All other trademarks are the proper ty of their respective owners. All specifications are subject to change without notice.
Data Sheet
R
This page intentionally left blank.
2 www.xilinx.comDS610 July 16, 2007
Product Specification
<
R
B
L
B
Spartan-3A DSP FPGA Family:
Introduction and Ordering Information
DS610-1 (v2.0) July 16, 2007Product Specification
Introduction
The Spartan™-3A DSP family of Field-Programmable Gate Arrays
(FPGAs) solves the design challenges in most high-volume,
cost-sensitive, high-performance DSP applications.
two-member family offers densities ranging from
system gates, as shown in Table 1.
The Spartan-3A DSP family builds on the success of the
Spartan-3A FPGA family by increasing the amount of memory per
logic and adding XtremeDSP™ DSP48A slices. New features
improve system performance and reduce the cost of configuration.
These Spartan-3A DSP FPGA enhancements, combined with
proven 90 nm process technology, deliver more functionality and
bandwidth per dollar than ever before, setting the new standard in
the programmable logic
and DSP processing
Spartan-3A and Spartan-3A DSP FPGA Differences
The Spartan-3A DSP FPGAs extend and enhance the Spartan-3A
FPGA family. The XC3SD1800A and the XC3SD3400A devices
are tailored for DSP applications and have additional block RAM
and XtremeDSP DSP48A slices. The XtremeDSP DSP48A slices
replace the 18x18 multipliers found in the Spartan-3A devices and
are based on the DSP48 blocks found in the Virtex™-4 devices.
The block RAMs are also enhanced to run faster by adding an
output register. Both the block RAM and DSP48A slices in the
Spartan-3A DSP devices run at 250 MHz in the lowest cost,
standard -4 speed grade.
Because of their exceptional DSP price/performance ratio,
Spartan-3A DSP FPGAs are ideally suited to a wide range of
consumer electronics applications, including broadband access,
home networking, display/projection, and digital television
equipment.
The Spartan-3A DSP family is a superior alternative to mask
programmed ASICs. FPGAs avoid the high initial cost, lengthy
development cycles, and the inherent inflexibility of conventional
ASICs. Also, FPGA programmability permits design upgrades in
the field with no hardware replacement necessary, an impossibility
with ASICs.
1.8 to 3.4
industry.
The
million
♦Available pipeline stages for enhanced performance of at least
250 MHz in the standard -4 speed grade
♦48-bit accumulator for multiply-accumulate (MAC) operation
♦Integration added for complex multiply or multiply-add operation
♦Integrated 18-bit pre-adder
♦Optional cascaded Multiply or MAC
•Hierarchical SelectRAM™ memory architecture
♦
Up to 2268 Kbits of fast block RAM with byte write enables for
processor applications
♦Up to 373 Kbits of efficient distributed RAM
♦Registered outputs on the block RAM with operation of at least
Up to 519 I/O pins or 227 differential signal pairs
♦LVCMOS, LVTTL, HSTL, and SSTL single-ended I/O
♦3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling
♦Selectable output drive, up to 24 mA per pin
♦QUIETIO standard reduces I/O switching noise
♦Full 3.3V ± 10% compatibility and hot swap compliance
♦622+ Mb/s data transfer rate per differential I/O
♦LVDS, RSDS, mini-LVDS, HSTL/SSTL differential I/O with
integrated differential termination resistors
♦Enhanced Double Data Rate (DDR) support
♦DDR/DDR2 SDRAM support up to 333 Mb/s
♦Fully compliant 32-/64-bit, 33/66 MHz PCI suppor t
•Abundant, flexible logic resources
♦
Densities up to 53712 logic cells, including optional shift register
All other trademarks are the proper ty of their respective owners. All specifications are subject to change without notice.
DS610-1 (v2.0) July 16, 2007www.xilinx.com3
Product Specification
Introduction and Ordering Information
Architectural Overview
R
The Spartan-3A DSP family architecture consists of five
fundamental programmable functional elements:
•XtremeDSP DSP48A Slice provides an 18-bit x 18-bit
multiplier, 18-bit pre-adder, 48-bit
post-adder/accumulator, and cascade capabilities for
various DSP applications.
•Block RAM provides data storage in the form of
18-Kbit dual-port blocks.
•Configurable Logic Blocks (CLBs) contain flexible
Look-Up Tables (LUTs) that implement logic plus
storage elements used as flip-flops or latches. CLBs
perform a wide variety of logical functions as well as
store data.
•Input/Output Blocks (IOBs) control the flow of data
between the I/O pins and the internal logic of the
device. IOBs support bidirectional data flow plus
3-state operation. Supports a variety of signal
standards, including several high-performance
differential standards. Double Data-Rate (DDR)
registers are included.
•Digital Clock Manager (DCM) Blocks provide
self-calibrating, fully digital solutions for distributing,
delaying, multiplying, dividing, and phase-shifting clock
signals.
These elements are organized as shown in Figure 1. A dual
ring of staggered IOBs surrounds a regular array of CLBs.
The XC3SD1800A has four columns of DSP48As, and the
XC3SD3400A has five columns of DSP48As. Each
DSP48A has an associated block RAM. The DCMs are
positioned in the center with two at the top and two at the
bottom of the device and in the two outer columns of the 4 or
5 columns of block RAM and DSP48As.
The Spartan-3A DSP family features a rich network of
routing that interconnect all five functional elements,
transmitting signals among them. Each functional element
has an associated switch matrix that permits multiple
connections to the routing.
Configuration
Spartan-3A DSP FPGAs are programmed by loading
configuration data into robust, reprogrammable, static
CMOS configuration latches (CCLs) that collectively control
all functional elements and routing resources. The FPGA’s
configuration data is stored externally in a PROM or some
other non-volatile medium, either on or off the board.
After applying power, the configuration data is written to the
FPGA using any of seven different modes:
•Master Serial from a Xilinx Platform Flash PROM
•Serial Peripheral Interface (SPI) from an
industry-standard SPI serial Flash
•Byte Peripheral Interface (BPI) Up from an
industry-standard x8 or x8/x16 parallel NOR Flash
•Slave Serial, typically downloaded from a processor
•Slave Parallel, typically downloaded from a processor
•Boundary Scan (JTAG), typically downloaded from a
processor or system tester
Furthermore, Spartan-3A DSP FPGAs support MultiBoot
configuration, allowing two or more FPGA configuration
bitstreams to be stored in a single SPI serial Flash or a
parallel NOR Flash. The FPGA application controls which
configuration to load next and when to load it.
Additionally, each Spartan-3A DSP FPGA contains a
unique, factory-programmed Device DNA identifier useful
for tracking purposes, anti-cloning designs, or IP protection.
I/O Capabilities
The Spartan-3A DSP FPGA SelectIO interface supports
many popular single-ended and differential standards.
Tab le 2 shows the number of user I/Os as well as the
number of differential I/O pairs available for each
device/package combination. Some of the user I/Os are
unidirectional input-only pins as indicated in Ta bl e 2 .
Spartan-3A DSP FPGAs support the following single-ended
standards:
•3.3V low-voltage TTL (LVTTL)
•Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V,
1.5V, or 1.2V
•3.3V PCI at 33 MHz or 66 MHz
•HSTL I, II, and III at 1.5V and 1.8V, commonly used in
memory applications
•SSTL I and II at 1.8V, 2.5V, and 3.3V, commonly used
for memory applications
Spartan-3A DSP FPGAs support the following differential
standards:
•LVDS, mini-LVDS, RSDS, and PPDS I/O at 2.5V or
3.3V
•Bus LVDS I/O at 2.5V
•TMDS I/O at 3.3V
•Differential HSTL and SSTL I/O
•LVPECL inputs at 2.5V or 3.3V
4 www.xilinx.comDS610-1 (v2.0) July 16, 2007
Product Specification
R
Introduction and Ordering Information
IOBs
CLB
DCM
Block RAM
DSP48A Slice
IOBs
DCM
CLBs
DCM
IOBs
IOBs
IOBs
Block RAM / DSP48A Slice
DS610-1_01_031207
Notes:
1. The XC3SD1800A and XC3SD3400A have two DCMs on both the left and right sides, as well as the two DCMs at the top and
bottom of the devices. The two DCMs on the left and right of the chips are in the middle of the outer Block RAM/DSP48A
columns of the 4 or 5 columns in the selected device, as shown in the diagram above.
G431:
2. A detailed diagram of the DSP48A can be found in U
XtremeDSP DSP48A for Spartan-3A DSP FPGAs User Guide.
Table 2:
Figure 1:
Available User I/Os and Differential (Diff) I/O Pairs
Device
Spartan-3A DSP Family Architecture
CS484
CSG484
FG676
FGG676
UserDiffUserDiff
XC3SD1800A
XC3SD3400A
309
(60)
309
(60)
(78)
140
(78)
519
(110)
469
(60)
227
(131)
213
(117)
140
Notes:
1.The number shown in bold indicates the maximum number of I/O and input-only pins. The number shown in (
input-only pins. The differential (Diff) input-only pin count includes both differential pairs on input-only pins and differential pairs on I/O pins within I/O
banks that are restricted to differential inputs.
italics
) indicates the number of
DS610-1 (v2.0) July 16, 2007www.xilinx.com5
Product Specification
Introduction and Ordering Information
0
Package Marking
R
Figure 2 shows the top marking for Spartan-3A DSP
FPGAs. Use the seven digits of the Lot Code to access
The “5C” and “4I” Speed Grade/Temperature Range part
combinations may be dual marked as “5C/4I”.
additional information for a specific device using the Xilinx
web-based G
enealogy Viewer.
BGA Ball A1
Device Type
Package
Low-Power
(optional)
Speed Grade
Operating Range
Figure 2:
Spartan-3A DSP FPGA Package Marking Example
R
SPARTAN
R
XC3SD1800A
CSG484XGQ####
X#######X
L4 I
Mask Revision
Fabrication/
Process Code
Date Code
Lot Code
DS610-1_02_070607
Ordering Information
Spartan-3A DSP FPGAs are available in both standard and Pb-free packaging options for all device/package combinations.
The Pb-free packages include a ‘G’ character in the ordering code.
Standard Packaging
Example:
XC3SD1800A
-4 CS 484LI
Device Type
Speed Grade
-4: Standard Performance
-5: High Performance (Commercial only)
Package Type
Power/Temperature Range:
C = Commercial
I = Industrial
LI = Low-power Industrial (CS484 only)
Number of Pins
Pb-Free Packaging
Example:
XC3SD1800A -4 CS484LI
Device Type
Speed Grade
-4: Standard Performance
-5: High Performance (Commercial only)
Package Type
Device Speed GradePackage Type / Number of Pins
XC3SD1800A
XC3SD3400A
–4 Standard Performance CS(G)484 484-ball Chip-Scale Ball Grid Array (CSBGA)C Commercial (0°C to 85°C)
–5 High PerformanceFG(G)676 676-ball Fine-Pitch Ball Grid Array (FBGA)I Industrial (–40°C to 100°C)
G
DS610-1_05_070607
Power/Temperature Range:
C = Commercial
I = Industrial
LI = Low-power Industrial (CSG484 on
Number of Pins
Pb-free
DS610-1_04_07
Power/Temperature Range
( T
LI Low-power Industrial
(–40°C to 100°C)
)
J
Notes:
1.The –5 speed grade is exclusively available in the Commercial temperature range.
2.The L Low-power option is exclusively available in the CS(G)484 package and Industrial temperature range.
6 www.xilinx.comDS610-1 (v2.0) July 16, 2007
Product Specification
R
Revision History
The following table shows the revision history for this document.
DateVersionRevision
04/02/071.0Initial Xilinx release.
05/25/071.0.1Minor edits.
06/18/071.2Updated for Production release.
07/16/072.0Added Low-power options.
Introduction and Ordering Information
DS610-1 (v2.0) July 16, 2007www.xilinx.com7
Product Specification
Introduction and Ordering Information
R
This page intentionally left blank.
8 www.xilinx.comDS610-1 (v2.0) July 16, 2007
Product Specification
<BL
R
Blue
>
Spartan-3A DSP FPGA Family:
Functional Description
DS610-2 (v2.0) July 16, 2007
Introduction
The functionality of the Spartan™-3A DSP FPGA family is
described in the following documents. The topics covered in
each guide are listed below.
•UG431
FPGAs User Guide
♦XtremeDSP DSP48A Slices
♦XtremeDSP DSP48A Pre-Adder
•UG331
♦Clocking Resources
♦Digital Clock Managers (DCMs)
♦Block RAM
♦Configurable Logic Blocks (CLBs)
♦I/O Resources
♦Programmable Interconnect
♦ISE™ Software Design Tools
♦IP Cores
♦Embedded Processing and Control Solutions
♦Pin Types and Package Overview
♦Package Drawings
♦Powering FPGAs
♦Power Management
:
XtremeDSP DSP48A for Spartan-3A DSP
:
Spartan-3 Generation FPGA User Guide
-Distributed RAM
-SRL16 Shift Registers
-Carry and Arithmetic Logic
0
•UG332
:
Spartan-3 Generation Configuration User
Product Specification
Guide
♦Configuration Overview
-Configuration Pins and Behavior
-Bitstream Sizes
♦Detailed Descriptions by Mode
-Master Serial Mode using Xilinx Platform Flash
PROM
-Master SPI Mode using Commodity SPI Serial
Flash PROM
-Master BPI Mode using Commodity Parallel
NOR Flash PROM
-Slave Parallel (SelectMAP) using a Processor
-Slave Serial using a Processor
-JTAG Mode
♦ISE iMPACT Programming Examples
♦MultiBoot Reconfiguration
♦Design Authentication using Device DNA
Create a Xilinx MySupport user account and sign up to
receive automatic E-mail notification whenever this data
sheet or the associated user guides are updated.
Revision History
The following table shows the revision history for this document.
DateVersionRevision
04/02/071.0Initial Xilinx release.
05/25/071.0.1Minor edits.
06/18/071.2Updated for Production release.
07/16/072.0Added Low-power options; no changes to this module.
All other trademarks are the proper ty of their respective owners. All specifications are subject to change without notice.
Functional Description
R
This page intentionally left blank.
10 www.xilinx.comDS610-2 (v2.0) July 16, 2007
Product Specification
<BL
R
Blue
>
Spartan-3A DSP FPGA Family:
DC and Switching Characteristics
DS610-3 (v2.0) July 16, 2007
0
Product Specification
DC Electrical Characteristics
In this section, specifications may be designated as
Advance, Preliminary, or Production. These terms are
defined as follows:
Advance: Initial estimates are based on simulation, early
characterization, and/or extrapolation from the
characteristics of other families. Values are subject to
change. Use as estimates, not for production.
Preliminary: Based on characterization. Further changes
are not expected.
Production: These specifications are approved once the
silicon has been characterized over numerous production
lots. Parameter values are considered stable with no future
changes expected.
Table 3:
SymbolDescription ConditionsMinMaxUnits
V
V
V
Notes:
1.For soldering guidelines, see UG112:
Absolute Maximum Ratings
CCINT
CCAUX
CCO
V
REF
V
V
ESD
T
T
STG
Guidelines for Pb-Free Packages
Internal supply voltage–0.51.32V
Auxiliary supply voltage–0.53.75V
Output driver supply voltage–0.53.75V
Input reference voltage–0.5V
Voltage applied to all User I/O pins and
IN
Dual-Purpose pins
Voltage applied to all Dedicated pins–0.54.6V
Electrostatic Discharge VoltageHuman body model–±2000V
Junction temperature–125°C
J
Storage temperature–65150°C
Driver in a high-impedance state
Charged device model
Machine model
Device Packaging and Thermal Characteristics
.
All parameter limits are representative of worst-case supply
voltage and junction temperature conditions. Unless
otherwise noted, the published parameter values apply
to all Spartan™-3A DSP devices. AC and DC
characteristics are specified using the same numbers
for both commercial and industrial grades.
Absolute Maximum Ratings
Stresses beyond those listed under Ta b l e 3 : Absolute
Maximum Ratings may cause permanent damage to the
device. These are stress ratings only; functional operation
of the device at these or any other conditions beyond those
listed under the Recommended Operating Conditions is not
implied. Exposure to absolute maximum conditions for
extended periods of time adversely affects device reliability.
All other trademarks are the proper ty of their respective owners. All specifications are subject to change without notice.
DC and Switching Characteristics
Power Supply Specifications
R
Table 4:
Supply Voltage Thresholds for Power-On Reset
SymbolDescriptionMinMaxUnits
V
CCINTT
V
CCAUXT
V
CCO2T
Threshold for the V
Threshold for the V
Threshold for the V
supply0.41.0V
CCINT
supply0.82.0V
CCAUX
Bank 2 supply0.82.0V
CCO
Notes:
1.V
CCINT
, V
CCAUX
, and V
supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (Platform Flash,
CCO
SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration
source. Apply V
last for lowest overall power consumption (see the UG331 chapter titled "Powering Spartan-3 Generation FPGAs" for
CCINT
more information).
2.To ensure successful power-on, V
no dips at any point.
Table 5:
Supply Voltage Ramp Rate
CCINT
Bank 2, and V
CCO
supplies must rise through their respective threshold-voltage ranges with
CCAUX
, V
SymbolDescriptionMinMaxUnits
V
CCINTR
V
CCAUXR
V
CCO2R
Ramp rate from GND to valid V
Ramp rate from GND to valid V
Ramp rate from GND to valid V
supply level0.2100ms
CCINT
supply level0.2100ms
CCAUX
Bank 2 supply level0.2100ms
CCO
Notes:
1.V
CCINT
, V
CCAUX
, and V
supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (Platform Flash,
CCO
SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration
source. Apply V
last for lowest overall power consumption (see the UG331 chapter titled "Powering Spartan-3 Generation FPGAs" for
CCINT
more information).
2.To ensure successful power-on, V
no dips at any point.
CCINT
, V
CCO
Bank 2, and V
supplies must rise through their respective threshold-voltage ranges with
CCAUX
Table 6:
Supply Voltage Levels Necessary for Preserving CMOS Configuration Latch (CCL) Contents and RAM
Data
SymbolDescriptionMinUnits
V
V
DRINT
V
DRAUX
level required to retain CMOS Configuration Latch (CCL) and RAM data1.0V
CCINT
V
level required to retain CMOS Configuration Latch (CCL) and RAM data2.0V
CCAUX
General Recommended Operating Conditions
Table 7:
Notes:
1.This V
2.Measured between 10% and 90% V
General Recommended Operating Conditions
SymbolDescriptionMinNominalMaxUnits
T
J
V
CCINT
(1)
V
CCO
V
range specific to each of the single-ended I/O standards, and Ta b l e 1 2 lists that specific to the differential standards.
Auxiliary supply voltageV
CCAUX
T
IN
range spans the lowest and highest operating voltages for all supported I/O standards. Table 10 lists the recommended V
CCO
Junction temperatureCommercial0-85°C
Industrial–40
-100°C
Internal supply voltage1.1401.2001.260V
Output driver supply voltage1.100-3.600V
= 2.52.2502.5002.750V
CCAUX
Input signal transition time
.
CCO
V
(2)
= 3.33.0003.3003.600V
CCAUX
--500ns
CCO
12 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
General DC Characteristics for I/O Pins
DC and Switching Characteristics
Table 8:
General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins
SymbolDescriptionTest ConditionsMinTypMaxUnits
I
I
RPU
R
I
RPD
R
I
R
I
HS
PU
PD
REF
C
Leakage current at User I/O,
L
Input-only, Dual-Purpose, and
Dedicated pins, FPGA powered
Leakage current on pins during
hot socketing, FPGA unpowered
(2)
Current through pull-up resistor
at User I/O, Dual-Purpose,
Input-only, and Dedicated pins.
Dedicated pins are powered by
V
(2)
Equivalent pull-up resistor value
CCAUX
.
at User I/O, Dual-Purpose,
Input-only, and Dedicated pins
(based on I
(2)
Current through pull-down
per Note 2)
RPU
resistor at User I/O,
Dual-Purpose, Input-only, and
Dedicated pins
(2)
Equivalent pull-down resistor
value at User I/O, Dual-Purpose,
Input-only, and Dedicated pins
(based on I
V
current per pinAll V
REF
Input capacitance-3-10pF
IN
Resistance of optional differential
DT
termination circuit within a
per Note 2)
RPD
differential I/O pair. Not available
on Input-only pairs.
Driver is in a high-impedance state,
VIN = 0V or V
max, sample-tested
CCO
All pins except INIT_B, PROG_B, DONE, and JTAG pins
when PUDC_B = 1.
INIT_B, PROG_B, DONE, and JTAG pins or other pins
when PUDC_B = 0.
VIN = GNDV
VIN = GNDV
V
CCAUX
V
CCAUX
V
VIN = V
CCO
CCO
= 3.0V to 3.6VVIN = 3.0V to 3.6V5.510.420.8kΩ
= 2.25V to 2.75VVIN = 3.0V to 3.6V7.916.035.0kΩ
= 3.3V ± 10%
or V
CCO
or V
V
CCO
V
CCO
V
CCO
V
CCO
CCO
V
CCO
V
CCO
V
CCO
V
CCO
V
CCAUX
V
CCAUX
V
IN
V
IN
V
IN
V
= 1.14V to 1.26V2.44.58.1kΩ
IN
V
IN
V
IN
V
IN
V
= 1.14V to 1.26V3.06.012.5kΩ
IN
levels–10-+10μA
CCO
= 3.0V to 3.6V –151–315–710μA
CCAUX
= 2.3V to 2.7V–82–182–437μA
CCAUX
= 1.7V to 1.9V–36–88–226μA
= 1.4V to 1.6V–22–56–148μA
= 1.14V to 1.26V–11–31–83μA
= 3.0V to 3.6V5.111.423.9kΩ
= 2.3V to 2.7V6.214.833.1kΩ
= 1.7V to 1.9V8.421.652.6kΩ
= 1.4V to 1.6V10.828.474.0kΩ
= 1.14V to 1.26V15.341.1119.4kΩ
= 3.0V to 3.6V167346659μA
= 2.25V to 2.75V
= 2.3V to 2.7V4.17.815.7kΩ
= 1.7V to 1.9V3.05.711.1kΩ
= 1.4V to 1.6V2.75.19.6kΩ
= 2.3V to 2.7V5.912.026.3kΩ
= 1.7V to 1.9V4.28.518.6kΩ
= 1.4V to 1.6V3.67.215.7kΩ
LVDS_33, MINI_LVDS_33,
RSDS_33
= 2.5V ± 10%
V
CCO
LVDS_25, MINI_LVDS_25,
–10-+10μA
–10
Add IHS + I
-+10μA
RPU
μA
100225457μA
90100115Ω
90110–Ω
RSDS_25
Notes:
1.The numbers in this table are based on the conditions set forth in Ta bl e 7 .
2.This parameter is based on characterization. The pull-up resistance R
PU
= V
CCO/IRPU
. The pull-down resistance RPD = VIN / I
RPD
.
DS610-3 (v2.0) July 16, 2007www.xilinx.com13
Product Specification
DC and Switching Characteristics
Quiescent Current Requirements
R
Table 9:
SymbolDescriptionDevicePowerTypical
I
CCINTQ
Quiescent Supply Current Characteristics
Quiescent V
supply currentXC3SD1800AC,I55390500mA
CCINT
LI45
(2)
Commercial
Maximum
(2)
Industrial
Maximum
-175mA
(2)
Units
XC3SD3400AC,I80550725mA
I
CCOQ
Quiescent V
LI70
supply currentXC3SD1800AC,I0.445mA
CCO
LI0.2
-300mA
-5mA
XC3SD3400AC,I0.445mA
LI0.2-5mA
I
CCAUXQ
Quiescent V
supply currentXC3SD1800AC,I4290110mA
CCAUX
LI38
-72mA
XC3SD3400AC,I70130160mA
LI65
-105mA
Notes:
1.The numbers in this table are based on the conditions set forth in Tab le 7 .
2.Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads
disabled. Typical values are characterized using typical devices at ambient room temperature (T
= 2.5V). The maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum
V
CCAUX
voltage limits with V
is, a design with no functional elements instantiated). For conditions other than those described above (for example, a design including
functional elements), measured quiescent current levels will be different than the values in the table.
3.There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The
Spartan-3A DSP
XPower Analyzer uses a netlist as input to provide maximum estimates as well as more accurate typical estimates.
4.The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully.
5.For information on the power-saving Suspend mode, see XAPP480
typically saves 40% total power consumption compared to quiescent current.
= 1.26V, V
CCINT
FPGA XPower Estimator provides quick, approximate, typical estimates, and does not require a netlist of the design. b)
= 3.6V, and V
CCO
= 3.6V. The FPGA is programmed with a “blank” configuration data file (that
CCAUX
:
Using Suspend Mode in Spartan-3 Generation FPGAs
of 25°C at V
A
CCINT
= 1.2V, V
= 3.3V, and
CCO
. Suspend mode
14 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
Single-Ended I/O Standards
DC and Switching Characteristics
Table 10:
Recommended Operating Conditions for User I/Os Using Single-Ended Standards
IOSTANDARD
Attribute
for Drivers
V
CCO
Min (V)Nom (V)Max (V)Min (V)Nom (V)Max (V)Max (V)Min (V)
(2)
V
REF
LVTTL3.03.33.6
LV CM O S 33
LV CM O S 25
LV CM O S 18
LV CM O S 15
LV CM O S 12
(4)
(4,5)
(4)
(4)
(4)
3.03.33.60.82.0
2.32.52.70.71.7
1.651.81.950.380.8
V
is not used for
1.41.51.60.380.8
REF
these I/O standards
1.11.21.30.380.8
PCI33_33.03.33.60.3 • V
PCI66_33.03.33.60.3 • V
PCIX3.03.33.60.35 • V
HSTL_I1.41.51.60.680.750.9V
HSTL_III1.41.51.6
-0.9 -V
HSTL_I_181.71.81.90.80.91.1V
HSTL_II_181.71.81.9
HSTL_III_181.71.81.9
-0.9 -V
-1.1 -V
SSTL18_I1.71.81.90.8330.9000.969V
SSTL18_II1.71.81.90.8330.9000.969V
SSTL2_I2.32.52.71.151.251.38V
SSTL2_II2.32.52.71.151.251.38V
SSTL3_I3.03.33.61.31.51.7V
SSTL3_II3.03.33.61.31.51.7V
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
Notes:
1.Descriptions of the symbols used in this table are as follows:
– the supply voltage for output drivers
V
CCO
– the reference voltage for setting the input switching threshold
V
REF
– the input voltage that indicates a Low logic level
V
IL
– the input voltage that indicates a High logic level
V
IH
2.In general, the V
and for PCI I/O standards.
rails supply only output drivers, not input circuits. The exceptions are for LVCMOS25 inputs when V
CCO
3.For device operation, the maximum signal voltage (VIH max) can be as high as VIN max. See Tab l e 3 .
