1_ck1 14050.12
E22IO_L04N_2/VREF_2Vref = 1.3V 15547.77
E12IO_L04P_2ddr1_dqs0 15132.61
J82IO_L05N_2ddr1_dm3 6469.14
J72IO_L05P_2ddr1_dm4 7292.33
F52IO_L06N_2ddr1_dq0 10666.81
F42IO_L06P_2ddr1_dq1 11858.77
H22IO_L31N_2ddr1_dq2 12137.04
H12IO_L31P_2ddr1_dq3 13451.41
M102IO_L32N_2ddr1_dq4 3062.48
M92IO_L32P_2ddr1_dq5 4123.3
K52IO_L33N_2ddr1_dq6 8267.43
K42IO_L33P_2ddr1_dq7 9537.04
J22IO_L34N_2/VREF_2Vref = 1.3V no pin012149.07
K22IO_L34P_2ddr1_dm0 11352.59
L82IO_L35N_2ddr1_dm1 5592.79
L72IO_L35P_2ddr1_dm2 6793.53
L62IO_L36N_2ddr1_rst_dqs_div_in 7367.37
L52IO_L36P_2ddr1_rst_dqs_div_out 8143.52
K12IO_L37N_2PULLDOWN 12423.45
L12IO_L37P_2ddr1_dqs1 12451.17
N102IO_L38N_2PULLDOWN 2788.42
N92IO_L38P_2PULLDOWN 3972.59
M72IO_L39N_2ddr1_dq8 5610.09
M62IO_L39P_2ddr1_dq9 6975.04
L22IO_L40N_2/VREF_2Vref = 1.3V 11195.56
M22IO_L40P_2ddr1_dq10 12186.54
N82IO_L41N_2ddr1_dq11 4920.17
N72IO_L41P_2ddr1_dq12 6104.35
L42IO_L42N_2ddr1_dq13 9001.57
L32IO_L42P_2ddr1_dq14 10259.17
M42IO_L43N_2ddr1_dq15 8536.05
ML361 Virtex-II Pro Memory Boardwww.xilinx.com75
UG060 (v1.2) November 8, 2007
Table B-1: FPGA Pinout (Cont’d)
R
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
M32IO_L43P_2PULLDOWN 9772.91
P102IO_L44N_2PULLDOWN 2638.82
P92IO_L44P_2PULLDOWN 3823
N62IO_L45N_2ddr1_ckn2no_pin1 6306.01
N52IO_L45P_2ddr1_ck2 7563.61
M12IO_L46N_2/VREF_2Vref = 1.3V 11667.8
N12IO_L46P_2ddr1_dqs2 11804.99
P82IO_L47N_2GND 4770.58
P72IO_L47P_2GND 5954.75
N42IO_L48N_2ddr1_dq16 8437.77
N32IO_L48P_2ddr1_dq17 9778.21
N22IO_L49N_2ddr1_dq18 10426.76
P22IO_L49P_2ddr1_dq19 10530.82
R102IO_L50N_2ddr1_dq20 2488.12
R92IO_L50P_2ddr1_dq21 3672.29
P62IO_L51N_2ddr1_dq22 6499.99
P52IO_L51P_2ddr1_dq23 7603.44
P42IO_L52N_2/VREF_2Vref = 1.3V no_pin28102.88
P32IO_L52P_2ddr1_rasn 9339.48
T112IO_L53N_2ddr1_casn 1247.81
U112IO_L53P_2ddr1_wen 1919.47
R72IO_L54N_2ddr1_cke 4872.84
R62IO_L54P_2ddr1_csn 6425.42
P12IO_L55N_2GND 11291.77
R12IO_L55P_2ddr1_dqs3 11455.67
T102IO_L56N_2PULLDOWN 2752.93
T92IO_L56P_2PULLDOWN 3871.63
R42IO_L57N_2ddr1_dq24 8013.89
R32IO_L57P_2ddr1_dq25 9271.49
R22IO_L58N_2/VREF_2Vref = 1.3V 9961.47
T22IO_L58P_2ddr1_dq26 10173.21
T82IO_L59N_2ddr1_dq27 4753.73
T72IO_L59P_2ddr1_dq28 5872.43
76www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Table B-1: FPGA Pinout (Cont’d)
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
T62IO_L60N_2ddr1_dq29 6031.43
T52IO_L60P_2ddr1_dq30 7055.3
T42IO_L85N_2ddr1_dq31 7724.5
T32IO_L85P_2GND 9056.44
