Xilinx LogiCORE IP I/O Module v1.02a Product Manual

LogiCORE IP I/O Module v1.02a
Product Guide
PG052 October 16, 2012

Table of Contents

SECTION I: SUMMARY
Chapter 1: Overview
Feature Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Licensing and Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 2: Product Specification
Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Resource Utilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Port Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Register Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Chapter 3: Designing with the Core
General Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
LMB Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Clocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
SECTION II: VIVADO DESIGN SUITE
Chapter 4: Customizing and Generating the Core
GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Parameter Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Chapter 5: Constraining the Core
Required Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Device, Package, and Speed Grade Selections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
I/O Module v1.02a www.xilinx.com 2
PG052 October 16, 2012
Clock Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Clock Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Clock Placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Banking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Transceiver Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
I/O Standard and Placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
SECTION III: ISE DESIGN SUITE
Chapter 6: Customizing and Generating the Core
GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Parameter Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Chapter 7: Constraining the Core
Clock Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
SECTION IV: APPENDICES
Appendix A: Migrating
Appendix B: Debugging
Solution Centers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Appendix C: Application Software Development
Device Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Appendix D: Additional Resources
Xilinx Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Notice of Disclaimer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
I/O Module v1.02a www.xilinx.com 3
PG052 October 16, 2012

SECTION I: SUMMARY

IP Facts
Overview
Product Specification
Designing with the Core
I/O Module v1.02a www.xilinx.com 4
PG052 October 16, 2012

IP Facts

Introduction
The LogiCORE™ I/O Module is a highly integrated and light-weight implementation of a standard set of peripherals.
The I/O Module is a standalone version of the tightly coupled I/O Module included in the LogiCORE MicroBlaze™ Micro Controller System (MCS). Using the I/O Module, a system equivalent to MicroBlaze MCS can be design using the ISE® Design Suite Embedded Edition or the Vivado™ Design Suite.
The I/O Module connects to MicroBlaze through the lmb_v10 bus.
Features
LMB v1.0 bus interfaces to communicate with MicroBlaze
•I/O Bus
Interrupt Controller with fast interrupt mode support
•UART
•Fixed Interval Timers
Programmable Interval Timers
General Purpose Inputs
General Purpose Outputs
LogiCORE IP Facts Table
Core Specifics
Supported Device
(1)
Family
Supported User Interfaces
Resources See Ta b le 2 -2 .
Zynq™-7000
(2)
, Virtex-7, Kintex™-7, Artix™-7,
Virtex-6, Spartan-6, Virtex-5, Virtex®-4,
Local Memory Bus (LMB), Dynamic
Reconfiguration Port (DRP)
Spartan®-3
Provided with Core
Design Files
Example Design
Tes t B e nc h Not Provid e d
Constraints File
Simulation Model
Supported S/W Driver
(3)
ISE: VHDL
Vivado: RTL
Not Provided
Not Provided
VHDL Behavioral
Standalone
Tested Design Flows
Design Entr y Xilinx Platform Studio (XPS)
Simulation Mentor Graphics ModelSim
Synthesis
Xilinx Synthesis Technology (XST)
Vivado Synthesis
(5)
Support
Provided by Xilinx @ www.xilinx.com/support
Notes:
1. For a complete list of supported derivative devices, see the
mbedded Edition Derivative Device Support.
E
2. Supported in ISE Design Suite implementations only.
3. Standalone driver details can be found in the EDK or SDK
directory (<install_directory>/doc/usenglish/ xilinx_drivers.htm). Linux OS and driver support information is available from //wiki.xilinx.com
4. For the supported versions of the tools, see the Xilinx Design
Tools: Release Notes Guide.
5. Supports only 7 series devices.
.
I/O Module v1.02a www.xilinx.com 5
PG052 October 16, 2012 Product Specification

Overview

I/O Module
LMB
UART_Tx_IO
UART_Interrupt FITx_Interrupt PITx_Interrupt
GPOx_IO
INTC_Interrupt
INTC_IRQ
IO_Addr_Strobe IO_Read_Strobe IO_Write_Strobe IO_Address IO_Byte_Enable IO_Write_Data
IO_Read_Data
IO_Ready
PITx_Toggle
INTC_Interrupt_Address
INTC_Interrupt_Ack
Interrupt
GPIx_IO
UART_Rx_IO
PITx_Enable
FITx_Toggle
IO_Bus
GPIx_Interrupt
The I/O Module is a light-weight implementation of a set of standard I/O functions commonly used in a MicroBlaze™ processor sub-system. The input/output signals of the I/O Module are shown in Figure 1-1. The detailed list of signals are listed and described in
Tab le 2- 3. See the description of LMB Signals in the MicroBlaze Bus Interfaces chapter in the
MicroBlaze Processor Reference Guide [Ref 1].
.
X-Ref Target - Figure 1-1
Chapter 1
I/O Module v1.02a www.xilinx.com 6
PG052 October 16, 2012
In a MicroBlaze system the I/O Module would typically be connected according to
Figure 1-2.
Figure 1-1: I/O Module Block Diagram
ILMB
MicroBlaze
LMB_v10
LMB BRAM
Interface Controller
BRAM Block
(Dual Port)
DLMB
LMB_v10
LMB BRAM
Interface Controller
I/O Module
X-Ref Target - Figure 1-2

Feature Summary

Figure 1-2: Typical MicroBlaze System
Feature Summary
I/O Bus
The I/O Bus provides a simple bus for accessing to external modules. The I/O Bus is mapped in the MicroBlaze memory space, with the I/O Bus address directly reflecting the byte address used by MicroBlaze Load/Store instructions. I/O Bus data is 32-bit wide, with byte enables to write byte and half-word data.
The I/O Bus is fully compatible with the Xilinx Dynamic Reconfiguration Port (DRP).
UART
The Universal Asynchronous Receiver Transmitter (UART) interface provides the controller interface for asynchronous serial data transfers. Features supported include:
One transmit and one receive channel (full duplex)
Configurable number of data bits in a character (5-8)
Configurable parity bit (odd or even)
Configurable and programmable baud rate
I/O Module v1.02a www.xilinx.com 7
PG052 October 16, 2012

Licensing and Ordering Information

Fixed Interval Timer, FIT
The Fixed Interval Timer generates a strobe signal at fixed intervals. The Fixed Interval Timer asserts the output signal and generates an interrupt according to the selected parameter values.
Programmable Interval Timer, PIT
The Programmable Interval Timer, PIT, has a configurable width from 1 to 32. The PIT operation and period are controlled by software. An interrupt can be generated when the timer lapses.
General Purpose Output, GPO
The General Purpose Output, GPO, drives I/O Module GPO output signals defined by the value of the corresponding GPO register, programmable from software. The width and initial value are defined by parameters.
General Purpose Input, GPI
The General Purpose Input, GPI, makes it possible for software to sample the value of the I/O Module GPI input signals by reading the GPI register. The width and whether to generate an interrupt are defined by parameters.
Interrupt Controller INTC
The Interrupt Controller handles both I/O module internal interrupt events and external ones. The internal interrupt events originate from the UART, the Fixed Interval Timers, the Programmable Interval Timers, or the General Purpose Inputs.
Licensing and Ordering Information
This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado Design Suite and ISE Design Suite Embedded Edition tools under the terms of the Xilinx End
User License.
Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx
Intellectual Property page. For information on pricing and availability of other Xilinx
LogiCORE IP modules and tools, contact your local Xilinx sales representative
.
I/O Module v1.02a www.xilinx.com 8
PG052 October 16, 2012

Product Specification

Standards

The I/O Bus interface provided by the I/O Module is fully compatible with the Xilinx Dynamic Reconfiguration Port (DRP). For a detailed description of the DRP, see the 7 Series FPGAs Configuration User Guide [Ref 2].