4.There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards.
5.All Dedicated pins (PROG_B, DONE, SUSPEND, TCK, TDI, TDO, and TMS) draw power from the V
LVCMOS33 standard depending on V
When using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the V
well as throughout configuration.
. The Dual-Purpose configuration pins use the LVCMOS25 standard before the User mode.
CCAUX
lines of Banks 0, 1, and 2 at power-on as
CCO
rail and use the LVCMOS25 or
CCAUX
V
IL
V
0.82.0
CCO
CCO
CCO
- 0.1V
- 0.1V
- 0.1V
- 0.1V
- 0.1V
- 0.125V
- 0.125V
- 0.150V
- 0.150V
- 0.2V
- 0.2V
0.5 • V
0.5 • V
0.5 • V
REF
REF
REF
REF
CCAUX
REF
REF
REF
REF
REF
+ 0.125
+ 0.125
+ 0.150
+ 0.150
REF
REF
= 3.3V range
IH
CCO
CCO
CCO
+ 0.1
+ 0.1
+ 0.1
+ 0.1
+ 0.1
+ 0.2
+ 0.2
DS610-3 (v2.0) July 16, 2007www.xilinx.com15
Product Specification
DC and Switching Characteristics
R
Table 11:
DC Characteristics of User I/Os Using
Single-Ended Standards
Conditions
I
IOSTANDARD
Attribute
(3)
LVTTL
LV CM O S 33
LV CM O S 25
LV CM O S 18
LV CM O S 15
LV CM O S 12
1212–12
1616–16
2424–24
(3)
1212–12
1616–16
24
(3)
1212–12
16
24
(3)
12
16
(3)
8
12
(3)
4
6
OL
(mA)
22–2 0.42.4
44–4
66–6
88–8
22–2 0.4 V
44–4
66–6
88–8
(4)
24–24
22–2 0.4 V
44–4
66–6
88–8
(4)
16–16
(4)
24–24
22–20.45V
44–4
66–6
88–8
(4)
12–12
(4)
16–16
22–20.25 • V
44–4
66–6
(4)
8–8
(4)
12–12
22–2 0.4 V
(4)
4–4
(4)
6–6
Test
I
OH
(mA)
Logic Level
Characteristics
V
OL
Max (V)
CCO
V
OH
Min (V)
– 0.4
CCO
– 0.4
CCO
– 0.45
CCO
0.75 • V
– 0.4
CCO
CCO
Table 11:
Single-Ended Standards
IOSTANDARD
PCI33_3
PCI66_3
PCIX1.5–0.510% V
HSTL_I
HSTL_III
HSTL_I_188–80.4V
HSTL_II_18
HSTL_III_1824–80.4V
SSTL18_I6.7–6.7
SSTL18_II
SSTL2_I8.1–8.1V
SSTL2_II
SSTL3_I8–8V
SSTL3_II
DC Characteristics of User I/Os Using
(Continued)
Test
Attribute
(5)
(5)
(4)
(4)
(4)
(4)
(4)
(4)
Conditions
I
I
OL
(mA)
OH
(mA)
1.5–0.510% V
1.5–0.510% V
8–8 0.4 V
24–80.4V
16–160.4V
13.4 –13.4
16.2 –16.2 VTT – 0.80VTT + 0.80
16–16VTT – 0.8VTT + 0.8
Characteristics
V
OL
Max (V)
V
– 0.475 VTT + 0.475
TT
V
– 0.475 VTT + 0.475
TT
– 0.61VTT + 0.61
TT
– 0.6VTT + 0.6
TT
Logic Level
V
Min (V)
90% V
CCO
90% V
CCO
90% V
CCO
CCO
CCO
CCO
CCO
CCO
OH
CCO
CCO
CCO
- 0.4
- 0.4
- 0.4
- 0.4
- 0.4
Notes:
1.The numbers in this table are based on the conditions set forth in
Tab l e 7 and Table 10.
2.Descriptions of the symbols used in this table are as follows:
I
– the output current condition under which V
OL
– the output current condition under which V
I
OH
V
– the output voltage that indicates a Low logic level
OL
– the output voltage that indicates a High logic level
V
OH
V
– the input voltage that indicates a Low logic level
IL
– the input voltage that indicates a High logic level
V
IH
V
– the supply voltage for output drivers
CCO
– the reference voltage for setting the input switching threshold
V
REF
V
– the voltage applied to a resistor termination
TT
is tested
OL
is tested
OH
3.For the LVCMOS and LVTTL standards: the same VOL and VOH
limits apply for both the Fast and Slow slew attributes.
4.These higher-drive output standards are supported only on
FPGA banks 1 and 3. Inputs are unrestricted. See the chapter
"Using I/O Resources" in UG331
.
5.Tested according to the relevant PCI specifications.
16 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
Differential I/O Standards
Internal
Logic
GND level
V
INN
V
INP
50%
V
ICM
V
= Input common mode voltage =
ICM
V
= Differential input voltage =
ID
Figure 3:
Differential Input Voltages
DC and Switching Characteristics
V
INP
V
INN
V
ID
V
V
INP
P
N
INP
- V
+ V
2
INN
Differential
I/O Pair Pins
INN
DS610-3_03_061507
Table 12:
IOSTANDARD Attribute
LV DS _2 5
LV DS _3 3
BLVDS_25
MINI_LVDS_25
MINI_LVDS_33
LVPECL_25
LVPECL_33
RSDS_25
RSDS_33
TMDS_33
PPDS_25
PPDS_33
DIFF_HSTL_I_18
DIFF_HSTL_II_18
DIFF_HSTL_III_18
DIFF_HSTL_I
DIFF_HSTL_III
DIFF_SSTL18_I
DIFF_SSTL18_II
DIFF_SSTL2_I
DIFF_SSTL2_II
DIFF_SSTL3_I
DIFF_SSTL3_II
Recommended Operating Conditions for User I/Os Using Differential Signal Standards
(1)
V
ID
––0.8–1.1
––0.8–1.1
––0.68–0.9
–––0.9–
––0.7–1.1
––1.0–1.5
––1.1–1.9
––1.1–1.9
(3)
(3)
(4)
(3)
(3)
(3,4,7)
(3)
(3)
(5)
(5)
(3)
(3)
(8)
(8)
(8)
V
for Drivers
CCO
Min (V)Nom (V)Max (V)Min (mV) Nom (mV) Max (mV)Min (V)Nom (V)Max (V)
2.252.52.751003506000.31.252.35
3.03.33.61003506000.31.252.35
2.252.52.75100300–0.31.32.35
2.252.52.75200–6000.31.21.95
3.03.33.6200–6000.31.21.95
Inputs Only10080010000.31.21.95
Inputs Only10080010000.31.22.8
2.252.52.75100200–0.31.21.5
3.03.33.6100200–0.31.21.5
3.143.33.47150–12002.7–3.23
2.252.52.75100–4000.2 –2.3
3.03.33.6100–4000.2 –2.3
1.71.81.9100
1.71.81.9100––0.8–1.1
1.71.81.9100
1.41.51.6100
1.41.51.6100
1.71.81.9100
1.71.81.9100––0.7–1.1
2.32.52.7100
2.32.52.7100––1.0–1.5
3.03.33.6100
3.03.33.6100
(2)
V
ICM
Notes:
1.The V
2.V
3.These true differential output standards are supported only on FPGA banks 0 and 2. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331.
4.See "External Termination Requirements for Differential I/O."
5.LVPECL is supported on inputs only, not outputs. Requires V
6.LVPECL_33 maximum V
7.Requires V
8.These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331.
9.V
standards do not use V
rails supply only differential output drivers, not input circuits.
CCO
must be less than V
ICM
= 3.3V ± 10%. (V
CCAUX
inputs are used for the DIFF_SSTL and DIFF_HSTL standards. The V
REF
REF
CCAUX
ICM
.
= V
.
CCAUX
– (VID/2).
CCAUX
- 300 mV) ≤V
ICM
CCAUX
≤ (V
ICM
=3.3V ± 10%.
- 37 mV).
REF
settings are the same as for the single-ended versions in Table 11. Other differential
(6)
DS610-3 (v2.0) July 16, 2007www.xilinx.com17
Product Specification
DC and Switching Characteristics
Internal
Logic
V
OUTN
V
OUTP
GND level
V
OUTP
V
OUTN
50%
V
OCM
V
= Output common mode voltage =
OCM
V
= Output differential voltage =
OD
V
= Output voltage indicating a High logic level
OH
= Output voltage indicating a Low logic level
V
OL
Figure 4:
Differential Output Voltages
V
OD
V
V
OUTP
OH
P
N
V
OUTP
- V
Differential
I/O Pair Pins
V
OL
+ V
OUTN
2
OUTN
DS312-3_03_102406
R
Table 13:
IOSTANDARD Attribute
LVDS_252473504541.125
LVDS_332473504541.125
BLVDS_25240350460
MINI_LVDS_25300
MINI_LVDS_33300
RSDS_25100
RSDS_33100
TMDS_33400
PPDS_25100
PPDS_33100
DIFF_HSTL_I_18
DIFF_HSTL_II_18
DIFF_HSTL_III_18
DIFF_HSTL_I
DIFF_HSTL_III
DIFF_SSTL18_I
DIFF_SSTL18_II
DIFF_SSTL2_I
DIFF_SSTL2_II
DIFF_SSTL3_I
DIFF_SSTL3_II
DC Characteristics of User I/Os Using Differential Signal Standards
V
OD
Min (mV)Typ (mV) Max (mV)Min (V)Typ (V)Max (V)Min (V)Max (V)
–
–
–
–
–
–
–
–
––––––
––––––
––––––
––––––
––––––
––––––
––––––
––––––
––––––
––––––
––––––
6001.0
6001.0
4001.0
4001.0
800V
– 0.405–V
CCO
4000.50.81.4
4000.50.81.4
V
1.30
OCM
–
–
–
–
–
–
V
OH
1.375
1.375
–––
1.4
1.4
1.4
1.4
– 0.190
CCO
––
––
––
––
––
––
––
––
––
V
– 0.40.4
CCO
V
– 0.40.4
CCO
V
– 0.40.4
CCO
V
– 0.40.4
CCO
V
– 0.40.4
CCO
VTT + 0.475VTT – 0.475
VTT + 0.475VTT – 0.475
VTT + 0.61VTT – 0.61
VTT + 0.81VTT – 0.81
V
+ 0.6 VTT - 0.6
TT
V
+ 0.8 VTT - 0.8
TT
V
OL
Notes:
1.The numbers in this table are based on the conditions set forth in Ta bl e 7 and Ta bl e 1 2 .
2.See "External Termination Requirements for Differential I/O."
3.Output voltage measurements for all differential standards are made with a termination resistor (RT) of 100Ω across the N and P pins of the
differential signal pair.
4.At any given time, no more than two of the following differential output standards can be assigned to an I/O bank: LVDS_25, RSDS_25,
MINI_LVDS_25, PPDS_25 when V
=2.5V, or LVDS_33, RSDS_33, MINI_LVDS_33, TMDS_33, PPDS_33 when V
CCO
CCO
= 3.3V
18 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
External Termination Requirements for Differential I/O
LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards
Bank 0 and 2Any Bank
Bank 0
VCCO =3.3V
LVD S_33,
MINI_LVDS_33,
RSDS_33,
PPDS_33
VCCO =3.3V
LVD S_33,
MINI_LVDS_33,
RSDS_33,
PPDS_33
Figure 5:
Bank 2
VCCO =2.5V
LVD S_25,
MINI_LVDS_25,
RSDS_25,
PPDS_25
a) Input-only differential pairs or pairs not using DIFF_TERM=Yes constraint
VCCO =2.5V
LVD S_25,
MINI_LVDS_25,
RSDS_25,
PPDS_25
b) Differential pairs using DIFF_TERM=Yes constraint
External Input Termination for LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards
Z0 = 50Ω
Z
0 = 50Ω
Z0 = 50Ω
Z
0 = 50Ω
1
/ th of Bourns
4
Part Number
CAT16-PT4F4
100Ω
DIFF_TERM=No
DIFF_TERM=Yes
Bank 0
Bank 3
Bank 2
R
DT
DC and Switching Characteristics
Bank 1
No VCCO Restrictions
LVD S_33, LVDS_25,
MINI_LVDS_33,
MINI_LVDS_25,
RSDS_33, RSDS_25,
PPDS_33, PPDS_25
VCCO =3.3V
LVD S_33,
MINI_LVDS_33,
RSDS_33,
PPDS_33
VCCO =2.5V
LVD S_25,
MINI_LVDS_25,
RSDS_25,
PPDS_25
DS529-3_09_020107
BLVDS_25 I/O Standard
TMDS_33 I/O Standard
Any Bank
Bank 0
Bank 3
Bank 2
VCCO = 2.5V
BLVDS_25
Figure 6:
Figure 7:
Any Bank
Bank 1
1
/ th of Bourns
4
Part Number
CAT16-LV4F12
165Ω
140Ω
Z0 = 50Ω
Z
0 = 50Ω
1
/ th of Bourns
4
Part Number
CAT16-PT4F4
100Ω
Bank 0
Bank 1
Bank 3
Bank 2
No VCCO Requirement
BLVDS_25
165Ω
DS529-3_07_020107
External Termination Resistors for BLVDS_25 I/O Standard
50Ω
Any Bank
Bank 0
Bank 3
Bank 2
V
CCAUX
DS529-3_08_020107DVI/HDMI cable
Bank 1
= 3.3V
Bank 0 and 2
Bank 0
3.3V
Bank 2
V
CCO
= 3.3V
TMDS_33TMDS_33
50Ω
External Input Resistors Required for TMDS_33 I/O Standard
Number of READ operations or JTAG ISC_DNA read operations. Unaffected by
HOLD or SHIFT operations.
30,000,000
Read
cycles
DC and Switching Characteristics
Switching Characteristics
R
All Spartan-3A DSP FPGAs ship in two speed grades: –4
and the higher performance –5. Switching characteristics in
this document are designated as Preview, Advance,
Preliminary, or Production, as shown in Tab le 1 5 . Each
category is defined as follows:
Preview: These specifications are based on estimates only
and should not be used for timing analysis.
Advance: These specifications are based on simulations
only and are typically available soon after establishing
FPGA specifications. Although speed grades with this
designation are considered relatively stable and
conservative, some under-reporting might still occur.
Preliminary: These specifications are based on complete
early silicon characterization. Devices and speed grades
with this designation are intended to give a better indication
of the expected performance of production silicon. The
probability of under-reporting preliminary delays is greatly
reduced compared to Advance data.
Production: These specifications are approved once
enough production silicon of a particular device family
member has been characterized to provide full correlation
between speed files and devices over numerous production
lots. There is no under-reporting of delays, and customers
receive formal notification of any subsequent changes.
Typically, the slowest speed grades transition to Production
before faster speed grades.
Software Version Requirements
Production-quality systems must use FPGA designs
compiled using a speed file designated as PRODUCTION
status. FPGAs designs using a less mature speed file
designation should only be used during system prototyping
or pre-production qualification. FPGA designs with speed
files designated as Preview, Advance, or Preliminary should
not be used in a production-quality system.
Whenever a speed file designation changes, as a device
matures toward Production status, rerun the latest Xilinx
ISE™ software on the FPGA design to ensure that the
FPGA design incorporates the latest timing information and
software updates.
Production designs will require updating the Xilinx ISE
development software with a future version and/or Service
Pack.
All parameter limits are representative of worst-case supply
voltage and junction temperature conditions. Unless
otherwise noted, the published parameter values apply
to all Spartan-3A DSP devices. AC and DC
characteristics are specified using the same numbers
for both commercial and industrial grades.
20 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
To create a Xilinx MySupport user account and sign up for
automatic E-mail notification whenever this data sheet is
updated:
Timing parameters and their representative values are
selected for inclusion below either because they are
important as general design requirements or they indicate
fundamental device performance characteristics. The
Spartan-3A DSP FPGA speed files (v1.29), part of the
Xilinx Development Software, are the original source for
many but not all of the values. The speed grade
designations for these files are shown in Ta b l e 1 5 . For more
complete, more precise, and worst-case data, use the
values reported by the Xilinx static timing analyzer (TRACE
in the Xilinx development software) and back-annotated to
the simulation netlist.
Table 15:
XC3SD1800A
XC3SD3400A
Spartan-3A DSP v1.29 Speed Grade Designations
DevicePreviewAdvancePreliminaryProduction
-4, -5
-4, -5
DC and Switching Characteristics
Tab le 1 6 provides the recent history of the Spartan-3A DSP
FPGA speed files.
Table 16:
Version
1.29ISE 9.2.01i
1.28ISE 9.2iMinor updates
1.27ISE 9.1.03i
Spartan-3A DSP Speed File Version History
ISE
ReleaseDescription
Production Speed Files for -4 and -5
speed grades
Advance Speed Files for -4 speed
grade
DS610-3 (v2.0) July 16, 2007www.xilinx.com21
Product Specification
DC and Switching Characteristics
I/O Timing
R
Table 17:
Pin-to-Pin Clock-to-Output Times for the IOB Output Path
Speed Grade
-5-4
SymbolDescriptionConditionsDevice
MaxMax
Units
Clock-to-Output Times
T
ICKOFDCM
When reading from the Output
Flip-Flop (OFF), the time from the
active transition on the Global
LV CM O S 25
output drive, Fast slew
rate, with DCM
(2)
, 12mA
(3)
XC3SD1800A3.283.51ns
XC3SD3400A3.363.82ns
Clock pin to data appearing at the
Output pin. The DCM is in use.
T
ICKOF
When reading from OFF, the time
from the active transition on the
Global Clock pin to data appearing
LV CM O S 25
output drive, Fast slew
rate, without DCM
(2)
, 12mA
XC3SD1800A5.235.58ns
XC3SD3400A5.516.13 ns
at the Output pin. The DCM is not
in use.
Notes:
1.The numbers in this table are tested using the methodology presented in Table 25 and are based on the operating conditions set forth in
Tab l e 7 and Table 10.
2.This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a
standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true,
Input adjustment from Table 21. If the latter is true,
3.DCM output jitter is included in all measurements.
add
the appropriate Output adjustment from Ta b l e 2 4 .
add
the appropriate
22 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
DC and Switching Characteristics
Table 18:
Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)
Speed Grade
-5-4
SymbolDescriptionConditionsDevice
MinMin
Units
Setup Times
(4)
(2)
,
XC3SD1800A2.653.11ns
XC3SD3400A2.252.49ns
T
PSDCM
When writing to the Input
Flip-Flop (IFF), the time from
the setup of data at the Input
LV CM OS 25
IFD_DELAY_VALUE = 0,
with DCM
pin to the active transition at a
Global Clock pin. The DCM is in
use. No Input Delay is
programmed.
T
PSFD
When writing to IFF, the time
from the setup of data at the
Input pin to an active transition
LV CM OS 25
IFD_DELAY_VALUE = 6,
without DCM
(2)
,
XC3SD1800A2.983.39ns
XC3SD3400A2.783.08ns
at the Global Clock pin. The
DCM is not in use. The Input
Delay is programmed.
Hold Times
(4)
(3)
,
XC3SD1800A-0.38-0.38ns
XC3SD3400A-0.26-0.26ns
T
PHDCM
When writing to IFF, the time
from the active transition at the
Global Clock pin to the point
LV CM OS 25
IFD_DELAY_VALUE = 0,
with DCM
when data must be held at the
Input pin. The DCM is in use.
No Input Delay is programmed.
T
PHFD
When writing to IFF, the time
from the active transition at the
Global Clock pin to the point
LV CM OS 25
IFD_DELAY_VALUE = 6,
without DCM
(3)
,
XC3SD1800A-0.71-0.71ns
XC3SD3400A-0.65-0.65ns
when data must be held at the
Input pin. The DCM is not in
use. The Input Delay is
programmed.
Notes:
1.The numbers in this table are tested using the methodology presented in Table 25 and are based on the operating conditions set forth in
Ta b l e 7 and Table 10.
2.This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data
Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 21. If this is true of the data Input, add the
appropriate Input adjustment from the same table.
3.This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data
Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Tab l e 21 . If this is true of the data Input, subtract
the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock’s
active edge.
4.DCM output jitter is included in all measurements.
DS610-3 (v2.0) July 16, 2007www.xilinx.com23
Product Specification
DC and Switching Characteristics
R
Table 19:
Setup and Hold Times for the IOB Input Path
SymbolDescriptionConditions
Setup Times
T
IOPICK
Time from the setup of data at
the Input pin to the active
LV CM O S 25
(2)
transition at the ICLK input of
the Input Flip-Flop (IFF). No
Input Delay is programmed.
T
IOPICKD
Time from the setup of data at
the Input pin to the active
LV CM O S 25
(2)
transition at the ICLK input of
the Input Flip-Flop (IFF). The
Input Delay is programmed.
Hold Times
T
IOICKP
Time from the active transition
at the ICLK input of the Input
LV CM O S 25
(2)
Flip-Flop (IFF) to the point
where data must be held at the
Input pin. No Input Delay is
programmed.
T
IOICKPD
Time from the active transition
at the ICLK input of the Input
LV CM O S 25
(2)
Flip-Flop (IFF) to the point
where data must be held at the
Input pin. The Input Delay is
programmed.
Set/Reset Pulse Width
T
RPW_IOB
Minimum pulse width to SR
control input on IOB
Speed Grade
IFD_DELAY_
VALUEDevice
-5-4
MinMin
0All1.361.74ns
1All1.792.17ns
2All2.552.92ns
3All3.383.76ns
4All3.754.32ns
5All3.814.19ns
6All4.395.09ns
7All5.165.98ns
8All5.696.57ns
0All-0.71-0.71ns
1All-1.60-1.60ns
2All-2.06-2.06ns
3All-2.46-2.46ns
4All-2.86-2.86ns
5All-2.88-2.88ns
6All-3.24-3.24ns
7All-3.55-3.55ns
8All-3.89-3.89ns
All1.331.61ns
Units
Notes:
1.The numbers in this table are tested using the methodology presented in Table 25 and are based on the operating conditions set forth in
Tab l e 7 and Table 10.
2.This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the
appropriate Input adjustment from Table 21.
3.These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract
the appropriate Input adjustment from Table 21. When the hold time is negative, it is possible to change the data before the clock’s active
edge.
24 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
DC and Switching Characteristics
Table 20:
Propagation Times for the IOB Input Path
Speed Grade
-5-4
SymbolDescriptionConditionsIFD_Delay_ValueDevice
MaxMax
Units
Propagation Times
T
IOPLI
The time it takes for data to
travel from the Input pin
LV CM OS 25
(2)
0All1.501.97ns
through the IFF latch to the I
output with no input delay
programmed
T
IOPLID
The time it takes for data to
travel from the Input pin
through the IFF latch to the I
output with the input delay
programmed
LV CM OS 25
(2)
1All1.932.40ns
2All2.693.15ns
3All3.523.99ns
4All3.894.55ns
5All3.954.42ns
6All4.535.32ns
7All5.306.21ns
8All5.836.80ns
Notes:
1.The numbers in this table are tested using the methodology presented in Table 25 and are based on the operating conditions set forth in
Tab l e 7 and Table 10.
2.This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is
true,
add
the appropriate Input adjustment from Table 21.
DS610-3 (v2.0) July 16, 2007www.xilinx.com25
Product Specification
DC and Switching Characteristics
R
Table 21:
Input Timing Adjustments by IOSTANDARD
Add the
Convert Input Time from
LVCMOS25 to the Following
Signal Standard
(IOSTANDARD)
Adjustment Below
Speed Grade
-5-4
Units
Single-Ended Standards
LVTTL0.620.62ns
LVCMOS330.540.54ns
LVCMOS250.000.00ns
LVCMOS180.830.83ns
LVCMOS150.600.60ns
LVCMOS120.310.31ns
PCI33_30.410.41ns
PCI66_30.410.41ns
PCIX0.410.41ns
HSTL_I0.720.72ns
HSTL_III0.770.77ns
HSTL_I_180.690.69ns
HSTL_II_180.690.69ns
HSTL_III_180.790.79ns
SSTL18_I0.710.71ns
SSTL18_II0.710.71ns
SSTL2_I0.680.68ns
SSTL2_II0.680.68ns
SSTL3_I0.780.78ns
SSTL3_II0.780.78ns
Table 21:
Input Timing Adjustments by IOSTANDARD
Add the
Convert Input Time from
LVCMOS25 to the Following
Signal Standard
(IOSTANDARD)
Adjustment Below
Speed Grade
-5-4
Units
Differential Standards
LVDS_250.760.76ns
LVDS_330.790.79ns
BLVDS_250.790.79ns
MINI_LVDS_250.780.78ns
MINI_LVDS_330.790.79ns
LVPECL_250.780.78ns
LVPECL_330.790.79ns
RSDS_250.790.79ns
RSDS_330.770.77ns
TMDS_330.790.79ns
PPDS_250.790.79ns
PPDS_330.790.79ns
DIFF_HSTL_I_180.740.74ns
DIFF_HSTL_II_180.720.72ns
DIFF_HSTL_III_181.051.05ns
DIFF_HSTL_I0.720.72ns
DIFF_HSTL_III1.051.05ns
DIFF_SSTL18_I0.710.71ns
DIFF_SSTL18_II0.710.71ns
DIFF_SSTL2_I0.740.74ns
DIFF_SSTL2_II0.750.75ns
DIFF_SSTL3_I1.061.06ns
DIFF_SSTL3_II1.061.06ns
Notes:
1.The numbers in this table are tested using the methodology
presented in Ta bl e 2 5 and are based on the operating conditions
set forth in Ta b le 7 , Table 10, and Ta b le 1 2 .
2.These adjustments are used to convert input path times originally
specified for the LVCMOS25 standard to times that correspond to
other signal standards.