U102IO_L86N_2ddr1_ba0 2340.31
U92IO_L86P_2ddr1_ba1 3459.01
U62IO_L87N_2ddr1_a0no_pin3 5801.93
U52IO_L87P_2ddr1_a1 6851.4
U22IO_L88N_2/VREF_2Vref = 1.3V 9665.64
V22IO_L88P_2ddr1_dqs4 10394.2
U82IO_L89N_2GND 4393.22
U72IO_L89P_2GND 5511.92
U42IO_L90N_2ddr1_dq32 7649.57
U32IO_L90P_2ddr1_dq33 8839.91
V33IO_L90N_3ddr1_dq34 8537.7
V43IO_L90P_3ddr1_dq35 7799.59
V73IO_L89N_3ddr1_dq36 5407.06
V83IO_L89P_3ddr1_dq37 4483.54
V53IO_L88N_3ddr1_dq38 6547.9
V63IO_L88P_3ddr1_dq39 5998.02
W23IO_L87N_3/VREF_3Vref = 1.3V no_pin4 9812.03
Y23IO_L87P_3ddr1_a2 10611.96
V93IO_L86N_3GND 3327.27
V103IO_L86P_3ddr1_dqs5 2405.17
W33IO_L85N_3GND 8919.9
W43IO_L85P_3GND 8159.47
Y13IO_L60N_3ddr1_dq40 11148.48
AA13IO_L60P_3ddr1_dq41 11691.6
V113IO_L59N_3ddr1_dq42 1638.53
W113IO_L59P_3ddr1_dq43 1610.19
W53IO_L58N_3ddr1_dq44 6678.99
W63IO_L58P_3ddr1_dq45 5936.59
Y33IO_L57N_3/VREF_3Vref = 1.3V 8909.69
ML361 Virtex-II Pro Memory Boardwww.xilinx.com77
UG060 (v1.2) November 8, 2007
Table B-1: FPGA Pinout (Cont’d)
R
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
Y43IO_L57P_3ddr1_dq468145.63
W73IO_L56N_3ddr1_dq47 5773.96
W83IO_L56P_3ddr1_dm5 4826.38
Y63IO_L55N_3ddr1_a3 5961.45
Y73IO_L55P_3ddr1_a4 5219.05
AA23IO_L54N_3ddr1_a5no_pin5 10317.88
AB23IO_L54P_3ddr1_a6 11488.21
W93IO_L53N_3GND 3619.48
W103IO_L53P_3ddr1_dqs6 2590.48
AA33IO_L52N_3GND 9502.86
AA43IO_L52P_3GND 8801.88
AB13IO_L51N_3/VREF_3Vref = 1.3V 12006.27
AC13IO_L51P_3ddr1_dq48 12342.28
Y93IO_L50N_3ddr1_dq49 3554
Y103IO_L50P_3ddr1_dq50 2606.42
AA53IO_L49N_3ddr1_dq51 7683.23
AA63IO_L49P_3ddr1_dq52 7555.89
AB33IO_L48N_3ddr1_dq539319.47
AB43IO_L48P_3ddr1_dq54 8556.07
AA73IO_L47N_3ddr1_dq55 5836.46
AA83IO_L47P_3ddr1_dm6 4888.88
AB53IO_L46N_3ddr1_a7 7371.9
AB63IO_L46P_3ddr1_a8 6629.5
AC23IO_L45N_3/VREF_3Vref = 1.3V no_pin610601.93
AD23IO_L45P_3ddr1_a9 11866.32
AA93IO_L44N_3PULLDOWN 3704.71
AA103IO_L44P_3ddr1_dqs7 2717.14
AC33IO_L43N_3PULLDOWN 9702.33
AC43IO_L43P_3PULLDOWN 8911.96
AD13IO_L42N_3ddr1_dq56 12256.07
AE13IO_L42P_3ddr1_dq57 12534.09
AB73IO_L41N_3ddr1_dq58 5986.05
AB83IO_L41P_3ddr1_dq59 5038.48
78www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Table B-1: FPGA Pinout (Cont’d)
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
AC63IO_L40N_3ddr1_dq60 6521.49
AC73IO_L40P_3ddr1_dq61 5779.09
AD33IO_L39N_3/VREF_3Vref = 1.3V 9751.53
AD43IO_L39P_3ddr1_dq62 9046.71
AB93IO_L38N_3ddr1_dq63 3854.3
AB103IO_L38P_3ddr1_dm7 2906.72
AD53IO_L37N_3ddr1_a10 8126.55