Performance

The frequency and latency of the I/O Module are optimized for use together with MicroBlaze™. This means that the frequency targets are aligned to MicroBlaze targets as well as the access latency optimized for MicroBlaze data access.
Chapter 2
Maximum Frequencies
The following are clock frequencies for the target families. The maximum achievable clock frequency can vary. The maximum achievable clock frequency and all resource counts can be affected by the used tool flow, other tool options, additional logic in the FPGA, using different versions of Xilinx tools, and other factors.
Table 2-1: Maximum Frequencies
Architecture Speed grade Max Frequency
Virtex-7 -3 320
Kintex™-7 -3 320
Artix™-7 -3 225
Virtex®-6 -3 300
Spartan®-6 -4 195
Latency
Data read from I/O Module registers is available two clock cycles after the address strobe is asserted.
I/O Module v1.02a www.xilinx.com 9
PG052 October 16, 2012 Product Specification

Resource Utilization

Data write to I/O Module registers is performed the clock cycle after the address strobe is asserted.
Data accesses to peripherals connected on the I/O Bus take three clock cycles plus the number of wait states introduced by the accessed peripheral.
Throughput
The maximum throughput when using the I/O Bus is one read or write access every three clock cycles.
Resource Utilization
Because the MicroBlaze MCS is a module that is used together with other parts of the design in the FPGA, the utilization and timing numbers reported in this section are just estimates, and the actual utilization of FPGA resources and timing of the MicroBlaze MCS design will vary from the results reported here. All parameters not given in the table below have their default values.
Table 2-2: Performance and Resource Utilization Benchmarks on Virtex-6 (xc6vlx240t-1-ff1156)
Parameter Values (other parameters at default value) Device Resources
LUTs Flip-Flops
C_USE_UART_TX
C_USE_UART_RX
C_INTC_USE_EXT_INTR
11000 0 000000 00 40 75
11150 0 000000 00 69 110
11150 0 000000 01 118 173
1 1 1 5 1 65000 0 0 0 0 0 0 0 0 75 122
1 1 1 5 1 65000 1 32 0 0 0 0 0 0 121 216
1115165000132132132 00 121 280
1115165000132132132 10 119 361
C_INTC_INTR_SIZE
C_USE_FIT1
C_FIT1_No_CLOCKS
C_USE_PIT1
C_USE_GPI1
C_PIT1_SIZE
C_GPI1_SIZE
C_USE_GPO1
C_GPO1_SIZE
C_USE_IO_BUS
C_INTC_HAS_FAST
I/O Module v1.02a www.xilinx.com 10
PG052 October 16, 2012 Product Specification

Port Descriptions

Port Descriptions
The I/O ports and signals for the I/O Module are listed and described in Ta bl e 2 -3.
Table 2-3: I/O Module I/O Signals
Port Name MSB:LSB I/O Description
LMB Signals
LMB_ABus 0:C_LMB_AWIDTH-1
LMB_WriteDBus 0:C_LMB_DWIDTH-1
LMB_ReadStrobe
LMB_AddrStrobe
LMB_WriteStrobe
LMB_BE 0:C_LMB_DWIDTH/8-1
Sl_DBus 0:C_LMB_DWIDTH-1
Sl_Ready
Sl_Wait
Sl_CE
Sl_UE
I/O Bus Signals
IO_Addr_Strobe
IO_Read_Strobe
IO_Write_Strobe
IO_Address 31:0
IO_Byte_Enable 3:0
IO_Write_Data 31:0
IO_Read_Data 31:0
IO_Ready
I
LMB Address Bus
I
LMB Write Data Bus
I
LMB Read Strobe
I
LMB Address Strobe
I
LMB Write Strobe
I
LMB Byte Enable Bus
O
LMB Read Data Bus
O
LMB Data Ready
O
LMB Wait
O
LMB Correctable Error
O
LMB Uncorrectable Error
O
Address strobe signals valid I/O Bus output signals
O
I/O Bus access is a read
O
I/O Bus access is a write
O
Address for access
O
Byte enables for access
O
Data to write for I/O Bus write access
I
Read data for I/O Bus read access
I
Ready handshake to end I/O Bus access
UART Signals
UART_Rx_IO
UART_Tx_IO
UART_Interrupt
I
Receive Data
O
Trans m i t Data
O
UART Interrupt
FIT Signals
FITx_Interrupt
FITx_Toggle
(1)
(1)
O
FITx timer lapsed
O
Inverted FITx_Toggle when FITx timer lapses
PIT Signals
I/O Module v1.02a www.xilinx.com 11
PG052 October 16, 2012 Product Specification
Table 2-3: I/O Module I/O Signals (Cont ’d)
Port Name MSB:LSB I/O Description
(1)
(1)
(1)
(1)
(1)
[C_GPOx_SIZE - 1]:0
[C_GPIx_SIZE - 1]:0
[C_GPIx_SIZE - 1]:0
PITx_Enable
PITx_Interrupt
PITx_Toggle
GPOx
(1)
GPIx
GPIx_Interrupt
I
O
O
GPO Signals
O
GPI Signals
I
O
INTC Signals
Port Descriptions
PITx count enable when C_PITx_PRESCALER = External
PITx timer lapsed
Inverted PITx_Toggle when PITx lapses
GPOx Output
GPIx Input
GPIx input changed
INTC_Interrupt 0:[C_INTC_INTR_SIZE - 1]
INTC_IRQ
INTC_Interrupt_Address [C_INTC_ADDR_WIDTH-1]:0
INTC_Interrupt_Ack 1:0
1. x = 1, 2, 3 or 4
I
External interrupt inputs
O
Interrupt Output
O
Interrupt Address Output
I
Interrupt Acknowledge Input
Parameter - Port Dependencies
The width of many of the I/O Module signals depends on design parameters. The dependencies between the design parameters and I/O signals are shown in Tab le 2-4 .
Table 2-4: Parameter-Port Dependencies
Parameter Name Ports (Port width depends on parameter)
C_INTC_INTR_SIZE INTC_Interrupt
C_INTC_ADDR_WIDTH INTC_Interrupt_Address
C_GPO1_SIZE GPO1
C_GPO2_SIZE GPO2
C_GPO3_SIZE GPO3
C_GPO4_SIZE GPO4
C_GPI1_SIZE GPI1
C_GPI2_SIZE GPI2
C_GPI3_SIZE GPI3
C_GPI4_SIZE GPI4
I/O Module v1.02a www.xilinx.com 12
PG052 October 16, 2012 Product Specification

