Xilinx ML361 User Manual

ML361 Virtex-II Pro DDR400/PC3200 Memory Board User Guide
UG060 (v1.2) November 8, 2007
R
R
Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information.
THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.
© 2004–2007 Xilinx, Inc. All rights reserved.
XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.
ML361 Virtex-II Pro DDR400/PC3200 Memory Board User Guide UG060 (v1.2) November 8, 2007
The following table shows the revision history for this document.
Version Revision
01/23/04 1.0 Initial Xilinx release.
03/26/04 1.1 Revised Figure 4-6, Figure 4-7, Figure 4-8, Figure 4-9, Figure 4-26, and Figure 4-27.
11/08/07 1.2
Ta bl e 5 -1 : Typographical corrections.
Ta bl e B -1 : Deleted Slice Coordinates column from table.
Updated copyright notice and legal disclaimer.
ML361 Virtex-II Pro Memory Board www.xilinx.com UG060 (v1.2) November 8, 2007

Table of Contents

Schedule of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Schedule of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Preface: About This Guide
Guide Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Typographical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Online Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Chapter 1: Introduction
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Chapter 2: Architecture
ML361 Board Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Block Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
DDR SDRAM DIMM (Banks 6 and 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
DDR SDRAM Components (Banks 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
DDR SDRAM Component (Bank 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
RS232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
200 MHz LVDS Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
166 MHz LVDS Test Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
SMA Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
User I/Os. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Mictor Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
DIP Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Seven-Segment Displays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Push Buttons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Grounded I/Os. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Power Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 V Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 V Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 V Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 V Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Linear Regulators for the MGTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ML361 Virtex-II Pro Memory Board www.xilinx.com 3
UG060 (v1.2) November 8, 2007
FPGA Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
PROMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter 3: Electrical Requirements
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
FPGA Internal Power Budget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Chapter 4: Signal Integrity Recommendations and Simulations
Termination and Transmission Line Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Terminations and Transmission Lines for DDR Components . . . . . . . . . . . . . . . . . . . 26
Data and Clock Signals (DQ, DQS, DM, CLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Address and Control Signals (A, BA, RASn, CASn, WEn, CSn, CKE) . . . . . . . . . . . . . . 26
Terminations and Transmission Lines for the DIMM . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Data and Clock Signals (DQ, DQS, DM, CLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Address and Control Signals (A, BA, RASn, CASn, WEn, CSn, CKE) . . . . . . . . . . . . . . 27
Duty Cycle Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
IBIS Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Notes on the Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Data Signal Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Data Signals from the FPGA to Memory (SSTL2_C2 at FPGA). . . . . . . . . . . . . . . . . . . . 32
Data Signals from the Last Memory to the FPGA: Measured at FPGA. . . . . . . . . . . . . . 36
Clock Signal Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Address and Control Signal Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Simulations with 10% Tolerance on the Transmission Line Impedance . . . . . . . . . . . 56
Data Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Address/Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
R
Chapter 5: Board Layout Guidelines
Decoupling Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Providing Additional Ground Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Board Stackup Guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Appendix A: Related Documentation
Appendix B: FPGA Pinout
4 www.xilinx.com ML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007