26 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
DC and Switching Characteristics
Table 22:
Timing for the IOB Output Path
SymbolDescriptionConditionsDevice
Clock-to-Output Times
T
IOCKP
When reading from the Output
Flip-Flop (OFF), the time from the
LV CM OS 2 5
drive, Fast slew rate
(2)
, 12 mA output
active transition at the OCLK input to
data appearing at the Output pin
Propagation Times
T
T
IOOLP
IOOP
The time it takes for data to travel from
the IOB’s O input to the Output pin
The time it takes for data to travel from
the O input through the OFF latch to
LV CM OS 2 5
drive, Fast slew rate
(2)
, 12 mA output
the Output pin
Set/Reset Times
T
IOSRP
Time from asserting the OFF’s SR
input to setting/resetting data at the
LV CM OS 2 5
drive, Fast slew rate
(2)
, 12 mA output
Output pin
T
IOGSRQ
Time from asserting the Global Set
Reset (GSR) input on the
STARTUP_SPARTAN3A primitive to
setting/resetting data at the Output pin
Speed Grade
-5-4
MaxMax
Units
All2.873.13ns
All2.782.91ns
2.702.85ns
All3.633.89ns
8.629.65ns
Notes:
1.The numbers in this table are tested using the methodology presented in Table 25 and are based on the operating conditions set forth in
Tab l e 7 and Table 10.
2.This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data
Output. When this is true,
Table 23:
Timing for the IOB Three-State Path
add
the appropriate Output adjustment from Table 24.
Speed Grade
-5-4
SymbolDescriptionConditionsDevice
MaxMax
Units
Synchronous Output Enable/Disable Times
T
IOCKHZ
T
IOCKON
(2)
Time from the active transition at the OTCLK
input of the Three-state Flip-Flop (TFF) to when
the Output pin enters the high-impedance state
Time from the active transition at TFF’s OTCLK
input to when the Output pin drives valid data
LVCMOS25, 12 mA
output drive, Fast slew
rate
All1.131.39ns
All3.083.35ns
Asynchronous Output Enable/Disable Times
T
GTS
Time from asserting the Global Three State
(GTS) input on the STARTUP_SPARTAN3A
primitive to when the Output pin enters the
LVCMOS25, 12 mA
output drive, Fast slew
rate
All9.4710.36ns
high-impedance state
Set/Reset Times
T
IOSRHZ
T
IOSRON
(2)
Time from asserting TFF’s SR input to when
the Output pin enters a high-impedance state
Time from asserting TFF’s SR input at TFF to
when the Output pin drives valid data
LVCMOS25, 12 mA
output drive, Fast slew
rate
All1.611.86ns
All3.573.82ns
Notes:
1.The numbers in this table are tested using the methodology presented in Table 25 and are based on the operating conditions set forth in
Ta b l e 7 and Table 10.
2.This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the
data Output. When this is true,
add
the appropriate Output adjustment from Table 24.
DS610-3 (v2.0) July 16, 2007www.xilinx.com27
Product Specification
DC and Switching Characteristics
R
Table 24:
Output Timing Adjustments for IOB
Add the
Adjustment
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Below
Speed Grade
-5-4
Units
Single-Ended Standards
LVTTLSlow2 mA5.585.58ns
4 mA3.163.16ns
6 mA3.173.17ns
8 mA2.092.09ns
12 mA1.621.62ns
16 mA1.241.24ns
24 mA2.742.74ns
Fast2 mA3.033.03ns
4 mA1.711.71ns
6 mA1.711.71ns
8 mA0.530.53ns
12 mA0.530.53ns
16 mA0.590.59ns
24 mA0.600.60ns
QuietIO2 mA27.6727.67ns
4 mA27.6727.67ns
6 mA27.6727.67ns
8 mA16.7116.71ns
12 mA16.6716.67ns
16 mA16.2216.22ns
24 mA12.1112.11ns
Table 24:
Output Timing Adjustments for IOB
(Continued)
Add the
Adjustment
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Below
Speed Grade
-5-4
Units
LV CM O S 33Slow2 mA5.585.58ns
4 mA3.173.17ns
6 mA3.173.17ns
8 mA2.092.09ns
12 mA1.241.24ns
16 mA1.151.15ns
24 mA2.552.55ns
Fast2 mA3.023.02ns
4 mA1.711.71ns
6 mA1.721.72ns
8 mA0.530.53ns
12 mA0.590.59ns
16 mA0.590.59ns
24 mA0.510.51ns
QuietIO2 mA27.6727.67ns
4 mA27.6727.67ns
6 mA27.6727.67ns
8 mA16.7116.71ns
12 mA16.2916.29ns
16 mA16.1816.18ns
24 mA12.1112.11ns
28 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
DC and Switching Characteristics
Table 24:
Output Timing Adjustments for IOB
(Continued)
Add the
Adjustment
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Below
Speed Grade
-5-4
Units
LV CM O S 25Slow2 mA5.335.33ns
4 mA2.812.81ns
6 mA2.822.82ns
8 mA1.141.14ns
12 mA1.101.10ns
16 mA0.830.83ns
24 mA2.262.26ns
Fast2 mA4.364.36ns
4 mA1.761.76ns
6 mA1.251.25ns
8 mA0.380.38ns
12 mA0.000.00ns
16 mA0.010.01ns
24 mA0.010.01ns
QuietIO2 mA25.9225.92ns
4 mA25.9225.92ns
6 mA25.9225.92ns
8 mA15.5715.57ns
12 mA15.5915.59ns
16 mA14.2714.27ns
24 mA11.3711.37ns
LV CM O S 18Slow2 mA4.484.48ns
4 mA3.693.69ns
6 mA2.912.91ns
8 mA1.991.99ns
12 mA1.571.57ns
16 mA1.191.19ns
Fast2 mA3.963.96ns
4 mA2.572.57ns
6 mA1.901.90ns
8 mA1.061.06ns
12 mA0.830.83ns
16 mA0.630.63ns
QuietIO2 mA24.9724.97ns
4 mA24.9724.97ns
6 mA24.0824.08ns
8 mA16.4316.43ns
12 mA14.5214.52ns
16 mA13.4113.41ns
Table 24:
Output Timing Adjustments for IOB
(Continued)
Add the
Adjustment
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Below
Speed Grade
-5-4
Units
LV CM O S 15Slow2 mA5.825.82ns
4 mA3.973.97ns
6 mA3.213.21ns
8 mA2.532.53ns
12 mA2.062.06ns
Fast2 mA5.235.23ns
4 mA3.053.05ns
6 mA1.951.95ns
8 mA1.601.60ns
12 mA1.301.30ns
QuietIO2 mA34.1134.11ns
4 mA25.6625.66ns
6 mA24.6424.64ns
8 mA22.0622.06ns
12 mA20.6420.64ns
LV CM O S 12Slow2 mA7.147.14ns
4 mA4.874.87ns
6 mA5.675.67ns
Fast2 mA6.776.77ns
4 mA5.025.02ns
6 mA4.094.09ns
QuietIO2 mA50.7650.76ns
4 mA43.1743.17ns
6 mA37.3137.31ns
PCI33_30.340.34ns
PCI66_30.340.34ns
PCIX0.340.34ns
HSTL_I0.780.78ns
HSTL_III1.161.16ns
HSTL_I_180.350.35ns
HSTL_II_180.300.30ns
HSTL_III_180.470.47ns
SSTL18_I0.400.40ns
SSTL18_II0.300.30ns
SSTL2_I0.000.00ns
SSTL2_II-0.05-0.05ns
SSTL3_I0.000.00ns
SSTL3_II0.170.17ns
DS610-3 (v2.0) July 16, 2007www.xilinx.com29
Product Specification
DC and Switching Characteristics
R
Table 24:
Output Timing Adjustments for IOB
(Continued)
Add the
Adjustment
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Below
Speed Grade
-5-4
Units
Differential Standards
LVDS_251.161.16ns
LVDS_330.460.46ns
BLVDS_250.110.11ns
MINI_LVDS_250.750.75ns
MINI_LVDS_330.400.40ns
LVPECL_25
LVPECL_33
Inputs Only
RSDS_251.421.42ns
RSDS_330.580.58ns
TMDS_330.460.46ns
PPDS_251.071.07ns
PPDS_330.630.63ns
DIFF_HSTL_I_180.430.43ns
DIFF_HSTL_II_180.410.41ns
DIFF_HSTL_III_180.360.36ns
DIFF_HSTL_I1.011.01ns
DIFF_HSTL_III0.540.54ns
DIFF_SSTL18_I0.490.49ns
DIFF_SSTL18_II0.410.41ns
DIFF_SSTL2_I0.820.82ns
DIFF_SSTL2_II0.090.09ns
DIFF_SSTL3_I1.161.16ns
DIFF_SSTL3_II0.280.28ns
Notes:
1.The numbers in this table are tested using the methodology
presented in Table 25 and are based on the operating conditions
set forth in Table 7 , Table 10, and Table 12.
2.These adjustments are used to convert output- and
three-state-path times originally specified for the LVCMOS25
standard with 12 mA drive and Fast slew rate to times that
correspond to other signal standards. Do not adjust times that
measure when outputs go into a high-impedance state.
30 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
Timing Measurement Methodology
DC and Switching Characteristics
When measuring timing parameters at the programmable
I/Os, different signal standards call for different test
conditions. Ta bl e 2 5 lists the conditions to use for each
open connection, and V
measurement point (V
used at the Output.
is set to zero. The same
T
) that was used at the Input is also
M
standard.
V
(V
The method for measuring Input timing is as follows: A
signal that swings between a Low logic level of V
High logic level of V
is applied to the Input under test.
H
and a
L
Some standards also require the application of a bias
voltage to the V
pins of a given bank to properly set the
REF
input-switching threshold. The measurement point of the
Input signal (V
and V
.
H
) is commonly located halfway between VL
M
The Output test setup is shown in Figure 8. A termination
voltage V
is applied to the termination resistor RT, the other
T
end of which is connected to the Output. For each standard,
R
and VT generally take on the standard values
T
recommended for minimizing signal reflections. If the
T
FPGA Output
Notes:
1.The names shown in parentheses are
used in the IBIS file.
Figure 8:
Output Test Setup
)
REF
(R
R
T
V
(C
C
L
DS312-3_04_102406
REF
(V
M
REF
)
MEAS
)
)
standard does not ordinarily use terminations (for example,
LVCMOS, LVTTL), then R
Table 25:
Single-Ended
LVTTL-03.31M01.4
LV CM O S 33-03.31M01.65
LV CM O S 25-02.51M01.25
LV CM O S 18-01.81M00.9
LV CM O S 15-01.51M00.75
LV CM O S 12-01.21M00.6
PCI33_3Rising-Note 3 Note 3 2500.94
PCI66_3Rising-Note 3 Note 3 2500.94
PCIXRising-Note 3 Note 3 2500.94
HSTL_I0.75V
HSTL_III0.9V
HSTL_I_180.9V
HSTL_II_180.9V
HSTL_III_181.1V
SSTL18_I0.9V
SSTL18_II0.9V
SSTL2_I1.25V
SSTL2_II1.25V
Test Methods for Timing Measurement at I/Os
Signal Standard
(IOSTANDARD)
Falling253.32.03
Falling253.32.03
Falling253.32.03
is set to 1MΩ to indicate an
T
InputsOutputs
V
(V)VL (V)VH (V)RT (Ω)VT (V)VM (V)
REF
– 0.5V
REF
– 0.5V
REF
– 0.5V
REF
– 0.5V
REF
– 0.5V
REF
– 0.5V
REF
– 0.5V
REF
– 0.75V
REF
– 0.75V
REF
+ 0.5500.75V
REF
+ 0.5501.5V
REF
+ 0.5500.9V
REF
+ 0.5250.9V
REF
+ 0.5501.8V
REF
+ 0.5500.9V
REF
+ 0.5250.9V
REF
+ 0.75501.25V
REF
+ 0.75251.25V
REF
Inputs and
Outputs
REF
REF
REF
REF
REF
REF
REF
REF
REF
DS610-3 (v2.0) July 16, 2007www.xilinx.com31
Product Specification
DC and Switching Characteristics
R
Table 25:
SSTL3_I1.5V
SSTL3_II1.5V
Test Methods for Timing Measurement at I/Os
Signal Standard
(IOSTANDARD)
V
(V)VL (V)VH (V)RT (Ω)V
REF
InputsOutputs
– 0.75V
REF
– 0.75V
REF
(Continued)
+ 0.75501.5V
REF
+ 0.75251.5V
REF
Differential
LVDS_25-V
LVDS_33-V
BLVDS_25-V
MINI_LVDS_25-V
MINI_LVDS_33-V
LVPECL_25-V
LVPECL_33-V
RSDS_25-V
RSDS_33-V
TMDS_33-V
PPDS_25-V
PPDS_33-V
DIFF_HSTL_I_180.9V
DIFF_HSTL_II_180.9V
DIFF_HSTL_III_181.1V
DIFF_HSTL_I0.9V
DIFF_HSTL_III0.9V
DIFF_SSTL18_I0.9V
DIFF_SSTL18_II0.9V
DIFF_SSTL2_I1.25V
DIFF_SSTL2_II1.25V
DIFF_SSTL3_I1.5V
DIFF_SSTL3_II1.5V
– 0.125V
ICM
– 0.125V
ICM
– 0.125V
ICM
– 0.125V
ICM
– 0.125V
ICM
– 0.3V
ICM
– 0.3V
ICM
– 0.1V
ICM
– 0.1V
ICM
– 0.1V
ICM
– 0.1V
ICM
– 0.1V
ICM
– 0.5V
REF
– 0.5V
REF
– 0.5V
REF
– 0.5V
REF
– 0.5V
REF
– 0.5V
REF
– 0.5V
REF
– 0.5V
REF
– 0.5V
REF
– 0.5V
REF
– 0.5V
REF
+ 0.125501.2V
ICM
+ 0.125501.2V
ICM
+ 0.1251M 0V
ICM
+ 0.125501.2V
ICM
+ 0.125501.2V
ICM
+ 0.3N/AN/AV
ICM
+ 0.3N/AN/AV
ICM
+ 0.1501.2V
ICM
+ 0.1501.2V
ICM
+ 0.1503.3V
ICM
+ 0.1500.8V
ICM
+ 0.1500.8V
ICM
+ 0.5500.9V
REF
+ 0.5500.9V
REF
+ 0.5501.8V
REF
+ 0.5500.9V
REF
+ 0.5500.9V
REF
+ 0.5500.9V
REF
+ 0.5500.9V
REF
+ 0.5501.25V
REF
+ 0.5501.25V
REF
+ 0.5501.5V
REF
+ 0.5501.5V
REF
Notes:
1.Descriptions of the relevant symbols are as follows:
V
– The reference voltage for setting the input switching threshold
REF
– The common mode input voltage
V
ICM
V
– Voltage of measurement point on signal transition
M
– Low-level test voltage at Input pin
V
L
V
– High-level test voltage at Input pin
H
– Effective termination resistance, which takes on a value of 1 MΩ when no parallel termination is required
R
T
V
– Termination voltage
T
2.The load capacitance (C
) at the Output pin is 0 pF for all signal standards.
L
3.According to the PCI specification.
Inputs and
Outputs
(V)VM (V)
T
REF
REF
ICM
ICM
ICM
ICM
ICM
ICM
ICM
ICM
ICM
ICM
ICM
ICM
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
The capacitive load (CL) is connected between the output
and GND.
The Output timing for all standards, as published
from those measurements to produce the final timing
numbers as published in the speed files and data sheet.
in the speed files and the data sheet, is always based on a
C
value of zero.
L
High-impedance probes (less than 1 pF)
are used for all measurements. Any delay that the test
fixture might contribute to test measurements is subtracted
32 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
Using IBIS Models to Simulate Load Conditions in Application
DC and Switching Characteristics
IBIS models permit the most accurate prediction of timing
delays for a given application. The parameters found in the
IBIS model (V
with the parameters used in Tabl e 2 5 (V
not confuse V
model with V
table. A fourth parameter, C
, R
REF
REF
REF
, and V
REF
(the termination voltage) from the IBIS
(the input-switching threshold) from the
REF
) correspond directly
MEAS
, RT, and VM). Do
T
, is always zero. The four
parameters describe all relevant output test conditions. IBIS
models are found in the Xilinx development software as well
as at the following link:
Delays for a given application are simulated according to its
specific load conditions as follows:
1. Simulate the desired signal standard with the output
driver connected to the test setup shown in Figure 8.
Simultaneously Switching Output Guidelines
This section provides guidelines for the recommended
maximum allowable number of Simultaneous Switching
Outputs (SSOs). These guidelines describe the maximum
number of user I/O pins of a given output signal standard
that should simultaneously switch in the same direction,
while maintaining a safe level of switching noise. Meeting
these guidelines for the stated test conditions ensures that
the FPGA operates free from the adverse effects of ground
and power bounce.
Ground or power bounce occurs when a large number of
outputs simultaneously switch in the same direction. The
output drive transistors all conduct current to a common
voltage rail. Low-to-High transitions conduct to the V
rail; High-to-Low transitions conduct to the GND rail. The
resulting cumulative current transient induces a voltage
difference across the inductance that exists between the die
pad and the power supply or ground return. The inductance
is associated with bonding wires, the package lead frame,
and any other signal routing inside the package. Other
variables contribute to SSO noise levels, including stray
inductance on the PCB as well as capacitive loading at
receivers. Any SSO-induced voltage consequently affects
internal switching noise margins and ultimately signal
quality.
CCO
Use parameter values V
C
is zero.
REF
2. Record the time to V
, RT, and VM from Ta bl e 2 5.
T
.
M
3. Simulate the same signal standard with the output
driver connected to the PCB trace with load. Use the
appropriate IBIS model (including V
and V
values) or capacitive value to represent the
MEAS
REF
, R
REF
, C
REF
,
load.
4. Record the time to V
MEAS
.
5. Compare the results of steps 2 and 4. Add (or subtract)
the increase (or decrease) in delay to (or from) the
appropriate Output standard adjustment (Table 24) to
yield the worst-case delay of the PCB trace.
Generally, the left and right I/O banks (Banks 1 and 3)
support higher output drive current.
Multiply the appropriate numbers from Ta b l e 2 6 and
Tab le 2 7 to calculate the maximum number of SSOs
allowed within an I/O bank. Exceeding these SSO
guidelines might result in increased power or ground
bounce, degraded signal integrity, or increased system jitter.
SSO
/IO Bank = Table 26 x Ta bl e 2 7
MAX
The recommended maximum SSO values assumes that the
FPGA is soldered on the printed circuit board and that the
board uses sound design practices. The SSO values do not
apply for FPGAs mounted in sockets, due to the lead
inductance introduced by the socket.
Table 26:
XC3SD1800A69
XC3SD3400A610
Equivalent V
Device
/GND Pairs per Bank
CCO
Package Style
CS484FG676
(including Pb-free)
Tab le 2 6 and Ta b l e 2 7 provide the essential SSO
guidelines. For each device/package combination, Ta b l e 26
provides the number of equivalent V
/GND pairs. For
CCO
each output signal standard and drive strength, Table 27
recommends the maximum number of SSOs, switching in
the same direction, allowed per V
/GND pair within an
CCO
I/O bank. The guidelines in Ta bl e 2 7 are categorized by
package style, slew rate, and output drive current.
Furthermore, the number of SSOs is specified by I/O bank.
DS610-3 (v2.0) July 16, 2007www.xilinx.com33
Product Specification
DC and Switching Characteristics
R
Table 27:
Switching Outputs per V
Recommended Number of Simultaneously
CCO
Signal Standard
(IOSTANDARD)
Single-Ended Standards
LV TT LSl ow2
Fast2
QuietIO2
LVCMOS33Slow2
Fast2
QuietIO2
-GND Pair (V
Top, Bottom
(Banks 0,2)
4
6
8
12
16
24
4
6
8
12
16
24
4
6
8
12
16
24
4
6
8
12
16
24
4
6
8
12
16
24
4
6
8
12
16
24
=3.3V)
CCAUX
Package Type
CS484, FG676
Left, Right
(Banks 1,3)
6060
4141
2929
2222
1313
1111
99
1010
66
55
33
33
33
22
8080
4848
3636
2727
1616
1313
1212
7676
4646
2727
2020
1313
1010
–9
1010
88
55
44
44
22
–2
7676
4646
3232
2626
1818
1414
–10
Table 27:
Switching Outputs per V
Recommended Number of Simultaneously
CCO
Signal Standard
(IOSTANDARD)
LVCMOS25Slow2
Fast2
QuietIO2
LVCMOS18Slow2
Fast2
QuietIO2
-GND Pair (V
Top, Bottom
(Banks 0,2)
4
6
8
12
16
24
4
6
8
12
16
24
4
6
8
12
16
24
4
6
8
12
16
4
6
8
12
16
4
6
8
12
16
=3.3V)
CCAUX
Package Type
CS484, FG676
Left, Right
(Banks 1,3)
7676
4646
3333
2424
1818
–11
–7
1818
1414
66
66
33
–3
–2
7676
6060
4848
3636
3636
–36
–8
6464
3434
2222
1818
–13
–10
1818
99
77
44
–4
–3
6464
6464
4848
3636
–36
–24
34 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
DC and Switching Characteristics
Table 27:
Switching Outputs per V
Recommended Number of Simultaneously
-GND Pair (V
CCO
CCAUX
=3.3V)
Package Type
CS484, FG676
Signal Standard
(IOSTANDARD)
LVCMOS15Slow2
Fast2
QuietIO2
LVCMOS12Slow2
Fast2
QuietIO2
PCI33_3
PCI66_3
PCIX
HSTL_I
HSTL_III
HSTL_I_18
HSTL_II_18
HSTL_III_18
SSTL18_I
SSTL18_II
SSTL2_I
SSTL2_II
SSTL3_I
SSTL3_II
Top, Bottom
4
6
8
12
4
6
8
12
4
6
8
12
4
6
4
6
4
6
(Banks 0,2)
5555
3131
1818
–15
–10
2525
1010
66
–4
–3
7070
4040
3131
–31
–20
4040
–25
–18
3131
–13
–9
5555
–36
–36
1616
–13
–11
–20
–8
1717
–5
108
715
–3
1818
–9
810
67
Left, Right
(Banks 1,3)
Differential Standards (Number of I/O Pairs or Channels)
LV DS _ 25
LV DS _ 33
BLVDS_25
MINI_LVDS_25
MINI_LVDS_33
LVPECL_25
22
27
–
–
44
22
27
Inputs Only
–
–
Table 27:
Switching Outputs per V
Recommended Number of Simultaneously
-GND Pair (V
CCO
CCAUX
=3.3V)
Package Type
CS484, FG676
Signal Standard
(IOSTANDARD)
LVPECL_33
RSDS_25
RSDS_33
TMDS_33
PPDS_25
PPDS_33
DIFF_HSTL_I_18
DIFF_HSTL_II_18
DIFF_HSTL_III_18
DIFF_HSTL_I
DIFF_HSTL_III
DIFF_SSTL18_I
DIFF_SSTL18_II
DIFF_SSTL2_I
DIFF_SSTL2_II
DIFF_SSTL3_I
DIFF_SSTL3_II
Top, Bottom
(Banks 0,2)
22
27
27
22
27
88
–2
54
–10
–4
37
–1
99
–4
45
33
Left, Right
(Banks 1,3)
Inputs Only
–
–
–
–
–
Notes:
1.Not all I/O standards are supported on all I/O banks. The left and
right banks (I/O banks 1 and 3) support higher output drive
current than the top and bottom banks (I/O banks 0 and 2).
Similarly, true differential output standards, such as LVDS,
RSDS, PPDS, miniLVDS, and TMDS, are only supported in top
or bottom banks (I/O banks 0 and 2). Refer to UG331
Generation FPGA User Guide
2.The numbers in this table are recommendations that assume
sound board lay out practice. This table assumes the following
parasitic factors: combined PCB trace and land inductance per
V
and GND pin of 1.0 nH, receiver capacitive load of 15 pF.
CCO
Test limits are the V
standard.
3.If more than one signal standard is assigned to the I/Os of a given
bank, refer to XAPP689
for information on how to perform weighted average SSO
FPGAs
calculations.
IL/VIH
for additional information.
voltage limits for the respective I/O
:
Managing Ground Bounce in Large
:
Spartan-3
DS610-3 (v2.0) July 16, 2007www.xilinx.com35
Product Specification
DC and Switching Characteristics
Configurable Logic Block (CLB) Timing
R
Table 28:
CLB (SLICEM) Timing
SymbolDescription
Clock-to-Output Times
T
CKO
When reading from the FFX (FFY) Flip-Flop, the time
from the active transition at the CLK input to data
appearing at the XQ (YQ) output
Setup Times
T
T
AS
DICK
Time from the setup of data at the F or G input to the
active transition at the CLK input of the CLB
Time from the setup of data at the BX or BY input to
the active transition at the CLK input of the CLB
Hold Times
T
T
AH
CKDI
Time from the active transition at the CLK input to the
point where data is last held at the F or G input
Time from the active transition at the CLK input to the
point where data is last held at the BX or BY input
Clock Timing
T
T
F
CH
CL
TOG
The High pulse width of the CLB’s CLK signal0.63–0.75–ns
The Low pulse width of the CLK signal0.63–0.75–ns
Toggle frequency (for export control)07700667MHz
Propagation Times
T
ILO
The time it takes for data to travel from the CLB’s F
(G) input to the X (Y) output
Set/Reset Pulse Width
T
RPW_CLB
The minimum allowable pulse width, High or Low, to
the CLB’s SR input
Speed Grade
-5-4
MinMaxMinMax
Units
–0.60–0.68ns
0.18–0.36–ns
1.58–1.88–ns
0.00–0.00–ns
0.00–0.00–ns
–0.62–0.71ns
1.33–1.61–ns
Notes:
1.The numbers in this table are based on the operating conditions set forth in Ta b l e 7 .