Register Space

Table 2-5: I/O Module Register Address Map
Register Space
Base Address + Offset (hex) Register
C_BASEADDR + 0x0 UART_RX R
C_BASEADDR + 0x4 UART_TX W
C_BASEADDR + 0x8 UART_STATUS R
C_BASEADDR + 0xC IRQ_MODE W
C_BASEADDR + 0x10 GPO1 W
C_BASEADDR + 0x14 GPO2 W
C_BASEADDR + 0x18 GPO3 W
C_BASEADDR + 0x1C GPO4 W
C_BASEADDR + 0x20 GPI1 R
C_BASEADDR + 0x24 GPI2 R
C_BASEADDR + 0x28 GPI3 R
C_BASEADDR + 0x2C GPI4 R
C_BASEADDR + 0x30 IRQ_STATUS R
C_BASEADDR + 0x34 IRQ_PENDING R
C_BASEADDR + 0x38 IRQ_ENABLE W
C_BASEADDR + 0x3C IRQ_ACK W
C_BASEADDR + 0x40 PIT1_PRELOAD W
C_BASEADDR + 0x44 PIT1_COUNTER R
C_BASEADDR + 0x48 PIT1_CONTROL W
C_BASEADDR + 0x4C UART_BAUD W
C_BASEADDR + 0x50 PIT2_PRELOAD W
C_BASEADDR + 0x54 PIT2_COUNTER R
C_BASEADDR + 0x58 PIT2_CONTROL W
C_BASEADDR + 0x5C Reserved
C_BASEADDR + 0x60 PIT3_PRELOAD W
C_BASEADDR + 0x64 PIT3_COUNTER R
C_BASEADDR + 0x68 PIT3_CONTROL W
C_BASEADDR + 0x6C Reserved
C_BASEADDR + 0x70 PIT4_PRELOAD W
C_BASEADDR + 0x74 PIT4_COUNTER R
C_BASEADDR + 0x78 PIT4_CONTROL W
C_BASEADDR + 0x7C Reserved
Access
Type
Description
UART Receive Data Register
UART Transmit Data Register
UART Status Register
Interrupt Mode Register
Gen e ra l P u r p os e O u t p ut 1 Re g is te r
Gen e ra l P u r p os e O u t p ut 2 Re g is te r
Gen e ra l P u r p os e O u t p ut 3 Re g is te r
Gen e ra l P u r p os e O u t p ut 4 Re g is te r
General Purpose Input 1 Register
General Purpose Input 2 Register
General Purpose Input 3 Register
General Purpose Input 4 Register
Interrupt Status Register
Pending Interrupt Register
Interrupt Enable Register
Interrupt Acknowledge Register
PIT1 Preload Register
PIT1 Counter Register
PIT1 Control Register
UART Programmable Baud Rate
PIT2 Preload Register
PIT2 Counter Register
PIT2 Control Register
PIT3 Preload Register
PIT3 Counter Register
PIT3 Control Register
PIT4 Preload Register
PIT4 Counter Register
PIT4 Control Register
I/O Module v1.02a www.xilinx.com 13
PG052 October 16, 2012 Product Specification
Table 2-5: I/O Module Register Address Map (Cont’d)
Register Space
Base Address + Offset (hex) Register
C_BASEADDR + 0x80 -
C_BASEADDR + 0xFC
(C_BASEADDR + 0x100) - C_HIGHADDR Reserved
C_IO_BASEADDR - C_IO_HIGHADDR I/O Bus RW
IRQ_VECTOR_0 -
IRQ_VECTOR_31
Access
Type
W
Description
Interrupt Address Vector Registers
Mapped to I/O Bus address output IO_Address
UART Receive Data Register (UART_RX)
This register contains data received by the UART. Reading this location results in reading the current word from the register. When a read request is issued without having received a new character, the previously read data is read again. This register is a read-only register. Issuing a write request to the register does nothing but generate the write acknowledgement. The register is implemented if C_USE_UART_RX is set to 1.
Table 2-6: UART Receive Data Register (UART_RX) (C_DATA_BITS=8)
Reserved UART_RX
31 87 0
Table 2-7: UART Receive Data Register Bit Definitions
Bit(s) Name
31:C_UART_DATA_BITS
[C_UART_DATA_BITS-1]:0
Core
Access
-R0
UART_RX R 0
Reset Value
Description
Reserved
UART Receive Data
UART Transmit Data Register (UART_TX)
A register contains data to be output by the UART. Data to be transmitted is written into this register. This is write only location. Issuing a read request to this register generates the read acknowledgement with zero data. Writing this register when the character has not been transmitted will overwrite previously written data, resulting in loss of data. The register is implemented if C_USE_UART_TX is set to 1.
Table 2-8: UART Transmit Data Register (UART_TX) (C_DATA_BITS=8)
Reserved UART_TX
31 87 0
Table 2-9: UART Transmit Data Register Bit Definitions
Bit(s) Name
Core
Access
Reset Value
Description
31:C_UART_DATA_BITS - R 0
[C_UART_DATA_BITS-1]:0 UART_TX R 0
Reserved
UART Transmit Data
I/O Module v1.02a www.xilinx.com 14
PG052 October 16, 2012 Product Specification
Register Space
UART Status Register (UART_Status)
The UART Status Register contains the status of the receive and transmit registers, and if there are any errors. This is read only register. If a write request is issued to status register it will do nothing but generate write acknowledgement. The register is implemented if C_USE_UART_RX or C_USE_UART_TX is set to 1.
Table 2-10: UART Status Register (UART_Status)
Reserved UART_Status
31 87 0
Table 2-11: UART Status Register Bit Definitions
Bit(s) Name
7 Parity Error R 0
6 Frame Error R 0
5 Overrun Error R 0
Core
Access
Reset Value
Description
Indicates that a parity error has occurred after the last time the status register was read. If the UART is configured without any parity handling, this bit is always ‘0’. The received character is written into the receive register. This bit is cleared when the status register is read.
0 = No parity error has occurred 1 = A parity error has occurred
Indicates that a frame error has occurred after the last time the status register was read. Frame Error is defined as detection of a stop bit with the value 0. The receive character is ignored and not written to the receive register. This bit is cleared when the status register is read.
0 = No Frame error has occurred 1 = A frame error has occurred
Indicates that a overrun error has occurred since the last time the status register was read. Overrun occurs when a new character has been received but the receive register has not been read. The received character is ignored and not written into the receive register. This bit is cleared when the status register is read.
0 = No interrupt has occurred 1 = Interrupt has occurred
4- R0Reserved
Indicates if the transmit register is in use
3Tx Used R 0
2- R0Reserved
1- R0Reserved
0 Rx Valid Data R 0
0 = Transmit register is not in use 1= Transmit register is in use
Indicates if the receive register has valid data 0 = Receive register is empty
1 = Receive register has valid data
I/O Module v1.02a www.xilinx.com 15
PG052 October 16, 2012 Product Specification
Register Space
UART_BAUD
C_FREQ
C_UART_BAUDRATE 16
------------------------------------ ------------------
1=
UART Programmable Baud Rate Register (UART_BAUD)
This register sets the baud rate when using programmable baud rate. The initial value of the register is determined from the selected fixed baud rate C_UART_BAUDRATE and the clock frequency C_FREQ, using the formula:
Table 2-12: UART Programmable Baud Rate Register (UART_BAUD)
Reserved UART_BAUD
31 20 19 0
Table 2-13: UART Programmable Baud Rate Register Bit Definitions
Bit(s) Name
31:20 - - -
19:0 UART_BAUD W See above
Core
Access
Reset
Value
Description
Reserved
Programmed UART Baud Rate
General Purpose Output x Register (GPOx) (x = 1, 2, 3 or 4)
This register holds the value that will be driven to the corresponding bits in the I/O Module GPOx port output signals. All bits in the register are updated when the register is written. This register is not implemented if the value of C_USE_GPOx is 0.
Table 2-14: General Purpose Output x Register (GPOx)
Reserved GPOx
31 C_GPOx_SIZE C_GPOx_SIZE-1 0
Table 2-15: General Purpose Output x Register Bit Definitions
Bit(s) Name
31:C_GPOx_SIZE
[C_GPOx_SIZE-1]:0
Core
Access
---
GPOx W 0
Reset Valu e
Description
Reserved
Register holds data driven to corresponding bits in the GPO port
General Purpose Input x Register (GPIx) (x=1, 2, 3 or 4)
This register reads the value that is input on the corresponding I/O Module GPIx port input signal bits. This register is not implemented if the value of C_USE_GPIx is 0.
Table 2-16: General Purpose Input x Register (GPIx)
Reserved GPIx
31 C_GPIx_SIZE C_GPIx_SIZE-1 0
I/O Module v1.02a www.xilinx.com 16
PG052 October 16, 2012 Product Specification
Table 2-17: General Purpose Input x Register Bit Definitions
Register Space
Bit(s) Name
31:C_GPIx_SIZE
[C_GPIx_SIZE-1]:0
Core
Access
-R0
GPIx R 0
Reset Value
Description
Reserved
Register reads value input on the I/O Module GPIx port input signals
Interrupt Status Register (IRQ_STATUS)
