Features
■ Low forwarded voltage drop
■ High reliability
■ High surge current capability
■ Soft switching for reduced EMI disturbances
■ Planar technology
Description
The STTH112, which is using ST ultrafast high
voltage planar technology, is specially suited for
free-wheeling, clamping, snubbering,
demagnetization in power supplies and other
power switching applications
STTH112
High voltage ultrafast rectifier
DO-41
STTH112
SMA
STTH112A
SMB
STTH112U
Table 1. Device summary
Symbol Value
I
F(AV)
V
RRM
T
j (max)
V
F (max)
1 A
1200 V
175 °C
1.65 V
October 2009 Doc ID 9343 Rev 5 1/8
www.st.com
8
Electrical characteristics STTH112
1 Electrical characteristics
Absolute ratings (limiting values)
Symbol Parameter Value Unit
V
V
(RMS)
Repetitive peak reverse voltage 1200 V
RRM
Voltage rms 850 V
Tl = 85°C δ =0.5 DO-41
I
F(AV)
Average forward current
1ATl = 115°C δ =0.5 SMA
Tl = 125°C δ =0.5 SMB
DO-41 20
I
Forward surge current t = 8.3 ms
FSM
18
SMB
T
Table 2. Thermal parameters
Storage temperature range - 50 + 175 °C
stg
Maximum operating junction temperature + 175 °C
T
j
Symbol Parameter Value Unit
L = 10 mm DO-41 45
R
th (j-l)
Junction to lead
SMA 30
°C/W
SMB 25
R
th (j-a)
Table 3. Static electrical characteristics
Junction to ambient L = 10 mm DO-41 110
ASMA
Symbol Parameter Tests conditions Min. Typ. Max. Unit
Tj = 25 °C 5
I
Reverse leakage current VR = 1200 V
R
V
Forward voltage drop IF = 1 A
F
Table 4. Dynamic electrical characteristics
= 125 °C 50
T
j
= 25 °C 1.9
T
j
= 125 °C 1.17 1.65
j
= 150 °C 1.10 1.55
T
j
Symbol Parameter Tests conditions Min. Typ. Max. Unit
I
= 0.5 A
t
Reverse recovery time
rr
t
Forward recovery time IF = 1 A
fr
V
Forward recovery voltage 30 V
FP
F
Irr = 0.25 A IR = 1A
/dt = 50 A/µs
dI
F
VFR = 1.1 x V
Fmax
= 25 °C 75 ns
T
j
500 ns
Tj = 25 °C
2/8 Doc ID 9343 Rev 5
µA
VT
STTH112 Electrical characteristics
0.00.51.01.52.02.53.03.54.04.55.0
Figure 1. Conduction losses versus average
current
P(W)
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
δ = 0.05
δ = 0.1
I (A)
F(AV)
δ = 0.2
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Relative variation of thermal
impedance junction ambient versus
pulse duration (DO-41)
Z/R
th(j-c) th(j-c)
1.0
epoxy FR4, L = 10mm
0.9
0.8
0.7
0.6
δ = 0.5
0.5
0.4
0.3
δ = 0.2
0.2
δ = 0.1
0.1
Single pulse
0.0
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03
leads
T
t (s)
p
δ
=tp/T
tp
Figure 2. Forward voltage drop versus
forward current
I (A)
FM
100.0
T=125°C
j
(maximum values)
T=125°C
10.0
1.0
0.1
j
(typical values)
V (V)
FM
T=25°C
j
(maximum values)
Figure 4. Relative variation of thermal
impedance junction ambient versus
pulse duration (epoxy FR4) (SMA)
Z/R
th(j-c) th(j-c)
1.0
0.9
0.8
0.7
0.6
= 0.5
δ
0.5
0.4
0.3
= 0.2
δ
0.2
= 0.1
δ
0.1
Single pulse
0.0
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03
t (s)
p
δ
T
=tp/T
tp
Figure 5. Relative variation of thermal
impedance junction ambient versus
pulse duration (epoxy FR4)(SMB)
Z/R
th(j-c) th(j-c)
1.0
0.9
0.8
0.7
0.6
δ = 0.5
0.5
0.4
0.3
δ = 0.2
0.2
δ = 0.1
0.1
Single pulse
0.0
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03
t (s)
p
δ
T
=tp/T
Figure 6. Thermal resistance junction to
ambient versus copper surface
under each lead (DO-41, SMB)
R (°C/W)
th(j-a)
110
100
90
80
70
60
50
40
30
20
tp
10
0
012345678910
Doc ID 9343 Rev 5 3/8
epoxy printed circuit board FR4, copper thickness:35µm
DO-41
L =10mm
leads
SMB
S(cm²)