TEXAS INSTRUMENTS MSP430x22x2, MSP430x22x4 Technical data

MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
D Low Supply Voltage Range 1.8 V to 3.6 V D Ultralow-Power Consumption
-- Active Mode: 270 μAat1MHz,2.2V
-- Off Mode (RAM Retention): 0.1 μA
D Ultrafast Wake-Up From Standby Mode in
Less Than 1 μs
D 16-Bit RISC Architecture, 62.5-ns
Instruction Cycle Time
D Basic Clock Module Configurations:
-- Internal Frequencies up to 16 MHz With
Four Calibrated Frequencies to ±1%
-- Internal Very-Low-Power Low-Frequency Oscillator
-- 32-kHz Crystal
-- High-Frequency Crystal up to 16 MHz
-- Resonator
-- External Digital Clock Source
-- External Resistor
D 16-Bit Timer_A With Three
Capture/Compare Registers
D 16-Bit Timer_B With Three
Capture/Compare Registers
D Universal Serial Communication Interface
-- Enhanced UART Supporting Auto-Baudrate Detection (LIN)
-- IrDA Encoder and Decoder
-- Synchronous SPI
2
C
-- I
D 10-Bit, 200 -ksps A/D Converter With
Internal Reference, Sample-and-Hold, Autoscan, and Data Transfer Controller
D Two Configurable Operational Amplifiers
(MSP430x22x4 Only)
D Brownout Detector D Serial Onboard Programming,
No External Programming Voltage Needed Programmable Code Protection by Security Fuse
D Bootstrap Loader D On Chip Emulation Module D Family Members Include:
MSP430F2232: 8KB + 256B Flash Memory
512B RAM
MSP430F2252: 16KB + 256B Flash Memory
512B RAM
MSP430F2272: 32KB + 256B Flash Memory
1KB RAM
MSP430F2234: 8KB + 256B Flash Memory
512B RAM
MSP430F2254: 16KB + 256B Flash Memory
512B RAM
MSP430F2274: 32KB + 256B Flash Memory
1KB RAM Available in a 38-Pin Thin Shrink Small-Outline Package (TSSOP) and 40-Pin QFN Package
D For Complete Module Descriptions, Refer
to the MSP430x2xx Family User’s Guide

description

The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 μs.
The MSP430x22xx series is an ultralow-power mixed signal microcontroller with two built-in 16-bit timers, a universal serial communication interface, 10-bit A/D converter with integrated reference and data transfer controller (DTC), two general-purpose operational amplifiers in the MSP430x22x4 devices, and 32 I/O pins.
Typicalapplications include sensor systems that capture analog signals, convert them to digital values, and then process the data for display or for transmission to a host system. Stand-alone radio-frequency (RF) sensor front ends are another area of application.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Copyright © 2007 Texas Instruments Incorporated
1
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
T
A
-- 4 0 °Cto85°C
-- 4 0 °C to 105°C
Product Preview

AVAILABLE OPTIONS

PACKAGED DEVICES
PLASTIC
38-PIN TSSOP
(DA)
MSP430F2232IDA MSP430F2252IDA MSP430F2272IDA MSP430F2234IDA MSP430F2254IDA MSP430F2274IDA
MSP430F2232TDA MSP430F2252TDA MSP430F2272TDA
MSP430F2234TDA MSP430F2254TDA MSP430F2274TDA
PLASTIC
40-PIN QFN
MSP430F2232IRHA MSP430F2252IRHA MSP430F2272IRHA MSP430F2234IRHA MSP430F2254IRHA MSP430F2274IRHA
MSP430F2232TRHA
MSP430F2252TRHA
MSP430F2272TRHA
MSP430F2234TRHA MSP430F2254TRHA MSP430F2274TRHA
(RHA)
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265

MSP430x22x2 device pinout, DA package

MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
1TEST/SBWTCK
2DVCC
3P2.5/Rosc
DVSS
XOUT/P2 .7
XIN/P2 .6
RST /NMI /SBWTDIO
P2.0/ACLK /A0
P2 .1 /TAINCLK /SMCLK /A1
P2 .2 /TA 0/A2
P3 .0 /UCB 0STE /UCA 0CLK /A 5
P3 .1 /UCB 0SIMO /UCB 0SDA
P3 .2/UCB 0SOMI /UCB 0SCL
P3 .3 /UCB 0CLK /UCA 0STE
AVSS
P4.0/TB 0
P4.1/TB 1
P4.2/TB 2
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 P4.4 /TB 1/A 13
19

MSP430x22x4 device pinout, DA package

38 P1.7 /TA 2/TDO /TDI
37 P1.6 /TA 1/TDI
36 P1.5 /TA 0/TMS
35 P 1.4/SMCLK /TCK
34 P 1.3/TA 2
33 P 1.2/TA 1
32 P 1.1/TA 0
31 P 1.0/TACLK /ADC 10 CLK
30 P2.4 /TA 2/A 4 /VREF+/ VeREF +
29 P2.3 /TA 1/A 3 /VREF-- /VeREF --
28 P 3.7/A7
27 P 3.6/A6
26 P 3.5/UCA 0RXD /UCA0SOMI
25 P 3.4/UCA 0 TXD /UCA0SIMO
P4.7/TBCLK
24
P4.6/TBOUTH /A15
23AVC C
22
P4.5 /TB 2/A 14
21
20
P4.3 /TB 0/A 12
DVSS
XOUT/P 2.7
XIN /P2. 6
RST /NMI /SBWTDIO
P2 .0 / ACLK /A0/OA 0I0
P2 .1 /TAINCLK /SMCLK /A1 /OA 0O
P2 .2 /TA 0/A2 /OA 0I1
P3 .0 /UCB 0STE /UCA 0CLK /A 5
P3 .1 /UCB 0SIMO/UCB 0 SDA
P3.2/UCB 0SOMI/UCB 0 SCL
P3 .3 /UCB 0CLK /UCA 0STE
AVSS
P4 .0 /TB 0
P4 .1 /TB 1
P4 .2 /TB 2
1TEST/SBWTCK
2DVCC
3P2.5/Rosc
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 P 4.4/TB 1/A13 /OA1O
19
38 P1 .7/TA2/TDO /TDI
37 P 1.6/TA 1/TDI
36 P 1.5/TA 0 /TMS
35 P 1.4/SMCLK /TCK
34 P 1.3/TA 2
33 P 1.2/TA 1
32 P 1.1/TA 0
31 P 1.0/TACLK /ADC 10 CLK
30 P 2.4/TA 2 /A 4/VREF +/VeREF +/ OA 1I0
29 P 2.3/TA 1 /A 3/VREF --/ VeREF --/OA 1I1/OA 1O
28 P 3.7/A7/OA 1I2
27 P 3.6/A6/OA 0I2
26 P 3.5/UCA 0RXD /UCA0SOMI
25 P 3.4/UCA 0TXD /UCA0SIMO
P4.7/TBCLK
24
P4.6/TBOUTH/A15/OA1I3
23AVC C
P4.5/TB2/A14 /OA0I3
22
21
P4.3/TB0/A12 /OA0O
20
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

MSP430x22x2 device pinout, RHA package

XOUT /P2.7
XIN /P2. 6
DVSS
RST /NMI /SBWTDIO
P2.0/ACLK /A0
P2 .1 /TAINCLK /SMCLK /A 1
P2.2 /TA 0/A 2
P3 .0 /UCB 0STE /UCA 0CLK /A5
P3 .1 /UCB 0SIMO /UCB 0SDA
P2.5/Rosc
1DVSS
2
3
4
5
6
7
8
9
10
12 14 15 16 17 18 19
P3.2/UCB0SOMI/UCB0SCL
TEST/SBWTCK
DVCC
DVCC
P1.7/T A2/TD O /T D I
3839 37 36 35 34 33 32
13
AVSS
AVCC
P4 .0 /TB0
P3.3/UCB0CLK/UCA0STE
P1 .5 /T A0 / T M S
P1 .6 /T A1 / T D I/T CLK
P4 .1 /TB1
P4 .2 /TB2
P1 .2 /T A1
P1 .3 /T A2
P1 .4 /SM CLK/TC K
30
P1.1/TA0
29
P1.0/TACLK /ADC 10CLK
28
P2 .4 / TA 2 /A4/VREF+/ VeREF+
27
P2 .3 / TA 1 /A3/VREF-- / V e R E F--
26
P3.7/A7
25
P3.6/A6
24
P3 .5 /UCA 0RXD/UCA0SOMI
23
P3 .4 /UCA 0TXD/UCA0SIMO
22
P4.7/TBCLK
21
P4.6/TBOUTH/A15
P4.3 /TB 0/A 1 2
P4.4 /TB 1/A 1 3
P4.5 /TB 2/A 1 4
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265

MSP430x22x4 device pinout, RHA package

MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
XOUT /P2.7
XIN /P2.6
DVSS
RST/NMI/SBWTDIO
P2.0/ACLK /A0/OA 0I0
P2 .1 /TAINCLK /SMCLK /A1/ OA 0O
P2 .2 /TA 0/A2 /OA 0I1
P3 .0 /UCB 0STE /UCA 0CLK /A5
P3 .1 /UCB 0SIMO /UCB 0SDA
P2.5/Rosc
1DVSS
2
3
4
5
6
7
8
9
10
12 14 15 16 17 18 19
P3.2/UCB0SOMI/UCB0SCL
TEST/SBWTCK
DVCC
DVCC
P1.7/T A2/TD O /T D I
3839 37 36 35 34 33 32
13
AVSS
AVCC
P4 .0 /TB0
P3.3/UCB0CLK/UCA0STE
P1 .5 /T A0 / T M S
P1 .6 /T A1 / T D I/T CLK
P4 .1 /TB1
P4 .2 /TB2
P1 .2 /T A1
P1 .3 /T A2
P1 .4 /SM CLK/TC K
30
P1.1/TA0
29
P1.0/TACLK /ADC 10CLK
28
P2 .4/TA 2/A4 /VREF+/ VeREF+/ OA1I0
27
P2 .3/TA 1/A3 /VREF-- / V e R E F-- /OA 1 I1/OA1O
26
P3.7/A7/OA1I2
25
P3.6/A6/OA0I2
24
P3 .5 /UCA 0RXD /UCA 0 SOMI
23
P3 .4 /UCA 0TXD /UCA 0SIMO
22
P4.7/TBCLK
21
P4.6/TBOUTH/A15/OA 1I3
P4 .3 /T B0 / A12 /O A 0 O
P4 .4 /T B1 / A13 /O A 1 O
P4.5/TB2/A 14/OA0I3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
5
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

MSP430x22x2 functional block diagram

VCC VSS
System+
16MHz
CPU
incl. 16
Registers
Emulation
(2BP)
JTAG
Interface
XOUT
MCLK
ACLK
SMCLK
MAB
MDB
Flash
32kB 16kB
8kB
Brownout
Protection
RST/NMI
XIN
Basic Clock
Spy--Bi Wire
NOTE: See port schematics section for detailed I/O information.

MSP430x22x4 functional block diagram

VCC VSS
System+
16MHz
CPU
incl. 16
Registers
XOUT
MCLK
ACLK
SMCLK
MAB
MDB
Flash
32kB 16kB
8kB
XIN
Basic Clock
RAM
1kB 512B 512B
RAM
1kB 512B 512B
ADC10
1 0 --B i t
12 Channels, Autoscan,
DTC
Watchdog
WDT+
15/16--Bit
ADC10
1 0 --B i t
12 Channels, Autoscan,
DTC
Time r_A3
3CC
Registers
OA0, OA1
2OpAmps
P1.x/P2.x
2x8
Ports P1/P2
2x8 I/O
Interrupt
capability,
pull--up/down
resistors
Time r_B3
3CC
Registers,
Shadow
Reg
P1.x/P2.x
2x8
Ports P1/P2
2x8 I/O
Interrupt
capability,
pull--up/down
resistors
P3.x/P4.x
2x8
Ports P3/P4
2x8 I/O
pull--up/down
resistors
USCI_A0:
UART/LIN,
IrDA, SPI
USCI_B0:
SPI, I2C
P3.x/P4.x
2x8
Ports P3/P4
2x8 I/O
pull--up/down
resistors
Emulation
(2BP)
JTAG
Interface
Spy--Bi Wire
Brownout
Protection
RST/NMI
Watchdog
WDT+
15/16--Bit
Time r_A3
3CC
Registers
Time r_B3
3CC
Registers,
Shadow
Reg
USCI_A0:
UART/LIN,
IrDA, SPI
USCI_B0:
SPI, I2C
NOTE: See port schematics section for detailed I/O information.
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
DESCRIPTION
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

Terminal Functions, MSP430x22x2

TERMINAL
NAME
P1.0/TACLK/ ADC10CLK
P1.1/TA0 32 30 I/O General-purpose digital I/O pin
P1.2/TA1 33 31 I/O General-purpose digital I/O pin
P1.3/TA2 34 32 I/O General-purpose digital I/O pin
P1.4/SMCLK/ TCK
P1.5/TA0/ TMS
P1.6/TA1/ TDI/TCLK
P1.7/TA2/ TDO/TDI
P2.0/ACLK/A0 8 6 I/O General-purpose digital I/O pin / ACLK output
P2.1/TAINCLK/SMCLK/A1 9 7 I/O General-purpose digital I/O pin
P2.2/TA0/A2 10 8 I/O General-purpose digital I/O pin
P2.3/TA1/ A3/V
P2.4/TA2/ A4/V
P2.5/ R
XIN/P2.6 6 3 I/O Input terminal of crystal oscillator
XOUT/P2.7 5 2 I/O Output terminal of crystal oscillator
P3.0/ UCB0STE/UCA0CLK/ A5
P3.1/ UCB0SIMO/UCB0SDA
P3.2/ UCB0SOMI/UCB0SCL
P3.3/ UCB0CLK/UCA0STE
P3.4/ UCA0TXD/UCA0SIMO
REF--/VeREF--
REF+/VeREF+
OSC
DA RHA
NO. NO.
31 29 I/O General-purpose digital I/O pin
35 33 I/O General-purpose digital I/O pin / SMCLK signal output
36 34 I/O General-purpose digital I/O pin / Timer_A, compare: OUT0 output
37 35 I/O General-purpose digital I/O pin / Timer_A, compare: OUT1 output
38 36 I/O General-purpose digital I/O pin / Timer_A, compare: OUT2 output
29 27 I/O General-purpose digital I/O pin
30 28 I/O General-purpose digital I/O pin / Timer_A, compare: OUT2 output
3 40 I/O General-purpose digital I/O pin
11 9 I/O General-purpose digital I/O pin
12 10 I/O General-purpose digital I/O pin
13 11 I/O General-purpose digital I/O pin
14 12 I/O General-purpose digital I/O pin
25 23 I/O General-purpose digital I/O pin
I/O
Timer_A, clock signal TACLK input ADC10, conversion clock
Timer_A, capture: CCI0A input, compare: OUT0 output/BSL transmit
Timer_A, capture: CCI1A input, compare: OUT1 output
Timer_A, capture: CCI2A input, compare: OUT2 output
Test Clock input for device programming and test
Test Mode Select input for device programming and test
Test Data Input or Test Clock Input for programming and test
Test Data Output or Test Data Input for programming and test
ADC10, analog input A0
Timer_A, clock signal at INCLK, SMCLK signal output ADC10, analog input A1
Timer_A, capture: CCI0B input/BSL receive, compare: OUT0 output ADC10, analog input A2
Timer_A, capture CCI1B input, compare: OUT1 output ADC10, analog input A3 / negative reference voltage output/input
ADC10, analog input A4 / positive reference voltage output/input
Input for external DCO resistor to define DCO frequency
General-purpose digital I/O pin
General-purpose digital I/O pin
USCI_B0 slave transmit enable / USCI_A0 clock input/output ADC10, analog input A5
USCI_B0 slave in/master out in SPI mode, SDA I
USCI_B0 slave out/master in in SPI mode, SCL I
USCI_B0 clock input/output / USCI_A0 slave transmit enable
USCI_A0 transmit data output in UART mode, slave in/master out in SPI mode
DESCRIPTION
2
CdatainI2C mode
2
C clock in I2C mode
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
7
MSP430x22x2, MSP430x22x4
DESCRIPTION
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Terminal Functions, MSP430x22x2 (Continued)
TERMINAL
NAME
P3.5/ UCA0RXD/UCA0SOMI
P3.6/A6 27 25 I/O General-purpose digital I/O pin
P3.7/A7 28 26 I/O General-purpose digital I/O pin
P4.0/TB0 17 15 I/O General-purpose digital I/O pin
P4.1/TB1 18 16 I/O General-purpose digital I/O pin
P4.2/TB2 19 17 I/O General-purpose digital I/O pin
P4.3/TB0/ A12
P4.4/TB1 A13
P4.5/TB2 A14
P4.6/TBOUTH A15
P4.7/TBCLK 24 22 I/O General-purpose digital I/O pin
RST/NMI/SBWTDIO 7 5 I Reset or nonmaskable interrupt input
TEST/SBWTCK 1 37 I Selects test mode for JTAG pins on Port1. The device protection fuse is
DV
CC
AV
CC
DV
SS
AV
SS
QFN Pad NA Package
TDO or TDI is selected via JTAG instruction.
NOTE: IfXOUT/P2.7/CA7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection
to this pad after reset.
DA RHA
NO. NO.
26 24 I/O General-purpose digital I/O pin
20 18 I/O General-purpose digital I/O pin
21 19 I/O General-purpose digital I/O pin
22 20 I/O General-purpose digital I/O pin
23 21 I/O General-purpose digital I/O pin
2 38, 39 Digital supply voltage
16 14 Analog supply voltage
4 1, 4 Digital ground reference
15 13 Analog ground reference
Pad
I/O
USCI_A0 receive data input in UART mode, slave out/master in in SPI mode
ADC10 analog input A6
ADC10 analog input A7
Timer_B, capture: CCI0A input, compare: OUT0 output
Timer_B, capture: CCI1A input, compare: OUT1 output
Timer_B, capture: CCI2A input, compare: OUT2 output
Timer_B, capture: CCI0B input, compare: OUT0 output ADC10 analog input A12
Timer_B, capture: CCI1B input, compare: OUT1 output ADC10 analog input A13
Timer_B, compare: OUT2 output ADC10 analog input A14
Timer_B, switch all TB0 to TB3 outputs to high impedance ADC10 analog input A15
Timer_B, clock signal TBCLK input
Spy-Bi-Wire test data input/output during programming and test
connected to TEST. Spy-Bi-Wire test clock input during programming and test
NA QFN package pad; connection to DVSSrecommended.
DESCRIPTION
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
DESCRIPTION
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