Schedule of Figures

Chapter 1: Introduction
Figure 1-1: Simplified Block Diagram of Memory Board Interfaces . . . . . . . . . . . . . . . . . 11
Chapter 2: Architecture
Figure 2-1: ML361 Board Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Chapter 3: Electrical Requirements
Chapter 4: Signal Integrity Recommendations and Simulations
Figure 4-1: Data Signal Terminations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 4-2: Data Signal from FPGA to Memory (Typical Case) . . . . . . . . . . . . . . . . . . . . . 32
Figure 4-3: Data Signal from FPGA to Memory (Slow Weak Case). . . . . . . . . . . . . . . . . . 33
Figure 4-4: Data Signal from FPGA to Memory (Fast Strong Case) . . . . . . . . . . . . . . . . . . 34
Figure 4-5: Eye Diagram for Data from the FPGA to Last Memory Component. . . . . . . 35
Figure 4-6: Data Signal from Last Memory at FPGA (Typical Case) . . . . . . . . . . . . . . . . . 36
Figure 4-7: Data Signal from Last Memory at FPGA (Slow Weak Corner Case). . . . . . . 37
Figure 4-8: Data Signal from Memory at FPGA (Fast Strong Corner Case) . . . . . . . . . . . 38
Figure 4-9: Eye Diagram for Data at the FPGA to the Last Memory Component . . . . . . 39
Figure 4-10: Clock Signal Terminations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 4-11: Clock Signal from FPGA to Memory (Typical Case) . . . . . . . . . . . . . . . . . . . 41
Figure 4-12: Clock Signal from FPGA to Memory (Slow Weak Case). . . . . . . . . . . . . . . . 42
Figure 4-13: Clock Signal from FPGA to Memory (Fast Strong Case) . . . . . . . . . . . . . . . . 43
Figure 4-14: Eye Diagram for Clock at Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 4-15: Address and Control Signal Terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 4-16: Address/Control Signals for All Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 4-17: Address/Control Signals at First DDR Memory (Typical Case). . . . . . . . . . 47
Figure 4-18: Address/Control Signals at First DDR Memory (Slow Weak Case) . . . . . . 48
Figure 4-19: Address/Control Signals at First DDR Memory (Fast Strong Case) . . . . . . 49
Figure 4-20: Address/Control Signals at Last DDR Memory (Typical Case) . . . . . . . . . . 50
Figure 4-21: Address/Control Signals at Last DDR Memory (Slow Weak Case). . . . . . . 51
Figure 4-22: Address/Control Signals at Last DDR Memory (Fast Strong Corner Case) 52
Figure 4-23: Address/Control Signals at Middle DDR Memory (Typical Case) . . . . . . . 53
Figure 4-24: Address/Control Signals at Middle DDR Memory (Slow Weak Corner
Case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 4-25: Address/Control Signals at Middle DDR Memory (Fast Strong Corner
Case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 4-26: Data Signals from Last DDR Memory to FPGA (45Ω Impedance) . . . . . . . 56
Figure 4-27: Data Signals from Last DDR Memory to FPGA (55Ω Impedance) . . . . . . . 57
Figure 4-28: Data Signals from FPGA to Last DDR Memory (45Ω Impedance) . . . . . . . 58
ML361 Virtex-II Pro Memory Board www.xilinx.com 5
UG060 (v1.2) November 8, 2007
Figure 4-29: Data Signals from Memory to FPGA (55Ω Impedance) . . . . . . . . . . . . . . . . . 59
Figure 4-30: Clock Signals with 45Ω Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 4-31: Clock Signals with 55Ω Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 4-32: Address/Control Signals with 45Ω Impedance Measured at First DDR
Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 4-33: Address/Control Signals with 55Ω Impedance Measured at First DDR
Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Chapter 5: Board Layout Guidelines
Appendix A: Related Documentation
Appendix B: FPGA Pinout
R
6 www.xilinx.com ML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007

Schedule of Tables

Chapter 1: Introduction
Chapter 2: Architecture
Table 2-1: GPIO Header 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 2-2: GPIO Header 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 2-3: DIP Switch Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 2-4: Display 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 2-5: Display 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 2-6: LED Connections to FPGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Chapter 3: Electrical Requirements
Table 3-1: ML361 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 3-2: XC2VP20FF1152 Estimated Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 3-3: XC2VP20FF1152 Temperature Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 3-4: Device Quiescent Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 3-5: CLB Logic Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 3-6: Digital Clock Manager Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 3-7: Input/Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Chapter 4: Signal Integrity Recommendations and Simulations
Table 4-1: DDR SDRAM Terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 4-2: DIMM Terminations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 4-3: Duty Cycle Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 5: Board Layout Guidelines
Table 5-1: FPGA Decoupling Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 5-2: DDR SDRAM Decoupling Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 5-3: DIMM Decoupling Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 5-4: 16-Layer Board Stackup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Appendix A: Related Documentation
Appendix B: FPGA Pinout
Table B-1: FPGA Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
ML361 Virtex-II Pro Memory Board www.xilinx.com 7
UG060 (v1.2) November 8, 2007
R
8 www.xilinx.com ML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R

About This Guide

This document describes the design of the ML361 Virtex-II Pro™ DDR400/PC3200 Memory Board, which connects a Virtex-II Pro FPGA to DDR memories.

Guide Contents

This manual contains the following chapters:
Chapter 1, “Introduction,” describes the purpose of the ML361 board and provides its
key features.
Chapter 2, “Architecture,” provides a block diagram of the memory board and
describes the key components.
Chapter 3, “Electrical Requirements,” lists the electrical specifications for the memory
board.
Chapter 4, “Signal Integrity Recommendations and Simulations,” provides
information on termination, transmission lines, and duty cycles. It also gives the results of several IBIS simulations.
Chapter 5, “Board Layout Guidelines,” provides information on decoupling
capacitors, ground signals, and PCB layout.
Appendix A, “Related Documentation,” lists data sheet and external website
references specific to the ML361 components.
Appendix B, “FPGA Pinout,” provides the pinout of the Virtex-II Pro FPGA.
Preface

Additional Resources

For additional information, go to http://support.xilinx.com. The following table lists some of the resources you can access from this website. You can also directly access these resources using the provided URLs.
Resource Description/URL
Tutorials Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm
Answer Browser Database of Xilinx solution records
http://support.xilinx.com/xlnx/xil_ans_browser.jsp
Application Notes Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm
ML361 Virtex-II Pro Memory Board www.xilinx.com 9
UG060 (v1.2) November 8, 2007
Preface: About This Guide
Data Sheets Device-specific information on Xilinx device characteristics, including
Problem Solvers Interactive tools that allow you to troubleshoot your design issues
Tech Tips Latest news, design tips, and patch information for the Xilinx design

Conventions

This document uses the following conventions. An example illustrates each convention.