36 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
DC and Switching Characteristics
Table 29:
CLB Distributed RAM Switching Characteristics
SymbolDescription
Clock-to-Output Times
T
SHCKO
Time from the active edge at the CLK input to data appearing on
the distributed RAM output
Setup Times
T
DS
T
AS
T
WS
Setup time of data at the BX or BY input before the active
transition at the CLK input of the distributed RAM
Setup time of the F/G address inputs before the active transition
at the CLK input of the distributed RAM
Setup time of the write enable input before the active transition at
the CLK input of the distributed RAM
Hold Times
T
DH
T
AH, TWH
Hold time of the BX and BY data inputs after the active transition
at the CLK input of the distributed RAM
Hold time of the F/G address inputs or the write enable input after
the active transition at the CLK input of the distributed RAM
Clock Pulse Width
T
WPH
, T
WPL
Minimum High or Low pulse width at CLK input0.88-1.01-ns
Speed Grade
-5-4
MinMaxMinMax
Units
-1.44-1.72ns
-0.07--0.02-ns
0.18-0.36-ns
0.30-0.59-ns
0.13-0.13-ns
0.01-0.01-ns
Table 30:
CLB Shift Register Switching Characteristics
SymbolDescription
Clock-to-Output Times
T
REG
Time from the active edge at the CLK input to data appearing on
the shift register output
Setup Times
T
SRLDS
Setup time of data at the BX or BY input before the active
transition at the CLK input of the shift register
Hold Times
T
SRLDH
Hold time of the BX or BY data input after the active transition at
the CLK input of the shift register
Clock Pulse Width
T
WPH
, T
WPL
Minimum High or Low pulse width at CLK input0.90-1.01-ns
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to
O-output delay
Global clock multiplexer (BUFGMUX) select S-input setup to I0 and
I1 inputs. Same as BUFGCE enable CE-input
Frequency of signals distributed on global buffers (all sides)F
Clock Distribution Switching Characteristics
DescriptionSymbolMinimum
T
GIO
T
GSI
BUFG
-5-4
UnitsMinMaxMinMax
-4.11-4.82ns
0.13-0.18-ns
0.16-0.15-ns
Maximum
Speed Grade
-5-4
Units
-0.220.23ns
-0.560.63ns
0350333MHz
DS610-3 (v2.0) July 16, 2007www.xilinx.com37
Product Specification
DC and Switching Characteristics
Block RAM Timing
R
Table 32:
Block RAM Timing
SymbolDescription
Clock-to-Output Times
T
RCKO_DOA_NC
When reading from block RAM, the delay from the active
transition at the CLK input to data appearing at the DOUT
output
T
RCKO_DOA
Clock CLK to DOUT output (with output register)
Setup Times
T
RCCK_ADDR
T
RDCK_DIB
T
RCCK_ENB
T
RCCK_WEB
T
RCCK_REGCE
Setup time for the ADDR inputs before the active transition
at the CLK input of the block RAM
Setup time for data at the DIN inputs before the active
transition at the CLK input of the block RAM
Setup time for the EN input before the active transition at the
CLK input of the block RAM
Setup time for the WE input before the active transition at the
CLK input of the block RAM
Setup time for the CE input before the active transition at the
CLK input of the block RAM
T
RCCK_RST
Setup time for the RST input before the active transition at
the CLK input of the block
Hold Times
T
RCKC_ADDR
T
RDCK_DIB
T
RCKC_ENB
T
RCKC_WEB
T
RCKC_REGCE
Hold time on the ADDR inputs after the active transition at
the CLK input
Hold time on the DIN inputs after the active transition at the
CLK input
Hold time on the EN input after the active transition at the
CLK input
Hold time on the WE input after the active transition at the
CLK input
Hold time on the CE input after the active transition at the
CLK input
T
RCKC_RST
Hold time on the RST input after the active transition at the
CLK input
Clock Timing
T
BPWH
T
BPWL
High pulse width of the CLK signal1.56-1.79-ns
Low pulse width of the CLK signal1.56-1.79-ns
Clock Frequency
F
BRAM
Block RAM clock frequency.03200280MHz
Notes:
1.The numbers in this table are based on the operating conditions set forth in Ta b l e 7 .
Speed Grade
-5-4
MinMaxMinMax
Units
-2.38-2.80ns
-1.24-1.45ns
0.40-0.46-ns
0.29-0.33-ns
0.51-0.60-ns
0.64-0.75-ns
0.34
0.22
-0.40-ns
-0.25-ns
0.09-0.10-ns
0.09-0.10-ns
0.09-0.10-ns
0.09-0.10-ns
0.09
0.09
-0.10-ns
-0.10-ns
38 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
DSP48A Timing
DC and Switching Characteristics
To reference the DSP48A block diagram, see the
Table 33:
Setup Times for the DSP48A
XtremeDSP DSP48A for Spartan-3A DSP FPGA User Guide
SymbolDescriptionPreadderMultiplierPostadder
Setup Times of Data/Control Pins to the Input Register Clock
T
DSPDCK_AA
T
DSPDCK_DB
T
DSPDCK_CC
T
DSPDCK_DD
T
DSPDCK_OPB
T
DSPDCK_OPOP
A input to A register CLK--- 0.04 0.04ns
D input to B register CLKYes-- 1.64 1.88ns
C input to C register CLK--- 0.05 0.05ns
D input to D register CLK--- 0.04 0.04ns
OPMODE input to B register CLKYes-- 0.37 0.42ns
OPMODE input to OPMODE register CLK--- 0.06 0.06ns
Setup Times of Data Pins to the Pipeline Register Clock
T
DSPDCK_AM
T
DSPDCK_BM
A input to M register CLK-Yes- 3.30 3.79ns
B input to M register CLKYesYes- 4.33 4.97ns
NoYes
T
DSPDCK_DM
T
DSPDCK_OPM
D input to M register CLKYesYes- 4.41 5.06ns
OPMODE to M register CLKYesYes- 4.72 5.42ns
Setup Times of Data/Control Pins to the Output Register Clock
T
DSPDCK_AP
T
DSPDCK_BP
A input to P register CLK-YesYes 4.78 5.49ns
B input to P register CLKYesYesYes 5.87 6.74ns
NoYesYes 4.77 5.48ns
T
DSPDCK_DP
T
DSPDCK_CP
T
DSPDCK_OPP
D input to P register CLKYesYesYes 5.95 6.83ns
C input to P register CLK--Yes 1.90 2.18ns
OPMODE input to P register CLKYesYesYes 6.25 7.18ns
(UG431).
Speed Grade
-5-4
MinMin
- 3.30 3.79ns
Units
DS610-3 (v2.0) July 16, 2007www.xilinx.com39
Product Specification
DC and Switching Characteristics
R
Table 34:
Clock to Out, Propagation Delays, and Maximum Frequency for the DSP48A
SymbolDescriptionPreadderMultiplierPostadder
Clock to Out from Output Register Clock to Output Pin
T
DSPCKO_PP
CLK (PREG) to P output---1.261.44ns
Clock to Out from Pipeline Register Clock to Output Pins
T
DSPCKO_PM
CLK (MREG) to P output-YesYes3.163.63ns
-YesNo1.942.23ns
Clock to Out from Input Register Clock to Output Pins
T
DSPCKO_PA
T
DSPCKO_PB
T
DSPCKO_PC
T
DSPCKO_PD
CLK (AREG) to P output-YesYes6.337.27ns
CLK (BREG) to P outputYesYesYes7.458.56ns
CLK (CREG) to P output--Yes3.373.87ns
CLK (DREG) to P outputYesYesYes7.338.42ns
Combinatorial Delays from Input Pins to Output Pins
T
DSPDO_AP
T
DSPDO_BP
A or B input to P output-NoYes2.783.19ns
-YesNo4.595.28ns
-YesYes5.656.49ns
T
DSPDO_BP
B input to P outputYesNoNo3.494.01ns
YesYesNo5.796.65ns
Ye sYe sYe s6 . 7 47 . 7 4n s
T
DSPDO_CP
T
DSPDO_DP
T
DSPDO_OPP
C input to P output--Yes2.763.17ns
D input to P outputYesYesYes6.817.82ns
OPMODE input to P outputYesYesYes7.128.18ns
Maximum Frequency
F
MAX
All registers usedYesYesYes287250MHz
A1REG or B1REG to PREG
-YesNo246214MHz
-YesYes195170MHz
DREG, A0REG, or B0REG to MREGYesYes
Speed Grade
-5-4
MaxMax
Units
-205178MHz
40 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
Digital Clock Manager (DCM) Timing
DC and Switching Characteristics
For specification purposes, the DCM consists of three key
components: the Delay-Locked Loop (DLL), the Digital
Frequency Synthesizer (DFS), and the Phase Shifter (PS).
Aspects of DLL operation play a role in all DCM
applications. All such applications inevitably use the CLKIN
and the CLKFB inputs connected to either the CLK0 or the
CLK2X feedback, respectively. Thus, specifications in the
DLL tables (Tab l e 3 5 and Ta bl e 3 6 ) apply to any application
that only employs the DLL component. When the DFS
and/or the PS components are used together with the DLL,
then the specifications listed in the DFS and PS tables
(Ta b l e 3 7 through Ta b l e 4 0 ) supersede any corresponding
ones in the DLL tables. DLL specifications that do not
change with the addition of DFS or PS functions are
presented in Ta bl e 3 5 and Ta b l e 3 6 .
Period jitter and cycle-cycle jitter are two of many different
ways of specifying clock jitter. Both specifications describe
statistical variation from a mean value.
Period jitter is the worst-case deviation from the ideal clock
period over a collection of millions of samples. In a
histogram of period jitter, the mean value is the clock period.
Cycle-cycle jitter is the worst-case difference in clock period
between adjacent clock cycles in the collection of clock
periods sampled. In a histogram of cycle-cycle jitter, the
mean value is zero.
Delay-Locked Loop (DLL)
Table 35:
Input Frequency Ranges
F
CLKIN
Input Pulse Requirements
CLKIN_PULSECLKIN pulse width as a
Input Clock Jitter Tolerance and Delay Path Variation
CLKIN_CYC_JITT_DLL_LFCycle-to-cycle jitter at the
CLKIN_CYC_JITT_DLL_HFF
CLKIN_PER_JITT_DLL Period jitter at the CLKIN input
CLKFB_DELAY_VAR_EXTAllowable variation of off-chip feedback delay from
Recommended Operating Conditions for the DLL
SymbolDescription
CLKIN_FREQ_DLLFrequency of the CLKIN clock input5
F
< 150 MHz40%60%40%60%percentage of the CLKIN
period
(4)
CLKIN input
the DCM output to the CLKFB input
CLKIN
F
> 150 MHz45%55%45%55%-
CLKIN
F
< 150 MHz-±300-±300ps
CLKIN
> 150 MHz-±150-±150ps
CLKIN
Speed Grade
-5-4
(3)
Units
MHz
MinMaxMinMax
(2)
-±1-±1ns
-±1-±1ns
280
(3)
(2)
5
250
Notes:
1.DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.
2.The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Ta b l e 3 7 .
3.To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming
clock period by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.
4.CLKIN input jitter beyond these limits might cause the DCM to lose lock.
5.The DCM specifications are guaranteed when both adjacent DCMs are locked
DS610-3 (v2.0) July 16, 2007www.xilinx.com41
Product Specification
DC and Switching Characteristics
R
Table 36:
Switching Characteristics for the DLL
Speed Grade
-5-4
SymbolDescriptionDevice
MinMaxMinMax
Units
Output Frequency Ranges
CLKOUT_FREQ_CLK0Frequency for the CLK0 and CLK180 outputsAll52805250MHz
CLKOUT_FREQ_CLK90Frequency for the CLK90 and CLK270 outputs52005200MHz
CLKOUT_FREQ_2XFrequency for the CLK2X and CLK2X180 outputs1033410334MHz
CLKOUT_FREQ_DVFrequency for the CLKDV output0.31251860.3125166MHz
Output Clock Jitter
(2,3,4)
CLKOUT_PER_JITT_0Period jitter at the CLK0 outputAll-±100-±100ps
CLKOUT_PER_JITT_90Period jitter at the CLK90 output
CLKOUT_PER_JITT_180Period jitter at the CLK180 output
CLKOUT_PER_JITT_270Period jitter at the CLK270 output
CLKOUT_PER_JITT_2XPeriod jitter at the CLK2X and CLK2X180 outputs
CLKOUT_PER_JITT_DV1Period jitter at the CLKDV output when performing integer
division
CLKOUT_PER_JITT_DV2Period jitter at the CLKDV output when performing non-integer
division
Duty Cycle
(4)
CLKOUT_DUTY_CYCLE_DLL Duty cycle variation for the CLK0, CLK90, CLK180, CLK270,
CLK2X, CLK2X180, and CLKDV outputs, including the
BUFGMUX and clock tree duty-cycle distortion
Phase Alignment
(4)
All
-±150-±150ps
-±150-±150ps
-±150-±150ps
-±[0.5%
of CLKIN
period
+ 100]
-±[0.5%
of CLKIN
period
+ 100]
-±150-±150ps
-±[0.5%
of CLKIN
period
+ 100]
-±[1% of
CLKIN
period
+ 350]
-±[0.5%
of CLKIN
period
+ 100]
-±[1% of
CLKIN
period
+ 350]
CLKIN_CLKFB_PHASEPhase offset between the CLKIN and CLKFB inputsAll-±150-±150ps
CLKOUT_PHASE_DLLPhase offset between DLL outputs
CLK0 to CLK2X
(not CLK2X180)
All others
-±[1% of
CLKIN
period
+ 100]
-±[1% of
CLKIN
period
+ 150]
-±[1% of
CLKIN
period
+ 100]
-±[1% of
CLKIN
period
+ 150]
Lock Time
LOCK_DLL
(3)
When using the DLL alone: The
time from deassertion at the DCM’s
Reset input to the rising transition
at its LOCKED output. When the
5 MHz <
F
CLKIN
F
< 15 MHzAll-5-5ms
CLKIN
> 15 MHz-600-600μs
DCM is locked, the CLKIN and
CLKFB signals are in phase
Delay Lines
DCM_DELAY_STEP
(5)
Finest delay resolution, averaged over all stepsAll15351535ps
ps
ps
ps
ps
ps
Notes:
1.The numbers in this table are based on the operating conditions set forth in Ta b l e 7 and Table 35.
2.Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.
3.For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
4.Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, the data sheet specifies a maximum jitter of “±[1%
of CLKIN period + 150]”. Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps.
According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250 ps
5.The typical delay step size is 23 ps.
, averaged over all steps.
42 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
DC and Switching Characteristics
Digital Frequency Synthesizer (DFS)
Table 37:
Input Frequency Ranges
F
CLKIN
Input Clock Jitter Tolerance
CLKIN_CYC_JITT_FX_LFCycle-to-cycle jitter at the CLKIN
CLKIN_CYC_JITT_FX_HFF
CLKIN_PER_JITT_FXPeriod jitter at the CLKIN input
Notes:
1.DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.
2.If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 35.
3.CLKIN input jitter beyond these limits may cause the DCM to lose lock.
4.The DCM specifications are guaranteed when both adjacent DCMs are locked
Recommended Operating Conditions for the DFS
Speed Grade
-5-4
SymbolDescription
(2)
CLKIN_FREQ_FXFrequency for the CLKIN input0.23330.2333MHz
(3)
F
< 150 MHz-±300-±300ps
input, based on CLKFX output
frequency
CLKFX
> 150 MHz-±150-±150ps
CLKFX
MinMaxMinMax
-±1-±1ns
Units
Table 38:
Output Frequency Ranges
CLKOUT_FREQ_FX
Output Clock Jitter
CLKOUT_PER_JITT_FXPeriod jitter at the CLKFX and CLKFX180
Switching Characteristics for the DFS
SymbolDescriptionDevice
(2)
(3,4)
Frequency for the CLKFX and CLKFX180 outputsAll53505311MHz
outputs.
CLKIN
≤ 20 MHz
AllTypMaxTypMax
Speed Grade
-5-4
MinMaxMinMax
Use the Spartan-3A Jitter Calculator:
www.xilinx.com/bvdocs/publications/
Units
ps
s3a_jitter_calc.zip
CLKIN
> 20 MHz
Duty Cycle
CLKOUT_DUTY_CYCLE_FX Duty cycle precision for the CLKFX and CLKFX180 outputs,
Phase Alignment
CLKOUT_PHASE_FXPhase offset between the DFS CLKFX output and the DLL CLK0
CLKOUT_PHASE_FX180Phase offset between the DFS CLKFX180 output and the DLL
Lock Time
LOCK_FX
Notes:
1.The numbers in this table are based on the operating conditions set forth in Ta b l e 7 and Table 37.
2.DFS performance requires the additional logic automatically added by ISE 9.1i and later software revisions.
3.For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
4.Maximum output jitter is characterized within a reasonable noise environment (40 SSOs and 25% CLB switching) on an FPGA. Output jitter strongly
5.The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.
6.Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data sheet specifies a maximum
(5,6)
including the BUFGMUX and clock tree duty-cycle distortion
(6)
output when both the DFS and DLL are used
CLK0 output when both the DFS and DLL are used
(2,3)
depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency,
power supply and PCB design. The actual maximum output jitter depends on the system application.
CLKFX jitter of “±[1% of CLKFX period + 200]”. Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of
10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 200 ps] = ±300 ps.
The time from deassertion at the DCM’s
Reset input to the rising transition at its
LOCKED output. The DFS asserts LOCKED
when the CLKFX and CLKFX180 signals are
valid. If using both the DLL and the DFS, use
the longer locking time.
F
5 MHz <
<
15 MHz
F
> 15 MHz-450-450μs
CLKIN
CLKIN
±[1% of
CLKFX
period
+ 100]
All-±[1% of
All-±200-±200ps
All-±[1% of
All
±[1% of
CLKFX
period
+ 200]
CLKFX
period
+ 350]
CLKFX
period
+ 200]
-5-5ms
±[1% of
CLKFX
period
+ 100]
-±[1% of
-±[1% of
±[1% of
CLKFX
period
+ 200]
CLKFX
period
+ 350]
CLKFX
period
+ 200]
ps
ps
ps
DS610-3 (v2.0) July 16, 2007www.xilinx.com43
Product Specification
DC and Switching Characteristics
Phase Shifter (PS)
Table 39:
Operating Frequency Ranges
PSCLK_FREQ
(F
PSCLK
Input Pulse Requirements
PSCLK_PULSEPSCLK pulse width as a percentage of the PSCLK period 40%60%40%60%
Recommended Operating Conditions for the PS in Variable Phase Mode
SymbolDescription
Frequency for the PSCLK input11671167MHz
)
Speed Grade
-5-4
MinMaxMinMax
R
Units
-
Table 40:
Switching Characteristics for the PS in Variable Phase Mode
SymbolDescriptionPhase Shift AmountUnits
Phase Shifting Range
MAX_STEPS
(2)
Maximum allowed number of
DCM_DELAY_STEP steps for a given
CLKIN clock period, where T = CLKIN
clock period in ns. If using
CLKIN < 60 MHz
≥ 60 MHz
CLKIN
±[INTEGER(10 • (T
±[INTEGER(15 • (T
– 3 ns))]steps
CLKIN
– 3 ns))]
CLKIN
CLKIN_DIVIDE_BY_2 = TRUE,
double the clock effective clock
period.
FINE_SHIFT_RANGE_MINMinimum guaranteed delay for variable phase shifting±[MAX_STEPS •
ns
DCM_DELAY_STEP_MIN]
FINE_SHIFT_RANGE_MAXMaximum guaranteed delay for variable phase shifting±[MAX_STEPS •
ns
DCM_DELAY_STEP_MAX]
Notes:
1.The numbers in this table are based on the operating conditions set forth in Tab l e 7 and Table 39.
2.The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, that is, the
PHASE_SHIFT attribute is set to 0.
3.The DCM_DELAY_STEP values are provided at the bottom of Tab l e 3 6 .
Miscellaneous DCM Timing
Table 41:
DCM_RST_PW_MINMinimum duration of a RST pulse width3
Miscellaneous DCM Timing
SymbolDescriptionMinMaxUnits
-CLKIN
cycles
44 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
DC and Switching Characteristics
DNA Port Timing
Table 42:
T
Notes:
1.The minimum READ pulse width is 5 ns, and the maximum READ pulse width is 10 μs.
DNA_PORT Interface Timing
SymbolDescriptionMinMaxUnits
T
DNASSU
T
DNASH
T
DNADSU
T
DNADH
T
DNARSU
T
DNARH
DNADCKO
T
DNACLKF
T
DNACLKL
T
DNACLKH
Setup time on SHIFT before the rising edge of CLK1.0–ns
Hold time on SHIFT after the rising edge of CLK0.5–ns
Setup time on DIN before the rising edge of CLK1.0–ns
Hold time on DIN after the rising edge of CLK0.5–ns
Setup time on READ before the rising edge of CLK5.010,000ns
Hold time on READ after the rising edge of CLK0.0–ns
Clock-to-output delay on DOUT after rising edge of CLK0.51.5ns
CLK frequency0.0100MHz
CLK High time1.0∞ns
CLK Low time1.0∞ns
DS610-3 (v2.0) July 16, 2007www.xilinx.com45
Product Specification
DC and Switching Characteristics
Suspend Mode Timing
R
SUSPEND Input
AWAKE Output
Flip-Flops, Block RAM,
Distributed RAM
FPGA Outputs
FPGA Inputs,
Interconnect
Table 43:
Suspend Mode Timing Parameters
SymbolDescriptionMinTypMax Units
Entering Suspend Mode
Entering Suspend ModeExiting Suspend Mode
sw_gwe_cycle
sw_gts_cycle
t
SUSPENDHIGH_AWAKE
t
SUSPEND_GWE
t
SUSPENDLOW_AWAKE
Write Protected
t
SUSPEND_GTS
Defined by SUSPEND constraint
t
SUSPEND_DISABLE
t
SUSPEND_ENABLE
Blocked
Figure 9:
Suspend Mode Timing
t
AWAKE_GWE
t
AWAKE_GTS
DS610-3_08_061207
T
SUSPENDHIGH_AWAKE
T
SUSPENDFILTER
T
SUSPEND_GWE
T
SUSPEND_GTS
T
SUSPEND_DISABLE
Exiting Suspend Mode
T
SUSPENDLOW_AWAKE
T
SUSPEND_ENABLE
T
AWAKE_GWE1
T
AWAKE_GWE512
T
AWAKE_GTS1
T
AWAKE_GTS512
Rising edge of SUSPEND pin to falling edge of AWAKE pin without glitch filter
(
suspend_filter:No
)
Adjustment to SUSPEND pin rising edge parameters when glitch filter
enabled (
suspend_filter:Yes
)
Rising edge of SUSPEND pin until FPGA output pins drive their defined
SUSPEND constraint behavior
Rising edge of SUSPEND pin to write-protect lock on all writable clocked
elements
Rising edge of the SUSPEND pin to FPGA input pins and interconnect
disabled
Falling edge of the SUSPEND pin to rising edge of the AWAKE pin. Does not
include DCM lock time.
Falling edge of the SUSPEND pin to FPGA input pins and interconnect
re-enabled
Rising edge of the AWAKE pin until write-protect lock released on all writable
clocked elements, using
sw_clk:InternalClock
and
sw_gwe_cycle:1
.
Rising edge of the AWAKE pin until write-protect lock released on all writable
clocked elements, using
sw_clk:InternalClock
and
sw_gwe_cycle:512
.
Rising edge of the AWAKE pin until outputs return to the behavior described
in the FPGA application, using
sw_clk:InternalClock
and
sw_gts_cycle:1
Rising edge of the AWAKE pin until outputs return to the behavior described
in the FPGA application, using
sw_gts_cycle:512
.
sw_clk:InternalClock
and
–7–ns
+160+300+600ns
–10–ns
–<5–ns
–340–ns
–4 to 108–μs
–3.7 to 109–μs
–67–ns
–14–μs
–57–ns
.
–14–μs
Notes:
1.These parameters based on characterization.
:
2.For information on using the Spartan-3A DSP Suspend feature, see XAPP480
Using Suspend Mode in Spartan-3 Generation FPGAs
.
46 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
Configuration and JTAG Timing
General Configuration Power-On/Reconfigure Timing
DC and Switching Characteristics
V
V
CCO
CCINT
(Supply)
V
CCAUX
(Supply)
Bank 2
(Supply)
1.0V
2.0V
1.0V
T
POR
PROG_B
(Input)
T
PL
INIT_B
T
PROG
(Open-Drain)
CCLK
(Output)
Notes:
1.The V
CCINT
, V
CCAUX
, and V
supplies can be applied in any order.
CCO
2.The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle.
3.The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2).
Table 44:
Figure 10:
Power-On Timing and the Beginning of Configuration
Waveforms for Power-On and the Beginning of Configuration
SymbolDescriptionDevice
T
POR
(2)
The time from the application of V
Bank 2 supply voltage ramps (whichever occurs last) to the
CCINT
, V
CCAUX
, and V
CCO
rising transition of the INIT_B pin
T
PROG
T
PL
T
INIT
T
ICCK
(2)
(3)
The width of the low-going pulse on the PROG_B pinAll0.5-μs
The time from the rising edge of the PROG_B pin to the
rising transition on the INIT_B pin
Minimum Low pulse width on INIT_B outputAll300-ns
The time from the rising edge of the INIT_B pin to the
generation of the configuration clock signal at the CCLK
output pin
T
ICCK
All-18ms
XC3SD1800A
XC3SD3400A
All0.54μs
1.2V
2.5V
or
3.3V
DS529-3_01_112906
All Speed Grades
UnitsMinMax
-2ms
-2ms
Notes:
1.The numbers in this table are based on the operating conditions set forth in Ta bl e 7 . This means power must be applied to all V
and V
CCAUX
lines.
CCINT
, V
CCO
2.Power-on reset and the clearing of configuration memory occurs during this period.
3.This specification applies only to the Master Serial, SPI, and BPI modes.
DS610-3 (v2.0) July 16, 2007www.xilinx.com47
Product Specification
,
DC and Switching Characteristics
Configuration Clock (CCLK) Characteristics
Table 45:
SymbolDescription
T
CCLK1
T
CCLK3
T
CCLK6
T
CCLK7
T
CCLK8
T
CCLK10
T
CCLK12
T
CCLK13
T
CCLK17
T
CCLK22
T
CCLK25
T
CCLK27
T
CCLK33
T
CCLK44
T
CCLK50
T
CCLK100
Master Mode CCLK Output Period by
ConfigRate
CCLK clock period by
ConfigRate
setting
(power-on value)
ConfigRate
Setting
1
3
6
7
8
10
12
13
17
22
25
27
33
44
50
100
Option Setting
Temperature
RangeMinimumMaximumUnits
Commercial1,254
Industrial1,180ns
Commercial413
Industrial390ns
Commercial207
Industrial195ns
Commercial178
Industrial168ns
Commercial156
Industrial147ns
Commercial123
Industrial116ns
Commercial103
Industrial97ns
Commercial93
Industrial88ns
Commercial72
Industrial68ns
Commercial54
Industrial51ns
Commercial47
Industrial45ns
Commercial44
Industrial42ns
Commercial36
Industrial34ns
Commercial26
Industrial25ns
Commercial22
Industrial21ns
Commercial11.2
Industrial10.6ns
2,000
667
334
286
250
200
167
154
118
91
80
75
61
46
40
20
R
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Notes:
1.Set the
ConfigRate
option value when generating a configuration bitstream.