AD63IO_L37P_3ddr1_a11 8070.54
AE23IO_L36N_3ddr1_ckn3no_pin7 11537.91
AF23IO_L36P_3ddr1_ck3 11948.48
AD73IO_L35N_3PULLDOWN 6675.24
AD83IO_L35P_3ddr1_dqs8 5651.11
AE43IO_L34N_3PULLDOWN 9342.05
AE53IO_L34P_3PULLDOWN 8811.79
AG13IO_L33N_3/VREF_3Vref = 1.3V 12986.31
AG23IO_L33P_3ddr1_dq64 12391.44
AC93IO_L32N_3ddr1_dq65 4005.01
AC103IO_L32P_3ddr1_dq66 3336.69
AF33IO_L31N_3ddr1_dq67 10624.52
AF43IO_L31P_3ddr1_dq68 10021.36
AL13IO_L06N_3ddr1_dq69 15821.97
AL23IO_L06P_3ddr1_dq70 15583.83
AG73IO_L05N_3ddr1_dq71 9638.17
AH83IO_L05P_3ddr1_dm8 9015.73
AH53IO_L04N_3 ddr1_a129452.34
AH63IO_L04P_3PULLDOWN 9308.27
AK33IO_L03N_3/VREF_3Vref = 1.3V no_pin8 12802.28
AK43IO_L03P_3PULLDOWN 12761.57
AJ73IO_L02N_3 ddr1_ckn412205.75
AJ83IO_L02P_3 ddr1_ck410415.12
AJ43IO_L01N_3/VRP_3 Pulldown to GND for DCI11311.2
AJ53IO_L01P_3/VRN_3Pullup to 2.6V for DCI10985.88
AL54IO_L01N_4/DOUTGND 13235.56
ML361 Virtex-II Pro Memory Boardwww.xilinx.com79
UG060 (v1.2) November 8, 2007
Table B-1: FPGA Pinout (Cont’d)
R
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
AL64IO_L01P_4/INIT_B INITn12205.78
AG94IO_L02N_4/D0 FPGA.DO6285.75
AH94IO_L02P_4/D1GND 7853.38
AK64IO_L03N_4/D2GND 11359.7
AK74IO_L03P_4/D3GND 11413.02
AF104IOGND 5273.75
AL74IO_L06N_4/VRP_4M1_even_clk 12583.91
AM74IO_L06P_4/VRN_4M1_even_ D15 13750.42
AE114IO_L07N_4M1_even_ D143596.07
AF114IO_L07P_4/VREF_4M1_even_ D13 4532.67
AG104IO_L08N_4M1_even_ D127946.43
AH104IO_L08P_4M1_even_ D118820.26
AK84IO_L09N_4M1_even_ D1011291.37
AL84IO_L09P_4/VREF_4M1_even_D9 11372.97
AE134IO_L37N_4M1_even_D8 2723.68
AF134IO_L37P_4M1_even_D7 3918.86
AG134IO_L38N_4M1_even_D6 8007.13
AH134IO_L38P_4M1_even_D5 8774.61
AJ114IO_L39N_4M1_even_D4 8630.23
AK114IO_L39P_4M1_even_D3 9736.03
AE144IO_L43N_4 M1_even_D2 3696.3
AF144IO_L43P_4M1_even_D1 5289.64
AJ134IO_L44N_4M1_even_D0 9198.92
AK134IO_L44P_4M1_odd_clk 10605.95
AL114IO_L45N_4M1_odd_D15 10900.17
AM114IO_L45P_4/VREF_4M1_odd_D14 12224.04
AE154IO_L46N_4M1_odd_D13 3132.45
AF154IO_L46P_4M1_odd_D12 3969.05
AG144IO_L47N_4M1_odd_D11 8129.77
AH144IO_L47P_4M1_odd_D10 9100.75
AL134IO_L48N_4M1_odd_D9 9870.11
AL124IO_L48P_4M1_odd_D8 11409.38
AD164IO_L49N_4M1_odd_D7 2710.75
80www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Table B-1: FPGA Pinout (Cont’d)
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
AE164IO_L49P_4M1_odd_D6 3442.92
AJ144IOGND 8953.05
AK144IOGND 9556.17
AM144IO_L54N_4M1_odd_D5 12003.32
AM134IO_L54P_4M1_odd_D4 12348.43