Terminal Functions, MSP430x22x4

TERMINAL
NAME
P1.0/TACLK/ ADC10CLK
P1.1/TA0 32 30 I/O General-purpose digital I/O pin
P1.2/TA1 33 31 I/O General-purpose digital I/O pin
P1.3/TA2 34 32 I/O General-purpose digital I/O pin
P1.4/SMCLK/ TCK
P1.5/TA0/ TMS
P1.6/TA1/ TDI/TCLK
P1.7/TA2/ TDO/TDI
P2.0/ACLK/A0/OA0I0 8 6 I/O General-purpose digital I/O pin / ACLK output
P2.1/TAINCLK/SMCLK/ A1/OA0O
P2.2/TA0/ A2/OA0I1
P2.3/TA1/ A3/V /OA1I1/OA1O
P2.4/TA2/ A4/V /OA1I0
P2.5/ R
XIN/P2.6 6 3 I/O Input terminal of crystal oscillator
XOUT/P2.7 5 2 I/O Output terminal of crystal oscillator
P3.0/ UCB0STE/UCA0CLK/ A5
P3.1/ UCB0SIMO/UCB0SDA
P3.2/ UCB01SOMI/UCB0SCL
P3.3/ UCB0CLK/UCA0STE
P3.4/ UCA0TXD/UCA0SIMO
REF--/VeREF--
REF+/VeREF+
OSC
DA RHA
NO. NO.
31 29 I/O General-purpose digital I/O pin
35 33 I/O General-purpose digital I/O pin / SMCLK signal output
36 34 I/O General-purpose digital I/O pin / Timer_A, compare: OUT0 output
37 35 I/O General-purpose digital I/O pin / Timer_A, compare: OUT1 output
38 36 I/O General-purpose digital I/O pin / Timer_A, compare: OUT2 output
9 7 I/O General-purpose digital I/O pin / Timer_A, clock signal at INCLK
10 8 I/O General-purpose digital I/O pin
29 27 I/O General-purpose digital I/O pin
30 28 I/O General-purpose digital I/O pin / Timer_A, compare: OUT2 output
3 40 I/O General-purpose digital I/O pin
11 9 I/O General-purpose digital I/O pin
12 10 I/O General-purpose digital I/O pin
13 11 I/O General-purpose digital I/O pin
14 12 I/O General-purpose digital I/O pin
25 23 I/O General-purpose digital I/O pin
I/O
Timer_A, clock signal TACLK input ADC10, conversion clock
Timer_A, capture: CCI0A input, compare: OUT0 output/BSL transmit
Timer_A, capture: CCI1A input, compare: OUT1 output
Timer_A, capture: CCI2A input, compare: OUT2 output
Test Clock input for device programming and test
Test Mode Select input for device programming and test
Test Data Input or Test Clock Input for programming and test
Test Data Output or Test Data Input for programming and test
ADC10, analog input A0 / OA0, analog input I0
SMCLK signal output ADC10, analog input A1 / OA0, analog output
Timer_A, capture: CCI0B input/BSL receive, compare: OUT0 output ADC10, analog input A2 / OA0, analog input I1
Timer_A, capture CCI1B input, compare: OUT1 output ADC10, analog input A3 / negative reference voltage output/input OA1, analog input I1 / OA1, analog output
ADC10, analog input A4 / positive reference voltage output/input OA1, analog input I0
Input for external DCO resistor to define DCO frequency
General-purpose digital I/O pin
General-purpose digital I/O pin
USCI_B0 slave transmit enable / USCI_A0 clock input/output ADC10, analog input A5
USCI_B0 slave in/master out in SPI mode, SDA I
USCI_B0 slave out/master in in SPI mode, SCL I
USCI_B0 clock input/output / USCI_A0 slave transmit enable
USCI_A0 transmit data output in UART mode, slave in/master out in SPI mode
DESCRIPTION
2
CdatainI2C mode
2
C clock in I2C mode
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
9
MSP430x22x2, MSP430x22x4
DESCRIPTION
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Terminal Functions, MSP430x22x4 (Continued)
TERMINAL
NAME
P3.5/ UCA0RXD/UCA0SOMI
P3.6/A6/OA0I2 27 25 I/O General-purpose digital I/O pin
P3.7/A7/OA1I2 28 26 I/O General-purpose digital I/O pin
P4.0/TB0 17 15 I/O General-purpose digital I/O pin
P4.1/TB1 18 16 I/O General-purpose digital I/O pin
P4.2/TB2 19 17 I/O General-purpose digital I/O pin
P4.3/TB0/ A12/OA0O
P4.4/TB1 A13/OA1O
P4.5/TB2 A14/OA0I3
P4.6/TBOUTH A15/OA1I3
P4.7/TBCLK 24 22 I/O General-purpose digital I/O pin
RST/NMI/SBWTDIO 7 5 I Reset or nonmaskable interrupt input
TEST/SBWTCK 1 37 I Selects test mode for JTAG pins on Port1. The device protection fuse is
DV
CC
AV
CC
DV
SS
AV
SS
QFN Pad NA Package
TDO or TDI is selected via JTAG instruction.
NOTE: IfXOUT/P2.7/CA7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection
to this pad after reset.
DA RHA
NO. NO.
26 24 I/O General-purpose digital I/O pin
20 18 I/O General-purpose digital I/O pin
21 19 I/O General-purpose digital I/O pin
22 20 I/O General-purpose digital I/O pin
23 21 I/O General-purpose digital I/O pin
2 38, 39 Digital supply voltage
16 14 Analog supply voltage
4 1, 4 Digital ground reference
15 13 Analog ground reference
Pad
I/O
USCI_A0 receive data input in UART mode, slave out/master in in SPI mode
ADC10 analog input A6 / OA0 analog input I2
ADC10 analog input A7 / OA1 analog input I2
Timer_B, capture: CCI0A input, compare: OUT0 output
Timer_B, capture: CCI1A input, compare: OUT1 output
Timer_B, capture: CCI2A input, compare: OUT2 output
Timer_B, capture: CCI0B input, compare: OUT0 output ADC10 analog input A12 / OA0 analog output
Timer_B, capture: CCI1B input, compare: OUT1 output ADC10 analog input A13 / OA1 analog output
Timer_B, compare: OUT2 output ADC10 analog input A14 / OA0 analog input I3
Timer_B, switch all TB0 to TB3 outputs to high impedance ADC10 analog input A15 / OA1 analog input I3
Timer_B, clock signal TBCLK input
Spy-Bi-Wire test data input/output during programming and test
connected to TEST. Spy-Bi-Wire test clock input during programming and test
NA QFN package pad connection to DVSSrecommended.
DESCRIPTION
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265

short-form description

CPU
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers.
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

instruction set

The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2.
Program Counter
Stack Pointer
Status Register
Constant Generator
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
PC/R0
SP/R1
SR/CG1/R2
CG2/R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
Table 1. Instruction Word Formats
Dual operands, source-destination e.g., ADD R4,R5 R4 + R5 ------> R5
Single operands, destination only e.g., CALL R8 PC ----> (TOS), R8---- > PC
Relative jump, un/conditional e.g., JNE Jump-on-equal bit = 0
Table 2. Address Mode Descriptions
ADDRESS MODE S D SYNTAX EXAMPLE OPERATION
Register F
Indexed F F MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5)----> M(6+R6)
Symbolic (PC relative) F F MOV EDE,TONI M(EDE) ----> M(TONI)
Absolute F F MOV &MEM,&TCDAT M(MEM) -- --> M(TCDAT)
Indirect F MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) -- --> M(Tab+R6)
Indirect
autoincrement
Immediate F MOV #X,TONI MOV #45,TONI #45 ----> M(TONI)
NOTE: S = source D = destination
F
F MOV @Rn+,Rm MOV @R10+,R11
MOV Rs,Rd MOV R10,R11 R10 ----> R11
M(R10) -- --> R11 R10 + 2----> R10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
11
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

operating modes

The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
D Active mode (AM)
-- All clocks are active
D Low-power mode 0 (LPM0)
-- CPU is disabled ACLK and SMCLK remain active MCLK is disabled
D Low-power mode 1 (LPM1)
-- CPU is disabled ACLK and SMCLK remain active MCLK is disabled DCO’s dc-generator is disabled if DCO not used in active mode
D Low-power mode 2 (LPM2)
-- CPU is disabled MCLK and SMCLK are disabled DCO’s dc-generator remains enabled ACLK remains active
D Low-power mode 3 (LPM3)
-- CPU is disabled MCLK and SMCLK are disabled DCO’s dc-generator is disabled ACLK remains active
D Low-power mode 4 (LPM4)
-- CPU is disabled ACLK is disabled MCLK and SMCLK are disabled DCO’s dc-generator is disabled Crystal oscillator is stopped
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

interrupt vector addresses

The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh to 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.
If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g., flash is not programmed) the CPU goes into LPM4 immediately after power up.
INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY
Power-up
External reset
Watchdog
Flash key violation
PC out-of-range (see Note 1)
NMI
Oscillator fault
Flash memory access violation
Timer_B3 TBCCR0 CCIFG (see Note 3) maskable 0FFFAh 29
Timer_B3
Watchdog Timer WDTIFG maskable 0FFF4h 26
Timer_A3 TACCR0 CCIFG (see Note 3) maskable 0FFF2h 25
Timer_A3
USCI_A0/USCI_B0 Receive
USCI_A0/USCI_B0 Transmit
ADC10 ADC10IFG (see Note 3) maskable 0FFEAh 21
I/O Port P2
(eight flags)
I/O Port P1
(eight flags)
(see Note 5) 0FFDEh 15
(see Note 6) 0FFDCh ... 0FFC0h 14 ... 0, lowest
NOTES: 1. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h--01FFh) or from
within unused address ranges.
2. Multiple source flags
3. Interrupt flags are located in the module.
4. (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot. Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event.
5. This location is used as bootstrap loader security key (BSLSKEY). A 0AA55h at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied.
6. The interrupt vectors at addresses 0FFDCh to 0FFC0h are not used in this device and can be used for regular program code if necessary.
TAIFG (see Notes 2 and 3)
UCA0RXIFG, UCB0RXIFG
UCA0TXIFG, UCB0TXIFG
PORIFG RSTIFG WDTIFG
KEYV
(see Note 2)
NMIIFG
OFIFG
ACCVIFG
(see Notes 2 & 4)
TBCCR1 and TBCCR2
CCIFGs, TBIFG
(see Notes 2 and 3)
TACCR1 CCIFG.
TACCR2 CCIFG
(see Notes 2)
(see Notes 2)
P2IFG.0toP2IFG.7 (see Notes 2 and 3)
P1IFG.0toP1IFG.7 (see Notes 2 and 3)
Reset 0FFFEh 31, highest
(non)-maskable, (non)-maskable,
(non)-maskable
maskable 0FFF8h 28
maskable 0FFF0h 24
maskable 0FFEEh 23
maskable 0FFECh 22
maskable 0FFE6h 19
maskable 0FFE4h 18
0FFFCh 30
0FFF6h 27
0FFE8h 20
0FFE2h 17
0FFE0h 16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
13
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

special function registers

Most interrupt and module enable bits are collected into the lowest address space. Special function register bits not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement.

interrupt enable 1 and 2

Address76543210
00h
ACCVIE NMIIE OFIE WDTIE
rw--0 rw--0 rw--0 rw--0
WDTIE Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured
OFIE Oscillator fault enable
NMIIE (Non)-maskable interrupt enable
ACCVIE Flash access violation i nterrupt enable
Address76543210
01h
UCA0RXIE USCI_A0 receive-interrupt enable
UCA0TXIE USCI_A0 transmit-interrupt enable
UCB0RXIE USCI_B0 receive-interrupt enable
UCB0TXIE USCI_B0 transmit-interrupt enable
in interval timer mode.
UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE
rw--0 rw--0 rw--0 rw--0
14
POST OFFICE BOX 655303 DALLAS, TEXAS 75265

interrupt flag register 1 and 2

Address76543210
02h
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
NMIIFG RSTIFG PORIFG OFIFG WDTIFG
rw--0 rw--(0) rw--(1) rw--1 rw --(0)
WDTIFG Set on Watchdog Timer overflow (in watchdog mode) or security key violation.
OFIFG Flag set on oscillator fault
RSTIFG External reset interrupt flag. Set on a reset condition at RST
PORIFG Power-On interrupt flag. Set on V
NMIIFG Set via RST
Address76543210
03h
UCA0RXIFG USCI_A0 receive-interrupt flag
UCA0TXIFG USCI_A0 transmit-interrupt flag
UCB0RXIFG USCI_B0 receive-interrupt flag
UCB0TXIFG USCI_B0 transmit-interrupt flag
Legend rw:
rw-0,1: rw-(0,1):
Reset on V
power up or a reset condition at RST/NMI pin in reset mode.
CC
/NMI pin in reset mode. Reset on VCCpower up.
power up.
CC
/NMI-pin
UCB0
TXIFG
rw--1 rw--0 rw--1 rw--0
Bit can be read and written. Bit can be read and written. It is reset or set by PUC. Bit can be read and written. It is reset or set by POR.
SFR bit is not present in device.
UCB0
RXIFG
UCA0
TXIFG
UCA0
RXIFG
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
15
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

memory organization

MSP430F223x MSP430F225x MSP430F227x
Memory Main: interrupt vector Main: code memory
Information memory Size
Boot memory Size
RAM Size 512 Byte
Peripherals 16-bit

bootstrap loader (BSL)

The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the application report, Features of the MSP430 Bootstrap Loader, TI literature number SLAA089.
Size Flash Flash
Flash
ROM
8-bit
8-bit SFR
8KB Flash
0FFFFh--0FFC0h
0FFFFh--0E000h
256 Byte
010FFh--01000h
1KB
0FFFh--0C00h
03FFh--0200h
01FFh--0100h
0FFh--010h
0Fh--00h
16KB Flash 0FFFFh--0FFC0h 0FFFFh--0C000h
256 Byte
010FFh--01000h
1KB
0FFFh--0C00h
512 Byte
03FFh--0200h
01FFh--0100h
0FFh--010h
0Fh--00h
32KB Flash
0FFFFh--0FFC0h
0FFFFh--08000h
256 Byte
010FFh--01000h
1KB
0FFFh--0C00h
1KB
05FFh--0200h
01FFh--0100h
0FFh--010h
0Fh--00h
BSL Function DA Package Pins RHA Package Pins
Data transmit 32 - P1.1 30 - P1.1
Data receive 10 - P2.2 8-P2.2

flash memory

The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
D Flash memory has n segments of main memory and four segments of information memory (A to D) of
64 bytes each. Each segment in main memory is 512 bytes in size.
D Segments 0 to n may be erased in one step, or each segment may be individually erased.
D Segments A to D can be erased individually, or as a group with segments 0--n.
Segments A to D are also called information memory.
D Segment A contains calibration data. After reset, segment A is protected against programming or erasing.
It can be unlocked, but care should be taken not to erase this segment if the calibration data is required.
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

peripherals

Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, refer to the MSP430x2xx Family User’s Guide.

oscillator and system clock

The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very low power, low frequency oscillator, an internal digitally-controlled oscillator (DCO), and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 μs. The basic clock module provides the following clock signals:
D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high frequency crystal, or the internal very
low power LF oscillator.
D Main clock (MCLK), the system clock used by the CPU. D Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.
DCO Calibration Data (provided from factory in flash info memory segment A)
DCO Frequency Calibration Register Size Address
1MHz
8MHz
12 MHz
16 MHz
CALBC1_1MHZ byte
CALDCO_1MHZ byte
CALBC1_8MHZ byte
CALDCO_8MHZ byte
CALBC1_12MHZ byte
CALDCO_12MHZ byte
CALBC1_16MHZ byte
CALDCO_16MHZ byte
010FFh
010FEh
010FDh
010FCh
010FBh
010FAh
010F9h
010F8h

brownout

The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off.