Typographical

The following typographical conventions are used in this document:
R
Resource Description/URL
readback, boundary scan, configuration, length count, and debugging
http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp
http://support.xilinx.com/support/troubleshoot/psolvers.htm
environment
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp
Convention Meaning or Use Example
Italic font

Online Document

The following conventions are used in this document:
Convention Meaning or Use Example
Blue text
Blue, underlined text
References to other manuals
Emphasis in text
Cross-reference link to a location in the current document
Hyperlink to a website (URL)
See the Development System Reference Guide for more information.
If a wire is drawn so that it overlaps the pin of a symbol, the two nets are not connected.
See the section “Additional
Resources” for details.
Refer to “Title Formats” in
Chapter 1 for details.
Go to http://www.xilinx.com for the latest speed files.
10 www.xilinx.com ML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Introduction

Overview

The ML361 Virtex-II Pro DDR400/PC3200 Memory Board provides a communications platform between a Virtex-II Pro FPGA and high-speed double-data-rate (DDR) memories with operating speeds up to 200 MHz. The ML361 has three major functions:
Tests and verifies the interoperability of Virtex-II Pro devices with high-speed DDR memories
Serves as a development platform for Xilinx and its customers to use for building memory controllers
Provides a means by which Xilinx can demonstrate high-speed DDR memory interoperability
Chapter 1
X-Ref Target - Figure 1-1
DDR
SDRAM DIMM
128MB
(MT4VDDT1664-AG-40BC3)
This document describes the functional blocks within the ML361. It also provides various recommendations and requirements for usage of the board, including electrical requirements, logic analyzer requirements, and signal integrity issues. Simulation results using IBIS also are included.
Figure 1-1 shows a simplified block diagram of the ML361 memory interfaces.
DDR SDRAM
(MT46V32M8TG-5B)
Data (8 bits)
Data (72 bits)
Address/Control
Virtex-II Pro FPGA
XC2VP20FF1152-6
Address/Control
Data (72 bits)
Address/Control
DDR
SDRAMs
256Mb
(4 MT46V16M16TG-5B
and
1 MT46V32M8TG-5B)
ug060_c1_01_012104
Figure 1-1: Simplified Block Diagram of Memory Board Interfaces
ML361 Virtex-II Pro Memory Board www.xilinx.com 11
UG060 (v1.2) November 8, 2007
Chapter 1: Introduction

Features

R
The ML361 demonstrates a 64-/72-bit interface to a 128 MByte, 200 MHz DDR SDRAM DIMM, a 72-bit interface to five 256 Mbit, 200 MHz DDR SDRAM components, and an additional 8-bit interface to a 256 Mbit, 200 MHz DDR SDRAM component on one of the top banks.
The key features of the ML361 are summarized below:
One Virtex-II Pro FPGA (XC2VP20FF1152-6)
One DDR SDRAM DIMM (MT4VDDT1664-AG-40BC3)
128 MBytes
64-/72-bit data interface
Five DDR SDRAMs (four MT46V16M16TG-5B devices and one MT46V32M8TG-5B
device)
1.28 Gbits
72-bit data interface
One DDR SDRAM (MT46V32M8TG-5B)
256 Mbits
8-bit data interface
Two separate controllers for each 72-bit memory interface
200 MHz interface
The memory interfaces are located on the FPGA left/right interface and top I/O
banks (banks 1, 2, 3, 6, and 7)
12 www.xilinx.com ML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Architecture
This chapter provides functional descriptions of the major blocks within the ML361 board design. For more detailed information on the design, refer to the schematics, which are located at http://www.xilinx.com/bvdocs/userguides/ug060.zip

ML361 Board Block Diagram

Figure 2-1 shows a block diagram of the ML361 board. Refer to the following section for
additional information on the major blocks.
X-Ref Target - Figure 2-1
5V Input Jack
JTAG Port
PROM
7-Segment Displays
DIP Switch
Chapter 2
.
Serial Port
3.3V Regulator
Switch
1.3V Regulator
2.6V Regulator
(5.5A)
2.6V Regulator (10A)
(5.5A)
(10A)
GPIO Header GPIO Header
CLOCK
(200 MHz)
DDR SDRAM
(x16)
DDR SDRAM
(x16)
DDR SDRAM
(x16)
DDR SDRAM
(x16)
DDR SDRAM
(x8)
MICTOR (38-pin) MICTOR (38-pin)
XC2VP20FF1152C-6
DDR SDRAM
CLOCK
(166 MHz)
(x8)
Push1 Push2 Prgm Reset
Figure 2-1: ML361 Board Block Diagram
DDR
SDRAM
DIMM
(x64)
ug060_c2_01_121703
ML361 Virtex-II Pro Memory Board www.xilinx.com 13
UG060 (v1.2) November 8, 2007
Chapter 2: Architecture

Block Descriptions

This section describes the major blocks of the ML361 board.