AF164IO_L55N_4M1_odd_D3 3887.4
AG164IO_L55P_4M1_odd_D2 4909.89
AH154IO_L56N_4M1_odd_D1 7000
AJ154IO_L56P_4M1_odd_D0 8217.31
AL144IO_L57N_4GND 10563
AL154IO_L57P_4/VREF_4GND 10160.18
AD174IO_L67N_4GND 2503.07
AE174IO_L67P_4GND 3464.19
AH164IO_L68N_4GND 7362.9
AJ164IO_L68P_4GND 9128.85
AK164IO_L69N_4GND 9447.56
AL164IO_L69P_4/VREF_4GND 10269.32
AF174IO_L73N_4GND
AG174IO_L73P_4GND
AH174IO_L74N_4/GCLK3SGND
AJ174IO_L74P_4/GCLK2PGND
AK174IO_L75N_4/GCLK1SGND
AL174IO_L75P_4/GCLK0PGND
AL185IO_L75N_5/GCLK7SCLK.SMAN
AK185IO_L75P_5/GCLK6PCLK.SMAP
AJ185IO_L74N_5/GCLK5SGND
AH185IO_L74P_5/GCLK4PGND
AG185IO_L73N_5GND
AF185IO_L73P_5GND
AL195IO_L69N_5/VREF_5GND
AK195IO_L69P_5GND
AJ195IO_L68N_5GND
AH195IO_L68P_5GND
ML361 Virtex-II Pro Memory Boardwww.xilinx.com81
UG060 (v1.2) November 8, 2007
Table B-1: FPGA Pinout (Cont’d)
R
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
AE185IO_L67N_5GND
AD185IO_L67P_5M2_even_clk
AL205IO_L57N_5/VREF_5M2_even_ D15
AL215IO_L57P_5M2_even_ D14
AJ205IO_L56N_5M2_even_ D13
AH205IO_L56P_5M2_even_ D12
AG195IO_L55N_5M2_even_ D11
AF195IO_L55P_5M2_even_ D10
AM225IO_L54N_5M2_even_D9
AM215IO_L54P_5M2_even_D8
AK215IOGND
AJ215IOGND
AE195IO_L49N_5M2_even_D7
AD195IO_L49P_5M2_even_D6
AL235IO_L48N_5M2_even_D5 11409.38
AL225IO_L48P_5M2_even_D4 9870.11
AH215IO_L47N_5M2_even_D3 9029.19
AG215IO_L47P_5M2_even_D2 8186.49
AF205IO_L46N_5M2_even_D1 3969.05
AE205IO_L46P_5M2_even_D0 3132.45
AM245IO_L45N_5/VREF_5M2_odd_clk 12224.04
AL245IO_L45P_5M2_odd_D15 10900.17
AK225IO_L44N_5M2_odd_D14 10795.23
AJ225IO_L44P_5M2_odd_D13 9429.62
AF215IO_L43N_5M2_odd_D12 5289.64
AE215IO_L43P_5 M2_odd_D11 3696.3
AK245IO_L39N_5M2_odd_D10 9736.03
AJ245IO_L39P_5M2_odd_D9 8630.23
AH225IO_L38N_5M2_odd_D8 8786.32
AG225IO_L38P_5M2_odd_D7 8056.83
AF225IO_L37N_5M2_odd_D6 3918.86
AE225IO_L37P_5M2_odd_D5 2723.68
AL275IO_L09N_5/VREF_5M2_odd_D4 11372.97
82www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Table B-1: FPGA Pinout (Cont’d)
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
AK275IO_L09P_5M2_odd_D3 11420.7
AH255IO_L08N_5M2_odd_D2 8344.01
AG255IO_L08P_5M2_odd_D1 7652.81
AF245IO_L07N_5/VREF_5M2_odd_D0 4532.67
AE245IO_L07P_5GND 3596.07
AM285IO_L06N_5/VRP_5GND 13858.11
AL285IO_L06P_5/VRN_5GND 12527.75
AF255IOGND
AK285IO_L03N_5/D4GND
AK295IO_L03P_5/D5GND
AH265IO_L02N_5/D6GND
AG265IO_L02P_5/D7GND
AL295IO_L01N_5/RDWR_BPUSH1
AL305IO_L01P_5/CS_BPUSH2
AJ306IO_L01P_6/VRN_6Pullup to 2.6V for DCI10985.88