digital I/O

There are four 8-bit I/O ports implemented—ports P1, P2, P3, and P4:
D All individual I/O bits are independently programmable. D Any combination of input, output, and interrupt conditions is possible. D Edge-selectable interrupt input capability for all the eight bits of port P1 and P2. D Read/write access to port-control registers is supported by all instructions. D Each I/O has an individually programmable pullup/pulldown r esistor.
watchdog timer (WDT+)
The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
17
MSP430x22x2, MSP430x22x4
A
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

timer_A3

Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.
Timer_A3 Signal Connections
Input
Pin Number
DA RHA DA RHA
31 - P1.0 29 - P1.0 TACLK TAC L K
9-P2.1 7-P2.1 TAINCLK INCLK
32 - P1.1 30 - P1.1 TA0 CCI0A
10 - P2.2 8-P2.2 TA 0 CCI0B
33 - P1.2 31 - P1.2 TA1 CCI1A
29 - P2.3 27 - P2.3 TA1 CCI1B
34 - P1.3 32 - P1.3 TA2 CCI2A
Device
Input Signal
ACLK ACLK
SMCLK SMCLK
V
SS
V
CC
V
SS
V
CC
ACLK (internal) CCI2B
V
SS
V
CC
Module
Input Name
GND
V
CC
GND
V
CC
GND
V
CC
Module
Block
Timer N
CCR0 TA0
CCR1 TA1
CCR2 TA2
Module
Output Signal
Output
Pin Number
32 - P1.1 30 - P1.1
10 - P2.2 8-P2.2
36 - P1.5 34 - P1.5
33 - P1.2 31 - P1.2
29 - P2.3 27 - P2.3
37 - P1.6 35 - P1.6
34 - P1.3 32 - P1.3
30 - P2.4 28 - P2.4
38 - P1.7 36 - P1.7
18
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
A
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

timer_B3

Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.
Timer_B3 Signal Connections
Input
Pin Number
DA RHA DA RHA
24 - P4.7 22 - P4.7 TBCLK TBCLK
24 - P4.7 22 - P4.7 TBCLK INCLK
17 - P4.0 15 - P4.0 TB0 CCI0A
20 - P4.3 18 - P4.3 TB0 CCI0B
18 - P4.1 16 - P4.1 TB1 CCI1A
21 - P4.4 19 - P4.4 TB1 CCI1B
19 - P4.2 17 - P4.2 TB2 CCI2A
Device
Input Signal
ACLK ACLK
SMCLK SMCLK
V
SS
V
CC
V
SS
V
CC
ACLK (internal) CCI2B
V
SS
V
CC
Module
Input Name
GND
V
CC
GND
V
CC
GND
V
CC
Module
Block
Timer N
CCR0 TB0
CCR1 TB1
CCR2 TB2
Module
Output Signal
Output
Pin Number
17 - P4.0 15 - P4.0
20 - P4.3 18 - P4.3
18 - P4.1 16 - P4.1
21 - P4.4 19 - P4.4
19 - P4.2 17 - P4.2
22 - P4.5 20 - P4.5
universal serial communications interface (USCI)
The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 or 4 pin), I enhanced UART with automatic baudrate detection (LIN), and IrDA.
USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.
USCI_B0 provides support for SPI (3 or 4 pin) and I
2
C and asynchronous communication protocols such as UART,
2
C.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
19
MSP430x22x2, MSP430x22x4
DeviceInputSignalModuleInputNam
e
DeviceInputSignalModuleInputNam
e
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

ADC10

The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion result handling allowing ADC samples to be converted and stored without any CPU intervention.

operational amplifier OA (MSP430x22x4 only)

The MSP430x22x4 has two configurable low-current general-purpose operational amplifiers. Each OA input and output terminal is software-selectable and offer a flexible choice of connections for various applications. The OA op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion.
OA0 Signal Connections
Analog Input
Pin Number
DA RHA
8-A0 6-A0 OA0I0 OAxI0
10 - A2 8-A2 OA0I1 OA0I1
10 - A2 8-A2 OA0I1 OAxI1
27 - A6 25 - A6 OA0I2 OAxIA
22 - A14 20 - A14 OA0I3 OAxIB
Device Input Signal Module Input Name
OA1 Signal Connections
Analog Input
Pin Number
DA RHA
30 - A4 28 - A4 OA1I0 OAxI0
10 - A2 8-A2 OA0I1 OA0I1
29 - A3 27 - A3 OA1I1 OAxI1
28 - A7 26 - A7 OA1I2 OAxIA
23 - A15 21 - A15 OA1I3 OAxIB
Device Input Signal Module Input Name
20
POST OFFICE BOX 655303 DALLAS, TEXAS 75265

peripheral file map

ADCcontrolregister0
ADC10CTL0
1B0
h
ADC10 ADC data transfer start address
Timer_B Capture/compare register
Timer_A Capture/compare register
Flash Memory Flash control 3
Watchdog Timer+ Watchdog/timer control WDTCTL 0120h
OA1 (MSP430x22x4 only) Operational Amplifier 1 control register 1
OA0 (MSP430x22x4 only) Operational Amplifier 0 control register 1
USCI_B0 USCI_B0 transmit buffer
USCI_A0 USCI_A0 transmit buffer
PERIPHERALS WITH WORD ACCESS
ADC memory ADC control register 1 ADC control register 0 ADC analog enable 0 ADC analog enable 1 ADC data transfer control register 1 ADC data transfer control register 0
Capture/compare register Capture/compare register Timer_B register Capture/compare control Capture/compare control Capture/compare control Timer_B control Timer_B interrupt vector
Capture/compare register Capture/compare register Timer_A register Capture/compare control Capture/compare control Capture/compare control Timer_A control Timer_A interrupt vector
Flash control 2 Flash control 1
PERIPHERALS WITH BYTE ACCESS
Operational Amplifier 1 control register 1
Operational Amplifier 0 control register 1
USCI_B0 receive buffer USCI_B0 status USCI_B0 bit rate control 1 USCI_B0 bit rate control 0 USCI_B0 control 1 USCI_B0 control 0 USCI_B0 I2C slave address USCI_B0 I2C own address
USCI_A0 receive buffer USCI_A0 status USCI_A0 modulation control USCI_A0 baud rate control 1 USCI_A0 baud rate control 0 USCI_A0 control 1 USCI_A0 control 0 USCI_A0 IrDA receive control USCI_A0 IrDA transmit control USCI_A0 auto baud rate control
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
ADC10SA ADC10MEM ADC10CTL1 ADC10CTL0 ADC10AE0 ADC10AE1 ADC10DTC1 ADC10DTC0
TBCCR2 TBCCR1 TBCCR0 TBR TBCCTL2 TBCCTL1 TBCCTL0 TBCTL TBIV
TACCR2 TACCR1 TACCR0 TAR TACCTL2 TACCTL1 TACCTL0 TAC T L TAI V
FCTL3 FCTL2 FCTL1
OA1CTL1 OA1CTL0
OA0CTL1 OA0CTL0
UCB0TXBUF UCB0RXBUF UCB0STAT UCB0BR1 UCB0BR0 UCB0CTL1 UCB0CTL0 UCB0SA UCB0OA
UCA0TXBUF UCA0RXBUF UCA0STAT UCA0MCTL UCA0BR1 UCA0BR0 UCA0CTL1 UCA0CTL0 UCA0IRRCTL UCA0IRTCTL UCA0ABCTL
1BCh 1B4h 1B2h 1B0h 04Ah 04Bh 049h 048h
0196h 0194h 0192h 0190h 0186h 0184h 0182h 0180h 011Eh
0176h 0174h 0172h 0170h 0166h 0164h 0162h 0160h 012Eh
012Ch 012Ah 0128h
0C3h 0C2h
0C1h 0C0h
06Fh 06Eh 06Dh 06Bh 06Ah 069h 068h 011Ah 0118h
067h 066h 065h 064h 063h 062h 061h 060h 05Fh 05Eh 05Dh
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
21
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
PERIPHERALS WITH BYTE ACCESS (continued)
Basic Clock System+ Basic clock system control 3
Basic clock system control 2 Basic clock system control 1 DCO clock frequency control
Port P4 Port P4 resistor enable
Port P4 selection Port P4 direction Port P4 output Port P4 input
Port P3 Port P3 resistor enable
Port P3 selection Port P3 direction Port P3 output Port P3 input
Port P2 Port P2 resistor enable
Port P2 selection Port P2 interrupt enable Port P2 interrupt edge select Port P2 interrupt flag Port P2 direction Port P2 output Port P2 input
Port P1 Port P1 resistor enable
Port P1 selection Port P1 interrupt enable Port P1 interrupt edge select Port P1 interrupt flag Port P1 direction Port P1 output Port P1 input
Special Function SFR interrupt flag 2
SFR interrupt flag 1 SFR interrupt enable 2 SFR interrupt enable 1
BCSCTL3 BCSCTL2 BCSCTL1 DCOCTL
P4REN P4SEL P4DIR P4OUT P4IN
P3REN P3SEL P3DIR P3OUT P3IN
P2REN P2SEL P2IE P2IES P2IFG P2DIR P2OUT P2IN
P1REN P1SEL P1IE P1IES P1IFG P1DIR P1OUT P1IN
IFG2 IFG1 IE2 IE1
053h 058h 057h 056h
011h 01Fh 01Eh 01Dh 01Ch
010h 01Bh 01Ah 019h 018h
02Fh 02Eh 02Dh 02Ch 02Bh 02Ah 029h 028h
027h 026h 025h 024h 023h 022h 021h 020h
003h 002h 001h 000h
22
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

absolute maximum ratings (see Note 1)

Voltage applied at VCCto V
SS
Voltage applied to any pin (see Note 2) --0.3 V to V
Diode current at any device terminal ±2mA.......................................................
Storage temperature range, T Storage temperature range, T
NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Expos ure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. All voltages referenced to V is applied to the TEST pin when blowing the JTAG fuse.
3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.
(unprogrammed device, see Note 3) --55°C to 150°C..................
stg
(programmed device, see Note 3) --40°C to 105°C....................
stg
. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage
SS

recommended operating conditions

MIN NOM MAX UNIT
Supply voltage during program execution, V
Supply voltage during program/erase flash memory, V
Supply voltage, V
Operatingfree-air temperature, T
Processor frequency f (see Notes 1, 2 and Figure 1)
NOTES: 1. The MSP430 CPU is clocked directly with MCLK.
SS
A
(maximum MCLK frequency)
SYSTEM
Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.
2. Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this data sheet.
CC
CC
I version -- 4 0 85
T version -- 4 0 105
VCC=1.8V, Duty cycle = 50% ±10%
VCC=2.7V, Duty cycle = 50% ±10%
VCC≥ 3.3 V, Duty cycle = 50% ±10%
1.8 3.6 V
2.2 3.6 V
dc 4.15
dc 12
dc 16
--0.3 V to 4.1 V......................................................
+0.3 V........................................
CC
0 V
MHz
°C
16 MHz
12 MHz
7.5 MHz
System Frequency -- MHz
4.15 MHz
1.8 V 2.2 V 2.7 V 3.3 V 3.6 V
NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCCof 2.2 V.
Supply Voltage -- V
Legend:
Supply voltage range, during flash memory programming
Supply voltage range, during program execution
Figure 1. Operating Area
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
23
MSP430x22x2, MSP430x22x4
A
(
AM)
Activemode(AM
)
A
A
A
(
AM)
Activemode(AM
)
A
A
f
,
A
(
AM)
f
A
CLK
=32,768Hz/8=4,096Hz
g
Activemode(AM
)
Programexecutesinflas
h
ADIVMxDIVSxDIVAx11,
A
(
AM)
f
f
Activemode(AM
)
Programexecutesinflas
h
A
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

active mode supply current (into DVCC+AVCC) excluding external current (see Notes 1 and 2)

I
AM, 1MHz
I
AM, 1MHz
I
AM, 4kHz
I
AM,100kHz
PARAMETER TEST CONDITIONS T
ctive mode
current (1 MHz)
f
DCO=fMCLK=fSMCLK
f
= 32,768 Hz,
ACLK
Program executes in flash, BCSCTL1 = C DCOCTL = CALDCO_1MHZ,
=1MHz,
LBC1_1MHZ,
CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0
ctive mode
current (1 MHz)
f
DCO=fMCLK=fSMCLK
f
= 32,768 Hz,
ACLK
Program executes in RAM, BCSCTL1 = C DCOCTL = CALDCO_1MHZ,
=1MHz,
LBC1_1MHZ,
CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0
ctive mode
current (4 kHz)
ctive mode
current (100 kHz)
f
MCLK=fSMCLK
=32,768 Hz/8=4,096 Hz
f
=0Hz,
DCO
Pro
ram executes inflash, SELMx = 11, SELS = 1, DIVMx = DIVSx = DIVAx = 11, CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0
f
MCLK=fSMCLK=fDCO(0, 0)
=0Hz,
ACLK
Program executes in RSELx = 0, DCOx = 0, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 1
=
,
,
-40--85°C 2.2 V 5 9
105°C 2.2 V 18
-40--85°C 3V 6 10
105°C 3V 20
lash,
100 kHz,
,
-40--85°C 2.2 V 60 85
105°C 2.2 V 95
-40--85°C 3V 72 95
105°C 3V 105
A
VCC MIN TYP MAX UNIT
2.2 V 270 390
μ
3V 390 550
2.2 V 240
μ
3V 340
μ
μ
NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current.
2. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF.
24
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
typical characteristics -- active mode supply current (into DVCC+AVCC)
8.0
f
=16MHz
7.0
6.0
5.0
4.0
3.0
Active Mode Current -- mA
2.0
1.0
0.0
1.5 2.0 2.5 3.0 3.5 4.0
VCC-- Supply Voltage -- V
DCO
f
DCO
f
f
DCO
DCO
=12MHz
=8MHz
=1MHz
Figure 2. Active Mode Current vs VCC,TA=25°C
5.0
TA=85°C
4.0
3.0
VCC=3V
2.0
Active Mode Current -- mA
1.0
VCC=2.2V
0.0
0.0 4.0 8.0 12.0 16.0
f
-- DCO Frequency -- MHz
DCO
TA=85°C
TA=25°C
TA=25°C
Figure 3. Active Mode Current vs DCO Frequency
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
25
MSP430x22x2, MSP430x22x4
A
A
f
A
CLK
f
ACL
K
=0H
z
A
f
1MH
V
A
A
_
V
V
L
(
f
f
f
0MH
f
3(LPM3)curren
t
f
ACL
K
=32,768Hz
A
V
V
L
(
)
f
f
f
0MH
f
f
(
VLO)
3curren
t,(LPM3
)
f
ACL
K
frominternalLFoscillator(VLO)
A
V
f
f
f
0MH
f
f
ACL
K
=0H
z
V
/3V
AseeNote5
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

low power mode supply currents (into DVCC+AVCC) excluding external current (see Notes 1 and 2)

I
LPM0, 1MHz
I
LPM0, 100kHz
I
LPM2
I
LPM3,LFXT1
I
LPM3,VLO
I
LPM4
PARAMETER TEST CONDITIONS T
f
=0MHz,
MCLK
Low-power mode 0 (LPM0) current, seeNote3
f
SMCLK=fDCO
f
= 32,768 Hz,
ACLK
BCSCTL1 = C DCOCTL = CALDCO_1MHZ,
=1MHz,
LBC1_1MHZ,
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0
f
=0MHz,
MCLK
Low-power mode 0 (LPM0) current, seeNote3
f
SMCLK=fDCO(0, 0)
=0Hz, RSELx = 0, DCOx = 0, CPUOFF = 1, SCG0 = 0, SCG1 = 0,
100 kHz,
,
OSCOFF = 1
Low-power mode 2 (LPM2) current, seeNote4
f
MCLK=fSMCLK
=
DCO
f
= 32,768 Hz,
ACLK
BCSCTL1 = C DCOCTL = CALDCO_1MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0
=0MHz,
z,
LBC1_1MHZ,
-40--85°C
105°C
-40--85°C
105°C
-40°C 0.7 1.4
25°C
ow-power mode
3
LPM3)current,
seeNote4
=
DCO
,
=
MCLK
= 32,768 Hz,
SMCLK
,
=
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0
z,
85°C
105°C 5 10
-40°C 0.9 1.5
25°C
85°C
105°C 6 12
-40°C 0.4 1.0
25°C
ow-power mode
3 current,
LPM3
seeNote4
=
DCO
MCLK
=
SMCLK
=
z,
rom internal LF oscillator CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0
85°C
105°C 4.5 9
,
,
-40°C 0.5 1.2
25°C
85°C
105°C 5.5 11
-40°C 0.1 0.5
25°C
85°C
105°C 4.5 9
Low-power mode 4 (LPM4) current, seeNote5
=
DCO
MCLK
=0Hz,
=
,
SMCLK
=
z,
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1
A
VCC MIN TYP MAX UNIT
2.2 V 75 90
3V 90 120
2.2 V 37 48
3V 41 65
22 29
2.2 31
25 32
3
34
2.2
3
2.2
3
2.2
0.7 1.4
2.4 3.3
0.9 1.5
2.6 3.8
0.5 1.0
1.8 2.9
0.6 1.2
2.1 3.3
0.1 0.5
1.5 3.0
μ
μ
μ
μ
μ
μ
NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current.
2. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF.
3. Current for brownout and WDT clocked by SMCLK included.
4. Current for brownout and WDT clocked by ACLK included.
5. Current for brownout included.
26
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
V
IT+
Positivegoinginputthresholdvoltag
e
V
V
I
T
Negativegoinginputthresholdvoltag
e
V
V
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
Schmitt-trigger inputs -- Ports P1, P2, P3, P4, and RST/NMI
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
V
IT+
V
IT--
--
V
hys
R
Pull
C
I
Positive-going input threshold voltage
Negative-going input threshold voltage
Input voltage hysteresis (V
Pullup/pulldown resistor
IT+
-- V
IT--
)
For pullup: VIN=VSS; For pulldown: V
Input capacitance VIN=VSSor V
IN=VCC
CC
inputs -- Ports P1 and P2
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
Port P1, P2: P1.x to P2.x, External
t
(int)
External interrupt timing
NOTES: 1. An external signal sets the interrupt flag every time the minimum interrupt puls width t
shorter than t
(int)
.
trigger pulse width to set interrupt flag (see Note 1)
0.45 0.75 V
2.2 V 1.00 1.65
3V 1.35 2.25
0.25 0.55 V
2.2 V 0.55 1.20
3V 0.75 1.65
2.2 V 0.2 1.0
3V 0.3 1.0
20 35 50 kΩ
5 pF
2.2 V/3 V 20 ns
is met. It may be set even with trigger signals
(int)
CC
CC
leakage current -- Ports P1, P2, P3 and P4
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
I
lkg(Px.x)
NOTES: 1. The leakage current is measured with VSSor VCCapplied to the corresponding pin(s), unless otherwise noted.
High-impedance leakage current See Notes 1 and 2 2.2 V/3 V ±50 nA
2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
27
MSP430x22x2, MSP430x22x4
V
V
y
f
Portoutputfrequency
VCC/
/
A
f
P
2.0/ACL
K,P
1.4/SMCLK,CL=20pF
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
outputs -- Ports P1, P2, P3 and P4
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
V
OH
V
OL
High-level output voltage
Low-level output voltage
NOTES: 1. The maximum total current, I
voltage drop specified.
2. The maximum total current, I voltage drop specified.
I
I
I
I
I
I
I
I
OHmax
OHmax
= --1.5 mA (see Note 1) 2.2 V VCC--0.25 V
(OHmax)
= --6 mA (see Note 2) 2.2 V VCC-- 0 . 6 V
(OHmax)
= --1.5 mA (see Note 1) 3V VCC--0.25 V
(OHmax)
= --6 mA (see Note 2) 3V VCC-- 0 . 6 V
(OHmax)
= 1.5 mA (see Note 1) 2.2 V V
(OLmax)
= 6 mA (see Note 2) 2.2 V V
(OLmax)
= 1.5 mA (see Note 1) 3V V
(OLmax)
= 6 mA (see Note 2) 3V V
(OLmax)
and I
and I
, for all outputs combined, should not exceed ±12 mA to hold the maximum
OLmax
, for all outputs combined, should not exceed ±48 mA to hold the maximum
OLmax
SS
SS
SS
SS
CC
CC
CC
CC
VSS+0.25
VSS+0.6
VSS+0.25
VSS+0.6
output frequency -- Ports P1, P2, P3 and P4
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
P1.4/SMCLK,
=20pF,RL=1kΩ against
C
L
(see Notes 1 and 2)
P2.0
CLK, P1.4/SMCLK, C
(see Note 2)
2
=20pF
Px.y
Port_CLK
Port outputfrequenc (with load)
Clock outputfrequency
NOTES: 1. Alternatively a resistive divider with 2 times 2 kΩ between VCCand VSSis used as load. The output is connected to the center tap
of the divider.
2. The output voltage reaches at least 10% and 90% V
at the specified toggle frequency.
CC
2.2 V 10
3V 12
2.2 V 12
3V 16
MHz
MHz
28
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
A
A
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
typical characteristics -- outputs
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
25.0
VCC=2.2V P4.5
20.0
15.0
10.0
5.0
OL
I -- Typical Low-Level Output Current -- m
0.0
0.0 0.5 1.0 1.5 2.0 2.5
VOL-- Low-Level Output Voltage -- V
TA=25°C
TA=85°C
Figure 4
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
50.0
VCC=3V P4.5
40.0
30.0
20.0
10.0
OL
I -- Typical Low-Level Output Current -- mA
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VOL-- Low-Level Output Voltage -- V
Figure 5
TA=25°C
TA=85°C
TYPICAL HIGH-LEVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT VOLTAGE
0.0 VCC=2.2V P4.5
-- 5 . 0
--10.0
--15.0
I -- Typical High-Level Output Current -- m
OH
--20.0
--25.0
TA=85°C
0.0 0.5 1.0 1.5 2.0 2.5
VOH-- High-Level Output Voltage -- V
Figure 6
NOTE: One output loaded at a time
vs
TA=25°C
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0.0 VCC=3V P4.5
--10.0
--20.0
--30.0
TA=85°C
TA=25°C
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VOH-- High-Level Output Voltage -- V
OH
I -- Typical High-Level Output Current -- mA
--40.0
--50.0
Figure 7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
29
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