The Interrupt Status Register holds information on interrupt events that have occurred. The register is read-only and the IRQ_ACK register should be used to clear individual interrupts.
Table 2-18: Interrupt Status Register (IRQ_STATUS)
Reserved INTC_Interrupt Reserved Internal Interrupts
31 C_INTC_EXT_INTR+16 C_INTC_EXT_INTR+15 16 15 11 10 0
Table 2-19: Interrupt Status Register Bit Definitions
Bit(s) Name
31:[C_INTC_EXT_INTR + 16] - R 0
[C_INTC_EXT_INTR+15]:16 INTC_Interrupt R 0
Core
Access
Reset Value
Description
Reserved
I/O Module external interrupt input signal INTC_Interrupt [C_INTC_EXT_INTR-1:0] mapped to corresponding bit positions in IRQ_STATUS
15 - R 0
14 GPI4 R 0
13 GPI3 R 0
12 GPI2 R 0
11 GPI1 R 0
10 FIT4 R 0
9FIT3R0
8FIT2R0
7FIT1R0
6PIT4R0
5PIT3R0
4PIT2R0
3PIT1R0
2UART_RXR0
1UART_TXR0
0UART_ERRR0
Reserved
GPI4 changed
GPI3 changed
GPI2 changed
GPI1 changed
FIT4 strobe
FIT3 strobe
FIT2 strobe
FIT1 strobe
PIT4 lapsed
PIT3 lapsed
PIT2 lapsed
PIT1 lapsed
UART Received Data
UART Transmitted Data
UART Error
I/O Module v1.02a www.xilinx.com 17
PG052 October 16, 2012 Product Specification
Register Space
Interrupt Pending Register (IRQ_PENDING)
The Interrupt Pending Register holds information on enabled interrupt events that have occurred. IRQ_PENDING is the contents of IRQ_STATUS bit-wised masked with the IRQ_ENABLE register. The register is read-only and the IRQ_ACK register should be used to clear individual interrupts.
Table 2-20: Interrupt Pending Register (IRQ_PENDING)
Reserved INTC_Interrupt Reserved Internal Interrupts
31 C_INTC_EXT_INTR+16 C_INTC_EXT_INTR+15 16 15 11 10 0
Table 2-21: Interrupt Pending Register Bit Definitions
Bit(s) Name
31:[C_INTC_EXT_INTR+16] - R 0
[C_INTC_EXT_INTR+15]:16 INTC_Interrupt R 0
15 - R 0
14 GPI4 R 0
13 GPI3 R 0
12 GPI2 R 0
11 GPI1 R 0
10 FIT4 R 0
9FIT3R0
8FIT2R0
7FIT1R0
6PIT4R0
5PIT3R0
Core
Access
Reset Valu e
Description
Reserved
I/O Module external interrupt input signal INTC_Interrupt [C_INTC_EXT_INTR-1:0] mapped to corresponding bit positions in IRQ_STATUS
Reserved
GPI4 changed
GPI3 changed
GPI2 changed
GPI1 changed
FIT4 strobe
FIT3 strobe
FIT2 strobe
FIT1 strobe
PIT4 lapsed
PIT3 lapsed
4PIT2R0
3PIT1R0
2UART_RXR0
1 UART_TX R 0
0UART_ERRR0
PIT2 lapsed
PIT1 lapsed
UART Received Data
UART Transmitted Data
UART Error
I/O Module v1.02a www.xilinx.com 18
PG052 October 16, 2012 Product Specification
Register Space
Interrupt Enable Register (IRQ_ENABLE)
The Interrupt Enable Register enables assertion of the I/O Module interrupt output signal INTC_IRQ by individual interrupt sources. The contents of this register are also used to mask the value of the IRQ_STATUS register when registering enabled interrupts in the IRQ_PENDING register.
Table 2-22: Interrupt Enable Register (IRQ_ENABLE)
Reserved INTC_Interrupt Reserved Internal Interrupts
31 C_INTC_EXT_INTR+16 C_INTC_EXT_INTR+15 16 15 11 10 0
Table 2-23: Interrupt Enable Register Bit Definitions
Bit(s) Name
31:[C_INTC_EXT_INTR+16] - - 0
[C_INTC_EXT_INTR+15]:16 INTC_Interrupt W 0
15 - - 0
14 GPI4 R 0
13 GPI3 R 0
12 GPI2 R 0
11 GPI1 R 0
10 FIT4 W 0
9FIT3W0
8FIT2W0
7FIT1W0
6PIT4W0
5PIT3W0
4PIT2W0
Core
Access
Reset Value
Description
Reserved
Enable I/O Module external interrupt input signal INTC_Interrupt(16-C_INTC_EXT_INTR)
Reserved
GPI4 changed
GPI3 changed
GPI2 changed
GPI1 changed
FIT4 interrupt enabled
FIT3 interrupt enabled
FIT2 interrupt enabled
FIT1 interrupt enabled
PIT4 interrupt enabled
PIT3 interrupt enabled
PIT2 interrupt enabled
3PIT1W0
2UART_RXW0
1 UART_TX W 0
0UART_ERRW0
PIT1 interrupt enabled
UART Received Data interrupt enabled
UART Transmitted Data interrupt enabled
UART Error interrupt enabled
I/O Module v1.02a www.xilinx.com 19
PG052 October 16, 2012 Product Specification
Register Space
Interrupt Acknowledge Register (IRQ_ACK)
This register is used as a command register for clearing individual interrupts in IRQ_STATUS and IRQ_PENDING registers. All bits set to 1 clear the corresponding bits in the IRQ_STATUS and IRQ_PENDING registers. The register is write-only.
Table 2-24: Interrupt Acknowledge Register (IRQ_ACK)
IRQ_ACK
31 0
Table 2-25: Interrupt Acknowledge Register Bit Definitions
Bit(s) Name
31:0 IRQ_ACK W 0
Core
Access
Reset Value
Description
All bit position written with 1 will clear corresponding bits in both the IRQ_STATUS and the IRQ_PENDING registers
Interrupt Mode Register (IRQ_MODE)
This register is used to define which interrupts use fast interrupt mode. All bits set to 1 use fast interrupt mode. The register is write-only. The register is only implemented when fast interrupt mode is enabled, by setting C_INTC_HAS_FAST to 1.
Table 2-26: Interrupt Mode Register (IRQ_MODE)
IRQ_MODE
31 0
Table 2-27: Interrupt Mode Register Bit Definitions
Bit(s) Name
31:0 IRQ_MODE W 0
Core
Access
Reset Value
Description
All bit positions written with 1 use fast interrupt mode
I/O Module v1.02a www.xilinx.com 20
PG052 October 16, 2012 Product Specification
Register Space
Interrupt Address Vector Registers (IRQ_VECTOR_0 ­IRQ_VECTOR_31)
These 32 registers are used as Interrupt Address Vector for the corresponding interrupt bit. The content is sent to the processor on the INTC_Interrupt_Address port when the interrupt occurs. The registers are write-only.
The two least significant bits and the most significant bits greater than or equal to C_INTC_ADDR_WIDTH (if any) of each register are fixed to 0.
For reserved interrupt bits (11-15), and unused external interrupts (greater than C_INTC_EXT_INTR+15), writing to the corresponding register has no effect.
The registers are only implemented when fast interrupt mode is enabled, by setting C_INTC_HAS_FAST to 1.
Table 2-28: Interrupt Address Vector Register (IRQ_VECTOR_x)
0 IRQ_VECTOR_x 0
31 C_INTC_ADDR_WIDTH C_INTC_ADDR_WIDTH-1 2 1 0
Table 2-29: Interrupt Address Vector Register Bit Definitions
Bit(s) Name
31:0 IRQ_VECTOR W
1. C_INTC_BASE_VECTORS + 0x10
Core
Access
Reset Valu e
(1)
Description
The Interrupt Address Vector for the corresponding interrupt.
PITx Preload Register (PITx_PRELOAD) (x = 1, 2, 3 or 4)
The value written to this register determines the period between two consecutive PITx_Interrupt events. The period is the value written to the register + 2 count events. The register is implemented if C_USE_PITx is 1.
Table 2-30: PITx Preload Register (PITx_PRELOAD)
Reserved PITx_PRELOAD
31 C_PITx_SIZE C_PITx_SIZE-1 0
Table 2-31: PITx Preload Register Bit Definitions
Bit(s) Name
Core
Access
Reset Valu e
Description
31:C_PITx_SIZE - - -
[C_PITx_SIZE-1]:0 PITx_PRELOAD W 0
Reserved
Register holds the timer period
I/O Module v1.02a www.xilinx.com 21
PG052 October 16, 2012 Product Specification
Register Space
PITx Counter Register (PITx_COUNTER) (x = 1, 2, 3 or 4)
When reading this register the data obtained is a sample of the current counter value. The register is implemented if C_USE_PITx is 1 and C_PITx_READABLE is 1.
Table 2-32: PITx Counter Register (PITx_COUNTER)
Reserved PITx_PRELOAD
31 C_PITx_SIZE C_PITx_SIZE-1 31
Table 2-33: PITx Counter Register Bit Definitions
Bit(s) Name
31:C_PITx_SIZE - - -
[C_PITx_SIZE-1]:0 PITx_COUNTER R 0
Core
Access
Reset Valu e
Description
Reserved
PITx counter value at time of read
PITx Control Register (PITx_CONTROL) (x=1, 2, 3 or 4)
The EN bit in this register enables/disables counting. The PRELOAD bit determines if the counting is continuous with automatic reload of the PITx_PRELOAD value when lapsing (PITx_COUNTER = 0) or if the counting is stopped after counting the number of cycles defined in PITx_PRELOAD. The register is implemented if C_USE_PITx is 1.
Table 2-34: PITx Control Register (PITx_CONTROL)
Reserved RELOAD EN
31 21 0
Table 2-35: PITx Control Register Bit Definitions
Bit(s) Name
31:2 - - 0
Core
Access
Reset Value
Description
Reserved
1PRELOAD W 0
0EN W0
0 = Counter counts PITx_PRELOAD value cycles and the stops 1 = Counter value is automatically reloaded with the PITx_PRELOAD value when counter lapses
0 = Counting Disabled 1 = Counter Enabled
I/O Module v1.02a www.xilinx.com 22
PG052 October 16, 2012 Product Specification

Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the core.

General Design Guidelines

I/O Bus
The I/O Bus provides a simple bus for accessing to external modules using MicroBlaze™ Load/Store instructions. The I/O Bus is mapped at address C_IO_BASEADDR–C_IO_HIGHADDR in the MicroBlaze memory space, with the I/O Bus address directly reflecting the byte address used by MicroBlaze Load/Store instructions. I/O Bus data is 32-bit wide, with byte enables to write byte and half-word data.
Chapter 3
The I/O Bus has a ready handshake to handle different waitstate needs, from IO_Ready asserted the cycle after the IO_Addr_Strobe is asserted to as many cycles as needed. There is no timeout on the I/O Bus and MicroBlaze is stalled until IO_Ready is asserted.
IO_Address, IO_Byte_Enable, IO_Wr ite_Data, I O_Read_Strobe, IO_Write_Strobe are only valid when IO_Addr_Strobe is asserted. For read access IO_Read_Data is sampled at the rising Clk edge, when the slave has asserted IO_Ready.
I/O Bus read and write transactions can be found in the two following timing diagrams in
Figure 3-1 and Figure 3-2.
I/O Module v1.02a www.xilinx.com 23
PG052 October 16, 2012
.
Clk
IO_Address
IO_Byte_Enab
IO_Write_Dat
IO_Addr_Stro
IO_Read_Stro
IO_Write_Stro
IO_Read_Data
IO_Ready
Clk
IO_Address
IO_Byte_Enab
IO_Write_Dat
IO_Addr_Stro
IO_Read_Stro
IO_Write_Stro
IO_Read_Data
IO_Ready
X-Ref Target - Figure 3-1
X-Ref Target - Figure 3-2
General Design Guidelines
Figure 3-1: I/O Bus Write
Figure 3-2: I/O Bus Read
The byte enable signals indicate which byte lanes of the data bus contain valid data. Valid values for IO_Byte_Enable are shown in Ta bl e 3 -1. The IO_Byte _Enable signal should be used instead of the two least significant bits of the IO_Address to decode byte and halfword accesses, to ensure that byte and halfword accesses are correctly decoded independent of MicroBlaze endianess.
Table 3-1: Valid Values for IO_Byte_Enable[3:0]
IO_Byte_Enable IO_Data_Write and IO_Data_Read Byte Lanes Used
[3:0] [31:24] [23:16] [15:8] [7:0]
0001 l
0010 l
0100 l
1000 l
0011 l l
1100 l l
1111 l l l l
I/O Module v1.02a www.xilinx.com 24
PG052 October 16, 2012
General Design Guidelines
The I/O Bus is fully compatible with the Xilinx Dynamic Reconfiguration Port (DRP). This configuration port supports partial dynamic reconfiguration of functional blocks, such as CMTs, clock management, XADC, serial transceivers, and the PCIe® block.
The nominal connection of the I/O Bus to the DRP is shown in Tab l e 3 -2.
Table 3-2: Mapping of the I/O Bus to the Dynamic Reconfiguration Port
MicroBlaze MCS Signal DRP Signal Note
Clk DCLK
IO_Addr_Strobe DEN
IO_Read_Strobe - Not used by DRP
IO_Write_Strobe DWE
IO_Address[m+2:2] DADDR[m:0] Uses 32-bit word access for DRP
IO_Byte_Enable - Only 32-bit word accesses used for DRP
IO_Write_Data[n:0] DI[n:0] Data width depends on DRP (n < 32)
IO_Read_Data[n:0] DO[n:0] Data width depends on DRP (n < 32)
IO_Ready DRDY
For a detailed description of the DRP, see the 7 Series FPGAs Configuration User Guide
[Ref 2].
UART
The Universal Asynchronous Receiver Transmitter (UART) interface provides the controller interface for asynchronous serial data transfers. Features supported include:
One transmit and one receive channel (full duplex)
Configurable number of data bits in a character (5-8)
Configurable parity bit (odd or even)
Configurable and programmable baud rate
The UART performs parallel-to-serial conversion on characters received through LMB and serial-to-parallel conversion on characters received from a serial peripheral. The UART is capable of transmitting and receiving 8, 7, 6 or 5-bit characters, with 1-stop bit and odd, even or no parity. The UART can transmit and receive independently.
The device can be configured and its status can be monitored via the internal register set. The UART also asserts the UART_Interrupt output when the receiver becomes non-empty, when the transmitter becomes empty or when an error condition has occurred. The individual interrupt events are connected to the Interrupt Controller of the I/O Module and can be used to assert the INTC_IRQ output signal.
I/O Module v1.02a www.xilinx.com 25
PG052 October 16, 2012
General Design Guidelines
UART_BAUD
Clock Frequency of Clk (Hz)
Baud Rate 16
------------------------------------ ------------------------
1=
The UART can be configured with either fixed or programmable baud rate. When using programmable baud rate the UART_BAUD register is used to set the baud rate. The initial value of this register is determined from the selected fixed baud rate. The register value is calculated by the formula:
Fixed Interval Timer, FIT
The Fixed Interval Timer generates a strobe (interrupt) signal at fixed intervals. The Fixed Interval Timer asserts the output signal FITx_Interrupt one clock cycle every C_FITx_NO_CLOCKS. Operation begins immediately after FPGA configuration and the clock is running. The FITx_Toggle output signal is toggled each time FITx_Interrupt is asserted, creating a 50% duty cycle output with twice the FITx_Interrupt period. Using the parameter C_FITx_INTERRUPT, the FIT can be connected to the Interrupt Controller of the I/O Module and used for generating interrupts every time the strobe occurs.
Programmable Interval Timer, PIT
The Programmable Interval Timer, PIT, has a configurable width from 1 to 32. The PIT operation and period are controlled by software.
The PITx_Interrupt output signal is asserted one clock cycle when the timer lapses. The timer can be used in continuous mode, where the timer reloads automatically when it lapses. In continuous mode, the period between two PITx_Interrupt assertions is the value in PITx Preload Register + 2 count events.
The PIT can also be used in one-shot mode, where the timer stops when it has reached zero. The timer is implemented by means of a counter that is pre-loaded with the timer value and then decremented. When the counter reaches zero, the timer lapses, and the interrupt signal is generated. The timer starts counting when it is enabled by setting the EN bit in the PITx Control Register.
The PITx_Toggle output signal is toggled each time PITx_Interrupt is asserted, creating a 50% duty cycle output with twice the PITx_Interrupt period when the timer is operated in continuous mode.
The value of the counter that implements the timer can be read by software if the C_PITx_Readable parameter is enabled.The PIT can have a pre-scaler connected from any FITx, PITx, or External. The pre-scaler is selected by the C_PITx_PRESCALER parameter. The PIT has no pre-scaler by default. If External is selected the input signal PITx_Enable is used as pre-scaler. Selecting External as pre-scaler can also be used to measure the width in clock cycles of a signal connected to the PITx_Enable input.
Using the parameter C_PITx_INTERRUPT, the PIT can be connected to the Interrupt Controller of the I/O Module and used for generating interrupts every time it lapses.
I/O Module v1.02a www.xilinx.com 26
PG052 October 16, 2012
General Design Guidelines
General Purpose Output, GPO
The General Purpose Output, GPO, drives I/O Module GPO output signals defined by the value of the GPOx register, programmable from software. The width of the GPOx is defined by the C_GPOx_SIZE and the initial value is defined by the parameter C_GPOx_INIT. When the GPOx register is written, the value of the GPOx output signals change accordingly.
General Purpose Input, GPI
The General Purpose Input, GPI, makes it possible for software to sample the value of the I/O Module GPI input signals by reading the GPIx register. The width of GPIx is defined by the parameter C_GPIx_SIZE.
Using the parameter C_GPIx_INTERRUPT, the GPI can be connected to the Interrupt Controller of the I/O Module and used for generating interrupts every time an input changes.
Interrupt Controller INTC
The Interrupt Controller handles both I/O module internal interrupt events and external ones. The internal interrupt events originate from the UART, the Fixed Interval Timers, the Programmable Interval Timers, or the General Purpose Inputs. For an internal interrupt to be generated on the INTC_IRQ output, the corresponding I/O Module parameter needs to be set, for example, C_UART_RX_INTERRUPT=1, and that particular interrupt needs to be enabled in the Interrupt Enable Register.
The Interrupt Controller supports up to 16 external interrupts using the INTC_Interrupt inputs. The number of external interrupts is defined by the parameter, C_INTC_INTR_SIZE. The external interrupt signals can be individually configured as either edge or level sensitive by the C_INTC_LEVEL_EDGE parameter. The polarity of the external interrupt signals can be individually configured to be either active-High (rising edge) or Low (falling edge) by the C_INTC_POSITIVE parameter. Interrupt events for external interrupt sources are generated according to Tab le 3 -3 .
Table 3-3: Interrupt Event Generation
C_INTC_LEVEL_EDGE(x) C_INTC_POSITIVE(x) INTC_Interrupt(x) Input
00 0
01 1
10 1 -> 0
11 0 -> 1
00 0
The current status of all interrupt sources can be read from the Interrupt Status Register. The current status of all enabled interrupts can be read from the Interrupt Pending Register.
I/O Module v1.02a www.xilinx.com 27
PG052 October 16, 2012