AJ316IO_L01N_6/VRP_6Pulldown to GND for DCI11321.01
AJ276IO_L02P_6dimm_dm0 10529.58
AJ286IO_L02N_6dimm_dm1 11720.34
AK316IO_L03P_6dimm_dqs0 12761.57
AK326IO_L03N_6/VREF_6Vref = 1.3V12802.28
AH296IO_L04P_6dimm_dq0 9308.27
AH306IO_L04N_6dimm_dq1 9452.34
AH276IO_L05P_6dimm_dq2 8891.47
AG286IO_L05N_6dimm_dq3 9638.17
AL336IO_L06P_6dimm_dq4 15583.83
AL346IO_L06N_6dimm_dq5 15821.97
AF316IO_L31P_6dimm_dq6 10021.36
AF326IO_L31N_6dimm_dq7 10624.52
AC256IO_L32P_6dimm_dm2 3336.69
AC266IO_L32N_6dimm_dm3 4005.01
AG336IO_L33P_6dimm_dm4no_pin012391.44
AG346IO_L33N_6/VREF_6Vref = 1.3V12986.31
AE306IO_L34P_6PULLDOWN 8811.79
ML361 Virtex-II Pro Memory Boardwww.xilinx.com83
UG060 (v1.2) November 8, 2007
Table B-1: FPGA Pinout (Cont’d)
R
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
AE316IO_L34N_6PULLDOWN 9342.05
AD276IO_L35P_6dimm_dqs1 5651.11
AD286IO_L35N_6PULLDOWN 6675.24
AF336IO_L36P_6dimm_dq8 11948.48
AE336IO_L36N_6dimm_dq9 11537.91
AD296IO_L37P_6dimm_dq10 8070.54
AD306IO_L37N_6dimm_dq11 8126.55
AB256IO_L38P_6dimm_dq12 2906.72
AB266IO_L38N_6dimm_dq13 3854.3
AD316IO_L39P_6dimm_dq14 9046.71
AD326IO_L39N_6/VREF_6Vref = 1.3V9751.53
AC286IO_L40P_6dimm_dq15 5779.09
AC296IO_L40N_6dimm_dm5 6521.49
AB276IO_L41P_6dimm_dm6 5038.48
AB286IO_L41N_6dimm_dm7 5986.05
AE346IO_L42P_6dimm_dm8no_pin112534.09
AD346IO_L42N_6dimm_sda 12256.07
AC316IO_L43P_6PULLDOWN 8911.96
AC326IO_L43N_6GND 9702.33
AA256IO_L44P_6dimm_dqs2 2717.14
AA266IO_L44N_6GND 3704.71
AD336IO_L45P_6dimm_dq16 11866.32
AC336IO_L45N_6/VREF_6Vref = 1.3V10601.93
AB296IO_L46P_6dimm_dq17 6629.5
AB306IO_L46N_6dimm_dq18 7371.9
AA276IO_L47P_6dimm_dq19 4888.88
AA286IO_L47N_6dimm_dq20 5836.46
AB316IO_L48P_6dimm_dq21 8556.07
AB326IO_L48N_6dimm_dq22 9319.47
AA296IO_L49P_6dimm_dq23 7555.89
AA306IO_L49N_6PULLDOWN 7683.23
Y256IO_L50P_6dimm_ck0 2606.42
Y266IO_L50N_6 dimm_ckn0 3554
84www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Table B-1: FPGA Pinout (Cont’d)
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
AC34 6IO_L51P_6PULLDOWN no_pin212342.28
AB346IO_L51N_6/VREF_6Vref = 1.3V12006.27
AA316IO_L52P_6PULLDOWN 8801.88
AA326IO_L52N_6PULLDOWN 9502.86
W256IO_L53P_6dimm_dqs3 2590.48
W266IO_L53N_6GND 3619.48
AB336IO_L54P_6dimm_dq24 11488.21
AA336IO_L54N_6dimm_dq25 10317.88
Y286IO_L55P_6dimm_dq26 5219.05
Y296IO_L55N_6dimm_dq27 5961.45
W276IO_L56P_6dimm_dq28 4826.38
W286IO_L56N_6dimm_dq29 5773.96
Y316IO_L57P_6dimm_dq30 8145.63
Y326IO_L57N_6/VREF_6Vref = 1.3V8909.69