POR/brownout reset (BOR) (see Notes 1 and 2)

PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
V
CC(start)
V
(B_IT--)
V
hys(B_IT--)
t
d(BOR)
t
(reset)
NOTES: 1. The current consumption of the brownout module is already included in the ICCcurrent consumption data. The voltage level
SeeFigure8 dVCC/dt 3V/s 0.7 × V
(B_IT--)
See Figure 8 through Figure 10 dVCC/dt 3V/s 1.71 V
SeeFigure8 dVCC/dt 3V/s 70 130 210 mV
SeeFigure8 2000 μs
Pulse length needed at RST/NMI pin
to accepted reset internally
V
(B_IT--)+Vhys(B_IT--)
is 1.8V.
2. During power up, the CPU begins code execution following a period of t DCO settings must not be changed until V
CC
V
CC(min)
, where V
CC(min)
d(BOR)
is the minimum supply voltage for the desired
2.2 V/3 V 2 μs
after VCC=V
(B_IT--)+Vhys(B_IT--)
operating frequency.
V
CC
V
. The default
V
V
CC(start)
(B_IT--)
1
0
V
hys(B_IT--)
t
d(BOR)
Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage
30
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
typical characteristics -- POR/brownout reset (BOR)
V
2
1.5
-- V
1
=3V
V
CC
Typical Conditions
CC
3V
t
pw
CC(drop)
V
0.5
0
0.001 1 1000
tpw-- Pulse Width -- μs
Figure 9. V
2
V
Typical Conditions
1.5
-- V
1
CC(drop)
V
0.5
0
0.001 1 1000
Figure 10. V
CC
CC(drop)
=3V
t
CC(drop)
Level With a Square Voltage Drop to Generate a POR/Brownout Signal
-- Pulse Width -- μs
pw
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal
V
V
CC(drop)
CC(drop)
V
CC
3V
1ns 1ns
tpw-- Pulse Width -- μs
t
pw
tf=t
r
t
f
tpw-- Pulse Width -- μs
t
r
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
31
MSP430x22x2, MSP430x22x4
VccSupplyvoltagerange
V
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

main DCO characteristics

D All r anges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14
overlaps RSELx = 15.
D DCO control bits DCOx have a step size as defined by parameter S D Modulation control bits MODx select how often f
cycles. The frequency f to:
DCO(RSEL,DCO)
is used for the remaining cycles. The frequency is an average equal
DCO(RSEL,DCO+1)
is used within the period of 32 DCOCLK
DCO
.
f
avera ge
=
 ×
 × 
×

+−    × 
+

+

DCO frequency

PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
RSELx < 14 1.8 3.6
Vcc Supply voltage range
f
DCO(0,0)
f
DCO(0,3)
f
DCO(1,3)
f
DCO(2,3)
f
DCO(3,3)
f
DCO(4,3)
f
DCO(5,3)
f
DCO(6,3)
f
DCO(7,3)
f
DCO(8,3)
f
DCO(9,3)
f
DCO(10,3)
f
DCO(11,3)
f
DCO(12,3)
f
DCO(13,3)
f
DCO(14,3)
f
DCO(15,3)
f
DCO(15,7)
S
RSEL
S
DCO
Duty Cycle Measured at P1.4/SMCLK 2.2 V/3 V 40 50 60 %
DCO frequency (0, 0) RSELx = 0, DCOx = 0, MODx = 0 2.2 V/3 V 0.06 0.14 MHz
DCO frequency (0, 3) RSELx = 0, DCOx = 3, MODx = 0 2.2 V/3 V 0.07 0.17 MHz
DCO frequency (1, 3) RSELx = 1, DCOx = 3, MODx = 0 2.2 V/3 V 0.10 0.20 MHz
DCO frequency (2, 3) RSELx = 2, DCOx = 3, MODx = 0 2.2 V/3 V 0.14 0.28 MHz
DCO frequency (3, 3) RSELx = 3, DCOx = 3, MODx = 0 2.2 V/3 V 0.20 0.40 MHz
DCO frequency (4, 3) RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 0.28 0.54 MHz
DCO frequency (5, 3) RSELx = 5, DCOx = 3, MODx = 0 2.2 V/3 V 0.39 0.77 MHz
DCO frequency (6, 3) RSELx = 6, DCOx = 3, MODx = 0 2.2 V/3 V 0.54 1.06 MHz
DCO frequency (7, 3) RSELx = 7, DCOx = 3, MODx = 0 2.2 V/3 V 0.80 1.50 MHz
DCO frequency (8, 3) RSELx = 8, DCOx = 3, MODx = 0 2.2 V/3 V 1.10 2.10 MHz
DCO frequency (9, 3) RSELx = 9, DCOx = 3, MODx = 0 2.2 V/3 V 1.60 3.00 MHz
DCO frequency (10, 3) RSELx = 10, DCOx = 3, MODx = 0 2.2 V/3 V 2.50 4.30 MHz
DCO frequency (11, 3) RSELx = 11, DCOx = 3, MODx = 0 2.2 V/3 V 3.00 5.50 MHz
DCO frequency (12, 3) RSELx = 12, DCOx = 3, MODx = 0 2.2 V/3 V 4.30 7.30 MHz
DCO frequency (13, 3) RSELx = 13, DCOx = 3, MODx = 0 2.2 V/3 V 6.00 9.60 MHz
DCO frequency (14, 3) RSELx = 14, DCOx = 3, MODx = 0 2.2 V/3 V 8.60 13.9 MHz
DCO frequency (15, 3) RSELx = 15, DCOx = 3, MODx = 0 3V 12.0 18.5 MHz
DCO frequency (15, 7) RSELx = 15, DCOx = 7, MODx = 0 3V 16.0 26.0 MHz
Frequency step between range RSEL and RSEL+1
Frequency step between tap DCO and DCO+1
RSELx = 14
RSELx = 15 3.0 3.6
S
RSEL=fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO)
S
DCO=fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO)
2.2 V/3 V 1.55 ratio
2.2 V/3 V 1.05 1.08 1.12 ratio
2.2 3.6
V
32
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
)
BCSCTL1=CALBC1_1MHZ
f
CAL(1MHz)
1MHzcalibrationvalueDCOCTLCALDCO_1MHZ
,
085
C
MHz
)
BCSCTL1=CALBC1_8MHZ
f
CAL(8MHz)
8MHzcalibrationvalueDCOCTLCALDCO_8MHZ
,
085
C
MHz
)
BCSCTL1=CALBC1_12MH
Z
f
CAL(12MHz
)
12MHzcalibrationvalueDCOCTLCALDCO_12MHZ
,
085
C
MHz
f
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
calibrated DCO frequencies -- tolerance at calibration
PARAMETER TEST CONDITIONS T
A
Frequency tolerance at calibration 25°C 3V -- 1 ±0.2 +1 %
BCSCTL1= CALBC1_1MHZ,
f
CAL(1MHz)
1-MHz calibration value
DCOCTL = CALDCO_1MHZ,
25°C 3V 0.990 1 1.010 MHz
Gating time: 5 ms
BCSCTL1= CALBC1_8MHZ,
f
CAL(8MHz)
8-MHz calibration value
DCOCTL = CALDCO_8MHZ,
25°C 3V 7.920 8 8.080 MHz
Gating time: 5 ms
BCSCTL1= CALBC1_12MHZ,
f
CAL(12MHz)
12-MHz calibration value
DCOCTL = CALDCO_12MHZ,
25°C 3V 11. 88 12 12.12 MHz
Gating time: 5 ms
BCSCTL1= CALBC1_16MHZ,
f
CAL(16MHz)
16-MHz calibration value
DCOCTL = CALDCO_16MHZ,
25°C 3V 15.84 16 16.16 MHz
Gating time: 2 ms
calibrated DCO frequencies -- tolerance over temperature 0°Cto+85°C
PARAMETER TEST CONDITIONS T
1-MHz tolerance over temperature 0--85°C 3.0 V -- 2 . 5 ±0.5 +2.5 %
8-MHz tolerance over temperature 0--85°C 3.0 V -- 2 . 5 ±1.0 +2.5 %
12-MHz tolerance over temperature 0--85°C 3.0 V -- 2 . 5 ±1.0 +2.5 %
16-MHz tolerance over temperature 0--85°C 3.0 V -- 3 . 0 ±2.0 +3.0 %
f
CAL(1MHz
f
CAL(8MHz
f
CAL(12MHz
1-MHz calibration value
8-MHz calibration value
12-MHz calibration value
DCOCTL = CALDCO_1MHZ,
=
Gating time: 5 ms
= DCOCTL = CALDCO_8MHZ, Gating time: 5 ms
= DCOCTL = CALDCO_12MHZ, Gating time: 5 ms
,
,
,
BCSCTL1= CALBC1_16MHZ,
CAL(16MHz)
16-MHz calibration value
DCOCTL = CALDCO_16MHZ, Gating time: 2 ms
A
0--85°C
0--85°C
0--85°C
0--85°C
VCC MIN TYP MAX UNIT
VCC MIN TYP MAX UNIT
2.2 V 0.970 1 1.030
3.0 V 0.975 1 1.025
MHz
3.6 V 0.970 1 1.030
2.2 V 7.760 8 8.400
3.0 V 7.800 8 8.200
MHz
3.6 V 7.600 8 8.240
2.2 V 11. 70 12 12.30
3.0 V 11. 70 12 12.30
MHz
3.6 V 11. 70 12 12.30
3.0 V 15.52 16 16.48
3.6 V 15.00 16 16.48
MHz
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
33
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
calibrated DCO frequencies -- tolerance over supply voltage V
PARAMETER
1-MHz tolerance over V
8-MHz tolerance over V
12-MHz tolerance over V
16 -Hz tolerance over V
f
CAL(1MHz)
f
CAL(8MHz)
f
CAL(12MHz)
f
CAL(16MHz)
1-MHz calibration value
8-MHz calibration value
12-MHz calibration value
16-MHz calibration value
CC
CC
CC
CC
TEST CONDITIONS T
BCSCTL1= CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms
BCSCTL1= CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms
BCSCTL1= CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms
BCSCTL1= CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms
calibrated DCO frequencies -- overall tolerance
PARAMETER TEST CONDITIONS T
1-MHz tolerance overall
8-MHz tolerance overall
12-MHz tolerance overall
16-MHz tolerance overall
f
CAL(1MHz)
f
CAL(8MHz)
f
CAL(12MHz)
f
CAL(16MHz)
1-MHz calibration value
8-MHz calibration value
12-MHz calibration value
16-MHz calibration value
BCSCTL1= CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms
BCSCTL1= CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms
BCSCTL1= CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms
BCSCTL1= CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms
I: -40--85°C
T: -40--105°C
I: -40--85°C
T: -40--105°C
I: -40--85°C
T: -40--105°C
I: -40--85°C
T: -40--105°C
I: -40--85°C
T: -40--105°C
I: -40--85°C
T: -40--105°C
I: -40--85°C
T: -40--105°C
I: -40--85°C
T: -40--105°C
CC
A
VCC MIN TYP MAX UNIT
25°C 1.8 V -- 3.6 V -- 3 ±2 +3 %
25°C 1.8 V -- 3.6 V -- 3 ±2 +3 %
25°C 2.2 V -- 3.6 V -- 3 ±2 +3 %
25°C 3.0 V -- 3.6 V -- 6 ±2 +3 %
25°C 1.8 V -- 3.6 V 0.970 1 1.030 MHz
25°C 1.8 V -- 3.6 V 7.760 8 8.240 MHz
25°C 2.2 V -- 3.6 V 11. 64 12 12.36 MHz
25°C 3.0 V -- 3.6 V 15.00 16 16.48 MHz
A
VCC MIN TYP MAX UNIT
1.8 V to 3.6 V -- 5 ±2 +5 %
1.8 V to 3.6 V -- 5 ±2 +5 %
2.2 V to 3.6 V -- 5 ±2 +5 %
3.0 V to 3.6 V -- 6 ±3 +6 %
1.8 V to 3.6 V 0.950 1 1.050 MHz
1.8 V to 3.6 V 7.600 8 8.400 MHz
2.2 V to 3.6 V 11 . 40 12 12.60 MHz
3.0 V to 3.6 V 15.00 16 17.00 MHz
34
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
typical characteristics -- calibrated 1-MHz DCO frequency
1.03
1.02
VCC=1.8V
1.01
VCC=2.2V
1.00
0.99
Frequency -- MHz
VCC=3.6V
0.98
0.97
--50.0 --25.0 0.0 25.0 50.0 75.0 100.0
TA-- Temperature -- °C
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
VCC=3.0V
Figure 11. Calibrated 1-MHz Frequency vs Temperature
1.03
1.02
1.01
1.00
Frequency -- MHz
0.99
0.98
0.97
1.5 2.0 2.5 3.0 3.5 4.0
-- Supply Voltage -- V
V
CC
Figure 12. Calibrated 1-MHz Frequency vs V
TA= 105 °C
TA=85°C
TA=25°C
TA=--40°C
CC
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
35
MSP430x22x2, MSP430x22x4
DCOclockwakeuptimefromLPM3/
4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

wake-up from lower power modes (LPM3/4)

PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
BCSCTL1= CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ
BCSCTL1= CALBC1_8MHZ,
t
DCO,LPM3/4
t
CPU,LPM3/4
NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge
DCO clock wake-uptimefrom LPM3/4 (see Note 1)
CPU wake-up time from LPM3/4 (see Note 2)
observable externally on a clock pin (MCLK or SMCLK).
2. Parameter applicable only if DCOCLK is used for MCLK.
DCOCTL = CALDCO_8MHZ
BCSCTL1= CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ
BCSCTL1= CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ
2.2 V/3 V 2
2.2 V/3 V 1.5
2.2 V/3 V 1
3V 1
1/f
+
MCLK
t
Clock,LPM3/4
μs
typical characteristics -- DCO clock wake-up time from LPM3/4
10.00
RSELx = 0...11
1.00
DCO Wake-Up Time -- μs
0.10
0.10 1.00 10.00
DCO Frequency -- MHz
Figure 13. Clock Wake-Up Time From LPM3 vs DCO Frequency
RSELx = 12...15
36
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
y
f
DCOoutputfrequenc
y
A
A
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
DCO with external resistor R
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
DCO,ROSC
D
t
D
V
NOTES: 1. R
DCO outputfrequenc with R
OSC
Temperature drift
Drift with V
OSC
CC
= 100k. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and TK= ±50ppm/°C.
(see Note 1)
OSC
DCOR = 1, RSELx = 4, DCOx=3,MODx=0, T
=25°C
DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0
DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0
typical characteristics -- DCO with external resistor R
10.00
1.00
0.10
DCO Frequency -- MHz
RSELx = 4
OSC
DCO Frequency -- MHz
10.00
1.00
0.10
2.2 V 1.8
3V 1.95
2.2 V/3 V ±0.1 %/°C
2.2 V/3 V 10 %/V
RSELx = 4
MHz
0.01
10.00 100.00 1000.00 10000.00
R
-- External Resistor -- k
OSC
Figure 14. DCO Frequency vs R
V
=2.2V,TA=25°C
CC
2.50
2.25
2.00
1.75
1.50
1.25
1.00
0.75
0.50
DCO Frequency -- MHz
0.25
0.00
--50.0 --25.0 0.0 25.0 50.0 75.0 100.0
TA-- Temperature -- °C
OSC
R
= 100k
OSC
R
= 270k
OSC
R
=1M
OSC
Figure 16. DCO Frequency vs Temperature,
V
=3.0V
CC
0.01
10.00 100.00 1000.00 10000.00
R
-- External Resistor -- k
OSC
,
DCO Frequency -- MHz
Figure 15. DCO Frequency vs R
V
=3.0V,TA=25°C
CC
2.50
2.25
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00
2.0 2.5 3.0 3.5 4.0
VCC-- Supply Voltage -- V
R
R
R
OSC
OSC
OSC
OSC
= 100k
= 270k
=1M
,
Figure 17. DCO Frequency vs VCC,
T
=25°C
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
37
MSP430x22x2, MSP430x22x4
A
OscillationallowanceforLF
(seeNote1
)
f
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

crystal oscillator, LFXT1, low frequency modes (see Note 4)

PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
f
LFXT1,LF
f
LFXT1,LF,logic
O
LF
C
L,eff
Duty Cycle LF mode
f
Fault,LF
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).
LFXT1 oscillator crystal frequency, LF mode 0, 1
LFXT1 oscillator l ogic level square wave input frequency, LF mode
Oscillation allowancefor LF crystals
Integrated effective l oad capacitance, LF mode
Oscillator fault frequency, LF mode (see Note 3)
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.
2. Measured with logic level input frequency but also applies to operation with crystals.
3. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.
XTS = 0, LFXT1Sx = 0 or 1 1.8 V -- 3.6 V 32,768 Hz
XTS = 0, LFXT1Sx = 3 1.8 V -- 3.6 V 10,000 32,768 50,000 Hz
XTS = 0, LFXT1Sx = 0; f
LFXT1,LF
C
XTS = 0, LFXT1Sx = 0; f
LFXT1,LF
C
XTS = 0, XCAPx = 0 1
XTS = 0, XCAPx = 1 5.5
XTS = 0, XCAPx = 2 8.5
XTS = 0, XCAPx = 3 11
XTS = 0, Measured at P1.4/ACLK, f
LFXT1,LF
XTS = 0, LFXT1Sx = 3 (see Note 2)
L,eff
L,eff
= 32,768 kHz,
=6pF
= 32,768 kHz,
=12pF
= 32,768 Hz
500
kΩ
200
pF
2.2 V/3 V 30 50 70 %
2.2 V/3 V 10 10,000 Hz
-- Keep as short a trace as possible between the device and the crystal.
-- Design a good ground plane around the oscillator pins.
-- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
-- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
-- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
-- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
-- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other
documentation. This signal is no longer required for the serial programming adapter.

internal very low power, low frequency oscillator (VLO)

PARAMETER TEST CONDITIONS T
VLO
df
/dT
VLO
df
/dV
VLO
NOTES: 1. Calculated using the box method:
38
VLOfrequency
VLO frequency temperature drift
VLO frequency supply
CC
voltage drift
I version: (MAX(--40...85_C) -- MIN(--40...85_C))/MIN(--40...85_C)/(85_C--(--40_C)) T version: (MAX(--40...105_C) -- MIN(--40...105_C))/MIN(--40...105_C)/(105_C--(--40_C))
2. Calculated using the box method: (MAX(1.8...3.6 V) -- MIN(1.8...3.6 V))/MIN(1.8...3.6V)/(3.6 V -- 1.8 V)
(see Note 1)
(see Note 2) 25°C 1.8V -- 3.6V 4 %/V
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
A
-40--85°C 2.2 V/3 V 4 12 20
105°C 2.2 V /3 V 22
I: -40--85°C
T: -40--105°C
VCC MIN TYP MAX UNIT
kHz
2.2 V/3 V 0.5 %/°C
MSP430x22x2, MSP430x22x4
f
LFXT1,HF2
H
Fmode2XTS1,LFXT1Sx
2
MHz
LFXT1oscillatorlogiclevel
f
LFXT1,H
F,logic
squarewaveinputfrequency,
XTS1,LFXT1Sx3
MHz
(
F
i
1
8andFi
19)
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

crystal oscillator, LFXT1, high frequency modes (see Note 5)

PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
f
LFXT1,HF0
f
LFXT1,HF1
f
LFXT1,HF2
f
LFXT1,HF,logic
OA
HF
C
L,eff
Duty Cycle HF mode
f
Fault,HF
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).
LFXT1 oscillator crystal frequency, HF mode 0
LFXT1 oscillator crystal frequency, HF mode 1
LFXT1 oscillator crystal frequency,
square-wave input frequency, HF mode
Oscillation allowance for HF crystals
see
gure
Integrated effective l oad capacitance, HF mode (see Note 1)
Oscillator fault frequency, HF mode (see Note 4)
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
3. Measured with logic level input frequency but also applies to operation with crystals.
4. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
5. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.
gure
XTS = 1, LFXT1Sx = 0 1.8 V -- 3.6 V 0.4 1 MHz
XTS = 1, LFXT1Sx = 1 1.8 V -- 3.6 V 1 4 MHz
1.8 V -- 3.6 V 2 10
XTS = 1, LFXT1Sx = 2
XTS = 1, LFXT1Sx = 3
XTS = 0, LFXT1Sx = 0, f
LFXT1,HF
XTS = 0, LFXT1Sx = 1 f
LFXT1,HF
XTS = 0, LFXT1Sx = 2 f
LFXT1,HF
XTS=1(seeNote2) 1 pF
XTS = 1, Measured at P1.4/ACLK, f
LFXT1,HF
XTS = 1, Measured at P1.4/ACLK, f
LFXT1,HF
XTS = 1, LFXT1Sx = 3 (see Notes 3)
=1MHz,C
=4MHz,C
=16MHz,C
=10MHz
=16MHz
L,eff
L,eff
L,eff
=15pF
=15pF
=15pF
2.2 V -- 3.6 V 2 12
3.0 V -- 3.6 V 2 16
1.8 V -- 3.6 V 0.4 10
2.2 V -- 3.6 V 0.4 12
3.0 V -- 3.6 V 0.4 16
2700
800
300
2.2 V/3 V 40 50 60
2.2 V/3 V 40 50 60
2.2 V/3 V 30 300 kHz
MHz
MHz
Ω
%
-- Keep as short a trace as possible between the device and the crystal.
-- Design a good ground plane around the oscillator pins.
-- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
-- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
-- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
-- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
-- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other
documentation. This signal is no longer required for the serial programming adapter.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
39
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
typical characteristics -- LFXT1 oscillator in HF mode (XTS = 1)
100000.00
10000.00
1000.00
LFXT1Sx = 3
100.00
Oscillation Allowance -- Ohms
LFXT1Sx = 1
LFXT1Sx = 2
10.00
0.10 1.00 10.00 100.00
Crystal Frequency -- MHz
Figure 18. Oscillation Allowance vs Crystal Frequency, C
800.0
LFXT1Sx = 3
XT Oscillator Supply Current -- uA
700.0
600.0
500.0
400.0
300.0
200.0
100.0
0.0
0.0 4.0 8.0 12.0 16.0 20.0
LFXT1Sx = 2
LFXT1Sx = 1
Crystal Frequency -- MHz
=15pF,TA=25°C
L,eff
40
Figure 19. XT Oscillator Supply Current vs Crystal Frequency, C
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
=15pF,TA=25°C
L,eff
MSP430x22x2, MSP430x22x4
f
_
A
x
f
x
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

Timer_A

PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
TA
t
TA, cap

Timer_B

TB
t
TB,cap
Timer
Timer_A, capture timing TA 0, TA1 , TA2 2.2 V/3 V 20 ns
Timer_Bclockfrequency
Timer_B, capture timing TB0, TB1, TB2 2.2 V/3 V 20 ns
clockfrequency
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
Internal: SMCLK, ACLK, E
ternal: TACLK, INCLK,
Duty cycle = 50% ±10%
Internal: SMCLK, ACLK, E
ternal: TBCLK,
Duty cycle = 50% ±10%
2.2 V 10 MHz
3V 16
2.2 V 10 MHz
3V 16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
41
MSP430x22x2, MSP430x22x4
UARTreceivedeglitchtime
UCLKedgetoSIMOvalid
UCLKedgetoSOMIvalid
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

USCI (UART Mode)

PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
Internal: SMCLK, ACLK
f
USCI
f
BITCLK
t
τ
USCI input clock frequency
BITCLK clock frequency (equals baud rate in MBaud)
UART receive deglitch time (see Note 1)
NOTES: 1. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are
correctly recognized, their width should exceed the maximum specification of the deglitch time.
USCI (SPI Master Mode, see Figure 20 and Figure 21)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
f
USCI
t
SU,MI
t
HD,MI
t
VAL ID, MO
NOTE: f
For the slave’s parameters t
USCI input clock frequency
SOMI input data setup time
SOMI input data hold time
SIMO output data valid time
1
=
UCxCLK
2t
LOHI
with t
LOHI
SU,SI(Slave)
max(t
VALID,MO(USCI)
External: UCLK Duty cycle = 50% ± 10%
SMCLK, ACLK Duty cycle = 50% ± 10%
UCLK edgetoSIMOvalid, C
=20pF
L
+ t
and t
VALID,SO(Slave)
2.2V /3 V 1 MHz
2.2 V 50 150 600 ns
3V 50 100 600 ns
2.2 V 110
3V 75
2.2 V 0
3V 0
,
2.2 V 30
3V 20
SU,SI(Slave),tSU,MI(USCI)
+ t
VALID,SO(Slave)
).
, see the SPI parameters of the attached slave.
f
SYSTEM
f
SYSTEM
MHz
MHz
ns
ns
ns
USCI (SPI Slave Mode, see Figure 22 and Figure 23)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
t
STE,LEAD
t
STE,LAG
t
STE,ACC
t
STE,DIS
t
SU,SI
t
HD,SI
t
VAL ID, SO
NOTE: f
For the master’s parameters t
STE lead time STE low to clock
STE lag time Last clock to STE high
STE access time STE low to SOMI data out
STE disable time STE high to SOMI high impedance
SIMO input data setup time
SIMO input data hold time
SOMI output data valid time
1
UCxCLK
=
2t
LOHI
with t
LOHI
max(t
SU,MI(Master)
VALID,MO(Master)
UCLK edgetoSOMIvalid, C
=20pF
L
+ t
SU,SI(USCI),tSU,MI(Master)
and t
VALID,MO(Master)
2.2 V/3 V 50 ns
2.2 V/3 V 10 ns
2.2 V/3 V 50 ns
2.2 V/3 V 50 ns
2.2 V 20
3V 15
2.2 V 10
3V 10
,
2.2 V 75 11 0
3V 50 75
+ t
VALID,SO(USCI)
).
, see the SPI parameters of the attached master.
ns
ns
ns
42
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
1/f
UCxCLK
CKPL=0
UCLK
CKPL=1
SOMI
SIMO
UCLK
SOMI
CKPL=0
CKPL=1
t
LO/HItLO/HI
t
t
VAL I D, MO
SU,MI
t
HD,MI
Figure 20. SPI Master Mode, CKPH = 0
1/f
UCxCLK
t
LO/HItLO/HI
t
SU,MI
t
VAL I D,MO
t
HD,MI
SIMO
Figure 21. SPI Master Mode, CKPH = 1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
43
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
STE
UCLK
SIMO
SOMI
STE
CKPL=0
CKPL=1
t
STE,ACC
t
STE,LEAD
1/f
UCxCLK
t
LO/HItLO/HI
t
VAL I D,SO
Figure 22. SPI Slave Mode, CKPH = 0
t
STE,LEAD
t
SU,SI
t
HD,SI
t
STE,LAG
t
STE,LAG
t
STE,DIS
UCLK
SIMO
SOMI
CKPL=0
CKPL=1
t
STE,ACC
1/f
UCxCLK
t
LO/HItLO/HI
t
SU,SI
t
VAL I D, SO
Figure 23. SPI Slave Mode, CKPH = 1
t
HD,SI
t
STE,DIS
44
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
p
p
y
Pulsewidthofspikessuppressedb
y
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
USCI (I2C Mode) (see Figure 24)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
Internal: SMCLK, ACLK
f
USCI
f
SCL
t
HD,STA
t
SU,STA
t
HD,DAT
t
SU,DAT
t
SU,STO
t
SP
USCI input clock frequency
SCL clock frequency 2.2 V/3 V 0 400 kHz
Hold time (repeated) START
Setup timefor a repeated START
Data hold time 2.2 V/3 V 0 ns
Data setup time 2.2 V/3 V 250 ns
SetuptimeforSTOP 2.2 V/3 V 4.0 μs
Pulse width ofspikes su
ressed b
input filter
External: UCLK Duty cycle = 50% ± 10%
f
100 kHz 2.2 V/3 V 4.0
SCL
f
> 100 kHz 2.2 V/3 V 0.6
SCL
f
100 kHz 2.2 V/3 V 4.7
SCL
f
> 100 kHz 2.2 V/3 V 0.6
SCL
2.2 V 50 150 600
3V 50 100 600
f
SYSTEM
MHz
μs
μs
ns
SDA
SCL
t
HD,STA
1/f
SCL
t
HD,DAT
t
SU,STAtHD,STA
t
SU,DAT
Figure 24. I2C Mode Timing
t
SP
t
SU,STO
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
45
MSP430x22x2, MSP430x22x4
A
p
ply
ADC10supplycurren
t
A
I:4085C
A
f
f
A
_5V
A
,
REFON=1
A
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

10-bit ADC, power supply and input range conditions (see Note 1)

V
CC
V
Ax
I
ADC10
PARAMETER TEST CONDITIONS T
Analog supply voltage range
Analog input voltage range (see Note 2)
DC10 su
current
(see Note 3)
VSS=0V 2.2 3.6 V
All Ax terminals. Analog inputs selected in ADC10AE register
f
ADC10CLK
=5.0MHz
ADC10ON = 1, REFON = 0,
DC10SHT0 = 1,
ADC10SHT1 = 0,
A
I: -40--85°C T: -40--105°C
ADC10DIV = 0
I
REF+
I
REFB,0
I
REFB,1
Reference supply current, reference bu
er disabled
(see Note 4)
Reference buffer supply current withADC10SR = 0 (see Note 4)
Reference buffer supply current withADC10SR = 1 (see Note 4)
f
ADC10CLK
ADC10ON = 0, REF2_5V = 0, REFON = 1, REFOUT = 0
f
ADC10CLK
ADC10ON = 0, REF2_5V = 1, REFON = 1, REFOUT = 0
f
ADC10CLK
ADC10ON = 0, REFON = 1, REF2 REFOUT = 1, ADC10SR=0
f
ADC10CLK
ADC10ON = 0, REFON = 1 REF2_5V = 0, REFOUT = 1,
=5.0MHz,
=5.0MHz,
=5.0MHz,
=5.0MHz,
,
I: -40--85°C T: -40--105°C
I: -40--85°C T: -40--105°C
-40--85°C 2.2 V/3 V 1.1 1.4
=0,
105°C 2.2 V/3 V 1.8
-40--85°C 2.2 V/3 V 0.5 0.7
105°C 2.2 V/3 V 0.8
ADC10SR=1
C
I
R
I
Input capacitance
Input MUX ON resistance 0V ≤ VAx≤ V
Only one terminal Ax selected at a time
CC
I: -40--85°C T: -40--105°C
I: -40--85°C T: -40--105°C
NOTES: 1. The leakage current is defined in the leakage current table with Px.x/Ax parameter.
2. The analog input voltage range must be within the selected reference voltage range V
3. The internal reference supply current is not included in current consumption parameter I
4. The internal reference current is supplied via terminal V
. Consumption is independent of the ADC10ON control bit, unless a
CC
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.
VCC MIN TYP MAX UNIT
0 V
CC
2.2 V 0.52 1.05
m
3V 0.6 1.2
2.2 V/3 V
0.25 0.4 m
3V
m
m
27 pF
2.2 V/3 V 2000
to V
R+
for valid conversion results.
R--
.
ADC10
V
46
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
V
C
C,REF
+
l
t
V
Positivebuiltinreferenc
e
V
Maximum
V
REF
loa
d
A
x
V
V
REF
loadregulatio
n
V
A
0.5xV
REF
V
V
REF2_5V=0
V
f
f
V
REF2_5V=1
V
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

