Samsung M391A1K43BB2-CTD User Manual

Page 1
Rev. 1.1, Apr. 2018
M391A1K43BB1 M391A1K43BB2 M391A2K43BB1

288pin ECC Unbuffered DIMM based on 8Gb B-die

78FBGA with Lead-Free & Halogen-Free (RoHS compliant)
datasheet
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other­wise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
© 2018 Samsung Electronics Co., Ltd.GG All rights reserved.
- 1 -
Page 2
datasheet DDR4 SDRAMECC Unbuffered DIMM
Revision History
Revision No. History Draft Date Remark Editor
0.5 - First SPEC release 15th Nov, 2017 Preliminary J.Y.Bae
- Separate ECC and Non ECC datasheets. J.H.Han
1.0 - Final datasheet. 13th Dec, 2017 Final J.Y.Bae
- Correct typo. J.H.Han
- Correct speed bin table numbering.
- Add DRAM Package Electrical Specifications (x4/x8) table.
1.1 - Correct typo in Key features. 26th Apr, 2018 Final C.M.Kang
- Update Single-ended AC & DC Input Levels for Command and Address table.
- Update Differential AC and DC Input Levels table.
- Update Cross point voltage for differential input signals (CK) table.
- Update Differential AC and DC Input Levels for DQS table.
- Update Differential Input Level for DQS_t, DQS_c table.
- Update Differential Input Slew Rate for DQS_t, DQS_c table.
- Update Output Driver DC Electrical Characteristics, assuming RZQ=240ohm; entire operating temperature range; after proper ZQ cali­bration table.
Rev. 1.1
J.Y.Bae
- Update AC Timing table for 2666Mbps.
1. tDLLK : 854 -> 1024 [nCK].
2. tXPR_GEAR Min. : TBD -> tXPR
3. tXS_GEAR Min. : TBD -> tXS
4. tSYNC_GEAR Min. : TBD -> tMOD + 4tCK
5. tCMD_GEAR Min. : TBD -> tMOD
- Update DRAM DQs In Receive Mode table.
- Update Command, Address, Control Setup and Hold Values table.
- Command, Address, Control Input Voltage Values table.
- 2 -
Page 3
datasheet DDR4 SDRAMECC Unbuffered DIMM
Table Of Contents
288pin ECC Unbuffered DIMM based on 8Gb B-die
1. DDR4 Unbuffered DIMM ORDERING INFORMATION....................................................................................................................... 5
2. KEY FEATURES ................................................................................................................................................................................. 5
3. ADDRESS CONFIGURATION ............................................................................................................................................................ 5
4. x72 DIMM Pin Configurations (Front side/Back side).......................................................................................................................... 6
5. PIN DESCRIPTION ............................................................................................................................................................................ 7
6. INPUT/OUTPUT FUNCTIONAL DESCRIPTION ................................................................................................................................ 8
6.1 Address Mirroring ...........................................................................................................................................................................10
7. FUNCTION BLOCK DIAGRAM: .......................................................................................................................................................... 11
7.1 8GB, 1Gx72 ECC Module (Populated as 1 rank of x8 DDR4 SDRAMs)........................................................................................11
7.2 16GB, 2Gx72 ECC Module (Populated as 2 ranks of x8 DDR4 SDRAMs) ....................................................................................12
8. ABSOLUTE MAXIMUM RATINGS ...................................................................................................................................................... 13
9. AC & DC OPERATING CONDITIONS ................................................................................................................................................ 13
10. AC & DC INPUT MEASUREMENT LEVELS..................................................................................................................................... 14
10.1 AC & DC Logic Input Levels for Single-Ended Signals.................................................................................................................14
10.2 AC and DC Input Measurement Levels: VREF Tolerances..........................................................................................................14
10.3 AC and DC Logic Input Levels for Differential Signals .................................................................................................................15
10.3.1. Differential Signals Definition ................................................................................................................................................15
10.3.2. Differential Swing Requirements for Clock (CK_t - CK_c) ....................................................................................................15
10.3.3. Single-ended Requirements for Differential Signals .............................................................................................................16
10.3.4. Address, Command and Control Overshoot and Undershoot specifications........................................................................17
10.3.5. Clock Overshoot and Undershoot Specifications..................................................................................................................18
10.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications......................................................................................19
10.4 Slew Rate Definitions....................................................................................................................................................................20
10.4.1. Slew Rate Definitions for Differential Input Signals (CK) ......................................................................................................20
10.4.2. Slew Rate Definition for Single-ended Input Signals (CMD/ADD) ........................................................................................21
10.5 Differential Input Cross Point Voltage...........................................................................................................................................22
10.6 CMOS rail to rail Input Levels .......................................................................................................................................................23
10.6.1. CMOS rail to rail Input Levels for RESET_n .........................................................................................................................23
10.7 AC and DC Logic Input Levels for DQS Signals...........................................................................................................................24