Timing for the Master Serial and Slave Serial Configuration Modes
Waveforms for Master Serial and Slave Serial Configuration
SymbolDescription
Clock-to-Output Times
T
CCO
The time from the falling transition on the CCLK pin to data appearing at the
DOUT pin
Setup Times
T
DCC
The time from the setup of data at the DIN pin to the rising transition at the
CCLK pin
Hold Times
T
CCD
The time from the rising transition at the CCLK pin to the point when data is
last held at the DIN pin
Clock Timing
T
CCH
T
CCL
F
CCSER
High pulse width at the CCLK input pinMasterSee Ta bl e 47
Low pulse width at the CCLK input pinMasterSee Ta bl e 4 7
Frequency of the clock signal at the
CCLK input pin
Bit n+1
Slave/
Master
Bit n
T
CCO
Bit n-64
Bit n-63
All Speed Grades
DS312-3_05_103105
UnitsMinMax
Bit 0Bit 1
Both1.510ns
Both7-ns
Master
Slave
0.0
1.0
-ns
SlaveSee Ta b le 48
SlaveSee Ta b le 48
No bitstream compressionSlave0100MHz
With bitstream compression0100MHz
Notes:
1.The numbers in this table are based on the operating conditions set forth in Ta b l e 7 .
2.For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.
50 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
Slave Parallel Mode Timing
PROG_B
(Input)
INIT_B
(Open-Drain)
CSI_B
(Input)
RDWR_B
(Input)
CCLK
(Input)
T
SMCCW
T
SMDCC
T
SMCSCC
T
SMCCD
DC and Switching Characteristics
T
SMCCCS
T
SMWCC
T
MCCH
T
SCCH
1/F
CCPAR
T
T
MCCL
SCCL
D0 - D7
(Inputs)
Notes:
Byte 0Byte 1Byte nByte n+1
DS529-3_02_051607
1.It is possible to abort configuration by pulling CSI_B Low in a given CCLK cycle, then switching RDWR_B Low or High in any subsequent
cycle for which CSI_B remains Low. The RDWR_B pin asynchronously controls the driver impedance of the D0 - D7 bus. When RDWR_B
switches High, be careful to avoid contention on the D0 - D7 bus.
Table 50:
Figure 12:
Timing for the Slave Parallel Configuration Mode
Waveforms for Slave Parallel Configuration
All Speed Grades
SymbolDescription
UnitsMinMax
Setup Times
SMDCC
SMCSCC
SMCCW
(2)
The time from the setup of data at the D0-D7 pins to the rising transition at the CCLK pin7-ns
Setup time on the CSI_B pin before the rising transition at the CCLK pin7-ns
Setup time on the RDWR_B pin before the rising transition at the CCLK pin17-ns
T
T
T
Hold Times
T
SMCCD
T
SMCCCS
T
SMWCC
The time from the rising transition at the CCLK pin to the point when data is last held at
the D0-D7 pins
The time from the rising transition at the CCLK pin to the point when a logic level is last
held at the CSO_B pin
The time from the rising transition at the CCLK pin to the point when a logic level is last
held at the RDWR_B pin
1-ns
0-ns
0-ns
Clock Timing
T
CCH
T
CCL
F
CCPAR
The High pulse width at the CCLK input pin5-ns
The Low pulse width at the CCLK input pin5-ns
Frequency of the clock signal
at the CCLK input pin
No bitstream compression080MHz
With bitstream compression080MHz
Notes:
1.The numbers in this table are based on the operating conditions set forth in Tab l e 7 .
2.Some Xilinx documents refer to Parallel modes as “SelectMAP” modes.
DS610-3 (v2.0) July 16, 2007www.xilinx.com51
Product Specification
DC and Switching Characteristics
Serial Peripheral Interface (SPI) Configuration Timing
PROG_B
(Input)
R
PUDC_B
(Input)
VS[2:0]
(Input)
M[2:0]
(Input)
INIT_B
(Open-Drain)
CCLK
DIN
(Input)
CSO_B
MOSI
T
MINIT
PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.
<1:1:1>
Mode input pins M[2:0] and variant select input pins VS[2:0] are sampled when INIT_B
goes High. After this point, input values do not matter until DONE goes High, at which
point these pins become user-I/O pins.
<0:0:1>
T
INITM
New ConfigRate active
T
MCCL
T
CCLK1
T
MCCL1TMCCH1
T
CCLK1
n
T
V
DataDataDataData
T
CSS
T
CCO
Command
(msb)
T
DSU
Command
(msb-1)
T
DH
T
DCC
T
T
CCLK
T
MCCH
CCD
n
n
Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low.
Pin initially high-impedance (Hi-Z) if PUDC_B input is High. External pull-up resistor required on CSO_B.
DS529-3_06_102506
Table 51:
Shaded values indicate specifications on attached SPI Flash PROM.
Figure 13:
Waveforms for Serial Peripheral Interface (SPI) Configuration
Timing for Serial Peripheral Interface (SPI) Configuration Mode
SymbolDescriptionMinimumMaximumUnits
T
CCLK1
T
CCLK
T
MINIT
T
INITM
T
CCO
T
DCC
T
CCD
n
Initial CCLK clock period(see Table 45)
CCLK clock period after FPGA loads ConfigRate setting(see Table 45)
Setup time on CSI_B, RDWR_B, and M[2:0] mode pins before the rising
50-ns
edge of INIT_B
Hold time on CSI_B, RDWR_B, and M[2:0] mode pins after the rising edge
0-ns
of INIT_B
Address A[25:0] outputs valid after CCLK falling edgeSee Table 49
Setup time on D[7:0] data inputs before CCLK falling edgeSee Table 49
Hold time on D[7:0] data inputs after CCLK falling edgeSee Table 49
52 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
DC and Switching Characteristics
Table 52:
Configuration Timing Requirements for Attached SPI Serial Flash
SymbolDescriptionRequirementUnits
T
T
T
T
f
CCS
DSU
DH
V
C
or f
R
SPI serial Flash PROM chip-select timens
SPI serial Flash PROM data input setup timens
SPI serial Flash PROM data input hold timens
SPI serial Flash PROM data clock-to-output timens
Maximum SPI serial Flash PROM clock frequency (also depends on
specific read command used)
T
CCSTMCCL
T
DSUTMCCL
T
≤
DHTMCCH
T
T
V
MCCLnTDCC
f
-------------------------------- -≥
C
T
CCLKn min
–≤
1
–≤
1
–≤
1
()
T
T
1
CCO
CCO
Notes:
1.These requirements are for successful FPGA configuration in SPI mode, where the FPGA generates the CCLK signal. The
post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.
2.Subtract additional printed circuit board routing delay as required by the application.
PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.
Mode input pins M[2:0] are sampled when INIT_B goes High. After this point,
<0:1:0>
input values do not matter until DONE goes High, at which point the mode pinsbecome user-I/O pins.
MINIT
T
INITM
Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low.
Pin initially high-impedance (Hi-Z) if PUDC_B input is High.
New ConfigRateactive
T
CCLK1
000_0000
Byte 0
T
INITADDR
000_0001
Byte 1
T
CCLK1
T
CCO
Address
T
AVQV
DataDataData
Data
T
T
DCC
CCLKn
AddressAddress
T
CCD
Table 53:
Shaded values indicate specifications on attached parallel NOR Flash PROM.
Figure 14:
Waveforms for Byte-wide Peripheral Interface (BPI) Configuration
Timing for Byte-wide Peripheral Interface (BPI) Configuration Mode
DS529-3_05_112906
SymbolDescriptionMinimumMaximumUnits
T
CCLK1
T
CCLK
T
MINIT
T
INITM
T
INITADDR
T
CCO
T
DCC
T
CCD
Initial CCLK clock period(see Tabl e 4 5 )
CCLK clock period after FPGA loads ConfigRate setting(see Ta bl e 45 )
n
Setup time on M[2:0] mode pins before the rising edge of INIT_B50-ns
Hold time on M[2:0] mode pins after the rising edge of INIT_B0-ns
Minimum period of initial A[25:0] address cycle; LDC[2:0] and HDC are asserted
55T
and valid
Address A[25:0] outputs valid after CCLK falling edgeSee Tab l e 4 9
Setup time on D[7:0] data inputs before CCLK falling edgeSee Tabl e 5 0
Hold time on D[7:0] data inputs after CCLK falling edge0-ns
CCLK1
cycles
54 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
R
R
B
R
DC and Switching Characteristics
Table 54:
Configuration Timing Requirements for Attached Parallel NOR Flash
SymbolDescriptionRequirementUnits
T
CE
(t
)
ELQV
T
OE
(t
)
GLQV
T
ACC
(t
)
AVQ V
T
BYTE
(t
FLQV, tFHQV
Parallel NOR Flash PROM chip-select timens
Parallel NOR Flash PROM output-enable timens
Parallel NOR Flash PROM read access timens
ACCTCCLKn min
For x8/x16 PROMs only: BYTE# to output valid time
)
(3)
BYTE
T
≤
CE
OETINITADD
INITADD
≤
()
T
≤
T
CCOTDCC
INITADD
PC
–––≤
ns
Notes:
1.These requirements are for successful FPGA configuration in BPI mode, where the FPGA generates the CCLK signal. The
post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.
2.Subtract additional printed circuit board routing delay as required by the application.
3.The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA’s LDC2 pin. The resistor
value also depends on whether the FPGA’s PUDC_B pin is High or Low.
DS610-3 (v2.0) July 16, 2007www.xilinx.com55
Product Specification
DC and Switching Characteristics
IEEE 1149.1/1553 JTAG Test Access Port Timing
R
TCK
(Input)
T
TMSTCK
TMS
(Input)
T
TDITCK
TDI
(Input)
TDO
(Output)
Figure 15:
Table 55:
SymbolDescription
Clock-to-Output Times
T
TCKTDO
Setup Times
T
TDITCK
T
TMSTCK
Hold Times
T
TCKTDI
T
TCKTMS
Clock Timing
T
CCH
T
CCL
T
CCHDNA
T
CCLDNA
F
TCK
Timing for the JTAG Test Access Port
The time from the falling transition on the TCK pin to data appearing at the TDO pin1.011.0ns
The time from the setup of data at the
TDI pin to the rising transition at the
TCK pin
The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin7.0–ns
The time from the rising transition at
the TCK pin to the point when data is
last held at the TDI pin
The time from the rising transition at the TCK pin to the point when a logic level is last held at the
TMS pin
The High pulse width at the TCK pinAll functions except ISC_DNA command5–ns
The Low pulse width at the TCK pin5–ns
The High pulse width at the TCK pinDuring ISC_DNA command1010,000ns
The Low pulse width at the TCK pin1010,000ns
Frequency of the TCK signalBYPASS or HIGHZ instructions033MHz
All functions except those shown below7.0–ns
Boundary scan commands
(INTEST, EXTEST, SAMPLE)
All functions except those shown below0–ns
Configuration commands (CFG_IN, ISC_PROGRAM)3.5
All operations except for BYPASS or HIGHZ instructions20
T
TCKTMS
T
TCKTDI
JTAG Waveforms
T
TCKTDO
T
CCH
1/F
TCK
T
CCL
DS099_06_040703
All Speed
Grades
UnitsMinMax
13.0
0–ns
Notes:
1.The numbers in this table are based on the operating conditions set forth in Ta b l e 7 .
56 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
R
DC and Switching Characteristics
Revision History
The following table shows the revision history for this document.
DateVersionRevision
04/02/071.0Initial Xilinx release.
05/25/071.0.1Minor edits.
06/18/071.2Updated for v1.29 production speed files. Noted banking rules in Table 11 and Table 12. Added
07/16/072.0Added Low-power options and updated typical values for quiescent current in Ta b l e 9. Updated
DIFF_HSTL_I and DIFF_HSTL_III to Tabl e 1 2 , Table 13, and Table 25. Updated TMDS DC
characteristics in Table 13. Updated I/O Test Method values in Table 25. Added Simultaneously
Switching Output limits in Table 27. Updated DSP48A timing symbols, descriptions, and values in
Tab l e 3 3. Added power-on timing in Table 44. Added CCLK specifications for Commercial in Table 45
through Table 47. Updated Slave Parallel timing in Tab l e 5 0. Updated JTAG specifications in Table 55.
DSP48A timing in Table 33 and Tabl e 3 4 .
DS610-3 (v2.0) July 16, 2007www.xilinx.com57
Product Specification
DC and Switching Characteristics
R
This page intentionally left blank.
58 www.xilinx.comDS610-3 (v2.0) July 16, 2007
Product Specification
<BL
R
Blue
>
Spartan-3A DSP FPGA Family:
Pinout Descriptions
DS610-4 (v2.0) July 16, 2007
Introduction
This section describes how the various pins on a
Spartan™-3A DSP FPGA connect within the supported
component packages and provides device-specific thermal
characteristics. For general information on the pin functions
and the package characteristics, see the
in:
•UG331: Spartan-3 Generation FPGA User Guide
http://www.xilinx.com/bvdocs/userguides/ug331.pdf
Spartan-3A DSP FPGAs are available in both standard and
Pb-free, RoHS versions of each package, with the Pb-free
version adding a “G” to the middle of the package code.
Table 56:
Type/Color
CONFIG
Types of Pins on Spartan-3A DSP FPGAs
Code
I/O
INPUT
DUAL
VREF
CLK
PWR
MGMT
JTAG
Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to form
differential I/Os.
Unrestricted, general-purpose input-only pin. This pin does not have an output structure
or PCI clamp diode.
Dual-purpose pin used in some configuration modes during the configuration process and
then usually available as a user I/O after configuration. If the pin is not used during
configuration, this pin behaves as an I/O-type pin. See UG332:
Configuration User Guide
Dual-purpose pin that is either a user-I/O pin or Input-only pin, or, along with all other
VREF pins in the same bank, provides a reference voltage input for certain I/O standards.
If used for a reference voltage within a bank, all VREF pins within the bank must be
connected.
Either a user-I/O pin or an input to a specific clock buffer driver. Packages have 16 global
clock inputs that optionally clock the entire device. The RHCLK inputs optionally clock the
right half of the device. The LHCLK inputs optionally clock the left half of the device. See
the Using Global Clock Resources chapter in UG331:
Guide
for additional information on these signals.
Dedicated configuration pin, two per device. Not available as a user-I/O pin. Every
package has two dedicated configuration pins. These pins are powered by VCCAUX. See
the UG332:
the DONE and PROG_B signals.
Control and status pins for the power-saving Suspend mode. SUSPEND is a dedicated
pin. AWAKE is a Dual-Purpose pin. Unless Suspend mode is enabled in the application,
AWAKE is available as a user-I/O pin.
Dedicated JTAG pin - 4 per device. Not available as a user-I/O pin. Every package has
four dedicated JTAG pins. These pins are powered by VCCAUX.
Spartan-3 Generation Configuration User Guide
Packaging
for additional information on these signals.
section
DescriptionPin Name(s) in Type
0
Product Specification
Except for the thermal characteristics, all information for the
standard package applies equally to the Pb-free package.
Pin Types
Most pins on a Spartan-3A DSP FPGA are
general-purpose, user-defined I/O pins. There are,
however, up to 12 different functional types of pins on
Spartan-3A DSP packages, as outlined in Ta b l e 5 6. In the
package footprint drawings that follow, the individual pins
are color-coded according to pin type as in the table.
All other trademarks are the proper ty of their respective owners. All specifications are subject to change without notice.
Pinout Descriptions
R
Table 56:
Type/Color
VCCAUX
VCCINT
Notes:
1.# = I/O bank number, an integer between 0 and 3.
Types of Pins on Spartan-3A DSP FPGAs
Code
GND
VCCO
N.C.
Dedicated ground pin. The number of GND pins depends on the package used. All must
be connected.
Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the
package used. All must be connected.
Dedicated internal core logic power supply pin. The number of VCCINT pins depends on
the package used. All must be connected to +1.2V.
Along with all the other VCCO pins in the same bank, this pin supplies power to the output
buffers within the I/O bank and sets the input threshold voltage for some I/O standards. All
must be connected.
This package pin is not connected in this specific device/package combination but may be
connected in larger devices in the same package.
DescriptionPin Name(s) in Type
Package Pins by Type
Each package has three separate voltage supply
inputs—VCCINT, VCCAUX, and VCCO—and a common
ground return, GND. The numbers of pins dedicated to
these functions vary by package, as shown in Ta bl e 5 7.
Table 57:
PackageDevice
CS484
FG676
Power and Ground Supply Pins by Package
VCCINT VCCAUX VCCO GND
XC3SD1800A36242484
XC3SD3400A
XC3SD1800A23143677
XC3SD3400A
36242484
362440100
(Continued)
A majority of package pins are user-defined I/O or input
pins. However, the numbers and characteristics of these I/O
depend on the device type and the package in which it is
available, as shown in Ta b l e 5 8 . The table shows the
maximum number of single-ended I/O pins available,
assuming that all I
CLK-type pins are used as general-purpose I/O. AWAKE is
counted here as a Dual-Purpose I/O pin. Likewise, the table
shows the maximum number of differential pin-pairs
available on the package. Finally, the table shows how the
total maximum user-I/Os are distributed by pin type,
including the number of unconnected—N.C.—pins on the
device.
GND
VCCAUX
VCCINT
VCCO_#
N.C.
/O-, INPUT-, DUAL-, VREF-, and
Table 58:
PackageDevice
CS484
FG676
Notes:
1.Some VREFs are on INPUT pins. See pinout tables for details.
Maximum User I/O by Package
Maximum
User I/Os
and
Input-Only
XC3SD1800A3096014015641522832
XC3SD3400A3096014015641522832
XC3SD1800A51911022731482523932
XC3SD3400A4696021331434523732
Maximum
Input-
Only
Maximum
Differential
Pairs
I/OINPUTDUALVREF
All Possible I/Os by Type
(1)
CLKN.C.
0
0
0
0
Electronic versions of the package pinout tables and footprints are available for download from the Xilinx website.
Using a spreadsheet program, the data can be sorted and
reformatted according to any specific needs. Similarly, the
ASCII-text file is easily parsed by most scripting programs.
http://www.xilinx.com/bvdocs/publications/s3a
60 www.xilinx.comDS610-4 (v2.0) July 16, 2007
dsp_pin.zip
Product Specification
R
Package Thermal Characteristics
Pinout Descriptions
The power dissipated by an FPGA application has
implications on package selection and system design. The
power consumed by a Spartan-3A DSP FPGA is reported
using either the XPower Power
Estimator or the XPower
Analyzer calculator integrated in the Xilinx ISE™
development software. Tab le 5 9 provides the thermal
characteristics for the various Spartan-3A DSP device
package offerings. This information is also available using
the Thermal Query tool at
h
ttp://www.xilinx.com/cgi-bin/thermal/thermal.pl.
Table 59:
PackageDevice
CS484
CSG484
FG676
FGG676
Spartan-3A DSP Package Thermal Characteristics
Junction-to-Case
(θJC)
XC3SD1800A3.57.518.513.512.512.0 °C/W
XC3SD3400A3.06.518.012.511.511.0 °C/W
XC3SD1800A5.08.516.512.011.010.5 °C/W
XC3SD3400A4.07.015.511.010.09.5 °C/W
Junction-to-
Board (θJB)
The junction-to-case thermal resistance (θ
) indicates the
JC
difference between the temperature measured on the
package body (case) and the die junction temperature per
watt of power consumption. The junction-to-board (θ
JB
)
value similarly reports the difference between the board and
junction temperature. The junction-to-ambient (θ
) value
JA
reports the temperature difference between the ambient
environment and the junction temperature. The θ
value is
JA
reported at different air velocities, measured in linear feet
per minute (LFM). The “Still Air (0 LFM)” column shows the
θ
value in a system without a fan. The thermal resistance
JA
drops with increasing air flow.
JA
)
Units
Still Air
(0 LFM)
Junction-to-Ambient (θ
at Different Air Flows
250 LFM500 LFM750 LFM
Notes:
1.Advance data based on simulation - check for updates in the Thermal Query tool.
DS610-4 (v2.0) July 16, 2007www.xilinx.com61
Product Specification
Pinout Descriptions
CS484: 484-Ball Chip-Scale Ball Grid Array
R
The 484-ball chip-scale ball grid array, CS484, supports
both the XC3SD1800A and XC3SD3400A FPGAs. There
are no pinout differences between the two devices.
Tab le 6 0 lists all the CS484 package pins. They are sorted
by bank number and then by pin name. Pairs of pins that
form a differential I/O pair appear together in the table. The
table also shows the pin number for each pin and the pin
type, as defined earlier.
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at
Table 61 and Ta bl e 6 2 indicates how the user-I/O pins are
distributed between the four I/O banks on the CS484
Table 61:
Package
To p0774913168
Right1782393088
Bottom2763362188
Left3785113068
Notes:
1.19 VREF are on INPUT pins.
Table 62:
Package
To p0774913168
Right1782393088
Bottom2763362188
Left3785113068
User I/Os Per Bank for the XC3SD1800A in the CS484 Package
Maximum I/Os
Edge
TOTAL30915641522832
I/O Bank
and
Input-Only
I/OINPUTDUALVREF
User I/Os Per Bank for the XC3SD3400A in the CS484 Package
Maximum I/O
Edge
TOTAL30915641522832
I/O Bank
and
Input-Only
I/OINPUTDUALVREF
package. The AWAKE pin is counted as a Dual-Purpose
I/O.
All Possible I/O Pins by Type
(1)
All Possible I/O Pins by Type
(1)
CLK
CLK
Notes:
1.19 VREF are on INPUT pins.
Footprint Migration Differences
There are no migration footprint differences between the
XC3SD1800A and the XC3SD3400A in the CS484
package.
68 www.xilinx.comDS610-4 (v2.0) July 16, 2007
Product Specification
R
Pinout Descriptions
CS484 Footprint
Left Half of Package
(top view)
I/O: Unrestricted,
156
general-purpose user I/O.
INPUT: Unrestricted,
41
general-purpose input pin.
DUAL: Configuration,
52
AWAKE pins, then possible
user I/O.
VREF: User I/O or input
28
voltage reference for bank.
CLK: User I/O, input, or
32
clock buffer input.
CONFIG: Dedicated
configuration pins,
3
SUSPEND pin.
JTAG: Dedicated JTAG
4
port pins.
GND: Ground.
84
VCCO: Output voltage
24
supply for bank.
VCCINT: Internal core
36
supply voltage (+1.2V).