10-bit ADC, built-in voltage reference

PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
I
1 mA, REF2_5V = 0 2.2
V
CC,REF+
V
REF+
I
LD,VREF+
Positive built-in reference analog supplyvo
age range
Positive built-in reference voltage
Maximum V
+
load
current
V
load regulation
REF+
V
load regulation
+
response time
Max. capacitance at pin
C
VREF+
V
REF+
(see Note 1)
TC
REF+
Temperature coefficient
Settling time of internal
t
REFON
reference voltage (see Note 2)
Settling time of reference bu
t
REFBURST
er
(see Note 2)
NOTES: 1. The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA2/A4/V
must be limited; the reference buffer may become unstable otherwise.
2. The condition is that the error in a conversion started after t
VREF+
I
0.5 mA, REF2_5V = 1 2.8
VREF+
I
1 mA, REF2_5V = 1 2.9
VREF+
I
VREF+
I
VREF+
I
I
max, REF2_5V = 0 2.2 V/3 V 1.41 1.5 1.59
VREF+
max, REF2_5V = 1 3V 2.35 2.5 2.65
VREF+
2.2 V ±0.5
I
= 500 μA ± 100 μA,
VREF+
Analog input voltage V
0.75 V,
Ax
2.2 V/3 V ±2
REF2_5V = 0
I
= 500 μA ± 100 μA,
VREF+
Analog input voltage V
1.25 V,
Ax
REF2_5V = 1
I
= 100 μA → 900 μA,
VREF+
V
x
0.5
,
,
+
Error of conversion result 1LSB
I
≤±1mA,
VREF+
REFON = 1, REFOUT = 1
I
= const. with
VREF+
0mA≤ I
I
VREF+
1mA
VREF+
= 0.5 mA, REF2_5V = 0,
REFON = 0 → 1
I
=0.5mA,
VREF+
REF2 5
=0,
, REFON = 1, REFBURST = 1
I
=0.5mA,
VREF+
REF2 5
=1,
, REFON = 1, REFBURST = 1
ADC10SR=0
ADC10SR=1
ADC10SR=0
ADC10SR=1
ADC10SR=0
ADC10SR=1
REFON
or t
2.2 V/3 V 100 pF
2.2 V/3 V ±100 ppm/°C
3.6 V 30 μs
2.2
is less than ±0.5 LSB.
RefBuf
3V ±1
3V ±2
400
3
2000
2.5
3
4.5
REF+/VeREF+
(REFOUT=1),
V
m
LSB
ns
1
μs
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
47
MSP430x22x2, MSP430x22x4
Positiveexternalreferenceinpu
t
V
V
/3V
A
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

10-bit ADC, external reference (see Note 1)

PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
V
eREF+>VeREF--
V
eREF+
Positive external reference input voltage range (see Note 2)
SREF1 = 1, SREF0 = 0
V
V
eREF--
SREF1=1,SREF0=1(seeNote3)
V
eREF--
Negative external reference input voltage range (see Note 4)
V
eREF+>VeREF--
Differential external reference input
V
eREF
voltage range V
eREF=VeREF+
-- V
eREF--
V
eREF+>VeREF--
0V ≤ V
eREF+
SREF1 = 1, SREF0 = 0
I
VeREF+
Static input current into V
eREF+
0V ≤V
eREF+
SREF1=1,SREF0=1(seeNote3)
I
VeREF --
Static input current into V
eREF--
0V ≤ V
eREF--
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI,isalso
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.
3. Under this condition, the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply current I
. The current consumption can be limited to the sample and conversion period with REBURST = 1.
REFB
4. The accuracy limits the maximum negative external reference v oltage. Higher reference voltage levels may be applied with reduced accuracy requirements.
5. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.
,
VCC-- 0.15 V,
eREF+
1.4 V
1.4 3.0
0 1.2 V
(see Note 5) 1.4 V
VCC,
VCC-- 0.15 V ≤ 3V,
V
CC
2.2
2.2 V/3 V ±1 μA
CC
CC
±1
V
μ
0
48
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
perf
f
f
A
performanceof
V
/
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

10-bit ADC, timing parameters

PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
For specified
ADC10CLK
DC10 input clockfrequency
ormance o ADC10 linearity parameters
f
ADC10OSC
ADC10 built-in oscillator frequency
ADC10DIVx = 0, ADC10SSELx = 0, f
ADC10CLK=fADC10OSC
ADC10 built-in oscillator, ADC10SSELx = 0, f
t
CONVERT
Conversion time
ADC10CLK=fADC10OSC
f
ADC10CLK
from ACLK, MCLK or
SMCLK, ADC10SSELx ≠ 0
t
ADC10ON
Turn on settling time of the ADC (see Note 1) 100 ns
NOTES: 1. The condition is that the error in a conversion started after t
settled.
ADC10ON
ADC10SR=0
ADC10SR=1
2.2
3V
0.45 6.3
MHz
0.45 1.5
2.2 V/3 V 3.7 6.3 MHz
2.2 V/3 V 2.06 3.51
13×
μs
ADC10DIV× 1/f
ADC10CLK
is less than ±0.5 LSB. The reference and input signal are already

10-bit ADC, linearity parameters

PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
E
I
E
D
E
O
E
G
E
T
NOTES: 1. The reference buffer offset adds to the gain and total unadjusted error.
Integral linearity error 2.2 V/3 V ±1 LSB
Differential linearity error 2.2 V/3 V ±1 LSB
Offset error
Source impedance RS< 100 Ω, 2.2 V/3 V ±1 LSB
SREFx = 010, unbuffered external reference, V
eREF+
=1.5V
SREFx = 010, unbuffered external
Gain error
reference, V
SREFx = 011, buffered external reference(seeNote1), V
=1.5V
eREF+
eREF+
=2.5V
SREFx = 011, buffered external reference(seeNote1), V
=2.5V
eREF+
SREFx = 010, unbuffered external reference, V
eREF+
=1.5V
SREFx = 010, unbuffered external
Total unadjusted error
reference, V
SREFx = 011, buffered external reference(seeNote1),
=1.5V
V
eREF+
eREF+
=2.5V
SREFx = 011, buffered external reference(seeNote1), V
=2.5V
eREF+
2.2 V ±1.1 ±2
3V ±1.1 ±2
2.2 V ±1.1 ±4
3V ±1.1 ±3
2.2 V ±2 ±5
3V ±2 ±5
2.2 V ±2 ±7
3V ±2 ±6
LSB
LSB
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
49
MSP430x22x2, MSP430x22x4
p
ply
Temperaturesensorsupply
REFON=0,INCHx=0Ah
A
Sensoroutputvoltage
V
Currentintodividera
t
A
A
A
ADC10ON=1,INCHx=0Bh
V
A
ADC10ON=1,INCHx=0Bh
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
10-bit ADC, temperature sensor and built-in V
PARAMETER
I
SENSOR
TC
SENSOR
V
Offset,Sensor
V
Sensor
Temperature sensor su current (see Note 1)
Sensor offset voltage
Sensor output voltage (see Note 3)
Sample time required if
t
Sensor(sample)
I
VMID
V
MID
channel 10 is selected (see Note 4)
Current into divider at channel 11 (see Note 5)
VCCdivider at channel 11
Sample time required if
t
VMID(sample)
channel 11 is selected (see Note 6)
NOTES: 1. The sensor current I
is high). When REFON = 1, I sensor input (INCH = 0Ah).
2. The following formula can be used to calculate the temperature sensor output voltage: V
Sensor,typ
V
Sensor,typ
=TC =TC
Sensor
Sensor
3. Results based on characterization and/or production test, not TC
4. The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time t
5. No additional current is needed. The V
6. Theontime,t
VMID(on)
is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON = 1 and INCH = 0Ah and sample signal
SENSOR
SENSOR
is included in I
( 273 + T [°C] ) + V T[°C] + V
Sensor(TA
, is included in the sampling time, t
TEST CONDITIONS VCC MIN TYP MAX UNIT
REFON = 0, INCHx=0Ah, T
=25_C
A
ADC10ON = 1, INCHx = 0Ah (see Note 2)
ADC10ON = 1, INCHx = 0Ah (see Note 2)
Temperature sensor voltage at T
= 105°C (T v ersion only)
A
Temperature sensor voltage at T
=85°C
A
Temperature sensor voltage at T
=25°C
A
Temperature sensor voltage at T
=0°C
A
ADC10ON = 1, INCHx = 0Ah, Error of conversion result 1LSB
DC10ON = 1, INCHx=0Bh
DC10ON = 1, INCHx=0Bh,
V
is 0.5 x V
MID
DC10ON = 1, INCHx=0Bh,
Error of conversion result 1LSB
Offset,sensor
=0°C) [mV]
is used during sampling.
MID
MID
CC
. When REFON = 0, I
REF+
[mV] or
VMID(sample)
,
2.2 V 40 120
3V 60 160
2.2 V/3 V 3.44 3.55 3.66 mV/°C
2.2 V/3 V 1265 1365 1465
2.2 V/3 V 1195 1295 1395
2.2 V/3 V 985 1085 1185
2.2 V/3 V 895 995 1095
2.2 V/3 V 30 μs
2.2 V NA
3V NA
,
2.2 V 1.06 1.1 1.14
3V 1.46 1.5 1.54
,
2.2 V 1400
3V 1220
applies during conversion of the temperature
SENSOR
Sensor
or V
Offset,sensor
.
; no additional on time is needed.
μ
--100 100 mV
m
μ
ns
SENSOR(on)
.
50
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
I
C
C
Supplycurrent(seeNote1)
2.2V/3V
μ
A
g
I
Ikg
(
d2)
2.2V/3V
n
A
V
(I/P)
f
V(I/P
)
1kH
z
V
/
V
(I/P)
f
V(I/P
)
10kHz
V
/3V
V
V
/3V
V
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

operational amplifier OA, supply specifications (MSP430x22x4 only)

PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
V
CC
I
CC
PSRR Power supply rejection ratio Non-inverting 2.2 V/3 V 70 dB
NOTES: 1. Corresponding pins configured as OA inputs and outputs respectively.

operational amplifier OA, input/output specifications (MSP430x22x4 only)

V
I/P
I
Ik
V
n
V
IO
V
OH
V
OL
R
O/P(OAx)
CMRR Common-mode rejection ratio Noninverting 2.2 V /3 V 70 dB
NOTES: 1. ESD damage can degrade input current leakage.
Supply voltage range 2.2 3.6 V
Fast Mode 180 290
Supply current (see Note 1)
Medium Mode
Slow Mode
2.2 V/3 V
110 190
50 80
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
Input voltage range -- 0 . 1 VCC-- 1 . 2 V
TA=--40to+55_C -- 5 ±0.5 5
Input leakage current
seeNotes1an
TA=+55to+85_C
TA= +85 to +105_C
2.2 V/3 V
-- 2 0 ±5 20
-- 5 0 50
Fast Mode 50
Voltage noise density, I/P
Medium Mode
Slow Mode
Fast Mode
Medium Mode
Slow Mode
f
f
=1kHz
=10kHz
80
140
30
50
65
Offset voltage, I/P 2.2 V/3 V ±10 mV
Offset temperature drift, I/P seeNote3 2.2 V/3 V ±10 μV/°C
Offset voltage drift with supply, I/P
High-level output voltage, O/P
Low-level output voltage, O/P
Output resistance (see Figure 25 and Note 4)
0.3 V ≤ VIN≤ VCC-- 1 . 0 V
V
≤±10%, TA=25°C
CC
Fast Mode, I
Slow Mode, I
Fast Mode, I
Slow Mode, I
R
=3kΩ,C
Load
V
O/P(OAx)
R V
O/P(OAx)
R
0.2 V ≤ V
Load
Load
< 0.2 V
=3kΩ,C
> VCC-- 1 . 2 V
=3kΩ,C
O/P(OAx)
SOURCE
SOURCE
SOURCE
SOURCE
Load
Load
Load
VCC-- 0 . 2 V
--500 μA
--150 μA
+500 μA
+150 μA
= 50pF,
= 50pF,
= 50pF,
2.2 V/3 V ±1.5 mV/V
2.2
2.2
VCC-- 0 . 2 V
VCC-- 0 . 1 V
V
SS
V
SS
150 250
2.2 V/3 V
150 250
0.1 4
2. The input bias current is overridden by the input leakage current.
3. Calculated using the box method
4. Specification valid for voltage-follower OAx configuration
CC
CC
0.2
0.1
μA
nA
n
Hz
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
51
MSP430x22x2, MSP430x22x4
SRSlewrat
e
V
/μs
(seeFigure26andFigure27
)
Y
Y
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
R
O/P(OAx)
R
C
Load
Load
AV
CC
2
OAx
O/P(OAx)
I
Load
Figure 25. OAx Output Resistance Tests

operational amplifier OA, dynamic specifications (MSP430x22x4 only)

PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
Fast Mode 1.2
SR Slew rate
Open-loop voltage gain 100 dB
φ
m
GBW
t
en(on)
t
en(off)
Phase margin CL=50pF 60 deg
Gain margin CL=50pF 20 dB
Gain-bandwidth product (see Figure 26 and Figure 27)
Enable time on ton, Noninverting, Gain = 1 2.2 V/3 V 10 20 μs
Enable time off 2.2 V/3 V 1 μs
Medium Mode
Slow Mode 0.3
Noninverting, Fast Mode, R
=47kΩ,CL=50pF
L
Noninverting, Medium Mode, R
=300 k,CL= 50pF
L
Non-inverting, Slow Mode, R
=300 k,CL= 50pF
L
Max
Min
0.2V
2.2 V/3 V
AVCC--0.2V
0.8
2.2
1.4
0.5
AV
CC
V
OUT
V/μs
MHz
TYPICAL OPEN-LOOP GAIN vs FREQUENC
140
120
100
80
60
40
20
Gain -- dB
0
-- 2 0
-- 4 0
-- 6 0
-- 8 0 1 10 100 1000 10000 100000
Fast Mode
Medium Mode
Slow Mode
Input Frequency -- kHz
Figure 26
TYPICALPHASE vs FREQUENC
0
-- 5 0
Fast Mode
--100
Medium Mode
--150
Phase -- degrees
Slow Mode
--200
--250 1 10 100 1000 10000 100000
Input Frequency -- kHz
Figure 27
52
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
V
/3V
V
2.2V/3V
t
PLH
,
t
PHL
(
l
h
ighandhigh--low)
μ
s
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
operational amplifier OA feedback network, resistor network (see Note 1) (MSP430x22x4 only)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
R
total
R
unit
NOTES: 1. A single resistor string is composed of 4 R
operational amplifier OA feedback network, comparator mode (OAFCx = 3) (MSP430x22x4 only)
V
Level
t
PLH,tPHL
NOTES: 1. The level is not available due to the analog input voltage range of the operational amplifier.
Total resistance of resistor string 76 96 128 k
Unit resistor of resistor string (see Note 2)
unit
+4R
unit
+2R
unit
+2R
unit
+1R
unit
+1R
4.8 6 8 k
unit
+1R
unit
+1R
unit
=16R
unit=Rtotal
2. For the matching (i.e. the relative accuracy) of the unit resistors on a device refer to the gain and level specifications of the respective configurations.
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
OAFBRx = 1, OARRIP = 0 0.245 1/4 0.255
OAFBRx = 2, OARRIP = 0 0.495 1/2 0.505
OAFBRx = 3, OARRIP = 0 0.619 5/8 0.631
OAFBRx = 4, OARRIP = 0 N/A(seeNote1)
OAFBRx = 5, OARRIP = 0 N/A(seeNote1)
OAFBRx = 6, OARRIP = 0 N/A(seeNote1)
Comparator level
OAFBRx = 7, OARRIP = 0
OAFBRx = 1, OARRIP = 1
2.2
N/A(seeNote1)
0.061 1/16 0.065
CC
OAFBRx = 2, OARRIP = 1 0.122 1/8 0.128
OAFBRx = 3, OARRIP = 1 0.184 3/16 0.192
OAFBRx = 4, OARRIP = 1 0.245 1/4 0.255
OAFBRx = 5, OARRIP = 1 0.367 3/8 0.383
OAFBRx = 6, OARRIP = 1 0.495 1/2 0.505
OAFBRx = 7, OARRIP = 1 N/A(seeNote1)
Fast Mode, Overdrive 10 mV 40
Fast Mode, Overdrive 100 mV
Fast Mode, Overdrive 500 mV
4
3
Medium Mode, Overdrive 10 mV 60
Propagation delay
--
ow--
--
Medium Mode, Overdrive 100 mV 6
μs
Medium Mode, Overdrive 500 mV 5
Slow Mode, Overdrive 10 mV 160
Slow Mode, Overdrive 100 mV 20
Slow Mode, Overdrive 500 mV 15
.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
53
MSP430x22x2, MSP430x22x4
V
/3V
/
Totalharmonicdistortion
/
A
GGain
2.2V/3V
/
Totalharmonicdistortion
/
A
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
operational amplifier OA feedback network, noninverting amplifier mode (OAFCx = 4) (MSP430x22x4 only)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
OAFBRx = 0 0.998 1.00 1.002
OAFBRx = 1 1.328 1.334 1.340
OAFBRx = 2 1.985 2.001 2.017
G Gain
THD
t
Settle
NOTES: 1. The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The
Total harmonic distortion nonlinearity
Settlingtime(seeNote1) All power modes 2.2 V/3 V 7 12 μs
settling time of the amplifier itself might be faster.
OAFBRx = 3
OAFBRx = 4
OAFBRx = 5 5.22 5.33 5.44
OAFBRx = 6 7.76 7.97 8.18
OAFBRx = 7 15.0 15.8 16.6
ll gains
2.2
2.2 V -- 6 0
3V -- 7 0
2.638 2.667 2.696
3.94 4.00 4.06
dB
operational amplifier OA feedback network, inverting amplifier mode (OAFCx = 6) (see Note 1) (MSP430x22x4 only)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
OAFBRx = 1 --0.345 --0.335 --0.325
OAFBRx = 2 --1.023 --1.002 --0.979
OAFBRx = 3 --1.712 --1.668 --1.624
G Gain
THD
t
Settle
NOTES: 1. This includes the 2 OA configuration “inverting amplifier with input buffer”. Both OA needs to be set to the same power mode OAPMx.
Total harmonic distortion nonlinearity
Settlingtime(seeNote2) All power modes 2.2 V/3 V 7 12 μs
2. The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The settling time of the amplifier itself might be faster.
OAFBRx = 4
OAFBRx = 5
OAFBRx = 6 --7.37 --6.97 --6.57
OAFBRx = 7 --16.3 --14.8 --13.1
ll gains
2.2 V/ 3 V
2.2 V -- 6 0
3V -- 7 0
--3.10 --3.00 --2.90
--4.51 --4.33 --4.15
dB
54
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