FPGA

The ML361 uses a Xilinx XC2VP20FF1152C-6 Virtex-II Pro device. This device is packaged in a 1152-pin BGA package with a -6 speed grade. Refer to Appendix B, “FPGA Pinout,”for a complete pinout of the Virtex-II Pro device.

Memories

The ML361 board supports two types of memories: DDR SDRAM DIMM and DDR SDRAM.
DDR SDRAM DIMM (Banks 6 and 7)
The DDR SDRAM DIMM used on the ML361 board is a 184-pin, 200 MHz, unbuffered, non-ECC Micron MT4VDDT1664-AG-40BC3 device. This DIMM module has a 64-bit wide data interface. The board also has provisions to interface to a 72-bit wide DIMM.
R
DDR SDRAM Components (Banks 2 and 3)
DDR SDRAM Component (Bank 1)

RS232

Clocks

200 MHz LVDS Clock
The ML361 board contains five 200 MHz DDR SDRAM components that provide a 72-bit interface. These devices include four 16-bit Micron MT46V16M16TG-5B devices and one MT46V32M8TG-5B DDR SDRAM devices. They are packaged in 66-pin TSOP packages. They share a common address and control bus and have separate clocks and DQS/DQ signals.
The ML361 board contains one 8-bit Micron MT46V32M8TG-5B device on the top bank of the FPGA.
The ML361 board provides an RS232 serial interface using a Texas Instruments MAX3221CDBR device. The maximum speed of this device is 250 Kb/s. The RS232 interface is accessible through a female DB9 RA connector.
The ML361 board contains 166 MHz and 200 MHz LVDS clock oscillators and connectors for external LVDS clock inputs.
The LVDS clock is a Pletronics LV1145BW-200.0M oscillator with a differential output. The oscillator runs at 200 MHz ± 50 PPM with an operating voltage of 2.5 V ± 5%. It is terminated at the FPGA with a 100 CLK_200_LVDSP and CLK_200_LVDSN inputs, respectively.
14 www.xilinx.com ML361 Virtex-II Pro Memory Board
Ω resistor. FPGA pins J17 and H17 in Bank 1 serve as the
UG060 (v1.2) November 8, 2007
R
166 MHz LVDS Test Clock
SMA Clock

User I/Os

Mictor Connectors
Block Descriptions
The LVDS test clock is a Pletronics SM7745DW-100.0M clock oscillator with a single-ended output. This oscillator runs at 166 MHz ± 50 PPM with an operating voltage of 2.5 V ± 5%. FPGA pins E17 and D17 in Bank 1 serve as the CLK_166_LVDSP and CLK_166_LVDSN inputs, respectively.
Two SMA connectors are provided for the input of an off-board differential clock. The traces from the SMAs are run as a pair to the FPGA where they are terminated with a 100 ohm resistor. AK18 serves as the CLK_SMAP input, and AL18 serves as the CLK_SMAN input for the SMA connector pair.
This subsection describes the devices that connect to the User I/Os of the ML361 board.
The FPGA interfaces to two 38-pin Mictor connectors. They can be used to hook up to a logic analyzer. All signals from the FPGA to the connectors are matched closely. Refer to the Xilinx data sheets in Appendix A, “Related Documentation,” for more information.
GPIO
The ML361 board contains 16 general-purpose I/Os (GPIOs), which are accessible through two 2 x 8 0.100" pin headers (see Ta bl e 2 -1 and Tab le 2 - 2). The even-numbered pins on each header are connected to ground. The GPIO header pins can be accessed through I/Os in Bank 0.
Table 2-1: GPIO Header 1
GPIO Pin # FPGA I/O Pin
G00 F22
G01 E22
G02 E25
G03 D25
G04 H21
G05 D22
G06 D23
G07 D24
ML361 Virtex-II Pro Memory Board www.xilinx.com 15
UG060 (v1.2) November 8, 2007
Chapter 2: Architecture
DIP Switch
II
Table 2-2: GPIO Header 2
GPIO Pin # FPGA I/O Pin
G08 D30
G09 D29
G10 K23
G11 J23
G12 H22
G13 G22
G14 D26
G15 C26
One eight-position DIP switch is connected to the FPGA I/Os as shown in Ta bl e 2 -3 . These switches can be used to externally pull up or pull down any signal on the FPGA.
R
Table 2-3: DIP Switch Connections
DIP Switch Input FPGA I/O Pin #
DIP1 G26
DIP2 H25
DIP3 G25
DIP4 J25
DIP5 K24
DIP6 J24
DIP7 F26
DIP8 E26
Seven-Segment Displays
Two seven-segment displays connect to the FPGA I/Os (see Tab le 2- 4 and Ta bl e 2 - 5). The red displays are active Low. The decimal points are not connected.
Table 2-4: Display 1
DIsplay Input FPGA I/O Pin #
Display1A C21
Display1B E21
Display1C F21
Display1D J20
Display1E K20
16 www.xilinx.com ML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Block Descriptions
Table 2-4: Display 1
DIsplay Input FPGA I/O Pin #
Display1F C24
Display1G D24
Table 2-5: Display 2
DIsplay Input FPGA I/O Pin #
Display2A D20
Display2B D21
Display2C F20
Display2D G20
Display2E K19
Display2F L19
Display2G C22
LEDs
Four green LEDs connect to the FPGA I/Os as indicated in Ta bl e 2 -6 . The LEDs are active Low.
Table 2-6: LED Connections to FPGA
LED # FPGA I/O Pin #
LED1 L18
LED2 K18
LED3 G18
LED4 F18
Push Buttons
The ML361 board contains four momentary push buttons. Their functions are as follows:
Program the FPGA
Reset the board
User function 1
User function 2
Grounded I/Os
Unused I/Os are connected to GND in all FPGA banks. However, all memory banks have eight unused I/Os connected to GND through 0
Ω resistors. These can be depopulated
when needed for test purposes. Care must be taken to not drive any unused I/Os connected to GND.
ML361 Virtex-II Pro Memory Board www.xilinx.com 17
UG060 (v1.2) November 8, 2007
Chapter 2: Architecture