W296IO_L58P_6dimm_dq31 5936.59
W306IO_L58N_6GND 6678.99
W246IO_L59P_6dimm_ck1 1610.19
V246IO_L59N_6dimm_ckn1 1638.53
AA346IO_L60P_6dimm_ck2no_pin311691.6
Y346IO_L60N_6dimm_ckn2 11148.48
W316IO_L85P_6 dimm_s0N8159.47
W326IO_L85N_6 dimm_s1N8919.9
V256IO_L86P_6dimm_dqs4 2405.17
V266IO_L86N_6GND 3327.27
Y336IO_L87P_6dimm_dq32 10611.96
W336IO_L87N_6/VREF_6Vref = 1.3V9812.03
V296IO_L88P_6dimm_dq33 5998.02
V306IO_L88N_6dimm_dq34 6547.9
V276IO_L89P_6dimm_dq35 4483.54
V286IO_L89N_6dimm_dq36 5407.06
V316IO_L90P_6dimm_dq37 7799.59
V326IO_L90N_6dimm_dq38 8537.7
U327IO_L90P_7dimm_dq39 8839.91
ML361 Virtex-II Pro Memory Boardwww.xilinx.com85
UG060 (v1.2) November 8, 2007
Table B-1: FPGA Pinout (Cont’d)
R
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
U317IO_L90N_7PULLDOWN 7626.14
U287IO_L89P_7dimm_rasNno_pin45511.92
U277IO_L89N_7dimm_casN 4393.22
V337IO_L88P_7dimm_weN 10394.2
U337IO_L88N_7/VREF_7Vref = 1.3V9665.64
U307IO_L87P_7dimm_rst_dqs_div_out 6851.4
U297IO_L87N_7dimm_rst_dqs_div_in 5801.93
U267IO_L86P_7PULLDOWN 3459.01
U257IO_L86N_7PULLDOWN 2340.31
T327IO_L85P_7dimm_dqs5 9056.44
T317IO_L85N_7PULLDOWN 7724.5
T307IO_L60P_7dimm_dq40 7055.3
T297IO_L60N_7dimm_dq41 6031.43
T287IO_L59P_7dimm_dq425872.43
T277IO_L59N_7dimm_dq43 4753.73
T337IO_L58P_7dimm_dq44 10173.21
R337IO_L58N_7/VREF_7Vref = 1.3V9961.47
R327IO_L57P_7dimm_dq45 9271.49
R317IO_L57N_7dimm_dq46 8013.89
T267IO_L56P_7dimm_dq47 3871.63
T257IO_L56N_7GND 2752.93
R347IO_L55P_7dimm_cke0 11455.67
P347IO_L55N_7dimm_cke1 11291.77
R297IO_L54P_7dimm_ba0no_pin5 6425.42
R287IO_L54N_7dimm_ba1 4872.84
U247IO_L53P_7GND1919.47
T247IO_L53N_7GND 1247.81
P327IO_L52P_7dimm_dqs6 9339.48
P317IO_L52N_7/VREF_7Vref = 1.3V8102.88
P307IO_L51P_7dimm_dq48 7603.44
P297IO_L51N_7dimm_dq49 6499.99
R267IO_L50P_7dimm_dq50 3672.29
R257IO_L50N_7dimm_dq51 2488.12
86www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Table B-1: FPGA Pinout (Cont’d)
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
P337IO_L49P_7dimm_dq52 10530.82
N337IO_L49N_7dimm_dq53 10426.76
N327IO_L48P_7dimm_dq54 9778.21
N317IO_L48N_7dimm_dq55 8437.77
P287IO_L47P_7dimm_a0no_pin65954.75
P277IO_L47N_7dimm_a1 4770.58
N347IO_L46P_7dimm_a2 11804.99
M347IO_L46N_7/VREF_7Vref = 1.3V11667.8
N307IO_L45P_7dimm_a37563.61
N297IO_L45N_7dimm_a46306.01
P267IO_L44P_7PULLDOWN 3823
P257IO_L44N_7PULLDOWN 2638.82
M327IO_L43P_7dimm_dqs79772.91
M317IO_L43N_7PULLDOWN 8536.05
L327IO_L42P_7dimm_dq5610259.17
L317IO_L42N_7dimm_dq579001.57