LMB Timing

An interrupt is cleared in both the Interrupt Status and Interrupt Pending Registers by writing to the Interrupt Acknowledge Register, with bits set corresponding to the interrupts that should be cleared.
Either normal or fast interrupt mode can be used, based on latency requirement. Fast interrupt mode is available when the parameter C_INTC_HAS_FAST is set, and is enabled for an interrupt by setting the corresponding bit in the Interrupt Mode Register (IRQ_MODE). In this case, the Interrupt Controller drives the interrupt vector address of the highest priority interrupt on the INTC_Interrupt_Address port, along with INTC_IRQ. The generated interrupt is cleared based on acknowledge received from the processor through the INTC_Interrupt_Ack port. The processor sends 0b01 on this port when the interrupt is being acknowledged by the processor (that is, when branching to the interrupt service routine), sends 0b10 when executing a return from interrupt instruction in the interrupt service routine, and sends 0b11 when interrupts are re-enabled. The bit in IRQ_STATUS corresponding to the interrupt is cleared when 0b10 or 0b11 is seen on the port.
With fast interrupt mode, the interrupt vector address for each interrupt is stored in the corresponding IRQ_VECTOR register. To be compatible with normal mode, the registers are initialized to C_INTC_BASE_VECTORS + 0x10 after reset, which is equivalent to the static interrupt vector used by normal mode.
LMB Timing
See the MicroBlaze Bus Interfaces chapter in the MicroBlaze Processor Reference Guide
[Ref 1] for details on the transaction signaling.

Clocking

The I/O Module is fully synchronous with all clocked elements clocked with the Clk input.

Resets

The Rst input is the master reset input signal for the I/O Module.
I/O Module v1.02a www.xilinx.com 28
PG052 October 16, 2012

Protocol Description

Protocol Description
See LMB Interface Description timing diagrams in the MicroBlaze Processor Reference Guide
[Ref 1].
I/O Module v1.02a www.xilinx.com 29
PG052 October 16, 2012

SECTION II: VIVADO DESIGN SUITE

Customizing and Generating the Core
Constraining the Core
I/O Module v1.02a www.xilinx.com 30
PG052 October 16, 2012
Chapter 4

Customizing and Generating the Core

This chapter includes information on using Xilinx tools to customize and generate the core in the Vivado™ Design Suite.
GUI
The I/O Module parameters are divided in seven tabs: System, UART, FIT Timers, PIT Timers, GPO, GPI and Interrupt. When using Vivado IP Integrator, the addresses and masks are auto generated.
The System tab is shown in Figure 4-1.
X-Ref Target - Figure 4-1
Figure 4-1: System Tab
I/O Module Register Base Address - Base address of the internal registers.
I/O Module Register High Address - High address of the internal registers.
I/O Module v1.02a www.xilinx.com 31
PG052 October 16, 2012
GUI
I/O Module Register Address Decode Mask - A mask indicating which address bits
the module takes into account when decoding a register access.
Enable IO Bus - Enables the I/O Bus to connect to DRP or external peripherals.
I/O Module IO Bus Base Address - Base address of the I/O Bus.
I/O Module IO Bus High Address - High address of the I/O Bus.
I/O Module IO Bus Address Decode Mask - A mask indicating which address bits the
module takes into account when decoding an I/O Bus access.
The UART parameter tab is shown in Figure 4-2.
X-Ref Target - Figure 4-2
Figure 4-2: UART Parameter Tab
Enable Receiver - Enables UART receiver for character input. This is automatically
connected to standard input (stdin) in the software program.
Enable Transmitter - Enables UART transmitter for character output. This is
automatically connected to standard output (stdout) in the software program.
Define Baud Rate - Sets the UART baud rate. To get the correct baud rate, the input
clock frequency must also be correctly defined.
Programmable Baud Rate - Determines if the UART baud rate is programmable. The
default baud rate is calculated based on the input clock frequency and the defined baud rate.
I/O Module v1.02a www.xilinx.com 32
PG052 October 16, 2012
GUI
Number of Data Bits - Defines the number of data bits used by the UART. Should
almost always be set to 8.
Use Parity - Enable this parameter to use parity checking of the UART characters.
Even or Odd Parity - Select odd or even parity. Only available when parity is used.
Implement Receive Interrupt - Generate an interrupt when the UART has received a
character. When the interrupt is not enabled the UART must be polled to check if data has been received.
Implement Transmit Interrupt - Generate an interrupt when the UART has sent a
character. When the interrupt is not enabled the UART must be polled to wait until data has been transmitted.
Implement Error Interrupt - Generate an interrupt if an error occurs when the UART
receives a character. This error can be a framing error, an overrun error or a parity error (if parity is used), When the interrupt is not enabled the UART must be polled to check if an error has occurred after a character has been received.
The FIT Timer parameter tab showing the parameters for one of the four timers is shown in
Figure 4-3.
X-Ref Target - Figure 4-3
Figure 4-3: FIT Timers Parameter Tab
Use FIT - Enable the Fixed Interval Timer.
Number of Clocks Between Strobes - The number of clock cycles between each
strobe.
Generate Interrupt - Generate an interrupt for each Fixed Interval Timer strobe.
I/O Module v1.02a www.xilinx.com 33
PG052 October 16, 2012
GUI
The PIT Timer parameter tab showing the parameters for one of the four timers is shown in
Figure 4-4.
X-Ref Target - Figure 4-4
Figure 4-4: PIT Timers Parameter Tab
Use PIT - Enable the Programmable Interval Timer.
Number of Bits for Timer - The maximum number of cycles to count before stopping
or restarting.
Shall Counter Value be Readable - The Programmable Interval Timer counter is
readable by software when this parameter is set. Unless resource usage is very critical it is recommended to keep this enabled.
Define Prescaler - Selects a prescaler as source for the Programmable Interval Timer
count. When no prescaler is selected the core input clock is used. Any Programmable Interval Timer or Fixed Interval Timer can be used as prescaler, as well as a dedicated external enable input.
Generate Interrupt - Generate an interrupt when the Programmable Interval Timer has
counted down to zero.
The GPO parameter tab showing the parameters for one of the four General Purpose Output ports is shown in Figure 4-5.
I/O Module v1.02a www.xilinx.com 34
PG052 October 16, 2012
X-Ref Target - Figure 4-5
GUI
Figure 4-5: GPO Parameter Tab
Use GPO - Enable the General Purpose Output port.
Number of Bits - Set the number of bits of the General Purpose Output port.
Initial Value of GPO - Set the initial value of the General Purpose Output port. The
right most bit in the value is assigned to bit 0 of the port, the next right most to bit 1, and so on.
The GPI parameter tab showing the parameters for one of the four General Purpose Input ports is shown in Figure 4-6.
I/O Module v1.02a www.xilinx.com 35
PG052 October 16, 2012
X-Ref Target - Figure 4-6
GUI
Figure 4-6: GPI Parameter Tab
Use GPI - Enable the General Purpose Input port.
Number of Bits - Set the number of bits of the General Purpose Input port.
Generate Interrupt - Generate an interrupt when a General Purpose Input changes.
The Interrupt parameter tab is shown in Figure 4-7.
I/O Module v1.02a www.xilinx.com 36
PG052 October 16, 2012
X-Ref Target - Figure 4-7