Power

Power Distribution
Input Voltage
3.3 V Generation
2.6 V Generation
R
The ML361 board uses a 5V input voltage source to generate all the on-board voltages (1.3V, 1.5V, 2.6V, and 3.3V, and the 2.5V for the MGTs)
The input voltage is specified at 5 V @ 6.5 A. The recommended power supply is a CUI Inc. DTS050650UTC-PSP-SZ. The jack used is a 4-pin barrel jack, CUI stack PJ-002A-SMT. The slide switch is a CW Industries G1123-0009. This power input has alternate input solder pads.
The Texas Instruments PTH05000WAH voltage regulator generates the 3.3 V @ 5.5 A power. This power input has alternate input solder pads.
The Texas Instruments PTH05010WAS voltage regulator generates the 2.6 V @ 10 A power. This regulator provides 2.5 Vout with ± 10% trim. This power input has alternate input solder pads.
1.5 V Generation
The Texas Instruments PTH05000WAH voltage regulator generates the 1.5 V @ 5.5 A power. This power input has alternate input solder pads.
1.3 V Generation
The Texas Instruments PTH05000WAH voltage regulator generates the 1.3 V @ 1.5 A power.
Linear Regulators for the MGTs
The Texas Instruments TPS78625 voltage regulator generates 2.5 V @ 1.5 A power for the Multi Gigabit Transceivers (MGTs).

FPGA Configuration

The Virtex-II Pro FPGA can be programmed through either the JTAG interface or three on­board PROMs.
JTAG
Two headers are used for JTAG: a standard header and a parallel-IV header.
Standard Header
The standard JTAG header is a 1 x 7 0.100" RA header.
Parallel-IV Header
The parallel-IV headers is a 2 x 7 2 mm RA shrouded header.
18 www.xilinx.com ML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Block Descriptions
PROMs
The ML361 board contains XCF04S PROMs that can be used to program the Virtex-II Pro FPGA. The PROM operates with a 3.3 V core voltage and a 2.5 V I/O voltage.
ML361 Virtex-II Pro Memory Board www.xilinx.com 19
UG060 (v1.2) November 8, 2007
Chapter 2: Architecture
R
20 www.xilinx.com ML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Electrical Requirements

