Texas Instruments SN65LVDS109DBT, SN65LVDS109DBTR, SN65LVDS117DGGR Datasheet

SN65LVDS109, SN65LVDS117
DUAL 4-PORT AND DUAL 8-PORT LVDS REPEATERS
SLLS369C – AUGUST 1999 – REVISED MARCH 2000
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
Two Line Receivers and Eight (’109) or Sixteen (’117) Line Drivers Meet or Exceed the Requirements of ANSI EIA/TIA-644 Standard
D
Designed for Signaling Rates up to 632 Mbps
D
Outputs Arranged in Pairs From Each Bank
D
Enabling Logic Allows Individual Control of Each Driver Output Pair, Plus all Outputs
D
Low-Voltage Differential Signaling With Typical Output Voltage of 350 mV and a 100 Load
D
Electrically Compatible With L VDS, PECL, LVPECL, LVTTL, LVCMOS, GTL, BTL, CTT, SSTL, or HSTL Outputs With External T ermination Networks
D
Propagation Delay Times < 4.5 ns
D
Output Skew Less Than 550 ps Bank Skew Less Than150 ps Part-to-Part Skew Less Than 1.5 ns
D
Total Power Dissipation Typically <500 mW With All Ports Enabled and at 200 MHz
D
Driver Outputs or Receiver Input Equals High Impedance When Disabled or With VCC < 1.5 V
D
Bus-Pin ESD Protection Exceeds 12 kV
D
Packaged in Thin Shrink Small-Outline Package With 20 mil Terminal Pitch
description
The SN65LVDS109 and SN65LVDS117 are configured as two identical banks, each bank having one differential line receiver connected to either four (’109) or eight (’117) differential line drivers. The outputs are arranged in pairs having one output from each of the two banks. Individual output enables are provided for each pair of outputs and an additional enable is provided for all outputs.
The line receivers and line drivers implement the electrical characteristics of low-voltage differential signaling (LVDS). LVDS, as specified in EIA/TIA-644, is a data signaling technique that offers low power, low noise emission, high noise immunity, and high switching speeds. It can be used to transmit data at speeds up to at least 622 Mbps and over relatively long distances. (Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other system characteristics.)
Copyright 2000, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
GND
V
CC
V
CC
GND
NC
ENM
ENA ENB ENC END
NC
GND
1A 1B
GND
V
CC
V
CC
GND
2A 2B
GND
NC ENE ENF
ENG
ENH
NC
NC
GND
V
CC
V
CC
GND
A1Y A1Z A2Y A2Z B1Y B1Z B2Y B2Z C1Y C1Z C2Y C2Z D1Y D1Z D2Y D2Z E1Y E1Z E2Y E2Z F1Y F1Z F2Y F2Z G1Y G1Z G2Y G2Z H1Y H1Z H2Y H2Z
SN65LVDS117
DGG PACKAGE
(TOP VIEW)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20
GND
V
CC
GND
NC
ENM
ENA ENB
1A 1B
GND
2A
2B ENC END
NC NC
GND
V
CC
GND
A1Y A1Z A2Y A2Z NC B1Y B1Z B2Y B2Z NC C1Y C1Z C2Y C2Z NC D1Y D1Z D2Y D2Z
SN65LVDS109
DBT PACKAGE
(TOP VIEW)
SN65LVDS109, SN65LVDS117 DUAL 4-PORT AND DUAL 8-PORT LVDS REPEATERS
SLLS369C – AUGUST 1999 – REVISED MARCH 2000
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
description (continued)
The intended application of these devices, and the LVDS signaling technique, is for point-to-point or point-to-multipoint (distributed simplex) baseband data transmission on controlled impedance media of approximately 100 Ω. The transmission media may be printed-circuit board traces, backplanes, or cables. The large number of drivers integrated into the same silicon substrate, along with the low pulse skew of balanced signaling, provides extremely precise timing alignment of the signals being repeated from the inputs. This is particularly advantageous for implementing system clock and data distribution trees.
The SN65LVDS109 and SN65LVDS117 are characterized for operation from –40°C to 85°C.
SN65LVDS109, SN65LVDS117
DUAL 4-PORT AND DUAL 8-PORT LVDS REPEATERS
SLLS369C – AUGUST 1999 – REVISED MARCH 2000
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
logic diagram (positive logic)
B2Z
B2Y
B1Z
B1Y
A2Z
A2Y
A1Z
A1Y
ENA
ENM
ENB
1A 1B
C2Z
C2Y
C1Z
C1Y
ENC
D2Z
D2Y
D1Z
D1Y
END
E2Z
E2Y
E1Z
E1Y
ENE
F2Z
F1Z
ENF
F2Y
F1Y
2A 2B
G2Z
G2Y
G1Z
G1Y
ENG
H2Z
H2Y
H1Z
H1Y
ENH
B2Z
B2Y
B1Z
B1Y
A2Z
A2Y
A1Z
A1Y
ENA
ENM
ENB
1A 1B
C2Z
C2Y
C1Z
C1Y
ENC
D2Z
D2Y
D1Z
D1Y
END
SN65LVDS109 SN65LVDS117
2A 2B
SN65LVDS109, SN65LVDS117 DUAL 4-PORT AND DUAL 8-PORT LVDS REPEATERS
SLLS369C – AUGUST 1999 – REVISED MARCH 2000
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
selection guide to LVDS splitters
The SN65L VDS109 and SN75LVDS117 are both members of a family of L VDS splitters and repeaters. A brief overview of the family is provided by the following table.