Flash Memory

PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
V
CC(PGM/
ERASE)
f
FTG
I
PGM
I
ERASE
t
CPT
t
CMErase
t
Retention
t
Word
t
Block, 0
t
Block, 1-63
t
Block, End
t
Mass Erase
t
Seg Erase
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming
RAM
V
(RAMh)
NOTE 1: This parameter defines the minimum supply voltage VCCwhen the data in RAM remains unchanged. No program execution should
Program and erase supply voltage 2.2 3.6 V
Flash timing generator frequency 257 476 kHz
Supply current from VCCduring program 2.2 V/3.6 V 1 5 mA
Supply current from VCCduring erase 2.2 V/3.6 V 1 7 mA
Cumulative program time (see Note 1) 2.2 V/3.6 V 10 ms
Cumulative mass erase time 2.2 V/3.6 V 20 ms
Program/erase endurance 10
4
10
5
Data retention duration TJ=25°C 100 years
Word or byte program time seeNote2 30
Block program time for first byte or word seeNote2 25
Block program time for each additional byte or word seeNote2 18
Block program end-sequence wait time seeNote2 6
Mass erase time seeNote2 10593
Segment erase time seeNote2 4819
methods: individual word/byte write and block write modes.
2. These values are hardwired into the flash controller’s state machine (t
FTG
=1/f
FTG
).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RAM retention supply voltage (see Note 1) CPU halted 1.6 V
happen during this supply voltage condition.
cycles
t
FTG
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
55
MSP430x22x2, MSP430x22x4
f
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

JTAG and Spy-Bi-Wire Interface

PARAMETER
f
SBW
t
SBW,Low
t
SBW,En
t
SBW,Ret
TCK
R
Internal
NOTES: 1. Tools accessing the Spy-Bi-Wire interface need to wait for the maximum t
Spy-Bi-Wire input frequency 2.2 V / 3 V 0 20 MHz
Spy-Bi-Wire low clock pulse length 2.2 V / 3 V 0.025 15 μs
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge, seeNote1)
Spy-Bi-Wire return to normal operation time 2.2 V/ 3 V 15 100 μs
TCK inputfrequency (see Note 2)
Internal pull-down resistance on TEST 2.2 V/ 3 V 25 60 90 k
before applying the first SBWCLK clock edge.
2. f
may be restricted to meet the timing requirements of the module selected.
TCK
JTAG Fuse (see Note 1)
PARAMETER
V
CC(FB)
V
FB
I
FB
t
FB
NOTES: 1. Once the fuse is blown, no further access to the JTAG/Test and emulation feature is possible, and it is switched to bypass mode.
Supply voltage during fuse-blow condition TA=25°C 2.5 V
Voltage level on TEST for fuse blow 6 7 V
Supply current into TEST during fuse blow 100 mA
Time to blow fuse 1 ms
TEST
CONDITIONS
TEST
CONDITIONS
VCC MIN TYP MAX UNIT
2.2 V/ 3 V 1 μs
2.2 V 0 5
3V 0 10
time after pulling the TEST/SBWCLK pin high
SBW,En
VCC MIN TYP MAX UNIT
MHz
56
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MIXED SIGNAL MICROCONTROLLER
X
/
/
/
/

APPLICATION INFORMATION

Port P1 pin schematic: P1.0 to P1.3, input/output with Schmitt trigger
MSP430x22x2, MSP430x22x4
SLAS504B -- JULY 2006 -- REVISED JULY 2007
P1REN.x
P1DIR.x
P1OUT.x
Module X OUT
P1SEL.x
P1IN.x
Module X IN
P1IRQ.x
0
1
0
1
P1IE.x
P1IFG.x
P1SEL.x
P1IES.x
EN
Pad Logic
DVSS
DVCC
Direction 0: Input 1: Output
D
EN
Q
Set
Interrupt
Edge
Select
0
1
1
P1.0/TACLK/ADC10CLK P1.1/T A0 P1.2/T A1 P1.3/T A2

Port P1 (P1.0 to P1.3) pin functions

PIN NAME (P1.X)
P1.0/ 0 TACLK/ADC10CLk
P1.1/TA0 1
P1.2/TA1 2
P1.3/TA2 3
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
P1.0† (I/O) I: 0; O: 1 0
Timer_A3.TACLK 0 1
ADC10CLK 1 1
P1.1† (I/O) I: 0; O: 1 0
Timer_A3.CCI0A 0 1
Timer_A3.TA0 1 1
P1.2† (I/O) I: 0; O: 1 0
Timer_A3.CCI0A 0 1
Timer_A3.TA0 1 1
P1.3† (I/O) I: 0; O: 1 0
Timer_A3.CCI0A 0 1
Timer_A3.TA0 1 1
FUNCTION
CONTROL BITS / SIGNALS
P1DIR.x P1SEL.x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
57
MSP430x22x2, MSP430x22x4
X
/
/
/
/
///
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Port P1 pin schematic: P1.4 to P1.6, input/output with Schmitt trigger and in-system access features
Pad Logic
P1REN.x
P1DIR.x
P1OUT.x
Module X OUT
P1SEL.x
P1IN.x
Module X IN
P1IRQ.x
To JTA G
0
1
0
1
P1IE.x
P1IFG.x
P1SEL.x
P1IES.x
EN
DVSS
DVCC
Direction 0: Input 1: Output
Bus
Keeper
EN
D
EN
Q
Set
Interrupt
Edge
Select
0
1
1
P1.4/SMCLK/TCK P1.5/TA0/TMS P1.6/TA1/TDI
From JTAG

Port P1 (P1.4 to P1.6) pin functions

PIN NAME (P1.X)
P1.4/SMCLK/TCK 4
P1.5/TA0/TMS 5
P1.6/TA1/TDI/TCLK 6
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
3. Function controlled by JTAG.
P1.4† (I/O) I: 0; O: 1 0 0
SMCLK 1 1 0
TCK X X 1
P1.5† (I/O) I: 0; O: 1 0 0
Timer_A3.TA0 1 1 0
TMS X X 1
P1.6† (I/O) I: 0; O: 1 0 0
Timer_A3.TA1 1 1 0
TDI/TCLK(seeNote3) X X 1
FUNCTION
CONTROL BITS / SIGNALS
P1DIR.x P1SEL.x 4-Wire JTAG
58
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
X
///
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Port P1 pin schematic: P1.7, input/output with Schmitt trigger and in-system access features
Pad Logic
P1REN.7
P1DIR.7
P1OUT.7
Module X OUT
P1SEL.7
P1IN.7
Module X IN
P1IRQ.7
To JTA G
0
1
0
1
P1IE.7
P1IFG.7
P1SEL.7
P1IES.7
EN
DVSS
DVCC
Direction 0: Input 1: Output
Bus
Keeper
EN
D
EN
Q
Set
Interrupt
Edge
Select
0
1
1
P1.7/T A2/TDO/TDI
From JTAG
From JTAG
From JTAG (TDO)

Port P1 (P1.7) pin functions

PIN NAME (P1.X)
P1.7/TA2/TDO/TDI 7
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
3. Function controlled by JTAG.
P1.7† (I/O) I: 0; O: 1 0 0
Timer_A3.TA2 1 1 0
TDO/TDI (see Note 3) X X 1
FUNCTION
CONTROL BITS / SIGNALS
P1DIR.x P1SEL.x 4-Wire JTAG
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
59
MSP430x22x2, MSP430x22x4
X
Y
///
///
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Port P2 pin schematic: P2.0, P2.2, input/output with Schmitt trigger
To A D C 1 0
INCHx = y
ADC10AE0.y
P2REN.x
Pad Logic
P2DIR.x
P2OUT.x
Module X OUT
P2SEL.x
P2IN.x
Module X IN
P2IRQ.x
0
1
0
1
P2IFG.x
P2SEL.x
P2IES.x
EN
D
P2IE.x
Direction 0: Input 1: Output
EN
Q
Set
Interrupt
Edge
Select
OA0
DVSS
DVCC
Bus
Keeper
EN
+
--
0
1
1
P2.0/ACLK/A0/OA0I0 P2.2/TA0/A2/OA0I1

Port P2 (P2.0, P2.2) pin functions

PIN NAME (P2.X)
P2.0/ACLK/A0/OA0I0 0 0
P2.2/TA0/A2/OA0I1 2 2
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
60
2. X: Don’t care
3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.
P2.0† (I/O) I: 0; O: 1 0 0
ACLK 1 1 0
A0/OA0I0 (see Note 3) X X 1
P2.2† (I/O) I: 0; O: 1 0 0
Timer_A3.CCI0B 0 1 0
Timer_A3.TA0 1 1 0
A2/OA0I1 (see Note 3) X X 1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
FUNCTION
CONTROL BITS / SIGNALS
P2DIR.x P2SEL.x ADC10AE0.y
Port P2 pin schematic: P2.1, input/output with Schmitt trigger
To A D C 1 0
INCHx = 1
ADC10AE0.1
P2REN.1
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Pad Logic
P2DIR.1
P2OUT.1
Module X OUT
P2SEL.1
P2IN.1
Module X IN
P2IRQ.1
OAADCx
OAFCx
OAPMx
0
1
0
1
EN
D
P2IE.1
P2IFG.1
P2SEL.1
P2IES.1
(OAADCx = 10 or OAFCx = 000) and OAPMx > 00
Direction 0: Input 1: Output
EN
Q
Set
Interrupt
Edge
Select
DVSS
DVCC
Bus
Keeper
EN
+
--
OA0
0
1
1
P2.1/TAINCLK/SMCLK/ A1/OA0O
1
1
To OA0 Feedback Network
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
1
61
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Port P2 pin schematic: P2.3, input/output with Schmitt trigger
SREF2
To A D C 1 0 V
To A D C 1 0
INCHx = 3
ADC10AE0.3
P2REN.3
P2DIR.3
P2OUT.3
Module X OUT
P2SEL.3
P2IN.3
Module X IN
R--
0
1
Pad Logic
1
P2.3/TA1/ A3/VREF--/VeREF--/ OA1I1/OA1O
VSS
0
1
DVSS
DVCC
0
1
0
1
EN
D
Direction 0: Input 1: Output
Bus
Keeper
EN
P2IRQ.3
OAADCx
OAFCx
OAPMx
P2IE.3
P2IFG.3
P2SEL.3
P2IES.3
(OAADCx = 10 or OAFCx = 000) and OAPMx > 00
EN
Q
Set
Interrupt
Edge
Select
To OA1 Feedback Network
+
OA1
--
1
1
62
POST OFFICE BOX 655303 DALLAS, TEXAS 75265

Port P2 (P2.1) pin functions

X
Y
/
/
X
Y
/
/
PIN NAME (P2.X)
P2.1/TAINCLK/SMCLK 1 1 /A1/OA0O
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.
P2.1† (I/O) I: 0; O: 1 0 0
Timer_A3.INCLK 0 1 0
SMCLK 1 1 0
A1/OA0O (see Note 3) X X 1

Port P2 (P2.3) pin functions

PIN NAME (P2.X)
P2.3/TA1/ 3 3 A3/V
REF--/VeREF--
OA1I1/OA1O
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
/
applying analog signals.
P2.3† (I/O) I: 0; O: 1 0 0
Timer_A3.CCI1B 0 1 0
Timer_A3.TA1 1 1 0
A3/V
REF--/VeREF--
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
FUNCTION
FUNCTION
/OA1I1/OA1O (see Note 3) X X 1
CONTROL BITS / SIGNALS
P2DIR.x P2SEL.x ADC10AE0.y
CONTROL BITS / SIGNALS
P2DIR.x P2SEL.x ADC10AE0.y
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
63
MSP430x22x2, MSP430x22x4
X
Y
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Port P2 pin schematic: P2.4, input/output with Schmitt trigger
To / f r o m AD C 1 0
positive reference
To A D C 1 0
INCHx = 4
ADC10AE0.4
P2REN.4
P2DIR.4
P2OUT.4
Module X OUT
P2SEL.4
P2IN.4
Pad Logic
DVSS
DVCC
0
1
0
1
EN
Direction 0: Input 1: Output
Bus
Keeper
EN
0
1
1
P2.4/TA2/ A4/VREF+/VeREF+/ OA1I0
Module X IN
P2IRQ.4
P2IE.4
P2IFG.4
P2SEL.4
P2IES.4
D
Q
Interrupt

Port P2 (P2.4) pin functions

PIN NAME (P2.X)
P2.4/TA2/ 4 4 A4/V
REF+/VeREF+
OA1I0
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
/
applying analog signals.
P2.4† (I/O) I: 0; O: 1 0 0
Timer_A3.TA2 1 1 0
A4/V
REF+/VeREF+
EN
Set
Edge
Select
FUNCTION
/OA1I0 (see Note 3) X X 1
+
OA1
--
CONTROL BITS / SIGNALS
P2DIR.x P2SEL.x ADC10AE0.y
64
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
X
/
OSC
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Port P2 pin schematic: P2.5, input/output with Schmitt trigger and external R
To DCO
DCOR
P1REN.x
P1DIR.x
P1OUT.x
Module X OUT
P1SEL.x
P1IN.x
Module X IN
DVSS
DVCC
0
1
0
1
EN
D
Direction 0: Input 1: Output
Bus
Keeper
EN
0
1
for DCO
OSC
Pad Logic
1
P2.5/ROSC
P1IE.x
P1IRQ.x
P1IFG.x
P1SEL.x
P1IES.x

Port P2 (P2.5) pin functions

PIN NAME (P2.X)
P2.5/R
OSC
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
3. Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.
5
P2.5† (I/O) I: 0; O: 1 0 0
N/A 0 1 0
DV
SS
R
OSC
EN
Q
Set
Interrupt
Edge
Select
FUNCTION
CONTROL BITS / SIGNALS
P2DIR.x P2SEL.x DCOR
1 1 0
X X 1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
65
MSP430x22x2, MSP430x22x4
X
/
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Port P2 pin schematic: P2.6, input/output with Schmitt trigger and crystal oscillator input
LFXT1 off
LFXT1CLK
P2SEL.7
P2REN.6
P2DIR.6
P2OUT.6
Module X OUT
P2SEL.6
P2IN.6
BCSCTL3.LFXT1Sx = 11
0
1
0
1
0
1
EN
Direction 0: Input 1: Output
LFXT1 Oscillator
DVSS
DVCC
Bus
Keeper
EN
0
1
P2.7/XOUT
Pad Logic
1
P2.6/XIN
Module X IN
P2IRQ.6
D
P2IE.6
P2IFG.6
P2SEL.6
P2IES.6

Port P2 (P2.6) pin functions

PIN NAME (P2.X)
P2.6/XIN 6
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
P2.6 (I/O) I: 0; O: 1 0
XIN† X 1
EN
Q
Set
Interrupt
Edge
Select
FUNCTION
CONTROL BITS / SIGNALS
P2DIR.x P2SEL.x
66
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430x22x2, MSP430x22x4
X
/
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Port P2 pin schematic: P2.7, input/output with Schmitt trigger and crystal oscillator output
LFXT1 off
LFXT1CLK
P2SEL.6
P2REN.7
P2DIR.7
P2OUT.7
Module X OUT
P2SEL.7
P2IN.7
BCSCTL3.LFXT1Sx = 11
0
1
0
1
0
1
EN
From P2.6/XIN
Direction 0: Input 1: Output
LFXT1 Oscillator
DVSS
DVCC
Bus
Keeper
EN
0
1
P2.6/XIN
Pad Logic
1
P2.7/XOUT
Module X IN
P2IRQ.7
D
P2IE.7
P2IFG.7
P2SEL.7
P2IES.7

Port P2 (P2.7) pin functions

PIN NAME (P2.X)
XOUT/P2.7 6
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
3. If the pin XOUT/P2.7 is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection to this pin after reset.
P2.7 (I/O) I: 0; O: 1 0
XOUT†(seeNote3) X 1
EN
Q
Set
Interrupt
Edge
Select
FUNCTION
CONTROL BITS / SIGNALS
P2DIR.x P2SEL.x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
67
MSP430x22x2, MSP430x22x4
X
Y
/
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Port P3 pin schematic: P3.0, input/output with Schmitt trigger
To A D C 1 0
INCHx = 5
ADC10AE0.5
P3REN.0
Pad Logic
P3DIR.0
USCI Direction
Control
P3OUT.0
Module X OUT
P3SEL.0
P3IN.0
Module X IN
0
1
0
1
EN
D
Direction 0: Input 1: Output

Port P3 (P3.0) pin functions

PIN NAME (P3.X)
P3.0/ 0 5 UC1STE/UC0CLK/A5
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
3. The pin direction is controlled by the USCI module.
4. UC0CLK function takes precedence over UC1STE function. If the pin is required as UC0CLK input or output USCI1 will be forced to 3-wire SPI mode if 4-wire SPI mode is selected.
5. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.
P3.0† (I/O) I: 0; O: 1 0 0
UC1STE/UC0CLK (see Notes 3, 4) X 1 0
A5 (see Note 5) X X 1
FUNCTION
DVSS
DVCC
Bus
Keeper
EN
0
1
1
P3.0/UC1STE/UC0CLK/A5
CONTROL BITS / SIGNALS
P3DIR.x P3SEL.x ADC10AE0.y
68
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MIXED SIGNAL MICROCONTROLLER
X
/
/
/
/
/
Port P3 pin schematic: P3.1 to P3.5, input/output with Schmitt trigger
MSP430x22x2, MSP430x22x4
SLAS504B -- JULY 2006 -- REVISED JULY 2007
P3REN.x
P3DIR.x
USCI Direction
Control
P3OUT.x
Module X OUT
P3SEL.x
P3IN.x
Module X IN
0
1
0
1
EN
D
Direction 0: Input 1: Output