Power Consumption

Tab le 3- 1 lists the operating voltages, maximum currents, and power consumption used by
the ML361 board devices. Refer to Appendix A, “Related Documentation,” for more information on the source material.
Table 3-1: ML361 Power Consumption
Chapter 3
Device Quantity
Total Available Power
Power Supply 1 5 6500 32.5
FPGA Power (Based on Design)
FPGA (XC2VP20-6 FF1152) 1 6.873 Power Estimator Tool
Board Power
Static Power-on Termination Resistors (50Ω)
DDR SDRAM (72-bit interface) 5 2.6 260 3.38 Micron DDR SDRAM Data Sheet
DDR SDRAM (8-bit interface) 1 2.6 260 0.676
DDR SDRAM DIMM 1 2.6 1040 2.704 Micron DDR SDRAM DIMM Data
200 MHz LVDS Clock Oscillator 1 3.3 40 0.132 Pletronics LV1145B-200 Data Sheet
166 MHz LVDS Clock Oscillator 1 3.3 40 0.132 Pletronics LV1145B-166 Data Sheet
PROMs (XCF04SV020C) 3 2.6 25 0.2 Estimated
375 1.3 16.2 4.92 Virtex-II Pro User Guide (SSTL2
3 3.3 25 0.25 Estimated
Volt ag e
(V)
Current
(mA)
Power
(W)
Source
current specification)
Sheet
8-pin GPIO Header 2 2.6 160 0.416 Average 10 mA * 16 pins
Seven Segment Display 2 2.6 86 0.224 Fourteen 130Ω loads
LEDs 9 2.6 25 0.585 Nine 130Ω loads
DIP Switch 1 2.6 6 0.016 Eight 3.3 kΩ pull-ups
RS232 Serial Port 1 3.3 40 0.132 TI MAX3221 Data Sheet
Worst Case Power Consumption: 20.64
ML361 Virtex-II Pro Memory Board www.xilinx.com 21
UG060 (v1.2) November 8, 2007
Chapter 3: Electrical Requirements

FPGA Internal Power Budget

The following tables show the power consumption values inside the FPGA based on the complete DDR design. These results are derived using the Xilinx Power Estimator tool. Block Select RAM, Block Multiplier, Processor, and MGT Power tables are not included in this section as they are not used in this application.
Tab le 3- 2, “XC2VP20FF1152 Estimated Power Consumption,” page 22
Tab le 3- 3, “XC2VP20FF1152 Temperature Specifications,” page 22
Tab le 3- 4, “Device Quiescent Power,” page 22
Tab le 3- 5, “CLB Logic Power,” page 23
Tab le 3- 6, “Digital Clock Manager Power,” page 23
Tab le 3- 7, “Input/Output Power,” page 24
Table 3-2: XC2VP20FF1152 Estimated Power Consumption
Parameter Value Units
Total Estimated Design Power 6873 mW
R
Estimated Design VCC
Estimated Design VCC
1.5 V Power 3811 mW
INT
2.5 V Power 417 mW
AUX
Estimated Design VCCO 3.3 V Power 0 mW
Estimated Design VCCO 2.5 V Power 2645 mW
Estimated Design VCCO 1.8V Power 0 mW
Estimated Design VCCO 1.5 V Power 0 mW
Estimated Design VCCO 1.2 V Power 0 mW
Estimated Design VCC
Estimated Design VCC
Estimated Design VT
Estimated Design VT
RX 2.5 V Power 0 mW
AUX
TX 2.5 V Power 0 mW
AUX
2.5 V Power 0 mW
RX
2.5 V Power 0 mW
TX
Table 3-3: XC2VP20FF1152 Temperature Specifications
Parameter Value Units
Ambient Temperature 25 •C
Air Flow 0 LFM
Junction Temperature 107 •C
Table 3-4: Device Quiescent Power
VCC
Subtotal (mW) VCC
INT
Subtotal (mW)
AUX
450 417
22 www.xilinx.com ML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Table 3-5: CLB Logic Power
FPGA Internal Power Budget
Tot al
Name
User Module 1 200 2597 2603 0 1088 40% High 2439
User Module 2 0 0 0 0 0 0% Low 0
User Module 3 0 0 0 0 0 0% Low 0
User Module 4 0 0 0 0 0 0% Low 0
User Module 5 0 0 0 0 0 0% Low 0
User Module 6 0 0 0 0 0 0% Low 0
User Module 7 0 0 0 0 0 0% Low 0
User Module 8 0 0 0 0 0 0% Low 0
User Module 9 0 0 0 0 0 0% Low 0
User Module 10 0 0 0 0 0 0% Low 0
User Module 11 0 0 0 0 0 0% Low 0
User Module 12 0 0 0 0 0 0% Low 0
Frequency
(MHz)
Number
of CLB
Slices
Tot al
Number of
Flip/Flop or
Latches
Tota l N u m be r
of Shift
Register LUTs
Tot al Numbe r
of Select
RAM LUTs
Average
Toggle
Rate
%
Amount of
Routing
Used
Total 2439
VCC
Subtotal
(mW)
INT
Table 3-6: Digital Clock Manager Power
Name
Clock Input
Frequency (MHz)
DCM Frequency Mode
VCC
INT
User DCM 1 200 Low 6
User DCM 2 200 Low 6
User DCM 3 0 Low 0
User DCM 4 0 Low 0
User DCM 5 0 Low 0
User DCM 6 0 Low 0
User DCM 7 0 Low 0
User DCM 8 0 Low 0
User DCM 9 0 Low 0
User DCM 10 0 Low 0
User DCM 11 0 Low 0
User DCM 12 0 Low 0
To t al 1 2
Subtotal
(mW)
ML361 Virtex-II Pro Memory Board www.xilinx.com 23
UG060 (v1.2) November 8, 2007
Chapter 3: Electrical Requirements
Table 3-7: Input/Output Power
Average
Output Enable
Rate
%
Average
Output
Load
(pF)
IOB
Registers
VCC
INT
Subtotal
(mW)
VCCO
Subtotal
Name
Frequency
(MHz)
I/O Standard
Typ e
Tot al
Number
of Inputs
Tot al
Number
Outputs
of
Average
IOB
Tog gle
Rate
%
Jpheader 200 LVCMOS25_12 0 16 25% 100% 0 SDR 2 30
ddr_dq 200 SSTL2_II 138 138 80% 50% 5 DDR 462 877
ddr_dqs 2000 SSTL2_II 18 18 80% 50% 5 DDR 335 363
ddr_address 200 SSTL2_II 0 15 25% 100% 3 SDR 1 106
ddr_control 200 SSTL2_II 0 5 25% 100% 3 SDR 0 35
dimm_address 200 SSTL2_I_DCI 0 15 25% 100% 12 SDR 13 157
dimm_control 200 SSTL2_I_DCI 0 4 50% 100% 12 SDR 12 96
ddr_clks 200 SSTL2_II 0 2 100% 100% 3 DDR 0 42
Display 200 LVCMOS25_12 0 14 6% 100% 0 SDR 1 6
dimm_control_1 200 SSTL2_II 0 3 50% 100% 12 SDR 0 28
ddr_dm 200 SSTL2_II 0 17 10% 100% 5 SDR 2 100
R
(mW)
dimm_clks 200 SSTL2_II 0 6 100% 100% 12 SDR 1 82
top_dq 200 SSTL2_II_DCI 8 8 80% 50% 5 DDR 39 366
top_dqs 200 SSTL2_II_DCI 1 1 80% 50% 5 DDR 15 103
top_address 200 SSTL2_I_DCI 0 15 25% 100% 5 SDR 13 153
top_control 200 SSTL2_I_DCI 0 5 25% 100% 5 SDR 12 95
Total 910 2645
24 www.xilinx.com ML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
Chapter 4
Signal Integrity Recommendations and Simulations
This chapter provides the following information:
Summary of the termination schemes for various signals (“Termination and
Transmission Line Summaries,” page 25)
Summary of the observed duty cycles for all signals in the IBIS simulations (“Duty
Cycle Summary,” page 27)
IBIS simulations and duty cycle measurements (“IBIS Simulations,” page 29)