LVDS SPLITTER AND REPEATER FAMILY
DEVICE
NUMBER
OF INPUTS
NUMBER OF
OUTPUTS
PACKAGE COMMENTS
SN65LVDS104 1 LVDS 4 LVDS 16-pin D 4-port LVDS repeater SN65LVDS105 1 LVTTL 4 LVDS 16-pin D 4-port TTL-to-LVDS repeater SN65LVDS108 1 LVDS 8 LVDS 38-pin DBT 8-port LVDS repeater SN65LVDS109 2 LVDS 8 LVDS 38-pin DBT Dual 4-Port LVDS repeater SN65LVDS116 1 LVDS 16 LVDS 64-pin DGG 16-port LVDS repeater SN65LVDS117 2 LVDS 16 LVDS 64-pin DGG Dual 8-port LVDS repeater
FUNCTION TABLE
INPUTS
OUTPUTS
VID = VA – V
B
ENM ENx xY xZ
X L X Z Z X X L Z Z
VID 100 mV H H H L
–100 mV < VID < 100 mV H H ? ?
VID –100 mV H H L H
equivalent input and output schematic diagrams
300 k300 k
V
CC
7 V 7 V
A Input B Input
V
CC
5
7 V
Y or Z Output
10 k
7 V
300 k
50
V
CC
Enable
Inputs
300 k
(ENM Only)
(ENx Only)
SN65LVDS109, SN65LVDS117
DUAL 4-PORT AND DUAL 8-PORT LVDS REPEATERS
SLLS369C – AUGUST 1999 – REVISED MARCH 2000
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature (unless otherwise noted)
Supply voltage range, VCC (see Note 1) –0.5 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, Enable inputs –0.5 V to 6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A, B, Y or Z –0.5 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrostatic discharge, Y, Z, and GND (see Note 2) Class 3, A:12 kV, B: 500 V. . . . . . . . . . . . . . . . . . . . . . . . .
All pins Class 3, A: 4 kV, B: 400 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range –65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
2. Tested in accordance with MIL-STD-883C Method 3015.7.
DISSIPATION RATING TABLE
PACKAGE
TA 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 85°C
POWER RATING
DBT 1277 mW 10.2 mW/°C 644 mW
DGG 2094 mW 16.7 mW/°C 1089 mW
This is the inverse of the junction-to-ambient thermal resistance when board-mounted (low-k) with no air flow.
recommended operating conditions
MIN NOM MAX UNIT
Supply voltage, V
CC
3 3.3 3.6 V
High-level input voltage, V
IH
2 V
Low-level input voltage, V
IL
0.8 V
Magnitude of differential input voltage, VID 0.1 3.6 V
Common-mode input voltage, V
IC
Ť
V
ID
Ť
2
2.4 –
Ť
V
ID
Ť
2
V
VCC – 0.8 V
Operating free-air temperature, T
A
–40 85 °C
SN65LVDS109, SN65LVDS117 DUAL 4-PORT AND DUAL 8-PORT LVDS REPEATERS
SLLS369C – AUGUST 1999 – REVISED MARCH 2000
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP†MAX UNIT
V
ITH+
Positive-going differential input voltage threshold
100
V
ITH–
Negative-going differential input voltage threshold
See Figure 1 and Table 1
–100
mV
VOD Differential output voltage magnitude
247 340 454
VOD
Change in differential output voltage magnitude between logic states
R
L
=
100 Ω
,
V
ID
=
±100 mV
,
See Figure 1 and Figure 2
–50 50
mV
V
OC(SS)
Steady-state common-mode output voltage 1.125 1.375 V
V
OC(SS)
Change in steady-state common-mode output voltage between logic states
See Figure 3
–50 50
mV
V
OC(PP)
Peak-to-peak common-mode output voltage 50 150
Enabled, RL = 100 46 64
pp
SN65LVDS109
Disabled 6 8
ICCSupply current
Enabled, RL = 100 85 122
mA
SN65LVDS117
Disabled 6 8
p
p
VI = 0 V –2 –20
IIInput current (A or B inputs)
VI = 2.4 V –1.2
µ
A
I
I(OFF)
Power-off input current (A or B inputs) VCC = 1.5 V, VI = 2.4 V 20 µA
I
IH
High-level input current (enables) VIH = 2 V 20 µA
I
IL
Low-level input current (enables) VIL = 0.8 V 10 µA
p
VOY or VOZ = 0 V ±24
IOSShort-circuit output current
VOD = 0 V ±12
mA
I
OZ
High-impedance output current VO = 0 V or V
CC
±1 µA
I
O(OFF)
Power-off output current VCC = 1.5 V, VO = 3.6 V ±1 µA
C
IN
Input capacitance (A or B inputs) VI = 0.4 sin (4E6πt) + 0.5 V 5
p
C
O
Output capacitance (Y or Z outputs) VI = 0.4 sin (4E6πt) + 0.5 V, Disabled 9.4
pF
All typical values are at 25°C and with a 3.3 V supply.
Loading...
+ 13 hidden pages