N287IO_L41P_7dimm_dq586104.35
N277IO_L41N_7dimm_dq59 4920.17
M337IO_L40P_7dimm_dq60 12186.54
L337IO_L40N_7/VREF_7Vref = 1.3V11195.56
M297IO_L39P_7dimm_dq61 6975.04
M287IO_L39N_7dimm_dq62 5610.09
N267IO_L38P_7dimm_dq63 3972.59
N257IO_L38N_7PULLDOWN 2788.42
L347IO_L37P_7dimm_a6 12451.17
K347IO_L37N_7dimm_a7 12423.45
L307IO_L36P_7dimm_a8 no_pin78143.52
L297IO_L36N_7dimm_a9 7340.48
L287IO_L35P_7dimm_a5 6793.53
L277IO_L35N_7GND 5592.79
K337IO_L34P_7dimm_dqs8 11352.59
J337IO_L34N_7/VREF_7Vref = 1.3V12123.95
K317IO_L33P_7dimm_dq64 9537.04
ML361 Virtex-II Pro Memory Boardwww.xilinx.com87
UG060 (v1.2) November 8, 2007
Table B-1: FPGA Pinout (Cont’d)
R
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
Internal Script
Information
Package
Flight Times
(in microns)
K307IO_L33N_7dimm_dq65 8267.43
M267IO_L32P_7dimm_dq66 4123.3
M257IO_L32N_7dimm_dq67 3062.48
H347IO_L31P_7dimm_dq68 13451.41
H337IO_L31N_7dimm_dq69 12137.04
F317IO_L06P_7dimm_dq70 11858.77
F307IO_L06N_7dimm_dq71 10666.81
J287IO_L05P_7dimm_a10 no_pin87292.33
J277IO_L05N_7dimm_a11 6469.14
E347IO_L04P_7dimm_a12 15132.61
E337IO_L04N_7/VREF_7Vref = 1.3V13663.12
E327IO_L03P_7dimm_sa0 13396.34
E317IO_L03N_7dimm_sa1 11802.85
F287IO_L02P_7dimm_sa2 11146.23
F277IO_L02N_7dimm_scl 12438.46
D347IO_L01P_7/VRN_7Pullup to 2.6V for DCI15547.77
D337IO_L01N_7/VRP_7Pulldown to GND for DCI14050.12
J26PROG_BPROGRAMn
K25HSWAP_ENHSWAP
K26DXP
G27DXN
A29 TXNPAD4
A28 TXPPAD4
A27 RXPPAD4
A26 RXNPAD4
A21 TXNPAD6
A20 TXPPAD6
A19RXPPAD6
A18RXNPAD6
A17 TXNPAD7
A16 TXPPAD7
A15 RXPPAD7
A14 RXNPAD7
88www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Table B-1: FPGA Pinout (Cont’d)
Pin
Numbers
Virtex-II Pro
Bank Number
Package
Functional Name
I/O Pin Names
A9 TXNPAD9
A8 TXPPAD9
A7 RXPPAD9
A6 RXNPAD9
G8 RSVD
K9 VBATT
K10 TMSTMS
J9 TCKTCK
H7 DOTDO.FPGA.to.TDO.PORT
AE9 CCLKFPGA.CCLK
AF9 PWRDWN_BPWRDWN
AE10 DONEDONE
AP6 RXNPAD16RXNPAD18
AP7 RXPPAD16RXPPAD18
Internal Script
Information
Package
Flight Times
(in microns)
AP8 TXPPAD16TXPPAD18
AP9 TXNPAD16TXNPAD18
AP14 RXNPAD18RXNPAD18
AP15 RXPPAD18RXPPAD18
AP16 TXPPAD18TXPPAD18
AP17 TXNPAD18TXNPAD18
AP18 RXNPAD19
AP19 RXPPAD19
AP20 TXPPAD19
AP21 TXNPAD19
AP26 RXNPAD21
AP27 RXPPAD21
AP28 TXPPAD21
AP29 TXNPAD21
AE25 M2M2
AF26 M0M0
AE26 M1M1
H28 TDITDO.PROM.to.TDI.FPGA
ML361 Virtex-II Pro Memory Boardwww.xilinx.com89
UG060 (v1.2) November 8, 2007
R
90www.xilinx.comML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.