10.7.1. Differential signal definition ...................................................................................................................................................24
10.7.2. Differential swing requirements for DQS (DQS_t - DQS_c)..................................................................................................24
10.7.3. Peak voltage calculation method .......................................................................................................................................... 25
10.7.4. Differential Input Cross Point Voltage ...................................................................................................................................26
10.7.5. Differential Input Slew Rate Definition ..................................................................................................................................27
11. AC AND DC OUTPUT MEASUREMENT LEVELS ........................................................................................................................... 28
11.1 Output Driver DC Electrical Characteristics..................................................................................................................................28
11.1.1. Alert_n output Drive Characteristic .......................................................................................................................................30
11.1.2. Output Driver Characteristic of Connectivity Test (CT) Mode...............................................................................................31
11.2 Single-ended AC & DC Output Levels..........................................................................................................................................32
11.3 Differential AC & DC Output Levels..............................................................................................................................................32
11.4 Single-ended Output Slew Rate ...................................................................................................................................................33
11.5 Differential Output Slew Rate .......................................................................................................................................................34
11.6 Single-ended AC & DC Output Levels of Connectivity Test Mode ...............................................................................................35
11.7 Test Load for Connectivity Test Mode Timing ..............................................................................................................................36
12. SPEED BIN ....................................................................................................................................................................................... 37
12.1 Speed Bin Table Note...................................................................................................................................................................42
13. IDD AND IDDQ SPECIFICATION PARAMETERS AND TEST CONDITIONS ................................................................................. 43
13.1 IDD, IPP and IDDQ Measurement Conditions..............................................................................................................................43
14. IDD SPEC TABLE ............................................................................................................................................................................. 58
15. INPUT/OUTPUT CAPACITANCE ..................................................................................................................................................... 61
16. ELECTRICAL CHARACTERISTICS & AC TIMING .......................................................................................................................... 62
16.1 Reference Load for AC Timing and Output Slew Rate .................................................................................................................62
16.2 tREFI.............................................................................................................................................................................................62
16.3 Clock Specification .......................................................................................................................................................................63
16.3.1. Definition for tCK(abs)...........................................................................................................................................................63
16.3.2. Definition for tCK(avg)...........................................................................................................................................................63
16.3.3. Definition for tCH(avg) and tCL(avg)....................................................................................................................................63
16.3.4. Definition for tERR(nper).......................................................................................................................................................63
17. TIMING PARAMETERS BY SPEED GRADE ................................................................................................................................... 64
17.1 Rounding Algorithms ...................................................................................................................................................................70
17.2 The DQ input receiver compliance mask for voltage and timing ..................................................................................................71
17.3 Command, Control, and Address Setup, Hold, and Derating .......................................................................................................75
17.4 DDR4 Function Matrix ..................................................................................................................................................................77
18. PHYSICAL DIMENSIONS ................................................................................................................................................................. 79
18.1 1Gx8 based 1Gx72 Module (1 Rank) - M391A1K43BB1 .............................................................................................................79
18.2 1Gx8 based 1Gx72 Module (1 Rank) - M391A1K43BB2 .............................................................................................................80
18.3 1Gx8 based 2Gx72 Module (2 Ranks) - M391A2K43BB1............................................................................................................81
Rev. 1.1
- 3 -
Page 4
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