Termination and Transmission Line Summaries

Tab le 4- 1 summarizes the terminations for the five DDR SDRAM components at the FPGA
and at memory.
Table 4-1: DDR SDRAM Terminations
No. Signal
1 Data (DQ) SSTL2_C2 50Ω pull up to 1.3 V 50Ω pull-up to 1.3 V
2 Data Strobe (DQS) SSTL2_C2 50Ω pull up to 1.3 V 50Ω pull-up to 1.3 V
3 Data Mask (DM) SSTL2_C2 50Ω pull up to 1.3 V 50Ω pull-up to 1.3 V
4 Clock (CK, CKn) SSTL2_C2 50Ω pull up to 1.3 V 50Ω pull-up to 1.3 V
5 Address (A, BA) SSTL2_C2 No termination 50Ω pull-up to 1.3 V after the
6 Control (RASn, CASn, WEn,
CSn, CKE)
Tab le 4- 2 summarizes the terminations for the DIMM at the FPGA and at memory.
Table 4-2: DIMM Terminations
No. Signal
Drivers at the
FPGA
SSTL2_C2 No termination 50Ω pull-up to 1.3 V after the
Drivers at the
FPGA
Termination at FPGA Termination at Memory
last component
last component
Termination at FPGA Termination at Memory
1 Data (DQ) SSTL2_C2 50Ω pull-up to 1.3 V 50Ω pull-up to 1.3 V
2 Data Strobe (DQS) SSTL2_C2 50Ω pull-up to 1.3 V 50Ω pull-up to 1.3 V
3 Data Mask (DM) SSTL2_C2 50Ω pull-up to 1.3 V 50Ω pull-up to 1.3 V
ML361 Virtex-II Pro Memory Board www.xilinx.com 25
UG060 (v1.2) November 8, 2007
Chapter 4: Signal Integrity Recommendations and Simulations
Table 4-2: DIMM Terminations
R
No. Signal
4 3 pairs of Clocks (CK, CKn) SSTL2_C2 50Ω pull-up to 1.3 V 50Ω pull-up to 1.3 V
5 Address (A, BA) SSTL2_C2_DCI No termination No termination
6 Control (RASn, CASn, WEn,
CSn, CKE and others)
Drivers at the
FPGA
SSTL2_C2_DCI No termination No termination
Termination at FPGA Termination at Memory