Port P3 (P3.1 to P3.5) pin functions

PIN NAME (P3.X)
P3.1/ 1 UC1SIMO/UC1SDA
P3.2/ 1 UC1SOMI/UC1SCL
P3.3/ 1 UC1CLK/UC0STE
P3.4/ 1 UC0TXD/UC0SIMO
P3.5/ 1 UC0RXD/UC0SOMI
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
3. The pin direction is controlled by the USCI module.
4. UC1CLK function takes precedence over UC0STE function. If the pin is required as UC1CLK input or output USCI0 will be forced to 3-wire SPI mode even if 4-wire SPI mode is selected.
P3.1† (I/O) I: 0; O: 1 0
UC1SIMO/UC1SDA (see Note 3) X 1
P3.2† (I/O) I: 0; O: 1 0
UC1SOMI/UC1SCL (see Note 3) X 1
P3.3† (I/O) I: 0; O: 1 0
UC1CLK/UC0STE (see Notes 3, 4) X 1
P3.4† (I/O) I: 0; O: 1 0
UC0TXD/UC0SIMO (see Note 3) X 1
P3.5† (I/O) I: 0; O: 1 0
UC0RXD/UC0SOMI (see Note 3) X 1
DVSS
FUNCTION
DVSS
DVCC
Bus
Keeper
EN
0
1
Pad Logic
1
P3.1/UC1SIMO/UC1SCL P3.2/UC1SOMI/UC1SDA P3.3/UC1CLK/UC0STE P3.4/UC0TXD/UC0SIMO P3.5/UC0RXD/UC0SOMI
CONTROL BITS / SIGNALS
P3DIR.x P3SEL.x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
69
MSP430x22x2, MSP430x22x4
X
Y
/
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Port P3 pin schematic: P3.6 to P3.7, input/output with Schmitt trigger
To A D C 1 0
INCHx = y
ADC10AE0.y
P3REN.x
Pad Logic
P3DIR.x
DVSS
P3OUT.x
Module X OUT
P3SEL.x
P3IN.x
Module X IN
DVSS
DVCC
0
1
0
1
EN
D
Direction 0: Input 1: Output
Bus
Keeper
EN
OA0/1
0
1
+
--
1
P3.6/A6/OA0I2 P3.7/A7/OA1I2

Port P3 (P3.6, P3.7) pin functions

PIN NAME (P3.X)
P3.6/A6/OA0I2 6 6
P3.7/A7/OA1I2 7 7
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
70
2. X: Don’t care
3. The pin direction is controlled by the USCI module.
4. UC1CLK function takes precedence over UC0STE function. If the pin is required as UC1CLK input or output USCI0 will be forced to 3-wire SPI mode if 4-wire SPI mode is selected.
5. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.
P3.6† (I/O) I: 0; O: 1 0 0
A6/OA0I2 (see Note 5) X X 1
P3.7† (I/O) I: 0; O: 1 0 0
A7/OA1I2 (see Note 5) X X 1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
FUNCTION
CONTROL BITS / SIGNALS
P3DIR.x P3SEL.x ADC10AE0.y
MIXED SIGNAL MICROCONTROLLER
X
/
/
/
Port P4 pin schematic: P4.0 to P4.2, input/output with Schmitt trigger
Timer_B Output Tristate Logic
P4SEL.6
P4DIR.6
ADC10AE1.7
P4REN.x
MSP430x22x2, MSP430x22x4
SLAS504B -- JULY 2006 -- REVISED JULY 2007
P4.6/TBOUTH/A15/OA 1I3
Pad Logic
P4DIR.x
P4OUT.x
Module X OUT
P4SEL.x
P4IN.x
Module X IN
0
1
0
1
EN
D
Direction 0: Input 1: Output

Port P4 (P4.0 to P4.2) pin functions

PIN NAME (P4.X)
P4.0/TB0 0
P4.1/TB1 1
P4.2/TB2 2
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
P4.0† (I/O) I: 0; O: 1 0
Timer_B3.CCI0A 0 1
Timer_B3.TB0 1 1
P4.1† (I/O) I: 0; O: 1 0
Timer_B3.CCI1A 0 1
Timer_B3.TB1 1 1
P4.2† (I/O) I: 0; O: 1 0
Timer_B3.CCI2A 0 1
Timer_B3.TB2 1 1
FUNCTION
DVSS
DVCC
Bus
Keeper
EN
0
1
1
P4.0/TB0 P4.1/TB1 P4.2/TB2
CONTROL BITS / SIGNALS
P4DIR.x P4SEL.x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
71
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Port P4 pin schematic: P4.3 to P4.4, input/output with Schmitt trigger
Timer_B Output Tristate Logic
P4SEL.6
P4DIR.6
ADC10AE1.7
P4.6/TBOUTH/A15/OA1I3
To A D C 1 0
INCHx = 8+y
ADC10AE1.y
P4REN.x
P4DIR.x
P4OUT.x
Module X OUT
P4SEL.x
P4IN.x
Module X IN
Pad Logic
DVSS
DVCC
0
1
0
1
EN
D
Direction 0: Input 1: Output
Bus
Keeper
EN
0
1
1
P4.3/TB0/A12/OA0O P4.4/TB1/A13/OA1O
+
OA0/1
--
OAADCx
OAPMx
If OAADCx = 11and not OAFCx = 000 the ADC input A12 or A13 is internally connected to the OA0 or OA1 output respectively and the connections from the ADC and the operational amplifiers to the pad are disabled.
72
OAADCx = 01 and OAPMx > 00
To OA0/1 Feedback Network
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
1
1

Port P4 (P4.3 to P4.4) pin functions

X
Y
///
///
PIN NAME (P4.X)
P4.3/TB0/A12/OA0O 3 4
P4.4/TB1/A13/OA1O 4 5
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
3. Setting the ADC10AE1.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.
P4.3† (I/O) I: 0; O: 1 0 0
Timer_B3.CCI0B 0 1 0
Timer_B3.TB0 1 1 0
A12/OA0O (see Note 3) X X 1
P4.4† (I/O) I: 0; O: 1 0 0
Timer_B3.CCI1B 0 1 0
Timer_B3.TB1 1 1 0
A13/OA1O (see Note 3) X X 1
FUNCTION
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
CONTROL BITS / SIGNALS
P4DIR.x P4SEL.x ADC10AE1.y
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
73
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Port P4 pin schematic: P4.5, input/output with Schmitt trigger
Timer_B Output Tristate Logic
P4SEL.6
P4DIR.6
ADC10AE1.7
P4.6/TBOUTH/A15/OA1I3
To A D C 1 0
INCHx = 14
ADC10AE1.6
P4REN.5
P4DIR.5
P4OUT.5
Module X OUT
P4SEL.5
P4IN.5
Module X IN
Pad Logic
DVSS
DVCC
0
1
0
1
EN
D
Direction 0: Input 1: Output
Bus
Keeper
EN
0
1
1
P4.5/TB3/A14/OA0I3
74
+
OA0
--
POST OFFICE BOX 655303 DALLAS, TEXAS 75265

Port P4 (P4.5) pin functions

X
Y
///
PIN NAME (P4.X)
P4.5/TB3/A14/OA0I3 5 6
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
3. Setting the ADC10AE1.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.
P4.5† (I/O) I: 0; O: 1 0 0
Timer_B3.TB2 1 1 0
A14/OA0I3 (see Note 3) X X 1
FUNCTION
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
CONTROL BITS / SIGNALS
P4DIR.x P4SEL.x ADC10AE1.y
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
75
MSP430x22x2, MSP430x22x4
X
Y
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Port P4 pin schematic: P4.6, input/output with Schmitt trigger
To A D C 1 0
INCHx = 15
ADC10AE1.7
P4REN.6
Pad Logic
P4DIR.6
P4OUT.6
Module X OUT
P4SEL.6
P4IN.6
Module X IN
DVSS
DVCC
0
1
0
1
EN
D
Direction 0: Input 1: Output
Bus
Keeper
EN
OA1
0
1
+
--
1
P4.6/TBOUTH/ A15/OA1I3

Port P4 (P4.6) pin functions

PIN NAME (P4.X)
P4.6/TBOUTH/ 6 7 A15/OA1I3
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
76
2. X: Don’t care
3. Setting the ADC10AE1.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.
P4.6† (I/O) I: 0; O: 1 0 0
TBOUTH 0 1 0
DV
SS
A15/OA1I3 (see Note 3) X X 1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
FUNCTION
CONTROL BITS / SIGNALS
P4DIR.x P4SEL.x ADC10AE1.y
1 1 0
Port P4 pin schematic: P4.7, input/output with Schmitt trigger
X
/
MSP430x22x2, MSP430x22x4
MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007
P4REN.x
P4DIR.x
P4OUT.x
Module X OUT
P4SEL.x
P4IN.x
Module X IN
0
1
0
1
EN
D

Port P4 (P4.7) pin functions

PIN NAME (P4.X)
P4.7/TBCLK 7
Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable
2. X: Don’t care
P4.7† (I/O) I: 0; O: 1 0
Timer_B3.TBCLK 0 1
DV
SS
Direction 0: Input 1: Output
FUNCTION
DVSS
DVSS
DVCC
Bus
Keeper
EN
0
1
Pad Logic
1
P4.7/TBCLK
CONTROL BITS / SIGNALS
P4DIR.x P4SEL.x
1 1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
77
MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER
SLAS504B -- JULY 2006 -- REVISED JULY 2007

JTAG fuse check mode

MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, I must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.
When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense currents are terminated.
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated.
The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see Figure 28). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition).
, of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care
TF
Time TMS Goes Low After POR
TMS
I
TF
I
TEST
Figure 28. Fuse Check Mode Current, MSP430F22xx
NOTE:
The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit bootloader access key is used. Also, see the bootstrap loader section for more information.
78
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MIXED SIGNAL MICROCONTROLLER

Data Sheet Revision History

MSP430x22x2, MSP430x22x4
SLAS504B -- JULY 2006 -- REVISED JULY 2007
Literature
Number
SLAS504 Preliminary data sheet release.
Production data sheet release.
SLAS504A
SLAS504B
NOTE: The referring page and figure numbers are referred to the respective document revision.
Updated specification and added characterization graphs. Updated/corrected port pin schematics.
Maximum low-power mode supply current limits decreased. Added note concerning f
to USCI SPI parameters.
UCxCLK
Summary
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
79
PACKAGE OPTION ADDENDUM
www.ti.com
PACKAGING INFORMATION
Orderable Device Status
MSP430F2232IDA ACTIVE TSSOP DA 38 40 Green (RoHS &
MSP430F2232IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS &
MSP430F2232IRHAR ACTIVE QFN RHA 40 2500 Green (RoHS &
MSP430F2232IRHAT ACTIVE QFN RHA 40 250 Green (RoHS &
MSP430F2232TDA ACTIVE TSSOP DA 38 40 Green (RoHS &
MSP430F2232TDAR ACTIVE TSSOP DA 38 2000 Green (RoHS &
MSP430F2232TRHAR ACTIVE QFN RHA 40 2500 Green (RoHS &
MSP430F2232TRHAT ACTIVE QFN RHA 40 250 Green (RoHS &
MSP430F2234IDA ACTIVE TSSOP DA 38 40 Green (RoHS &
MSP430F2234IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS &
MSP430F2234IRHAR ACTIVE QFN RHA 40 2500 Green (RoHS &
MSP430F2234IRHAT ACTIVE QFN RHA 40 250 Green (RoHS &
MSP430F2234TDA ACTIVE TSSOP DA 38 40 Green (RoHS &
MSP430F2234TDAR ACTIVE TSSOP DA 38 2000 Green (RoHS &
MSP430F2234TRHAR ACTIVE QFN RHA 40 2500 Green (RoHS &
MSP430F2234TRHAT ACTIVE QFN RHA 40 250 Green (RoHS &
MSP430F2252IDA ACTIVE TSSOP DA 38 40 Green (RoHS &
MSP430F2252IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS &
MSP430F2252IRHAR ACTIVE QFN RHA 40 2500 Green (RoHS &
MSP430F2252IRHAT ACTIVE QFN RHA 40 250 Green (RoHS &
MSP430F2252TDA ACTIVE TSSOP DA 38 40 Green (RoHS &
MSP430F2252TDAR ACTIVE TSSOP DA 38 2000 Green (RoHS &
MSP430F2252TRHAR ACTIVE QFN RHA 40 2500 Green (RoHS &
MSP430F2252TRHAT ACTIVE QFN RHA 40 250 Green (RoHS &
MSP430F2254IDA ACTIVE TSSOP DA 38 40 Green (RoHS &
(1)
Package
Type
Package Drawing
Pins Package
Qty
Eco Plan
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
no Sb/Br)
(2)
Lead/Ball Finish MSL Peak Temp
CU NIPDAU Level-2-260C-1 YEAR
CU NIPDAU Level-2-260C-1 YEAR
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-2-260C-1 YEAR
CU NIPDAU Level-2-260C-1 YEAR
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-2-260C-1 YEAR
CU NIPDAU Level-2-260C-1 YEAR
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-2-260C-1 YEAR
CU NIPDAU Level-2-260C-1 YEAR
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-2-260C-1 YEAR
CU NIPDAU Level-2-260C-1 YEAR
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-2-260C-1 YEAR
CU NIPDAU Level-2-260C-1 YEAR
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-2-260C-1 YEAR
20-Jul-2007
(3)
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device Status
(1)
Package
Type
Package Drawing
Pins Package
Qty
Eco Plan
(2)
MSP430F2254IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS &
Lead/Ball Finish MSL Peak Temp
CU NIPDAU Level-2-260C-1 YEAR
20-Jul-2007
(3)
no Sb/Br)
MSP430F2254IRHAR ACTIVE QFN RHA 40 2500 Green (RoHS &
CU NIPDAU Level-3-260C-168 HR
no Sb/Br)
MSP430F2254IRHAT ACTIVE QFN RHA 40 250 Green (RoHS &
CU NIPDAU Level-3-260C-168 HR
no Sb/Br)
MSP430F2254TDA ACTIVE TSSOP DA 38 40 Green (RoHS &
CU NIPDAU Level-2-260C-1 YEAR
no Sb/Br)
MSP430F2254TDAR ACTIVE TSSOP DA 38 2000 Green (RoHS &
CU NIPDAU Level-2-260C-1 YEAR
no Sb/Br)
MSP430F2254TRHAR ACTIVE QFN RHA 40 2500 Green (RoHS &
CU NIPDAU Level-3-260C-168 HR
no Sb/Br)
MSP430F2254TRHAT ACTIVE QFN RHA 40 250 Green (RoHS &
CU NIPDAU Level-3-260C-168 HR
no Sb/Br)
MSP430F2272IDA ACTIVE TSSOP DA 38 40 Green (RoHS &
CU NIPDAU Level-2-260C-1 YEAR
no Sb/Br)
MSP430F2272IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS &
CU NIPDAU Level-2-260C-1 YEAR
no Sb/Br)
MSP430F2272IRHAR ACTIVE QFN RHA 40 2500 Green (RoHS &
CU NIPDAU Level-3-260C-168 HR
no Sb/Br)
MSP430F2272IRHAT ACTIVE QFN RHA 40 250 Green (RoHS &
CU NIPDAU Level-3-260C-168 HR
no Sb/Br)
MSP430F2272TDA ACTIVE TSSOP DA 38 40 Green (RoHS &
CU NIPDAU Level-2-260C-1 YEAR
no Sb/Br)
MSP430F2272TDAR ACTIVE TSSOP DA 38 2000 Green (RoHS &
CU NIPDAU Level-2-260C-1 YEAR
no Sb/Br)
MSP430F2272TRHAR ACTIVE QFN RHA 40 2500 Green (RoHS &
CU NIPDAU Level-3-260C-168 HR
no Sb/Br)
MSP430F2272TRHAT ACTIVE QFN RHA 40 250 Green (RoHS &
CU NIPDAU Level-3-260C-168 HR
no Sb/Br)
MSP430F2274IDA ACTIVE TSSOP DA 38 40 Green (RoHS &
CU NIPDAU Level-2-260C-1 YEAR
no Sb/Br)
MSP430F2274IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS &
CU NIPDAU Level-2-260C-1 YEAR
no Sb/Br)
MSP430F2274IRHAR ACTIVE QFN RHA 40 2500 Green (RoHS &
CU NIPDAU Level-3-260C-168 HR
no Sb/Br)
MSP430F2274IRHAT ACTIVE QFN RHA 40 250 Green (RoHS &
CU NIPDAU Level-3-260C-168 HR
no Sb/Br)
MSP430F2274TDA ACTIVE TSSOP DA 38 40 Green (RoHS &
CU NIPDAU Level-2-260C-1 YEAR
no Sb/Br)
MSP430F2274TDAR ACTIVE TSSOP DA 38 2000 Green (RoHS &
CU NIPDAU Level-2-260C-1 YEAR
no Sb/Br)
MSP430F2274TRHAR ACTIVE QFN RHA 40 2500 Green (RoHS &
CU NIPDAU Level-3-260C-168 HR
no Sb/Br)
MSP430F2274TRHAT ACTIVE QFN RHA 40 250 Green (RoHS &
CU NIPDAU Level-3-260C-168 HR
no Sb/Br)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
20-Jul-2007
Addendum-Page 3
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Telephony www.ti.com/telephony RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated
Wireless www.ti.com/wireless
Loading...