Parameter Values

Figure 4-7: Interrupt Parameter Tab
Use External Interrupts - Enable the use of external interrupt inputs.
Number of External Inputs - Select the number of used external interrupt inputs.
Level or Edge of External Interrupts - Select whether the input is considered level
sensitive or edge triggered. Each bit in the value corresponds to the equivalent interrupt input. When a bit is set to one, the interrupt is edge triggered, otherwise it is level sensitive.
Positive or Negative External Interrupts - Set whether to use high or low level for
level sensitive interrupts, and rising or falling edge for edge triggered interrupts. Each bit in the value corresponds to the equivalent interrupt input When a bit is set to one, high level or rising edge is used, otherwise low level or falling edge is used.
Use Low-latency Interrupt Handling - Enable the use of low-latency interrupt
handling.
Parameter Values
To obtain an I/O Module that is uniquely tailored a specific system, certain features can be parameterized in the I/O module design. This allows for configuring a design that only uses the resources required by the system, and operates with the best possible performance. The features that can be parameterized in I/O Module designs are shown in Tab le 4- 1 .
I/O Module v1.02a www.xilinx.com 37
PG052 October 16, 2012
Table 4-1: I/O Module Parameters
Parameter Values
Parameter Name Feature/Description
C_FAMILY
(1)
FPGA Architecture Supported
Allowable
Val u es
architectures
I/O Bus Parameter
C_USE_IO_BUS Use I/O Bus 0 = Not Used
1 = Used
UART Parameters
C_USE_UART_RX Use UART Receive 0 = Not Used
1 = Used
C_USE_UART_TX Use UART Transmit 0 = Not Used
1 = Used
C_UART_BAUDRATE Baud rate of the UART in
bits per second
C_UART_PROG_ BAUDRATE
Programmable UART Baud rate
C_UART_DATA_BITS The number of data bits in
the serial frame
C_UART_USE_PARITY Determines whether parity
is used or not
C_UART_ODD_PARITY If parity is used,
determines whether parity is odd or even
C_UART_RX_INTERRUPT Use UART RX Interrupt in
INTC
C_UART_TX_INTERRUPT Use UART TX Interrupt in
INTC
C_UART_ERROR_ INTERRUPT
Use UART ERROR Interrupt in INTC
integer (e.g. 115200)
0 = Not Used 1 = Used
5 - 8
0 = No Parity 1 = Use Parity
0 = Even Parity 1 = Odd Parity
0 = Not Used 1 = Used
0 = Not Used 1 = Used
0 = Not Used 1 = Used
Default
Value
“virtex5” string
0 integer
0 integer
0 integer
9600 integer
0 integer
8 integer
0 integer
0 integer
0 integer
0 integer
0 integer
VHDL Type
FIT Parameters
C_USE_FITx
(2)
C_FITx_No_CLOCKS
C_FITx_INTERRUPT
(2)
Enable implementation of FIT
(2)
The number of clock cycles between strobes
Use FITx_Interrupt in INTC 0 = Not Used
0 = Not Used 1 = Used
>2
1 = Used
0 integer
6216 integer
0 integer
PIT Parameters
C_USE_PITx
C_PITx_SIZE
(2)
(2)
C_PITx_READABLE
(2)
Enable implementation of PIT
0 = Not Used 1 = Used
Size of PITx counter 1 - 32
Make PITx counter software readable
0 = Not SW readable 1 = SW readable
0 integer
1 integer
1 integer
I/O Module v1.02a www.xilinx.com 38
PG052 October 16, 2012
Table 4-1: I/O Module Parameters (Cont’d)
Parameter Values
Parameter Name Feature/Description
C_PITx_PRESCALER
C_PITx_INTERRUPT
(2)(3)
(2)
Select PITx prescaler 0 = No prescaler
Use PITx_Interrupt in INTC 0 = Not Used
GPO Parameters
(2)
(2)
(2)
(2)
(2)
Use GPOx 0 = Not Used
Size of GPOx 1 - 32
Initial value for GPOx Fit Range
Use GPIx 0 = Not Used
Size of GPIx 1 - 32
C_USE_GPOx
C_GPOx_SIZE
C_GPOx_INIT
C_USE_GPIx
C_GPIx_SIZE
1 = FIT1 2 = FIT2 3 = FIT3 4 = FIT4 5 = PIT1 6 = PIT2 7 = PIT3 8 = PIT4 9 = External
1 = Used
1 = Used
(31:0)
GPI Parameters
1 = Used
Allowable
Val u es
Default
Value
0 integer
0 integer
0 integer
32 integer
all zeros std_logic_vector
0 integer
32 integer
VHDL Type
INTC Parameters
C_INTC_USE_EXT_INTR Use I/O Module external
interrupt inputs
C_INTC_INTR_SIZE Number of external
interrupt inputs used
C_INTC_LEVEL_EDGE Level or edge triggered for
each external interrupt
C_INTC_POSITIVE Polarity for each external
interrupt
C_INTC_HAS_FAST Use fast interrupt mode 0 = Not Used
C_INTC_ADDR_WIDTH Interrupt Address width 5 - 32
C_INTC_BASE_VECTORS Relocatable base vector
address
1. Values automatically populated by tool.
2. x =1, 2, 3 or 4.
3. Selecting PIT prescaler the same as PITx is illegal, e.g. PIT2 cannot be prescaler to itself.
4. The 7 least significant bits must all be 0.
0 = Not Used 1 = Used
1 - 16
For each bit: 0 = Level 1 = Edge
For each bit: 0 = active-Low 1 =active-High
1 = Used
0x00000000 ­0xFFFFFF80
(4)
level std_logic_vector
active-High std_logic_vector
0x00000000 std_logic_vector
0 integer
1 integer
0 integer
32 integer
I/O Module v1.02a www.xilinx.com 39
PG052 October 16, 2012

Constraining the Core

Required Constraints

There are no required constraints for this core.

Device, Package, and Speed Grade Selections

There are no Device, Package or Speed Grade requirements for this core.
Chapter 5

Clock Frequencies

There are no specific clock frequency requirements for this core.

Clock Management

The I/O Module is fully synchronous with all clocked elements clocked by the Clk input.
To operate properly when connected to MicroBlaze™, the Clk must be the same as the MicroBlaze Clk.

Clock Placement

There are no specific Clock placement requirements for this core.
I/O Module v1.02a www.xilinx.com 40
PG052 October 16, 2012

Banking

There are no specific Banking rules for this core.

Transceiver Placement

There are no Transceiver Placement requirements for this core.

I/O Standard and Placement

There are no specific I/O standards and placement requirements for this core.
Banking
I/O Module v1.02a www.xilinx.com 41
PG052 October 16, 2012

SECTION III: ISE DESIGN SUITE

Customizing and Generating the Core
Constraining the Core
I/O Module v1.02a www.xilinx.com 42
PG052 October 16, 2012
Chapter 6