Terminations and Transmission Lines for DDR Components

Data and Clock Signals (DQ, DQS, DM, CLK)
For these DDR signals, the terminations at the FPGA and memory consist of a 50Ω parallel termination pulled up to 1.3 V.
Use 50
Ω transmission lines with less than ± 1% tolerance on the transmission line
impedance. The recommendations for the transmission line lengths are as follows:
All these data and clock signals are point-to-point from the FPGA to each DDR component. All signals going to one individual DDR SDRAM component need to be matched with respect to each other with a ± 2% tolerance.
All signals going to the first component are matched to a trace length of 2.8 inches with a ± 2% tolerance. The 2.5 inch requirement includes the FPGA internal package skew (available on the pinout table) and the skew between the ball of the FPGA to the resistor pack as well as the length of the actual trace.
The trace length variation on these signals across the five DDR components is kept as small as possible to enable data capture while also ensuring they fall within the address window. The trace lengths on all five DDR components are: 2.8 inches, 2.8 inches, 3.5 inches, 3.8 inches, and 3.8 inches. All signals corresponding to the same DDR component are matched as close as ± 1% of the above mentioned trace lengths.
Microstrip is used to model the transmission lines in the IBIS simulations.
Address and Control Signals (A, BA, RASn, CASn, WEn, CSn, CKE)
For the address and control signals, no termination is required at the FPGA. At memory, a 50
Ω resistor pulled up to 1.3 V at the end of the daisy chain is required (after the last DDR
component).
Use 50
Ω transmission lines with ± 5% tolerance from the FPGA to all the memory
components. The recommendations for the transmission line lengths are as follows:
All the signals are routed in a daisy chain fashion.
There is a maximum of 2.5 inch trace with ± 2% tolerance from the FPGA to the first
DDR component. The 2.5 inch requirement includes the FPGA internal package skew (that is available on the pinout table) and the skew between the ball of the FPGA to the resistor pack as well as the length of the actual trace.
0.6 inches of distance with ± 2% tolerance is used in the trace length calculations below between the individual components. Ideally, straight line routing is desired. During placement, the components are placed as close as 0.5 inches or lesser by straight line routing, if possible. The main requirement is that all signals going to each DDR component must be matched by ± 2% tolerance.
26 www.xilinx.com ML361 Virtex-II Pro Memory Board
UG060 (v1.2) November 8, 2007
R
There is a total of 4.9 inches of trace from the FPGA to the last component assuming the DDR memory components are 0.6 inch apart.
Microstrip is used to model the transmission lines for the first DDR component. All other DDR components use Buried Microstrip to model the transmission lines.

Terminations and Transmission Lines for the DIMM

Data and Clock Signals (DQ, DQS, DM, CLK)
For these DIMM signals, the terminations at the FPGA and memory consist of a 50Ω parallel termination pulled up to 1.3 V.
50
Ω transmission lines are used with less than ± 1% tolerance on the transmission line
impedance. The transmission line lengths are as follows:
There is a 65 mm trace length from FPGA to memory with ± 0.5 mm tolerance.
A maximum of 1 inch tolerance is allowed to include the FPGA internal package skew
and the skew between the ball of the FPGA to the resistor pack. Package deskew is necessary if the 1 inch tolerance is not met.

Duty Cycle Summary

Address and Control Signals (A, BA, RASn, CASn, WEn, CSn, CKE)
For the address and control signals, no termination is required at the FPGA or DIMM.
Use 50
Ω transmission lines with less than ± 5% tolerance on the transmission line
impedance. The recommendations for the transmission line lengths are as follows:
There must be a 65 mm trace length from FPGA to memory with ± 5 mm tolerance.
Use a maximum of 1 inch tolerance to include the FPGA internal package skew and
the skew between the ball of the FPGA to the resistor pack. Package deskew is necessary if the 1 inch tolerance is not met.
Duty Cycle Summary
Tab le 4- 3 summarizes the duty cycle measurements taken from prelayout simulations on
50
Ω transmission lines. Refer to “IBIS Simulations,” page 29 for more simulation results.
Table 4-3: Duty Cycle Summary
No. Signal DDR Component Case
1 Address/control Last component
(farthest from FPGA)
Typical 49.22/50.92 NA
Slow weak 49.22/50.63 NA
Duty Cycle
Measured at
Memory(%)
Duty Cycle
Measured at
FPGA (%)
Fast strong 49.22/51.2 NA
2 Address/control First component
(closest to FPGA)
ML361 Virtex-II Pro Memory Board www.xilinx.com 27
UG060 (v1.2) November 8, 2007
Typical 48.94/51.2 NA
Slow weak 49.22/51.48 NA
Fast strong 48.66/51.2 NA
Loading...
+ 63 hidden pages