VCCAUX: Auxiliary supply
24
voltage
1234567891011
Bank 0
I/O
I/O
PROG_
GND
A
VCCAUX
TMS
B
I/O
C
L02N_3
L02P_3
INPUT
D
L04P_3
INPUT
VCCO_3
L04N_3
E
VREF_3
I/O
F
L06N_3
L06P_3
I/O
G
L11P_3
I/O
H
L11N_3
L14P_3
I/O
VCCO_3
L14N_3
J
VREF_3
I/O
L19P_3
K
L
Bank 3
M
N
P
R
T
U
V
W
Y
A
A
A
B
LHCLK2
I/O
L19N_3
IRDY2
I/O
L22P_3
VREF_3
I/O
L22N_3
I/O
L25P_3
I/O
L28N_3
I/O
L30P_3
I/O
L30N_3
I/O
L33N_3
I/O
L35N_3
I/O
L35P_3
INPUT
L39N_3
VREF_3
GND
L17P_3
L20N_3
LHCLK5
VCCO_3
L25N_3
L28P_3
L33P_3
VCCO_3
L37N_3
INPUT
L39P_3
VCCAUX
INPUT
VREF_2
B
I/O
TDI
I/O
GND
I/O
I/O
GND
I/O
I/O
I/O
GND
I/O
I/O
2
I/O
L30N_0
I/O
L30P_0
GND
INPUT
L08P_3
I/O
L09P_3
I/O
L01P_3
I/O
L01N_3
I/O
L05P_3
INPUT
L16P_3
I/O
L17N_3
I/O
L20P_3
LHCLK4
INPUT
L23P_3
INPUT
L31P_3
INPUT
L31N_3
I/O
L34P_3
INPUT
L27P_3
INPUT
L27N_3
I/O
L36N_3
I/O
L37P_3
GND
I/O
L01P_2
M1
I/O
L01N_2
M0
I/O
L28N_0
I/O
L28P_0
I/O
L29N_0
INPUT
L08N_3
I/O
L09N_3
I/O
L03P_3
GND
I/O
L05N_3
INPUT
L16N_3
I/O
L13P_3
VCCAUX
GND
INPUT
L23N_3
I/O
L32P_3
VREF_3
GND
I/O
L34N_3
I/O
L38P_3
I/O
L36P_3
INPUT
2
VREF_2
I/O
L03N_2
I/O
L04N_2
I/O
L04P_2
I/O
L25N_0
VCCO_0
INPUT
I/O
L29P_0
VCCAUX
I/O
L03N_3
I/O
L07P_3
I/O
L10P_3
VCCO_3
I/O
L13N_3
I/O
L15N_3
I/O
L18N_3
LHCLK1
I/O
L24N_3
VCCO_3
I/O
L32N_3
I/O
L29N_3
I/O
L38N_3
VCCAUX
I/O
L03P_2
I/O
L07P_2
RDWR_B
VCCO_2
I/O
L05P_2
I/O
L24N_0
L25P_0
I/O
L24P_0
I/O
L21P_0
I/O
L21N_0
INPUT
GND
I/O
L07N_3
I/O
L10N_3
INPUT
L12P_3
I/O
L15P_3
I/O
L18P_3
LHCLK0
I/O
L21P_3
TRDY2
I/O
L24P_3
I/O
L26P_3
I/O
L26N_3
I/O
L29P_3
GND
I/O
L02P_2
M2
I/O
L07N_2
VS2
INPUT INPUT
INPUT
I/O
L05N_2
L20P_0
VREF_0
GCLK10
GND
L20N_0
GCLK11
I/O
L26P_0
L22P_0
I/O
L26N_0
I/O
L31P_0
L27N_0
VREF_0
I/O
L31N_0
L27P_0
PUDC_B
VCCINT
L23P_0
GNDGND VCCINT GND VCCINT
INPUT
VCCINT GND VCCINT GND
L12N_3
VREF_3
VCCAUX
GND VCCINT GND VCCINT GND
VCCAUX
I/O
VCCINT GND VCCINT GND
L21N_3
LHCLK7
VCCAUX
GND VCCINT GND VCCINT GND
VCCINT GND
I/O
L02N_2
L11N_2
CSO_B
I/O
L11P_2
L06N_2
GND
L06P_2
L13P_2
GND
L08N_2
I/O
L09P_2
L08P_2
I/O
INPUT
L18P_0
GCLK6
I/O
I/O
VCCO_0
L18N_0
GCLK7
I/O
I/O
INPUT
L16P_0
I/O
GND
L22N_0
L16N_0
I/O
VCCO_0
INPUT
I/O
I/O
L19P_0
L23N_0
I/O
GND
VCCAUX
GND VCCINT GND VCCINT
GND VCCINT GND VCCINT
GND VCCINT GND VCCINT
VCCAUX
I/O
I/O
L14N_2
L10N_2
I/O
VCCO_2
L10P_2
INPUT
I/O
I/O
I/O
I/O
VS1
2
VREF_2
I/O
L13N_2
VCCO_2
I/O
L09N_2
VS0
INPUT
L15N_2
GCLK13
L12N_2
L12P_2
I/O
I/O
GCLK8
GND
I/O
D4
I/O
I/O
I/O
D6
I/O
D7
I/O
L15N_0
I/O
L15P_0
INPUT
0
VREF_0
GND
I/O
L19N_0
GCLK9
I/O
L17N_0
GCLK5
GND
VCCAUX
GND
I/O
L14P_2
D5
VCCAUX
I/O
L15P_2
GCLK12
GND
INPUT
2
VREF_2
Bank 2
Figure 16:
CS484 Package Footprint (top view)
DS610-4 (v2.0) July 16, 2007www.xilinx.com69
Product Specification
Pinout Descriptions
R
1213141516171819202122
Bank 0
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
L10P_0
VCCO_0
INPUT
I/O
L12P_0
VCCO_0
I/O
L13P_0
VCCAUX
INPUT
VREF_0
INPUT
GND
I/O
L14N_0
VCCAUX
I/O
L17P_0
GCLK4
INPUT
VCCAUX
L11P_0
L11N_0
L14P_0
L09N_0
L09P_0
L13N_0
GND VCCINT GND VCCINT GND
VCCINT GND VCCINT GND
GND VCCINT GND VCCINT
VCCINT GND VCCINT GND
GND VCCINT GND VCCINT GND
VCCINT GND VCCINT GND
GND VCCINT GND VCCINT
VCCINT GND VCCINT GNDGND
VCCAUX
GND
I/O
I/O
L17P_2
L17P_2
GCLK0
GCLK0
I/O
I/O
L17N_2
L17N_2
GCLK1
GCLK1
GND
INPUT
I/O
L16P_2
GCLK14
I/O
L16N_2
GCLK15
GNDGND VCCINT
I/O
I/O
I/O
I/O
I/O
MOSI
MOSI
2
I/O
I/O
I/O
L25P_2
L25P_2
VCCO_2
VCCO_2
I/O
L21N_2
INPUT
VREF_2
I/O
L18N_2
GCLK3
I/O
L19N_2
L20P_2
L20P_2
L20N_2
L20N_2
INPUT
VREF_2
L21P_2
VCCO_2
L18P_2
GCLK2
2
INPUT
INPUT
VREF_2
VREF_2
INPUT
I/O
L06P_0
VREF_0
I/O
GND
L10N_0
I/O
I/O
I/O
I/O
I/O
L08N_0
GND
I/O
L04P_0
I/O
L04N_0
L12N_0
L08P_0
L05P_0
L05N_0
GND VCCINT
VCCAUX
I/O
L29P_1
A16
VCCAUX
VCCAUX
I/O
L13N_1
A3
I/O
I/O
I/O
2
2
I/O
I/O
D3
I/O
I/O
L28P_2
L28P_2
I/O
I/O
L28N_2
L28N_2
GND
I/O
L29N_2
GND
I/O
L22N_2
DOUT
L25N_2
L25N_2
L24P_2
INIT_B
L24N_2
L19P_2
I/O
INPUT
L06N_0
I/O
VCCO_0
L03P_0
I/O
I/O
L02P_0
L03N_0
VREF_0
INPUT INPUT
VCCAUX
INPUT
I/O
GND
L38N_1
A25
I/O
I/O
A14
I/O
A17
I/O
I/O
I/O
A2
I/O
GND
GND
I/O
I/O
CCLK
CCLK
I/O
D0
I/O
I/O
I/O
I/O
L34N_1
I/O
L26N_1
A15
VCCO_1
I/O
L24N_1
INPUT
L23P_1
VREF_1
I/O
L21P_1
IRDY1
I/O
L18P_1
RHCLK0
VCCO_1
I/O
L10N_1
I/O
L05P_1
I/O
I/O
L01P_1
L01P_1
HDC
HDC
VCCAUX
VCCAUX
INPUT
2
VREF_2
I/O
L26P_2
D2
VCCO_2
I/O
L23N_2
L34P_1
L26P_1
L29N_1
INPUT
L23N_1
L21N_1
RHCLK7
L18N_1
RHCLK1
L13P_1
INPUT
L12N_1
VREF_1
INPUT
L12P_1
L05N_1
L31N_2
L31N_2
L31P_2
L29P_2
L22P_2
AWAKE
L23P_2
I/O
L07N_0
I/O
L02N_0
I/O
L01N_0
I/O
L01P_0
I/O
L36N_1
A21
I/O
L38P_1
A24
I/O
L30P_1
A18
GND
I/O
L32P_1
I/O
L24P_1
GND
VCCAUX
I/O
L15N_1
A7
I/O
L10P_1
I/O
L07P_1
GND
I/O
I/O
L01N_1
L01N_1
LDC2
LDC2
SUSPEN
SUSPEN
D
D
I/O
L03P_1
A0
I/O
L26N_2
D1
I/O
L27N_2
I/O
L27P_2
I/O
0
I/O
L07P_0
GND
I/O
L36P_1
A20
I/O
L35N_1
I/O
L30N_1
A19
INPUT
L31N_1
I/O
L32N_1
I/O
L25N_1
A13
I/O
L25P_1
A12
I/O
L20N_1
RHCLK5
I/O
L19N_1
TRDY1
I/O
L15P_1
A6
INPUT
L16N_1
I/O
L07N_1
I/O
L09N_1
I/O
I/O
L09P_1
L09P_1
I/O
I/O
L03N_1
L03N_1
A1
A1
INPUT
L04N_1
VREF_1
GND
I/O
L30P_2
I/O
L30N_2
TCKGND
VCCAUX
INPUT
L39N_1
I/O
L37P_1
A22
VCCO_1
I/O
L35P_1
GND
INPUT
L31P_1
VREF_1
INPUT
L27P_1
VCCO_1
I/O
L20P_1
RHCLK4
GND
I/O
L19P_1
RHCLK2
VCCO_1
INPUT
L16P_1
VREF_1
GND
INPUT
INPUT
L08N_1
L08N_1
VREF_1
VREF_1
VCCO_1
VCCO_1
INPUT
L04P_1
I/O
L02P_1
LDC1
VCCAUX
DONEGND
TDO
INPUT
L39P_1
VREF_1
I/O
L37N_1
A23
I/O
L33N_1
I/O
L33P_1
I/O
L28N_1
I/O
L28P_1
INPUT
L27N_1
I/O
L22N_1
A11
I/O
L22P_1
A10
I/O
L17N_1
A9
I/O
L17P_1
A8
I/O
L14N_1
A5
I/O
L14P_1
A4
I/O
L11N_1
VREF_1
I/O
I/O
L11P_1
L11P_1
INPUT
INPUT
L08P_1
L08P_1
I/O
L06P_1
I/O
L06N_1
I/O
L02N_1
LDC0
Right Half of CS484
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
U
V
V
W
Y
A
A
A
B
Package (top view)
Bank 2
70 www.xilinx.comDS610-4 (v2.0) July 16, 2007
Product Specification
R
FG676: 676-Ball Fine-Pitch Ball Grid Array
Pinout Descriptions
The 676-ball fine-pitch ball grid array, FG676, supports both
the XC3SD1800A and the XC3SD3400A FPGAs. There are
multiple pinout differences between the two devices. For a
XC3SD1800A FPGA
Tab le 6 3 lists all the FG676 package pins for the
XC3SD1800A FPGA. They are sorted by bank number and
then by pin name. Pairs of pins that form a differential I/O
Pinout Table
Note:
The grayed boxes denote a difference between the
XC3SD1800A and the XC3SD3400A devices.
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
Spartan-3A DSP FG676 Pinout for
FG676
Ball
0IO_L43N_0K11I/O
0IO_L39N_0K12I/O
0IO_L25P_0/GCLK4K14GCLK
0IO_L12N_0K16I/O
0IP_0J10INPUT
0IO_L43P_0J11I/O
0IO_L39P_0J12I/O
0IP_0J13INPUT
0IO_L25N_0/GCLK5J14GCLK
0IP_0J15INPUT
0IO_L12P_0J16I/O
0IP_0/VREF_0J17VREF
0IO_L47N_0H9I/O
0IO_L46N_0H10I/O
0IO_L35N_0H12I/O
0IP_0H13INPUT
0IO_L16N_0H15I/O
0IO_L08P_0H17I/O
0IP_0H18INPUT
0IO_L52N_0/PUDC_BG8DUAL
0IO_L47P_0G9I/O
0IO_L46P_0G10I/O
0IP_0/VREF_0G11VREF
0IO_L35P_0G12I/O
0IO_L27N_0/GCLK9G13GCLK
0IP_0G14INPUT
0IO_L16P_0G15I/O
0IO_L08N_0G17I/O
Type
list of differences and migration advice, see the "Footprint
Migration Differences" section.
pair appear together in the table. The table also shows the
pin number for each pin and the pin type, as defined earlier.
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
0IO_L02P_0/VREF_0G19VREF
0IO_L01P_0G20I/O
0IO_L48P_0F7I/O
0IO_L52P_0/VREF_0F8VREF
0IO_L31N_0F12I/O
0IO_L27P_0/GCLK8F13GCLK
0IO_L24N_0F14I/O
0IO_L20P_0F15I/O
0IO_L13P_0F17I/O
0IO_L02N_0F19I/O
0IO_L01N_0F20I/O
0IO_L48N_0E7I/O
0IO_L37P_0E10I/O
0IP_0E11INPUT
0IO_L31P_0E12I/O
0IO_L24P_0E14I/O
0IO_L20N_0/VREF_0E15VREF
0IO_L13N_0E17I/O
0IP_0E18INPUT
0IO_L10P_0E21I/O
0IO_L44N_0D6I/O
0IP_0/VREF_0D7VREF
0IO_L40N_0D8I/O
0IO_L37N_0D9I/O
0IO_L34N_0D10I/O
0IO_L32N_0/VREF_0D11VREF
0IP_0D12INPUT
0IO_L30P_0D13I/O
0IP_0/VREF_0D14VREF
Type
DS610-4 (v2.0) July 16, 2007www.xilinx.com71
Product Specification
Pinout Descriptions
R
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
0IO_L22P_0D16I/O
0IO_L21P_0D17I/O
0IO_L17P_0D18I/O
0IO_L11P_0D20I/O
0IO_L10N_0D21I/O
0IO_L05P_0D22I/O
0IO_L06P_0D23I/O
0IO_L44P_0C5I/O
0IO_L41N_0C6I/O
0IO_L42N_0C7I/O
0IO_L40P_0C8I/O
0IO_L34P_0C10I/O
0IO_L32P_0C11I/O
0IO_L30N_0C12I/O
0IO_L28N_0/GCLK11C13GCLK
0IO_L22N_0C15I/O
0IO_L21N_0C16I/O
0IO_L19P_0C17I/O
0IO_L17N_0C18I/O
0IO_L11N_0C20I/O
0IO_L09P_0C21I/O
0IO_L05N_0C22I/O
0IO_L06N_0C23I/O
0IO_L51N_0B3I/O
0IO_L45N_0B4I/O
0IO_L41P_0B6I/O
0IO_L42P_0B7I/O
0IO_L38N_0B8I/O
0IO_L36N_0B9I/O
0IO_L33N_0B10I/O
0IO_L29N_0B12I/O
0IO_L28P_0/GCLK10B13GCLK
0IO_L26P_0/GCLK6B14GCLK
0IO_L23P_0B15I/O
0IO_L19N_0B17I/O
0IO_L18P_0B18I/O
0IO_L15P_0B19I/O
0IO_L14P_0/VREF_0B20VREF
0IO_L09N_0B21I/O
Type
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
0IO_L07P_0B23I/O
0IO_L51P_0A3I/O
0IO_L45P_0A4I/O
0IP_0A7INPUT
0IO_L38P_0A8I/O
0IO_L36P_0A9I/O
0IO_L33P_0A10I/O
0IO_L29P_0A12I/O
0IP_0A13INPUT
0IO_L26N_0/GCLK7A14GCLK
0IO_L23N_0A15I/O
0IP_0A17INPUT
0IO_L18N_0A18I/O
0IO_L15N_0A19I/O
0IO_L14N_0A20I/O
0IO_L07N_0A22I/O
0IP_0G16INPUT
0IP_0E9INPUT
0IP_0D15INPUT
0IP_0D19INPUT
0IP_0B24INPUT
0IP_0A5INPUT
0IP_0A23INPUT
0IP_0F9INPUT
0IP_0E20INPUT
0IP_0A24INPUT
0IP_0G18INPUT
0IP_0F10INPUT
0IP_0F18INPUT
0IP_0E6INPUT
0IP_0D5INPUT
0IP_0C4INPUT
0VCCO_0H11VCCO
0VCCO_0H16VCCO
0VCCO_0E8VCCO
0VCCO_0E13VCCO
0VCCO_0E19VCCO
0VCCO_0B5VCCO
0VCCO_0B11VCCO
Type
72 www.xilinx.comDS610-4 (v2.0) July 16, 2007
Product Specification
R
Pinout Descriptions
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
0VCCO_0B16VCCO
0VCCO_0B22VCCO
1IO_L01P_1/HDCY20DUAL
1IO_L01N_1/LDC2Y21DUAL
1IO_L13P_1Y22I/O
1IO_L13N_1Y23I/O
1IO_L15P_1Y24I/O
1IO_L15N_1Y25I/O
1IP_L16N_1Y26INPUT
1IO_L04P_1W20I/O
1IO_L04N_1W21I/O
1IO_L18P_1W23I/O
1IO_L08P_1V18I/O
1IO_L08N_1V19I/O
1SUSPENDV20
1IO_L10P_1V21I/O
1IO_L18N_1V22I/O
1IO_L21P_1V23I/O
1IO_L19P_1V24I/O
1IO_L19N_1V25I/O
1IP_L20N_1/VREF_1V26VREF
1IO_L12N_1U18I/O
1IO_L12P_1U19I/O
1IO_L10N_1U20I/O
1IO_L14P_1U21I/O
1IO_L21N_1U22I/O
1IO_L23P_1U23I/O
1IO_L23N_1/VREF_1U24VREF
1IP_L24N_1/VREF_1U26VREF
1IO_L17N_1T17I/O
1IO_L17P_1T18I/O
1IO_L14N_1T20I/O
1IO_L26P_1/A4T23DUAL
1IO_L26N_1/A5T24DUAL
1IO_L27N_1/A7R17DUAL
1IO_L27P_1/A6R18DUAL
1IO_L22P_1R19I/O
1IO_L22N_1R20I/O
1IO_L25P_1/A2R21DUAL
Type
PWRMGMT
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
1IO_L25N_1/A3R22DUAL
1IP_L28P_1/VREF_1R23VREF
1IP_L28N_1R24INPUT
1IO_L29P_1/A8R25DUAL
1IO_L29N_1/A9R26DUAL
1
1IO_L30N_1/RHCLK1P20RHCLK
1IO_L30P_1/RHCLK0P21RHCLK
1IO_L37P_1P22I/O
1IO_L33P_1/RHCLK4P23RHCLK
1
1IO_L31P_1/RHCLK2P26RHCLK
1IO_L39N_1/A15N17DUAL
1IO_L39P_1/A14N18DUAL
1IO_L34N_1/RHCLK7N19RHCLK
1IO_L42P_1/A16N20DUAL
1IO_L37N_1N21I/O
1IP_L36N_1N23INPUT
1IO_L33N_1/RHCLK5N24RHCLK
1IP_L32N_1N25INPUT
1IP_L32P_1N26INPUT
1IO_L47N_1M18I/O
1IO_L47P_1M19I/O
1IO_L42N_1/A17M20DUAL
1IO_L45P_1M21I/O
1IO_L45N_1M22I/O
1IO_L38N_1/A13M23DUAL
1IP_L36P_1/VREF_1M24VREF
1IO_L35N_1/A11M25DUAL
1IO_L35P_1/A10M26DUAL
1IO_L55N_1L17I/O
1IO_L55P_1L18I/O
1IO_L53P_1L20I/O
1IO_L50P_1L22I/O
1IP_L40N_1L23INPUT
1IO_L38P_1/A12L24DUAL
1IO_L57N_1K18I/O
1IO_L57P_1K19I/O
1IO_L53N_1K20I/O
IO_L34P_1/IRDY1/RHCLK6
IO_L31N_1/TRDY1/RHCLK3
P18RHCLK
P25RHCLK
Type
DS610-4 (v2.0) July 16, 2007www.xilinx.com73
Product Specification
Pinout Descriptions
R
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
1IO_L50N_1K21I/O
1IO_L46N_1K22I/O
1IO_L46P_1K23I/O
1IP_L40P_1K24INPUT
1IO_L41P_1K25I/O
1IO_L41N_1K26I/O
1IO_L59P_1J19I/O
1IO_L59N_1J20I/O
1IO_L62P_1/A20J21DUAL
1IO_L49N_1J22I/O
1IO_L49P_1J23I/O
1IO_L43N_1/A19J25DUAL
1IO_L43P_1/A18J26DUAL
1IO_L64P_1/A24H20DUAL
1IO_L62N_1/A21H21DUAL
1IP_L48N_1H24INPUT
1IP_L44N_1H25INPUT
1IP_L44P_1/VREF_1H26VREF
1IO_L64N_1/A25G21DUAL
1IO_L58N_1G22I/O
1IO_L51P_1G23I/O
1IO_L51N_1G24I/O
1IP_L52N_1/VREF_1G25VREF
1IO_L58P_1/VREF_1F22VREF
1IO_L56N_1F23I/O
1IO_L54N_1F24I/O
1IO_L54P_1F25I/O
1IO_L56P_1E24I/O
1IO_L60P_1E26I/O
1IO_L61N_1D24I/O
1IO_L61P_1D25I/O
1IO_L60N_1D26I/O
1IO_L63N_1/A23C25DUAL
1IO_L63P_1/A22C26DUAL
1IP_L65P_1/VREF_1B26VREF
1IO_L02P_1/LDC1AE26DUAL
1IO_L02N_1/LDC0AD25DUAL
1IO_L05P_1AD26I/O
1IO_L03P_1/A0AC23DUAL
Type
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
1IO_L03N_1/A1AC24DUAL
1IO_L05N_1AC25I/O
1IO_L06P_1AC26I/O
1IO_L07P_1AB23I/O
1IO_L07N_1/VREF_1AB24VREF
1IO_L06N_1AB26I/O
1IO_L09P_1AA22I/O
1IO_L09N_1AA23I/O
1IO_L11P_1AA24I/O
1IO_L11N_1AA25I/O
1IP_L16P_1W25INPUT
1IP_L24P_1U25INPUT
1IP_L65N_1B25INPUT
1IP_L20P_1W26INPUT
1IP_L48P_1H23INPUT
1IP_L52P_1G26INPUT
1VCCO_1W22VCCO
1VCCO_1T19VCCO
1VCCO_1T25VCCO
1VCCO_1N22VCCO
1VCCO_1L19VCCO
1VCCO_1L25VCCO
1VCCO_1H22VCCO
1VCCO_1E25VCCO
1VCCO_1AB25VCCO
2IO_L02P_2/M2Y7DUAL
2IO_L05N_2Y9I/O
2IO_L12P_2Y10I/O
2IO_L17P_2/RDWR_BY12DUAL
2IO_L25N_2/GCLK13Y13GCLK
2IO_L27P_2/GCLK0Y14GCLK
2IO_L34N_2/D3Y15DUAL
2IP_2/VREF_2Y16VREF
2IO_L43N_2Y17I/O
2IO_L05P_2W9I/O
2IO_L09N_2W10I/O
2IO_L16N_2W12I/O
2IO_L20N_2W13I/O
2IO_L31N_2W15I/O
Type
74 www.xilinx.comDS610-4 (v2.0) July 16, 2007
Product Specification
R
Pinout Descriptions
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
2IO_L46P_2W17I/O
2IO_L09P_2V10I/O
2IO_L13P_2V11I/O
2IO_L16P_2V12I/O
2IO_L20P_2V13I/O
2IO_L31P_2V14I/O
2IO_L35P_2V15I/O
2IO_L42P_2V16I/O
2IO_L46N_2V17I/O
2IO_L13N_2U11I/O
2IO_L35N_2U15I/O
2IO_L42N_2U16I/O
2IO_L06N_2AF3I/O
2IO_L07N_2AF4I/O
2IO_L10P_2AF5I/O
2IP_2AF7INPUT
2IO_L18N_2AF8I/O
2IO_L19N_2/VS0AF9DUAL
2IO_L22N_2/D6AF10DUAL
2IO_L24P_2/D5AF12DUAL
2IO_L26P_2/GCLK14AF13GCLK
2IO_L28P_2/GCLK2AF14GCLK
2IP_2/VREF_2AF15VREF
2IP_2/VREF_2AF17VREF
2IO_L36P_2/D2AF18DUAL
2IO_L37P_2AF19I/O
2IO_L39P_2AF20I/O
2IP_2/VREF_2AF22VREF
2IO_L48P_2AF23I/O
2IO_L52P_2/D0/DIN/MISOAF24DUAL
2IO_L51P_2AF25I/O
2IO_L06P_2AE3I/O
2IO_L07P_2AE4I/O
2IO_L10N_2AE6I/O
2IO_L11N_2AE7I/O
2IO_L18P_2AE8I/O
2IO_L19P_2/VS1AE9DUAL
2IO_L22P_2/D7AE10DUAL
2IO_L24N_2/D4AE12DUAL
Type
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
2IO_L26N_2/GCLK15AE13GCLK
2IO_L28N_2/GCLK3AE14GCLK
2IO_L32N_2/DOUTAE15DUAL
2IO_L33P_2AE17I/O
2IO_L36N_2/D1AE18DUAL
2IO_L37N_2AE19I/O
2IO_L39N_2AE20I/O
2IO_L44P_2AE21I/O
2IO_L48N_2AE23I/O
2IO_L52N_2/CCLKAE24DUAL
2IO_L51N_2AE25I/O
2IO_L01N_2/M0AD4DUAL
2IO_L08N_2AD6I/O
2IO_L11P_2AD7I/O
2IP_2AD9INPUT
2IP_2AD10INPUT
2IO_L23P_2AD11I/O
2IP_2/VREF_2AD12VREF
2IO_L29P_2AD14I/O
2IO_L32P_2/AWAKEAD15
2IP_2AD16INPUT
2IO_L33N_2AD17I/O
2IO_L40P_2AD19I/O
2IO_L41P_2AD20I/O
2IO_L44N_2AD21I/O
2IO_L45P_2AD22I/O
2IO_L01P_2/M1AC4DUAL
2IO_L08P_2AC6I/O
2IO_L14P_2AC8I/O
2IO_L15N_2AC9I/O
2IP_2/VREF_2AC10VREF
2IO_L23N_2AC11I/O
2IO_L21N_2AC12I/O
2IP_2AC13INPUT
2IO_L29N_2AC14I/O
2IO_L30P_2AC15I/O
2IO_L38P_2AC16I/O
2IP_2AC17INPUT
2IO_L40N_2AC19I/O
Type
PWRMGMT
DS610-4 (v2.0) July 16, 2007www.xilinx.com75
Product Specification
Pinout Descriptions
R
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
2IO_L41N_2AC20I/O
2IO_L45N_2AC21I/O
2IO_2AC22I/O
2IP_2/VREF_2AB6VREF
2IO_L14N_2AB7I/O
2IO_L15P_2AB9I/O
2IO_L21P_2AB12I/O
2IP_2AB13INPUT
2IO_L30N_2/MOSI/CSI_BAB15DUAL
2IO_L38N_2AB16I/O
2IO_L47P_2AB18I/O
2IO_L02N_2/CSO_BAA7DUAL
2IP_2/VREF_2AA9VREF
2IO_L12N_2AA10I/O
2IO_L17N_2/VS2AA12DUAL
2IO_L25P_2/GCLK12AA13GCLK
2IO_L27N_2/GCLK1AA14GCLK
2IO_L34P_2/INIT_BAA15DUAL
2IO_L43P_2AA17I/O
2IO_L47N_2AA18I/O
2IP_2/VREF_2AA20VREF
2IP_2AD5INPUT
2IP_2AD23INPUT
2IP_2AC5INPUT
2IP_2AC7INPUT
2IP_2AC18INPUT
2IP_2/VREF_2AB10VREF
2IP_2AB20INPUT
2IP_2AA19INPUT
2IP_2AF2INPUT
2IP_2AB17INPUT
2IP_2Y8INPUT