Customizing and Generating the Core

This chapter includes information on using Xilinx tools to customize and generate the core in the ISE® Design Suite.
GUI
The I/O Module parameters are divided in seven tabs: System, UART, FIT Timers, PIT Timers, GPO, GPI and Interrupt.
The System tab showing the Addresses parameters is shown in Figure 6-1.
X-Ref Target - Figure 6-1
Figure 6-1: System Tab
I/O Module Register Base Address - Base address of the internal registers.
I/O Module Register High Address - High address of the internal registers.
I/O Module v1.02a www.xilinx.com 43
PG052 October 16, 2012
GUI
I/O Module Register Address Decode Mask - A mask indicating which address bits
the module takes into account when decoding a register access.
Enable IO Bus - Enables the I/O Bus to connect to DRP or external peripherals.
I/O Module IO Bus Base Address - Base address of the I/O Bus.
I/O Module IO Bus High Address - High address of the I/O Bus.
I/O Module IO Bus Address Decode Mask - A mask indicating which address bits the
module takes into account when decoding an I/O Bus access.
The UART parameter tab is shown in Figure 6-2.
X-Ref Target - Figure 6-2
Figure 6-2: UART Parameter Tab
Enable Receiver - Enables UART receiver for character input. This is automatically
connected to standard input (stdin) in the software program.
Enable Transmitter - Enables UART transmitter for character output. This is
automatically connected to standard output (stdout) in the software program.
Define Baud Rate - Sets the UART baud rate. To get the correct baud rate, the input
clock frequency must also be correctly defined.
I/O Module v1.02a www.xilinx.com 44
PG052 October 16, 2012
GUI
Programmable Baud Rate - Determines if the UART baud rate is programmable. The
default baud rate is calculated based on the input clock frequency and the defined baud rate.
Number of Data Bits - Defines the number of data bits used by the UART. Should
almost always be set to 8.
Use Parity - Enable this parameter to use parity checking of the UART characters.
Even or Odd Parity - Select odd or even parity. Only available when parity is used.
Implement Receive Interrupt - Generate an interrupt when the UART has received a
character. When the interrupt is not enabled the UART must be polled to check if data has been received.
Implement Transmit Interrupt - Generate an interrupt when the UART has sent a
character. When the interrupt is not enabled the UART must be polled to wait until data has been transmitted.
Implement Error Interrupt - Generate an interrupt if an error occurs when the UART
receives a character. This error can be a framing error, an overrun error or a parity error (if parity is used), When the interrupt is not enabled the UART must be polled to check if an error has occurred after a character has been received.
The FIT Timer parameter tab showing the parameters for one of the four timers is shown in
Figure 6-3.
X-Ref Target - Figure 6-3
Figure 6-3: FIT Timers Parameter Tab
Use FIT - Enable the Fixed Interval Timer.
I/O Module v1.02a www.xilinx.com 45
PG052 October 16, 2012
GUI
Number of Clocks Between Strobes - The number of clock cycles between each
strobe.
Generate Interrupt - Generate an interrupt for each Fixed Interval Timer strobe.
The PIT Timer parameter tab showing the parameters for one of the four timers is shown in
Figure 6-4.
X-Ref Target - Figure 6-4
Figure 6-4: PIT Timers Parameter Tab
Use PIT - Enable the Programmable Interval Timer.
Number of Bits for Timer - The maximum number of cycles to count before stopping
or restarting.
Shall Counter Value be Readable - The Programmable Interval Timer counter is
readable by software when this parameter is set. Unless resource usage is very critical it is recommended to keep this enabled.
Define Prescaler - Selects a prescaler as source for the Programmable Interval Timer
count. When no prescaler is selected the core input clock is used. Any Programmable Interval Timer or Fixed Interval Timer can be used as prescaler, as well as a dedicated external enable input.
Generate Interrupt - Generate an interrupt when the Programmable Interval Timer has
counted down to zero.
The GPO parameter tab showing the parameters for one of the four General Purpose Output ports is shown in Figure 6-5.
I/O Module v1.02a www.xilinx.com 46
PG052 October 16, 2012
X-Ref Target - Figure 6-5
GUI
Figure 6-5: GPO Parameter Tab
Use GPO - Enable the General Purpose Output port.
Number of Bits - Set the number of bits of the General Purpose Output port.
Initial Value of GPO - Set the initial value of the General Purpose Output port. The
right most bit in the value is assigned to bit 0 of the port, the next right most to bit 1, and so on.
The GPI parameter tab showing the parameters for one of the four General Purpose Input ports is shown in Figure 6-6.
I/O Module v1.02a www.xilinx.com 47
PG052 October 16, 2012
X-Ref Target - Figure 6-6
GUI
Figure 6-6: GPI Parameter Tab
Use GPI - Enable the General Purpose Input port.
Number of Bits - Set the number of bits of the General Purpose Input port.
Generate Interrupt - Generate an interrupt when a General Purpose Input changes.
I/O Module v1.02a www.xilinx.com 48
PG052 October 16, 2012
The Interrupt parameter tab is shown in Figure 6-7.
X-Ref Target - Figure 6-7

Parameter Values

Figure 6-7: Interrupt Parameter Tab
Use External Interrupts - Shows if external interrupt inputs are used.
Number of External Inputs - Shows the number of used external interrupt inputs.
Use Low-latency Interrupt Handling - Enable the use of low-latency interrupt
handling.
Parameter Values
To allow the user to obtain an I/O Module that is uniquely tailored a specific system, certain features can be parameterized in the I/O module design. This allows the user to configure a design that only utilizes the resources required by the system, and operates with the best possible performance. The specific features that can be parameterized in Xilinx I/O Module EDK designs are shown in Tab le 6-1 . See SECTION II: VIVADO DESIGN SUITE, Chapter 5 Customizing and Generating the Core for additional parameters.
I/O Module v1.02a www.xilinx.com 49
PG052 October 16, 2012
Table 6-1: EDK I/O Module Parameters
Parameter Values
Parameter Name Feature/Description
C_FREQ
C_INSTANCE
(1)
Frequency of CLK input
(1)
Instance name Any legal VHDL
Allowable
Val u es
Default
Value
100000000 integer
“iomodule” string
VHDL Type
string
C_BASEADDR LMB I/O Module Register Base
Address
C_HIGHADDR LMB I/O Module Register High
Address
C_MASK LMB I/O Module Register Address
Space Decode Mask
C_IO_HIGHADDRLMB I/O Module I/O Bus Base
Address
C_IO_LOWADDR LMB I/O Module I/O Bus Address Valid Address
C_IO_MASK LMB I/O Module I/O Bus Address
Space Decode Mask
Valid Address
(2)
Range
Valid Address
(2)
Range
Valid decode
(3)
mask
Valid Address
(2)
Range
(2)
Range
Valid decode
(3)
mask
C_LMB_AWIDTH LMB Address Bus Width 32
C_LMB_DWIDTH LMB Data Bus Width 32
1. Values automatically populated by tool.
2. The range specified by BASEADDR and HIGHADDR must comprise a complete, contiguous power-of-two range, such that range = 2
3. The decode mask determines which bits are used by the LMB decode logic to decode a valid access to LMB.
n
, and the n least significant bits of BASEADDR must be zero.
0xFFFFFFFF std_logic_vector
0x00000000 std_logic_vector
0x00800000 std_logic_vector
0xFFFFFFFF std_logic_vector
0x00000000 std_logic_vector
0x00800000 std_logic_vector
32 integer
32 integer
I/O Module v1.02a www.xilinx.com 50
PG052 October 16, 2012

Constraining the Core

Clock Management

The I/O Module is fully synchronous with all clocked elements clocked by the Clk input.
To operate properly when connected to MicroBlaze™, the Clk must be the same as the MicroBlaze Clk.
Chapter 7
I/O Module v1.02a www.xilinx.com 51
PG052 October 16, 2012

SECTION IV: APPENDICES

Migrating
Debugging
Application Software Development
Additional Resources
I/O Module v1.02a www.xilinx.com 52
PG052 October 16, 2012

Migrating

This appendix describes migrating from older versions of the IP to the current IP release.
For information on migrating to the Vivado™ Design Suite, see the Vivado Design Suite Migration Methodology Guide [Ref 3].
Appendix A
I/O Module v1.02a www.xilinx.com 53
PG052 October 16, 2012

Debugging

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.
Appendix B
Shortened Title with Core Version www.xilinx.com 54
PG000 August 10, 2012
Appendix C

Application Software Development

Device Drivers

The I/O Module is supported by the IO Module driver, included with Xilinx Software Development Kit.
I/O Module v1.02a www.xilinx.com 55
PG052 October 16, 2012

Additional Resources

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the Xilinx Support website at:
Appendix D
www.xilinx.com/support
For a glossary of technical terms used in Xilinx documentation, see:
www.xilinx.com/company/terms.htm
.
.

References

These documents provide supplemental material useful with this user guide:
1. MicroBlaze Processor Reference Guide (UG081
2. 7 Series FPGAs Configuration User Guide (UG470
3. Vivado™ Design Suite Migration Methodology Guide (UG911
)
)
)

Technical Support

Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.
See the IDS Embedded Edition Derivative Device Support web page (www.xilinx.com/ise/
embedded/ddsupport.htm) for a complete list of supported derivative devices for this core.
I/O Module v1.02a www.xilinx.com 56
PG052 October 16, 2012

Revision History

The following table shows the revision history for this document.
Date Version Revision
Revision History
07/25/12 1.0
10/16/12 1.1
Initial Xilinx release. This Product Guide is derived from DS866.
Updated with description of support for MicroBlaze relocatable base vectors through the parameter C_INTC_BASE_VECTORS.

Notice of Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theor y of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specif ications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/
warranty.htm#critapps.
© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.
; IP cores may be subject to warranty and support terms contained in
I/O Module v1.02a www.xilinx.com 57
PG052 October 16, 2012
Loading...