2IP_2Y11INPUT
2IP_2Y18INPUT
2IP_2/VREF_2Y19VREF
2IP_2W18INPUT
2IP_2AA8INPUT
2VCCO_2W11VCCO
2VCCO_2W16VCCO
Type
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
2VCCO_2AE5VCCO
2VCCO_2AE11VCCO
2VCCO_2AE16VCCO
2VCCO_2AE22VCCO
2VCCO_2AB8VCCO
2VCCO_2AB14VCCO
2VCCO_2AB19VCCO
3IO_L53P_3Y1I/O
3IO_L53N_3Y2I/O
3IP_L54P_3Y3INPUT
3IO_L57P_3Y5I/O
3IO_L57N_3Y6I/O
3IP_L50P_3W1INPUT
3IP_L50N_3/VREF_3W2VREF
3IO_L52P_3W3I/O
3IO_L52N_3W4I/O
3IO_L63N_3W6I/O
3IO_L63P_3W7I/O
3IO_L47P_3V1I/O
3IO_L47N_3V2I/O
3IP_L46N_3V4INPUT
3IO_L49N_3V5I/O
3IO_L59N_3V6I/O
3IO_L59P_3V7I/O
3IO_L61N_3V8I/O
3IO_L44P_3U1I/O
3IO_L44N_3U2I/O
3IP_L46P_3U3INPUT
3IO_L42N_3U4I/O
3IO_L49P_3U5I/O
3IO_L51N_3U6I/O
3IO_L56P_3U7I/O
3IO_L56N_3U8I/O
3IO_L61P_3U9I/O
3IO_L38P_3T3I/O
3IO_L38N_3T4I/O
3IO_L42P_3T5I/O
3IO_L51P_3T7I/O
3IO_L48N_3T9I/O
Type
76 www.xilinx.comDS610-4 (v2.0) July 16, 2007
Product Specification
R
Pinout Descriptions
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
3IO_L48P_3T10I/O
3IO_L36P_3/VREF_3R1VREF
3IO_L36N_3R2I/O
3IO_L37P_3R3I/O
3IO_L37N_3R4I/O
3IO_L40P_3R5I/O
3IO_L40N_3R6I/O
3IO_L45N_3R7I/O
3IO_L45P_3R8I/O
3IO_L43N_3R9I/O
3IO_L43P_3/VREF_3R10VREF
3IO_L33P_3/LHCLK2P1LHCLK
3
3IO_L34N_3/LHCLK5P3LHCLK
3IO_L34P_3/LHCLK4P4LHCLK
3IO_L39N_3P6I/O
3IO_L39P_3P7I/O
3IO_L41P_3P8I/O
3IO_L41N_3P9I/O
3IO_L35N_3/LHCLK7P10LHCLK
3IO_L31P_3N1I/O
3IO_L31N_3N2I/O
3IO_L30N_3N4I/O
3IO_L30P_3N5I/O
3IO_L32P_3/LHCLK0N6LHCLK
3IO_L32N_3/LHCLK1N7LHCLK
3
3IO_L29N_3/VREF_3M1VREF
3IO_L29P_3M2I/O
3IO_L27N_3M3I/O
3IO_L27P_3M4I/O
3IO_L28P_3M5I/O
3IO_L28N_3M6I/O
3IO_L26N_3M7I/O
3IO_L26P_3M8I/O
3IO_L21N_3M9I/O
3IO_L21P_3M10I/O
3IO_L25N_3L3I/O
3IO_L25P_3L4I/O
IO_L33N_3/IRDY2/LHCLK3
IO_L35P_3/TRDY2/LHCLK6
P2LHCLK
N9LHCLK
Type
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
3IO_L18N_3L7I/O
3IO_L15N_3L9I/O
3IO_L15P_3L10I/O
3IP_L24N_3K1INPUT
3IO_L23N_3K2I/O
3IO_L23P_3K3I/O
3IO_L22N_3K4I/O
3IO_L22P_3K5I/O
3IO_L18P_3K6I/O
3IO_L13P_3K7I/O
3IO_L05N_3K8I/O
3IO_L05P_3K9I/O
3IP_L24P_3J1INPUT
3IP_L20N_3/VREF_3J2VREF
3IP_L20P_3J3INPUT
3IO_L19N_3J4I/O
3IO_L19P_3J5I/O
3IO_L13N_3J6I/O
3IO_L10P_3J7I/O
3IO_L01P_3J8I/O
3IO_L01N_3J9I/O
3IO_L17N_3H1I/O
3IO_L17P_3H2I/O
3IP_L12N_3/VREF_3H4VREF
3IO_L10N_3H6I/O
3IO_L03N_3H7I/O
3IP_L16N_3G1INPUT
3IO_L14P_3G3I/O
3IO_L09N_3G4I/O
3IO_L03P_3G6I/O
3IO_L11N_3F2I/O
3IO_L14N_3F3I/O
3IO_L07N_3F4I/O
3IO_L09P_3F5I/O
3IO_L11P_3E1I/O
3IO_L07P_3E3I/O
3IO_L06N_3E4I/O
3IO_L06P_3D3I/O
3IP_L04N_3/VREF_3C1VREF
Type
DS610-4 (v2.0) July 16, 2007www.xilinx.com77
Product Specification
Pinout Descriptions
R
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
GNDGNDW8GND
GNDGNDW14GND
GNDGNDW19GND
GNDGNDW24GND
GNDGNDV3GND
GNDGNDU10GND
GNDGNDU13GND
GNDGNDU17GND
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
3IP_L04P_3C2INPUT
3IO_L02N_3B1I/O
3IO_L02P_3B2I/O
3IP_L66P_3AE1INPUT
3IP_L66N_3/VREF_3AE2VREF
3IO_L65P_3AD1I/O
3IO_L65N_3AD2I/O
3IO_L60N_3AC1I/O
3IO_L64P_3AC2I/O
3IO_L64N_3AC3I/O
3IO_L60P_3AB1I/O
3IO_L55P_3AA2I/O
3IO_L55N_3AA3I/O
3IP_L58N_3/VREF_3AA5VREF
3IP_L16P_3G2INPUT
3IP_L12P_3G5INPUT
3IP_L08P_3D2INPUT
3IP_L62P_3AB3INPUT
3IP_L58P_3AA4INPUT
3IP_L08N_3D1INPUT
3IP_L62N_3AB4INPUT
3IP_L54N_3Y4INPUT
3VCCO_3W5VCCO
3VCCO_3T2VCCO
3VCCO_3T8VCCO
3VCCO_3P5VCCO
3VCCO_3L2VCCO
3VCCO_3L8VCCO
3VCCO_3H5VCCO
3VCCO_3E2VCCO
3VCCO_3AB2VCCO
Type
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
GNDGNDT1GND
GNDGNDT6GND
GNDGNDT12GND
GNDGNDT14GND
GNDGNDT16GND
GNDGNDT21GND
GNDGNDT26GND
GNDGNDR11GND
GNDGNDR13GND
GNDGNDR15GND
GNDGNDP12GND
GNDGNDP16GND
GNDGNDP19GND
GNDGNDP24GND
GNDGNDN3GND
GNDGNDN8GND
GNDGNDN11GND
GNDGNDN15GND
GNDGNDM12GND
GNDGNDM14GND
GNDGNDM16GND
GNDGNDL1GND
GNDGNDL6GND
GNDGNDL11GND
GNDGNDL13GND
GNDGNDL15GND
GNDGNDL21GND
GNDGNDL26GND
GNDGNDK10GND
GNDGNDK17GND
GNDGNDJ24GND
GNDGNDH3GND
GNDGNDH8GND
GNDGNDH14GND
GNDGNDH19GND
GNDGNDF1GND
GNDGNDF6GND
GNDGNDF11GND
GNDGNDF16GND
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
Type
78 www.xilinx.comDS610-4 (v2.0) July 16, 2007
Product Specification
R
Pinout Descriptions
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
GNDGNDF21GND
GNDGNDF26GND
GNDGNDC3GND
GNDGNDC9GND
GNDGNDC14GND
GNDGNDC19GND
GNDGNDC24GND
GNDGNDAF1GND
GNDGNDAF6GND
GNDGNDAF11GND
GNDGNDAF16GND
GNDGNDAF21GND
GNDGNDAF26GND
GNDGNDAD3GND
GNDGNDAD8GND
GNDGNDAD13GND
GNDGNDAD18GND
GNDGNDAD24GND
GNDGNDAA1GND
GNDGNDAA6GND
GNDGNDAA11GND
GNDGNDAA16GND
GNDGNDAA21GND
GNDGNDAA26GND
GNDGNDA1GND
GNDGNDA6GND
GNDGNDA11GND
GNDGNDA16GND
GNDGNDA21GND
GNDGNDA26GND
VCCAUX DONEAB21CONFIG
VCCAUX PROG_BA2CONFIG
VCCAUX TDIG7JTAG
VCCAUX TDOE23JTAG
VCCAUX TMSD4JTAG
VCCAUX TCKA25JTAG
VCCAUX VCCAUXV9VCCAUX
VCCAUX VCCAUXU14VCCAUX
VCCAUX VCCAUXT22VCCAUX
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
Type
Table 63:
XC3SD1800A FPGA
BankXC3SD1800A Pin Name
VCCAUX VCCAUXP17VCCAUX
VCCAUX VCCAUXN10VCCAUX
VCCAUX VCCAUXL5VCCAUX
VCCAUX VCCAUXK13VCCAUX
VCCAUX VCCAUXJ18VCCAUX
VCCAUX VCCAUXE5VCCAUX
VCCAUX VCCAUXE16VCCAUX
VCCAUX VCCAUXE22VCCAUX
VCCAUX VCCAUXAB5VCCAUX
VCCAUX VCCAUXAB11VCCAUX
VCCAUX VCCAUXAB22VCCAUX
VCCINTVCCINTU12VCCINT
VCCINTVCCINTT11VCCINT
VCCINTVCCINTT13VCCINT
VCCINTVCCINTT15VCCINT
VCCINTVCCINTR12VCCINT
VCCINTVCCINTR14VCCINT
VCCINTVCCINTR16VCCINT
VCCINTVCCINTP11VCCINT
VCCINTVCCINTP13VCCINT
VCCINTVCCINTP14VCCINT
VCCINTVCCINTP15VCCINT
VCCINTVCCINTN12VCCINT
VCCINTVCCINTN13VCCINT
VCCINTVCCINTN14VCCINT
VCCINTVCCINTN16VCCINT
VCCINTVCCINTM11VCCINT
VCCINTVCCINTM13VCCINT
VCCINTVCCINTM15VCCINT
VCCINTVCCINTM17VCCINT
VCCINTVCCINTL12VCCINT
VCCINTVCCINTL14VCCINT
VCCINTVCCINTL16VCCINT
VCCINTVCCINTK15VCCINT
Spartan-3A DSP FG676 Pinout for
(Continued)
FG676
Ball
Type
DS610-4 (v2.0) July 16, 2007www.xilinx.com79
Product Specification
Pinout Descriptions
User I/Os by Bank
Table 64 indicates how the available user-I/O pins are distributed between the four I/O banks on the FG676 package. The
AWAKE pin is counted as a Dual-Purpose I/O.
R
Table 64:
Package
User I/Os Per Bank for the XC3SD1800A in the FG676 Package
Maximum I/Os
Edge
I/O Bank
and
Input-Only
I/OINPUTDUALVREF
All Possible I/O Pins by Type
(1)
To p01288228198
Right1130671530108
Bottom2129682121118
Left313297 18098
TOTAL51931482523932
Notes:
1.28 VREF are on INPUT pins.
CLK
80 www.xilinx.comDS610-4 (v2.0) July 16, 2007
Product Specification
R
INPUT
INPUT
INPUT
Pinout Descriptions
FG676 Footprint -
XC3SD1800A FPGA
Left Half of Package (top
view)
I/O: Unrestricted,
general-purpose user I/O.
314
INPUT: Unrestricted,
general-purpose input pin.
82
DUAL: Configuration,
AWAKE pins, then possible
52
user I/O.
VREF: User I/O or input
voltage reference for bank.
39
CLK: User I/O, input, or
clock buffer input.
32
CONFIG: Dedicated
configuration pins,
3
SUSPEND pin.
JTAG: Dedicated JTAG
port pins.
4
GND: Ground
77
VCCO: Output voltage
supply for bank.
36
12345678910111213
Bank 0
PROG_
B
I/O
L02P_3
INPUT
L04P_3
∇
INPUT
L08P_3
∇
VCCO_3
I/O
L11N_3
INPUT
L16P_3
∇
I/O
L17P_3
INPUT
L20N_3
VREF_3
I/O
L23N_3
VCCO_3
I/O
L29P_3
I/O
L31N_3
I/O
L33N_3
IRDY2
LHCLK3
I/O
L36N_3
VCCO_3
I/O
L51P_0
I/O
L51N_0
GND
I/O
L06P_3
I/O
L07P_3
I/O
L14N_3
I/O
L14P_3
GND
INPUT
L20P_3
I/O
L23P_3
I/O
L25N_3
I/O
L27N_3
GND
I/O
L34N_3
LHCLK5
I/O
L37P_3
I/O
L38P_3
GND
A
I/O
B
L02N_3
L04N_3
C
VREF_3
INPUT
L08N_3
D
∇
I/O
E
L11P_3
GND
F
INPUT
L16N_3
G
∇
I/O
H
L17N_3
INPUT
J
L24P_3
INPUT
K
L24N_3
GND
L
I/O
L29N_3
M
VREF_3
I/O
N
L31P_3
I/O
Bank 3
L33P_3
P
LHCLK2
I/O
L36P_3
R
VREF_3
GND
T
I/O
L45P_0
I/O
L45N_0
INPUT
∇
TMS
I/O
L06N_3
I/O
L07N_3
I/O
L09N_3
L12N_3
VREF_3
I/O
L19N_3
I/O
L22N_3
I/O
L25P_3
I/O
L27P_3
I/O
L30N_3
I/O
L34P_3
LHCLK4
I/O
L37N_3
I/O
L38N_3
VCCO_0
VCCAUX
VCCO_3
VCCAUX
VCCO_3
INPUT
∇
I/O
L44P_0
INPUT
∇
I/O
L09P_3
INPUT
L12P_3
∇
I/O
L19P_3
I/O
L22P_3
I/O
L28P_3
I/O
L30P_3
I/O
L40P_3
I/O
L42P_3
GND
I/O
L41P_0
I/O
L41N_0
I/O
L44N_0
INPUT
∇
GND
I/O
L03P_3
I/O
L10N_3
I/O
L13N_3
I/O
L18P_3
GND
I/O
L28N_3
I/O
L32P_3
LHCLK0
I/O
L39N_3
I/O
L40N_3
GND
INPUT
∇
I/O
L42P_0
I/O
L42N_0
INPUT
VREF_0
I/O
L48N_0
I/O
L48P_0
TDI
I/O
L03N_3
I/O
L10P_3
I/O
L13P_3
I/O
L18N_3
I/O
L26N_3
I/O
L32N_3
LHCLK1
I/O
L39P_3
I/O
L45N_3
I/O
L51P_3
I/O
L38P_0
I/O
L38N_0
I/O
L40P_0
I/O
L40N_0
VCCO_0
I/O
L52P_0
VREF_0
I/O
L52N_0
PUDC_B
GND
I/O
L01P_3
I/O
L05N_3
VCCO_3
I/O
L26P_3
GND
I/O
L41P_3
I/O
L45P_3
VCCO_3
I/O
I/O
L36P_0
L33P_0
I/O
I/O
L36N_0
L33N_0
I/O
GND
L34P_0
I/O
I/O
L37N_0
L34N_0
INPUT
I/O
L37P_0
∇
INPUT ∇INPUT
∇
I/O
I/O
L47P_0
L46P_0
I/O
I/O
L47N_0
L46N_0
I/O
INPUT
L01N_3
I/O
GND
L05P_3
I/O
I/O
L15N_3
L15P_3
I/O
I/O
L21N_3
L21P_3
I/O
L35P_3
VCCAUX
TRDY2
LHCLK6
I/O
I/O
L35N_3
L41N_3
LHCLK7
I/O
I/O
L43P_3
L43N_3
VREF_3
I/O
I/O
L48N_3
L48P_3
GND
VCCO_0
I/O
L32P_0
I/O
L32N_0
VREF_0
INPUT
GND
INPUT
VREF_0
VCCO_0
I/O
L43P_0
I/O
L43N_0
GND VCCINT GND
VCCINT GND VCCINT
GND VCCINT VCCINT
VCCINT GND VCCINT
GND VCCINT GND
VCCINT GND VCCINT
I/O
L29P_0
I/O
L29N_0
I/O
L30N_0
INPUT
I/O
L31P_0
I/O
L31N_0
I/O
L35P_0
I/O
L35N_0
I/O
L39P_0
I/O
L39N_0
INPUT
I/O
L28P_0
GCLK10
I/O
L28N_0
GCLK11
I/O
L30P_0
VCCO_0
I/O
L27P_0
GCLK8
I/O
L27N_0
GCLK9
INPUT
INPUT
VCCAUX
VCCINT: Internal core
supply voltage (+1.2V).
23
VCCAUX: Auxiliary supply
voltage.
14
Note:
The boxes with
triangles inside indicate
pin differences from the
XC3SD3400A device.
Please see the
"Footprint Migration
Differences" section for
more information.
Figure 17:
I/O
I/O
INPUT
I/O
I/O
I/O
I/O
L56P_3
I/O
L59P_3
I/O
L63P_3
I/O
L02P_2
M2
I/O
L02N_2
CSO_B
I/O
L14N_2
INPUT
∇
I/O
L11P_2
I/O
L11N_2
INPUT
∇
I/O
L56N_3
I/O
L61N_3
GND
INPUT
∇
INPUT
∇
VCCO_2
I/O
L14P_2
GND
I/O
L18P_2
I/O
L18N_2
L61P_3
VCCAUX
L05P_2
L05N_2
INPUT
VREF_2
L15P_2
L15N_2
INPUT INPUT
L19P_2
L19N_2
W
U
V
Y
A
A
A
B
A
C
A
D
A
E
A
F
L44P_3
I/O
L47P_3
INPUT
L50P_3
I/O
L53P_3
GND
I/O
L60P_3
I/O
L60N_3
I/O
L65P_3
INPUT
L66P_3
GND
L44N_3
I/O
L47N_3
INPUT
L50N_3
VREF_3
I/O
L53N_3
I/O
L55P_3
VCCO_3
I/O
L64P_3
I/O
L65N_3
INPUT
L66N_3
VREF_3
INPUT
∇
L46P_3
GND
I/O
L52P_3
INPUT
L54P_3
∇
I/O
L55N_3
INPUT
L62P_3
∇
I/O
L64N_3
GND
I/O
L06P_2
I/O
L06N_2
L42N_3
INPUT
L46N_3
I/O
L52N_3
INPUT
L54N_3
∇
INPUT
L58P_3
∇
INPUT
L62N_3
∇
I/O
L01P_2
M1
I/O
L01N_2
M0
I/O
L07P_2
I/O
L07N_2
L49P_3
I/O
L49N_3
VCCO_3
I/O
L57P_3
L58N_3
VREF_3
VCCAUX
INPUT
∇
INPUT
∇
VCCO_2
I/O
L10P_2
L51N_3
I/O
L59N_3
I/O
L63N_3
I/O
L57N_3
GND
INPUT
VREF_2
I/O
L08P_2
I/O
L08N_2
I/O
L10N_2
GND
Bank 2
FG676 Package Footprint for XC3SD1800A FPGA (top view)
I/O
I/O
I/O
I/O
I/O
I/O
VS1
I/O
VS0
GND
I/O
L09P_2
I/O
L09N_2
I/O
L12P_2
I/O
L12N_2
INPUT
VREF_2
∇
INPUT
VREF_2
I/O
L22P_2
D7
I/O
L22N_2
D6
I/O
L13N_2
I/O
L13P_2
VCCO_2
INPUT
∇
GND
VCCAUX
I/O
L23N_2
I/O
L23P_2
VCCO_2
GND
VCCINT GND
I/O
I/O
L16P_2
L20P_2
I/O
I/O
L16N_2
L20N_2
I/O
I/O
L17P_2
L25N_2
RDWR_B
GCLK13
I/O
I/O
L17N_2
L25P_2
VS2
GCLK12
I/O
INPUT
L21P_2
I/O
INPUT
L21N_2
INPUT
GND
VREF_2
I/O
I/O
L24N_2
L26N_2
D4
GCLK15
I/O
I/O
L24P_2
L26P_2
D5
GCLK14
DS610-4 (v2.0) July 16, 2007www.xilinx.com81
Product Specification
Pinout Descriptions
INPUT
∇
INPUT
∇
INPUT
INPUT
∇
INPUT
_
R
14151617181920212223242526
I/O
I/O
L26N_0
L23N_0
GCLK7
I/O
I/O
L26P_0
L23P_0
GCLK6
I/O
GND
L22N_0
INPUT
INPUT
VREF_0
∇
I/O
I/O
L20N_0
L24P_0
VREF_0
I/O
I/O
L24N_0
L20P_0
I/O
INPUT
L16P_0
I/O
GND
L16N_0
I/O
INPUT
L25N_0
GCLK5
I/O
VCCINT
L25P_0
GCLK4
VCCINT GND VCCINT
GND
VCCO_0
I/O
L21N_0
I/O
L22P_0
VCCAUX
GND
INPUT
∇
VCCO_0
I/O
L12P_0
I/O
L12N_0
INPUT
L19N_0
L19P_0
L21P_0
L13N_0
L13P_0
L08N_0
L08P_0
INPUT
VREF_0
L55N_1
GND VCCI NT GND VCCINT
VCCINT GND VCCINT
VCCINT VCCINT GND
VCCINT GND VCCINT
GND VCCI NT GND
I/O
VCCAUX
L35N_2
I/O
I/O
L31P_2
L35P_2
I/O
GND
L31N_2
I/O
I/O
L27P_2
L34N_2
GCLK0
D3
I/O
I/O
L27N_2
L34P_2
GCLK1
INIT_B
I/O
L30N_2
VCCO_2
MOSI
CSI
B
I/O
I/O
L29N_2
L30P_2
I/O
I/O
L32P_2
L29P_2
AWAKE
I/O
I/O
L28N_2
L32N_2
GCLK3
DOUT
I/O
INPUT
L28P_2
VREF_2
GCLK2
I/O
L42N_2
I/O
L42P_2
VCCO_2
INPUT
VREF_2
GND
I/O
L38N_2
I/O
L38P_2
INPUT
VCCO_2
GND
L39N_1
VCCAUX
L27N_1
L17N_1
L46N_2
L46P_2
L43N_2
L43P_2
INPUT
INPUT
L33N_2
L33P_2
INPUT
VREF_2
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
A15
I/O
A7
I/O
GND
I/O
I/O
I/O
I/O
∇
I/O
I/O
I/O
L18N_0
I/O
L18P_0
I/O
L17N_0
I/O
L17P_0
INPUT
INPUT
∇
INPUT
∇
INPUT
VCCAUX
I/O
L57N_1
I/O
L55P_1
I/O
L47N_1
I/O
L39P_1
A14
I/O
L34P_1
IRDY1
RHCLK6
I/O
L27P_1
A6
I/O
L17P_1
I/O
L12N_1
I/O
L08P_1
INPUT
∇
INPUT
∇
I/O
L47N_2
I/O
L47P_2
INPUT
∇
GND
I/O
L36N_2
D1
I/O
L36P_2
D2
I/O
L15N_0
I/O
L15P_0
GND
INPUT
∇
VCCO_0
I/O
L02N_0
I/O
L02P_0
VREF_0
GND
I/O
L59P_1
I/O
L57P_1
VCCO_1
I/O
L47P_1
I/O
L34N_1
RHCLK7
GND
I/O
L22P_1
VCCO_1
I/O
L12P_1
I/O
L08N_1
GND
INPUT
VREF_2
∇
INPUT
∇
VCCO_2
I/O
L40N_2
I/O
L40P_2
I/O
L37N_2
I/O
L37P_2
I/O
L14N_0
I/O
L14P_0
VREF_0
I/O
L11N_0
I/O
L11P_0
INPUT
∇
I/O
L01N_0
I/O
L01P_0
I/O
L64P_1
A24
I/O
L59N_1
I/O
L53N_1
I/O
L53P_1
I/O
L42N_1
A17
I/O
L42P_1
A16
I/O
L30N_1
RHCLK1
I/O
L22N_1
I/O
L14N_1
I/O
L10N_1
SUSPEND
I/O
L04P_1
I/O
L01P_1
HDC
INPUT
VREF_2
INPUT
∇
I/O
L41N_2
I/O
L41P_2
I/O
L39N_2
I/O
L39P_2
GND
I/O
L09N_0
I/O
L09P_0
I/O
L10N_0
I/O
L10P_0
GND
I/O
L64N_1
A25
I/O
L62N_1
A21
I/O
L62P_1
A20
I/O
L50N_1
GND
I/O
L45P_1
I/O
L37N_1
I/O
L30P_1
RHCLK0
I/O
L25P_1
A2
GND
I/O
L14P_1
I/O
L10P_1
I/O
L04N_1
I/O
L01N_1
LDC2
GND
DONE
I/O
L45N_2
I/O
L44N_2
I/O
L44P_2
GND
I/O
L07N_0
VCCO_0
I/O
L05N_0
I/O
L05P_0
VCCAUX
I/O
L58P_1
VREF_1
I/O
L58N_1
VCCO_1
I/O
L49N_1
I/O
L46N_1
I/O
L50P_1
I/O
L45N_1
VCCO_1
I/O
L37P_1
I/O
L25N_1
A3
VCCAUX
I/O
L21N_1
I/O
L18N_1
VCCO_1
I/O
L13P_1
I/O
L09P_1
VCCAUX
I/O
2
I/O
L45P_2
VCCO_2
INPUT
VREF_2
INPUT ∇INPUT
∇
INPUT
I/O
L07P_0
∇
I/O
GND
L06N_0
I/O
I/O
L06P_0
L61N_1
I/O
TDO
L56P_1
I/O
I/O
L56N_1
L54N_1
I/O
I/O
L51P_1
L51N_1
INPUT
INPUT
L48P_1
L48N_1
∇
∇
I/O
GND
L49P_1
I/O
INPUT
L46P_1
L40P_1
I/O
INPUT
L38P_1
L40N_1
A12
I/O
INPUT
L38N_1
L36P_1
A13
VREF_1
I/O
INPUT
L33N_1
L36N_1
RHCLK5
I/O
GND
L33P_1
RHCLK4
INPUT
INPUT
L28P_1
L28N_1
VREF_1
I/O
I/O
L26P_1
L26N_1
A4
A5
I/O
I/O
L23N_1
L23P_1
VREF_1
I/O
I/O
L21P_1
L19P_1
I/O
GND
L18P_1
I/O
I/O
L13N_1
L15P_1
I/O
I/O
L09N_1
L11P_1
I/O
I/O
L07N_1
L07P_1
VREF_1
I/O
I/O
L03P_1
L03N_1
A0
A1
INPUT
GND
∇
I/O
I/O
L52N_2
L48N_2
CCLK
I/O
I/O
L52P_2
D0
L48P_2
DIN/MIS O
TCKGND
INPUT
L65N_1
∇
I/O
L63N_1
A23
I/O
L61P_1
VCCO_1
I/O
L54P_1
L52N_1
VREF_1
INPUT
L44N_1
∇
I/O
L43N_1
A19
I/O
L41P_1
VCCO_1
I/O
L35N_1
A11
INPUT
L32N_1
I/O
L31N_1
TRDY1
RHCLK3
I/O
L29P_1
A8
VCCO_1
INPUT
L24P_1
∇
I/O
L19N_1
INPUT
L16P_1
∇
I/O
L15N_1
I/O
L11N_1
VCCO_1
I/O
L05N_1
I/O
L02N_1
LDC0
I/O
L51N_2
I/O
L51P_2
Bank 2
Bank 0
L65P_1
VREF_1
I/O
L63P_1
A22
I/O
L60N_1
I/O
L60P_1
GND
INPUT
L52P_1
∇
L44P_1
VREF_1
I/O
L43P_1
A18
I/O
L41N_1
GND
I/O
L35P_1
A10
INPUT
L32P_1
I/O
L31P_1
RHCLK2
I/O
L29N_1
A9
GND
L24N_1
VREF_1
L20N_1
VREF_1
INPUT
L20P_1
∇
INPUT
L16N_1
∇
GND
I/O
L06N_1
I/O
L06P_1
I/O
L05P_1
I/O
L02P_1
LDC1
GND
Right Half of FG676
A
B
C
D
E
F
G
H
J
K
L
M
N
Bank 1
P
R
T
U
V
W
Y
A
A
A
B
A
C
A
D
A
E
A
F
Package (top view)
82 www.xilinx.comDS610-4 (v2.0) July 16, 2007
Product Specification
R
XC3SD3400A FPGA
Pinout Descriptions
Tab le 6 5 lists all the FG676 package pins for the
XC3SD3400A FPGA. They are sorted by bank number and
then by pin name. Pairs of pins that form a differential I/O
pair appear together in the table. Tab le 6 5 also shows the
pin number for each pin and the pin type, as defined earlier.
Pinout Table
Note:
The grayed boxes denote a difference between the
XC3SD1800A and the XC3SD3400A devices.
Table 65:
XC3SD3400A FPGA
BankXC3SD3400A Pin Name
Spartan-3A DSP FG676 Pinout for
FG676
Ball
0IO_L43N_0K11I/O
0IO_L39N_0K12I/O
0IO_L25P_0/GCLK4K14GCLK
0IO_L12N_0K16I/O
0IP_0J10INPUT
0IO_L43P_0J11I/O
0IO_L39P_0J12I/O
0IP_0J13INPUT
0IO_L25N_0/GCLK5J14GCLK
0IP_0J15INPUT
0IO_L12P_0J16I/O
0IP_0/VREF_0J17VREF
0IO_L47N_0H9I/O
0IO_L46N_0H10I/O
0IO_L35N_0H12I/O
0IP_0H13INPUT
0IO_L16N_0H15I/O
0IO_L08P_0H17I/O
0IP_0H18INPUT
0IO_L52N_0/PUDC_BG8DUAL
0IO_L47P_0G9I/O
0IO_L46P_0G10I/O
0IP_0/VREF_0G11VREF
0IO_L35P_0G12I/O
0IO_L27N_0/GCLK9G13GCLK
0IP_0G14INPUT
0IO_L16P_0G15I/O
0IO_L08N_0G17I/O
0IO_L02P_0/VREF_0G19VREF
0IO_L01P_0G20I/O
Type
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at:
Table 66 indicates how the available user-I/O pins are
distributed between the four I/O banks on the FG676
package. The AWAKE pin is counted as a Dual-Purpose
I/O.
R
Table 66:
Package
To p01118211198
Right112367830108
Bottom21126862198
Left3123979098
User I/Os Per Bank for the XC3SD3400A in the FG676 Package
Maximum I/Os
Edge
I/O Bank
and
Input-Only
I/OINPUTDUALVREF
All Possible I/O Pins by Type
(1)
CLK
TOTAL46931434523732
Notes:
1.26 VREF are on INPUT pins.
92 www.xilinx.comDS610-4 (v2.0) July 16, 2007
Product Specification
R
Pinout Descriptions
FG676 Footprint -
XC3SD3400A FPGA
Left Half of Package (top
view)
I/O: Unrestricted,
general-purpose user I/O.
314
INPUT: Unrestricted,
general-purpose input pin.
34
DUAL: Configuration,
AWAKE pins, then possible
52
user I/O.
VREF: User I/O or input
voltage reference for bank.
37
CLK: User I/O, input, or
clock buffer input.
32
CONFIG: Dedicated
configuration pins
3
SUSPEND pin.
JTAG: Dedicated JTAG
port pins.
4
GND: Ground
100
VCCO: Output voltage
supply for bank.
40
VCCINT: Internal core
supply voltage (+1.2V).
36
VCCAUX: Auxiliary supply
voltage.
24
Note:
The boxes with
question marks inside
indicate pin differences
from the XC3SD1800A
device. Please see the
"Footprint Migration
Differences" section for
more information.
,
12345678910111213
A
B
L02N_3
INPUT
VREF_3
C
VCCAUX
D
E
L11P_3
F
INPUT ∇GND
G
H
L17N_3
INPUT
J
L24P_3
INPUT
K
L24N_3
L
L29N_3
M
VREF_3
N
L31P_3
Bank 3
L33P_3
P
LHCLK2
L36P_3
R
VREF_3
T
U
L44P_3
V
L47P_3
INPUT
W
L50P_3
Y
L53P_3
A
A
A
L60P_3
B
A
L60N_3
C
A
L65P_3
D
A
INPUT
L66P_3
E
A
F
GND
I/O
∇
∇
I/O
GND
I/O
GND
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
GND
I/O
I/O
I/O
GND
PROG_
B
I/O
L02P_3
VCCO_3
∇
GND
∇
VCCO_3
I/O
L11N_3
∇
I/O
L17P_3
INPUT
L20N_3
VREF_3
I/O
L23N_3
VCCO_3
I/O
L29P_3
I/O
L31N_3
I/O
L33N_3
IRDY2
LHCLK3
I/O
L36N_3
VCCO_3
I/O
L44N_3
I/O
L47N_3
INPUT
L50N_3
VREF_3
I/O
L53N_3
I/O
L55P_3
VCCO_3
I/O
L64P_3
I/O
L65N_3
INPUT
L66N_3
VREF_3
VCCAUX
∇
I/O
I/O
L51P_0
L45P_0
I/O
I/O
L51N_0
L45N_0
VCCINT
GND
∇
I/O
TMS
L06P_3
I/O
I/O
L07P_3
L06N_3
I/O
I/O
L14N_3
L07N_3
I/O
I/O
L14P_3
L09N_3
INPUT
VREF_3
GND
∇
INPUT
I/O
L20P_3
L19N_3
I/O
I/O
L23P_3
L22N_3
I/O
I/O
L25N_3
L25P_3
I/O
I/O
L27N_3
L27P_3
I/O
GND
L30N_3
I/O
I/O
L34N_3
L34P_3
LHCLK5
LHCLK4
I/O
I/O
L37P_3
L37N_3
I/O
I/O
L38P_3
L38N_3
INPUT
I/O
L46P_3
L42N_3
INPUT
GND
L46N_3
I/O
I/O
L52P_3
L52N_3
INPUT ∇VCCINT
∇
GND
I/O
L55N_3
∇
VCCAUX
GND
∇
∇
I/O
I/O
L01P_2
L64N_3
M1
I/O
GND
L01N_2
M0
I/O
I/O
L06P_2
L07P_2
I/O
I/O
L06N_2
L07N_2
GND
∇
VCCO_0
I/O
L44P_0
VCCINT
∇
VCCAUX
I/O
L09P_3
GND
∇
VCCO_3
I/O
L19P_3
I/O
L22P_3
VCCAUX
I/O
L28P_3
I/O
L30P_3
VCCO_3
I/O
L40P_3
I/O
L42P_3
I/O
L49P_3
I/O
L49N_3
VCCO_3
I/O
L57P_3
INPUT
VREF_3
∇
VCCAUX
GND
∇
GND
∇
VCCO_2
I/O
L10P_2
GND
I/O
L41P_0
I/O
L41N_0
I/O
L44N_0
VCCINT
∇
GND
I/O
L03P_3
I/O
L10N_3
I/O
L13N_3
I/O
L18P_3
GND
I/O
L28N_3
I/O
L32P_3
LHCLK0
I/O
L39N_3
I/O
L40N_3
GND
I/O
L51N_3
I/O
L59N_3
I/O
L63N_3
I/O
L57N_3
GND
INPUT
VREF_2
I/O
L08P_2
I/O
L08N_2
I/O
L10N_2
GND
VCCO_0
∇
I/O
L42P_0
I/O
L42N_0
INPUT
VREF_0
I/O
L48N_0
I/O
L48P_0
TDI
I/O
L03N_3
I/O
L10P_3
I/O
L13P_3
I/O
L18N_3
I/O
L26N_3
I/O
L32N_3
LHCLK1
I/O
L39P_3
I/O
L45N_3
I/O
L51P_3
I/O
L56P_3
I/O
L59P_3
I/O
L63P_3
I/O
L02P_2
M2
I/O
L02N_2
CSO_B
I/O
L14N_2
GND
∇
I/O
L11P_2
I/O
L11N_2
VCCO_2
∇
I/O
L38P_0
I/O
L38N_0
I/O
L40P_0
I/O
L40N_0
VCCO_0
I/O
L52P_0
VREF_0
I/O
L52N_0
PUDC_B
GND
I/O
L01P_3
I/O
L05N_3
VCCO_3
I/O
L26P_3
GND
I/O
L41P_3
I/O
L45P_3
VCCO_3
I/O
L56N_3
I/O
L61N_3
GND
VCCINT
∇
VCCINT
∇
VCCO_2
I/O
L14P_2
GND
I/O
L18P_2
I/O
L18N_2
I/O
I/O
L36P_0
L33P_0
I/O
I/O
L36N_0
L33N_0
I/O
GND
L34P_0
I/O
I/O
L37N_0
L34N_0
GND
I/O
L37P_0
∇
VCCAUX
VCCINT
∇
∇
I/O
I/O
L47P_0
L46P_0
I/O
I/O
L47N_0
L46N_0
I/O
INPUT
L01N_3
I/O
GND
L05P_3
I/O
I/O
L15N_3
L15P_3
I/O
I/O
L21N_3
L21P_3
I/O
L35P_3
VCCAUX
TRDY2
LHCLK6
I/O
I/O
L35N_3
L41N_3
LHCLK7
I/O
I/O
L43P_3
L43N_3
VREF_3
I/O
I/O
L48N_3
L48P_3
I/O
GND
L61P_3
I/O
VCCAUX
L09P_2
I/O
I/O
L05P_2
L09N_2
I/O
I/O
L05N_2
L12P_2
INPUT
I/O
VREF_2
L12N_2
GND
I/O
L15P_2
I/O
INPUT
L15N_2
VREF_2
INPUT INPUT
I/O
I/O
L19P_2
L22P_2
VS1
I/O
I/O
L19N_2
L22N_2
VS0
GND
VCCO_0
I/O
L32P_0
I/O
L32N_0
VREF_0
INPUT
GND
INPUT
VREF_0
VCCO_0
I/O
L43P_0
I/O
L43N_0
GND VCCINT GND
VCCINT GND VCCINT
GND VCCINT VCCINT
VCCINT GND VCCINT
GND VCCINT GND
VCCINT GND VCCINT
I/O
VCCINT GND
L13N_2
I/O
L13P_2
VCCO_2
VCCINT
∇
GND
VCCAUX
∇
I/O
L23N_2
I/O
L23P_2
VCCO_2
D7
GND
D6
Bank 2
Bank 0
I/O
L29P_0
I/O
L29N_0
I/O
L30N_0
INPUT
I/O
L31P_0
I/O
L31N_0
I/O
L35P_0
I/O
L35N_0
I/O
L39P_0
I/O
L39N_0
I/O
L16P_2
I/O
L16N_2
I/O
L17P_2
RDWR_B
I/O
L17N_2
VS2
I/O
L21P_2
I/O
L21N_2
INPUT
VREF_2
I/O
L24N_2
D4
I/O
L24P_2
D5
INPUT
I/O
L28P_0
GCLK10
I/O
L28N_0
GCLK11
I/O
L30P_0
VCCO_0
I/O
L27P_0
GCLK8
I/O
L27N_0
GCLK9
INPUT
INPUT
VCCAUX
I/O
L20P_2
I/O
L20N_2
I/O
L25N_2
GCLK13
I/O
L25P_2
GCLK12
INPUT
INPUT
GND
I/O
L26N_2
GCLK15
I/O
L26P_2
GCLK14
Figure 18:
FG676 Package Footprint for XC3SD3400A FPGA (top view)
DS610-4 (v2.0) July 16, 2007www.xilinx.com93
Product Specification
Pinout Descriptions
_
R
14151617181920212223242526
I/O
I/O
L26N_0
L23N_0
GCLK7
I/O
I/O
L26P_0
L23P_0
GCLK6
I/O
GND
L22N_0
GND
INPUT
VREF_0
∇
I/O
I/O
L20N_0
L24P_0
VREF_0
I/O
I/O
L24N_0
L20P_0
I/O
INPUT
L16P_0
I/O
GND
L16N_0
I/O
INPUT
L25N_0
GCLK5
I/O
VCCINT
L25P_0
GCLK4
VCCINT GND VCCINT
GND
VCCO_0
I/O
L21N_0
I/O
L22P_0
VCCAUX
GND
GND
∇
VCCO_0
I/O
L12P_0
I/O
L12N_0
INPUT
L19N_0
L19P_0
L21P_0
L13N_0
L13P_0
L08N_0
L08P_0
INPUT
VREF_0
L55N_1
GND VCCI NT GND VCCINT
VCCINT GND VCCINT
VCCINT VCCINT GND
VCCINT GND VCCINT
GND VCCI NT GND
I/O
VCCAUX
L35N_2
I/O
I/O
L31P_2
L35P_2
I/O
GND
L31N_2
I/O
I/O
L27P_2
L34N_2
GCLK0
D3
I/O
I/O
L27N_2
L34P_2
GCLK1
INIT_B
I/O
L30N_2
VCCO_2
MOSI
CSI
B
I/O
I/O
L29N_2
L30P_2
I/O
I/O
L32P_2
L29P_2
AWAKE
I/O
I/O
L28N_2
L32N_2
GCLK3
DOUT
I/O
INPUT
L28P_2
VREF_2
GCLK2
I/O
L42N_2
I/O
L42P_2
VCCO_2
INPUT
VREF_2
GND
I/O
L38N_2
I/O
L38P_2
INPUT
VCCO_2
GND
L39N_1
VCCAUX
L27N_1
L17N_1
L46N_2
L46P_2
L43N_2
L43P_2
VCCAUX
INPUT
L33N_2
L33P_2
INPUT
VREF_2
I/O
I/O
I/O
I/O
VCCINT
I/O
VCCINT
I/O
I/O
VCCAUX
GND
I/O
I/O
A15
I/O
A7
I/O
GND
I/O
VCCINT
I/O
VCCINT ∇VCCINT
I/O
I/O
∇
I/O
I/O
I/O
L18N_0
I/O
L18P_0
I/O
L17N_0
I/O
L17P_0
INPUT
∇
∇
INPUT
I/O
L57N_1
I/O
L55P_1
I/O
L47N_1
I/O
L39P_1
A14
I/O
L34P_1
IRDY1
RHCLK6
I/O
L27P_1
A6
I/O
L17P_1
I/O
L12N_1
I/O
L08P_1
∇
I/O
L47N_2
I/O
L47P_2
GND
∇
GND
I/O
L36N_2
D1
I/O
L36P_2
D2
I/O
L15N_0
I/O
L15P_0
GND
GND
∇
VCCO_0
I/O
L02N_0
I/O
L02P_0
VREF_0
GND
I/O
L59P_1
I/O
L57P_1
VCCO_1
I/O
L47P_1
I/O
L34N_1
RHCLK7
GND
I/O
L22P_1
VCCO_1
I/O
L12P_1
I/O
L08N_1
GND
∇
GND
∇
VCCO_2
I/O
L40N_2
I/O
L40P_2
I/O
L37N_2
I/O
L37P_2
I/O
L14N_0
I/O
L14P_0
VREF_0
I/O
L11N_0
I/O
L11P_0
VCCAUX
∇
I/O
L01N_0
I/O
L01P_0
I/O
L64P_1
A24
I/O
L59N_1
I/O
L53N_1
I/O
L53P_1
I/O
L42N_1
A17
I/O
L42P_1
A16
I/O
L30N_1
RHCLK1
I/O
L22N_1
I/O
L14N_1
I/O
L10N_1
SUSPEN
D
I/O
L04P_1
I/O
L01P_1
HDC
INPUT
VREF_2
GND
∇
I/O
L41N_2
I/O
L41P_2
I/O
L39N_2
I/O
L39P_2
GND
I/O
L09N_0
I/O
L09P_0
I/O
L10N_0
I/O
L10P_0
GND
I/O
L64N_1
A25
I/O
L62N_1
A21
I/O
L62P_1
A20
I/O
L50N_1
GND
I/O
L45P_1
I/O
L37N_1
I/O
L30P_1
RHCLK0
I/O
L25P_1
A2
GND
I/O
L14P_1
I/O
L10P_1
I/O
L04N_1
I/O
L01N_1
LDC2
GND
DONE
I/O
L45N_2
I/O
L44N_2
I/O
L44P_2
GND
I/O
L07N_0
VCCO_0
I/O
L05N_0
I/O
L05P_0
VCCAUX
I/O
L58P_1
VREF_1
I/O
L58N_1
VCCO_1
I/O
L49N_1
I/O
L46N_1
I/O
L50P_1
I/O
L45N_1
VCCO_1
I/O
L37P_1
I/O
L25N_1
A3
VCCAUX
I/O
L21N_1
I/O
L18N_1
VCCO_1
I/O
L13P_1
I/O
L09P_1
VCCAUX
I/O
2
I/O
L45P_2
VCCO_2
INPUT
VREF_2
GND
∇
I/O
L07P_0
I/O
L06N_0
I/O
L06P_0
TDO
I/O
L56N_1
I/O
L51P_1
VCCAUX
∇
I/O
L49P_1
I/O
L46P_1
INPUT
L40N_1
I/O
L38N_1
A13
INPUT
L36N_1
I/O
L33P_1
RHCLK4
INPUT
L28P_1
VREF_1
I/O
L26P_1
A4
I/O
L23P_1
I/O
L21P_1
I/O
L18P_1
I/O
L13N_1
I/O
L09N_1
I/O
L07P_1
I/O
L03P_1
A0
GND
∇
I/O
L48N_2
I/O
L48P_2
VCCAUX
TCKGND
∇
GND ∇GND
∇
I/O
GND
L63N_1
A23
I/O
I/O
L61N_1
L61P_1
I/O
VCCO_1
L56P_1
I/O
I/O
L54N_1
L54P_1
INPUT
I/O
VREF_1
L51N_1
∇
VCCO_1
INPUT
∇
∇
I/O
GND
L43N_1
A19
INPUT
I/O
L40P_1
L41P_1
I/O
VCCO_1
L38P_1
A12
INPUT
I/O
L36P_1
L35N_1
VREF_1
A11
I/O
INPUT
L33N_1
L32N_1
RHCLK5
I/O
L31N_1
GND
TRDY1
RHCLK3
I/O
INPUT
L29P_1
L28N_1
A8
I/O
VCCO_1
L26N_1
A5
I/O
GND
L23N_1
∇
VREF_1
I/O
I/O
L19P_1
L19N_1
GND
GND
∇
I/O
I/O
L15P_1
L15N_1
I/O
I/O
L11P_1
L11N_1
I/O
VCCO_1
L07N_1
VREF_1
I/O
I/O
L03N_1
L05N_1
A1
I/O
GND
L02N_1
LDC0
I/O
I/O
L52N_2
L51N_2
CCLK
I/O
I/O
L52P_2
L51P_2
D0
Bank 2
Bank 0
INPUT
VREF_1
∇
I/O
L63P_1
A22
I/O
L60N_1
I/O
L60P_1
GND
VCCAUX
∇
INPUT
VREF_1
∇
I/O
L43P_1
A18
I/O
L41N_1
GND
I/O
L35P_1
A10
INPUT
L32P_1
I/O
L31P_1
RHCLK2
I/O
L29N_1
A9
GND
INPUT
VREF_1
∇
INPUT
VREF_1
∇
VCCAUX
∇
INPUT
∇
GND
I/O
L06N_1
I/O
L06P_1
I/O
L05P_1
I/O
L02P_1
LDC1
GND
Right Half of FG676
A
B
C
D
E
F
G
H
J
K
L
M
N
Bank 1
P
R
T
U
V
W
Y
A
A
A
B
A
C
A
D
A
E
A
F
Package (top view)
94 www.xilinx.comDS610-4 (v2.0) July 16, 2007
Product Specification
R
Footprint Migration Differences
Pinout Descriptions
There are multiple migration footprint differences between
the XC3SD1800A and the XC3SD3400A in the FG676
package. These migration footprint differences are shown in
Tab le 6 7 . Migration from the XC3S1400A Spartan-3A
Table 67:
FG676
Ball
G16IP_00IP_00GNDGNDG16
G18N.C.N.C.IP_00VCCINTVCCINTG18
F10IP_00IP_00VCCINTVCCINTF10
F18N.C.N.C.IP_00VCCINTVCCINTF18
E20IP_00IP_00VCCAUXVCCAUXE20
D15IP_00IP_00GNDGNDD15
D19IP_00IP_00GNDGNDD19
B24N.C.N.C.IP_00GNDGNDB24
A23IP_00IP_00GNDGNDA23
A24N.C.N.C.IP_00VCCAUXVCCAUXA24
Y26IP_L16N_11IP_L16N_11IP_11Y26
W25IP_L16P_11IP_L16P_11GNDGNDW25
W26IP_L20P_11IP_L20P_11VCCAUXVCCAUXW26
V26IP_L20N_1/
U25IP_L24P_11IP_L24P_11GNDGNDU25
U26IP_L24N_1/
H23IP_L48P_11IP_L48P_11VCCAUXVCCAUXH23
H24IP_L48N_11IP_L48N_11IP_11H24
H25IP_L44N_11IP_L44N_11VCCO_11H25
H26IP_L44P_1/
G25IP_L52N_1/
G26IP_L52P_11IP_L52P_11VCCAUXVCCAUXG26
B25IP_L65N_11IP_L65N_11GNDGNDB25
B26IP_L65P_1/
FG676 Footprint Migration Differences
Spartan-3ASpartan-3A DSPSpartan-3A DSP
XC3S1400A
Typ e
F9N.C.N.C.IP_00VCCAUXVCCAUXF9
E6N.C.N.C.IP_00VCCINTVCCINTE6
E9N.C.N.C.IP_00GNDGNDE9
D5N.C.N.C.IP_00VCCINTVCCINTD5
C4IP_00IP_00VCCINTVCCINTC4
A5IP_00IP_00GNDGNDA5
A7IP_00IP_00VCCO_00A7
VREF_1
VREF_1
VREF_1
VREF_1
VREF_1
XC3S1400A
Bank
1IP_L20N_1/
1IP_L24N_1/
1IP_L44P_1/
1IP_L52N_1/
1IP_L65P_1/
XC3SD1800A
Typ e
VREF_1
VREF_1
VREF_1
VREF_1
VREF_1
device in the FG676 package to a Spartan-3A DSP device
in the FG676 package is also possible. The XC3S1800A pin
migration differences have been added to Ta b l e 6 7 for
designs migrating between these devices.
XC3SD1800A
Bank
1IP_1/VREF_11V26
1IP_1/VREF_11U26
1IP_1/VREF_11H26
1IP_1/VREF_11G25
1IP_1/VREF_11B26
XC3SD3400A
Typ e
XC3SD3400A
Bank
FG676
Ball
DS610-4 (v2.0) July 16, 2007www.xilinx.com95
Product Specification
Pinout Descriptions
R
Table 67:
FG676 Footprint Migration Differences
(Continued)
Spartan-3ASpartan-3A DSPSpartan-3A DSP
FG676
Ball
Y8N.C.N.C.IP_22VCCINTVCCINTY8
Y11IP_22IP_22VCCINTVCCINTY11
Y18N.C.N.C.IP_22VCCINTVCCINTY18
Y19N.C.N.C.IP_2/VREF_22VCCINTVCCINTY19
W18N.C.N.C.IP_22VCCINTVCCINTW18
AF2IP_22IP_22VCCAUXVCCAUXAF2
AF7IP_22IP_22VCCO_22AF7
AD5N.C.N.C.IP_22GNDGNDAD5
AD23N.C.N.C.IP_22GNDGNDAD23
AC5N.C.N.C.IP_22GNDGNDAC5
AC7IP_22IP_22GNDGNDAC7
AC18IP_22IP_22GNDGNDAC18
AB10IP_2/VREF_22IP_2/VREF_22GNDGNDAB10
AB17IP_22IP_22VCCAUXVCCAUXAB17
AB20IP_22IP_22GNDGNDAB20
AA8N.C.N.C.IP_22VCCINTVCCINTAA8
AA19IP_22IP_22GNDGNDAA19
AC22N.C.N.C.IO_22IO_22AC22
Y3IP_L54P_33IP_L54P_33IP_33Y3
Y4IP_L54N_33IP_L54N_33VCCINTVCCINTY4
H4IP_L12N_3/
G1IP_L16N_33IP_L16N_33IP_33G1
G2IP_L16P_33IP_L16P_33GNDGNDG2
G5IP_L12P_33IP_L12P_33GNDGNDG5
D1IP_L08N_33IP_L08N_33VCCAUXVCCAUXD1
D2IP_L08P_33IP_L08P_33GNDGNDD2
C1IP_L04N_3/
C2IP_L04P_33IP_L04P_33VCCO_33C2
AB3IP_L62P_33IP_L62P_33GNDGNDAB3
AB4IP_L62N_33IP_L62N_33VCCAUXVCCAUXAB4
AA4IP_L58P_33IP_L58P_33GNDGNDAA4
AA5IP_L58N_3/
XC3S1400A
Typ e
VREF_3
VREF_3
VREF_3
XC3S1400A
Bank
3IP_L12N_3/
3IP_L04N_3/
3IP_L58N_3/
XC3SD1800A
Typ e
VREF_3
VREF_3
VREF_3
XC3SD1800A
Bank
3IP_3/VREF_33H4
3IP_3/VREF_33C1
3IP_3/VREF_33AA5
XC3SD3400A
Typ e
XC3SD3400A
Bank
FG676
Ball
Migration Recommendations
There are multiple pinout differences between the
XC3SD1800A and the XC3SD3400A FPGAs in the FG676
package. Please note the differences between the two
devices from Ta bl e 6 7 and take the necessary precautions.
96 www.xilinx.comDS610-4 (v2.0) July 16, 2007
Product Specification
R
Pinout Descriptions
Revision History
The following table shows the revision history for this document.
DateVersionRevision
04/02/071.0Initial Xilinx release.
05/25/071.1Updates to Tab l e 58 , Table 60, Table 61, Table 62, Table 63, Table 64, Table 65, Table 66. Corrected
06/18/071.2Updated for Production release.
07/16/072.0Added Low-power options.. Added advance thermal data to Table 59.
VREF pins in XC3S1800A FG676 (Table 67). Updated FG676 package footprints for XC3SD1800A
FPGA (Figure 17) and XC3SD3400A FPGA (Figure 18). Minor edits.
SPARTAN-3A DSP
SPARTAN-3A DSP
www.xilinx.com/spartan3adsp
DS610-4 (v2.0) July 16, 2007www.xilinx.com97
Product Specification
Pinout Descriptions
R
This page intentionally left blank.
98 www.xilinx.comDS610-4 (v2.0) July 16, 2007
Product Specification
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.