1. DDR4 Unbuffered DIMM ORDERING INFORMATION

[Table 1] Ordering Information Table
Part Number
M391A1K43BB1-CPB/RC 8GB 1Gx72 1Gx8(K4A8G085WB-BCPB/RC)*9 1 31.25mm
M391A1K43BB2-CTD 8GB 1Gx72 1Gx8(K4A8G085WB-BCTD)*9 1 31.25mm
M391A2K43BB1-CPB/RC/TD 16GB 2Gx72 1Gx8(K4A8G085WB-BC##)*18 2 31.25mm
NOTE :
1) "##" -PB/RC/TD
2) PB(2133Mbps 15-15-15)/RC(2400Mbps 17-17-17)/TD(2666Mbps 19-19-19)
- DDR4-2666(19-19-19) is backward compatible to lower frequency.
2)
Density Organization
Component Composition
1)

2. KEY FEATURES

[Table 2] Speed Bins
Speed
tCK(min) 1.25 1.071 0.937 0.833 0.75 ns
CAS Latency 11 13 15 17 19 nCK
tRCD(min) 13.75 13.92 14.06 14.16 14.25 ns
tRP(min) 13.75 13.92 14.06 14.16 14.25 ns
tRAS(min) 35 34 33 32 32 ns
tRC(min) 48.75 47.92 47.06 46.16 46.25 ns
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
11-11-11 13-13-13 15-15-15 17-17-17 19-19-19
Number of
Rank
Height
Unit
• JEDEC standard 1.2V ± 0.06V Power Supply
•V
= 1.2V ± 0.06V
DDQ
• 800 MHz fCK for 1600Mb/sec/pin,933 MHz fCK for 1866Mb/sec/pin, 1067MHz fCK for 2133Mb/sec/pin,1200MHz fCK for 2400Mb/sec/pin,1333MHz for 2666Mb/sec/pin
f
CK
• 16 Banks (4 Bank Groups)
• Programmable CAS Latency: 10,11,12,13,14,15,16,17,18,19,20
• Programmable Additive Latency (Posted CAS): 0, CL - 2, or CL - 1 clock
• Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12 (DDR4-1866), 11,14 (DDR4-2133), 12,16 (DDR4-2400) and 14,18 (DDR4-
2666)
• Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS]
• Bi-directional Differential Data Strobe
• On Die Termination using ODT pin
• Average Refresh Period 7.8us at lower then T
• Asynchronous Reset
85C, 3.9us at 85C < T
CASE
CASE
95C

3. ADDRESS CONFIGURATION

Organization Row Address Column Address Bank Group Address Bank Address Auto Precharge
512Mx16(8Gb) based Module A0-A15 A0-A9 BG0 BA0-BA1 A10/AP
1Gx8(8Gb) based Module A0-A15 A0-A9 BG0-BG1 BA0-BA1 A10/AP
- 4 -
Page 5
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

4. x72 DIMM Pin Configurations (Front side/Back side)

Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back
1 1.2V,NC 145 1.2V,NC 39 VSS 183 DQ25 77 VTT 221 VTT 114 VSS 258 DQ47
2 VSS 146 VREFCA 40
3 DQ4 147 VSS 41
4 VSS 148 DQ5 42 VSS 186 DQS3_t 79 A0 223 VDD 117 DQ52 261 VSS
5 DQ0 149 VSS 43 DQ30 187 VSS 80 VDD 224 BA1 118 VSS 262 DQ53
6 VSS 150 DQ1 44 VSS 188 DQ31 81 BA0 225 A10/AP 119 DQ48 263 VSS
TDQS9_t,DQS
7
9_t,DM0_n,DB
I0_n,NC
TDQS9_c,DQ
8
S9_c,NC
9 VSS 153 DQS0_t 47 CB4,NC 191 VSS 84 CS0_n 228 WE_n/A14 122
10 DQ6 154 VSS 48 VSS 192 CB5,NC 85 VDD 229 VDD 123 VSS 267 DQS6_t
11 VSS 155 DQ7 49 CB0,NC 193 VSS 86 CAS_n/A15 230 NC,SAVE_n 124 DQ54 268 VSS
12 DQ2 156 VSS 50 VSS 194 CB1,NC 87 ODT0 231 VDD 125 VSS 269 DQ55
13 VSS 157 DQ3 51
14 DQ12 158 VSS 52
15 VSS 159 DQ13 53 VSS 197 DQS8_t 90 VDD 234 NC,A17 128 DQ60 272 VSS
16 DQ8 160 VSS 54 CB6,NC 198 VSS 91 ODT1 235 NC,C2 129 VSS 273 DQ61
17 VSS 161 DQ9 55 VSS 199 CB7,NC 92 VDD 236 VDD 130 DQ56 274 VSS
TDQS10_t,DQ
18
S10_t,DM1_n,
DBI1_n,NC
TDQS10_c,DQ
19
S10_c,NC
20 VSS 164 DQS1_t 58 RESET_n 202 VSS 95 DQ36 239 VSS 133
21 DQ14 165 VSS 59 VDD 203 CKE1 96 VSS 240 DQ37 134 VSS 278 DQS7_t
22 VSS 166 DQ15 60 CKE0 204 VDD 97 DQ32 241 VSS 135 DQ62 279 VSS
23 DQ10 167 VSS 61 VDD 205 RFU 98 VSS 242 DQ33 136 VSS 280 DQ63
24 VSS 168 DQ11 62 ACT_n 206 VDD 99
25 DQ20 169 VSS 63 BG0 207 BG1 100
26 VSS 170 DQ21 64 VDD 208 ALERT_n 101 VSS 245 DQS4_t 139 SA0 283 VSS
27 DQ16 171 VSS 65 A12/BC_n 209 VDD 102 DQ38 246 VSS 140 SA1 284 VDDSPD
28 VSS 172 DQ17 66 A9 210 A11 103 VSS 247 DQ39 141 SCL 285 SDA
TDQS11_t,DQ
29
S11_t,DM2_n,
DBI2_n,NC
TDQS11_t,DQ
30
S11_t,NC
31 VSS 175 DQS2_t 69 A6 213 A5 106 DQ44 250 VSS 144 RFU 288 VPP
32 DQ22 176 VSS 70 VDD 214 A4 107 VSS 251 DQ45
33 VSS 177 DQ23 71 A3 215 VDD 108 DQ40 252 VSS
34 DQ18 178 VSS 72 A1 216 A2 109 VSS 253 DQ41
35 VSS 179 DQ19 73 VDD 217 VDD 110
36 DQ28 180 VSS 74 CK0_t 218 CK1_t 111
37 VSS 181 DQ29 75 CK0_c 219 CK1_c 112 VSS 256 DQS5_t
38 DQ24 182 VSS 76 VDD 220 VDD 113 DQ46 257 VSS
151 VSS 45 DQ26 189 VSS 82 RAS_n/A16 226 VDD 120 VSS 264 DQ49
152 DQS0_c 46 VSS 190 DQ27 83 VDD 227 RFU 121
162 VSS 56 CB2,NC 200 VSS 93 C0,CS2_n,NC 237 NC,CS3_n,C1 131 VSS 275 DQ57
163 DQS1_c 57 VSS 201 CB3,NC 94 VSS 238 SA2 132
173 VSS 67 VDD 211 A7 104 DQ34 248 VSS 142 VPP 286 VPP
174 DQS2_c 68 A8 212 VDD 105 VSS 249 DQ35 143 VPP 287 VPP
TDQS12_t,DQ S12_t,DM3_n,
DBI3_n,NC
TDQS12_c,D
QS12_c,NC
TDQS17_t,DQ S17_t,DM8_n,
DBI8_n,NC
TDQS17_c,D
QS17_c,NC
184 VSS KEY 115 DQ42 259 VSS
185 DQS3_c 78 EVENT_n 222 PARITY 116 VSS 260 DQ43
TDQS15_t,DQ S15_t,DM6_n,
DBI6_n,NC
TDQS15_c,D
QS15_c,NC
195 VSS 88 VDD 232 A13 126 DQ50 270 VSS
196 DQS8_c 89 CS1_n 233 VDD 127 VSS 271 DQ51
TDQS16_t,DQ S16_t,DM7_n,
DBI7_n,NC
TDQS16_c,D
QS16_c,NC
TDQS13_t,DQ S13_t,DM4_n,
DBI4_n,NC
TDQS13_c,D
QS13_c,NC
TDQS14_t,DQ S14_t,DM5_n,
DBI5_n,NC
TDQS14_c,D
QS14_c,NC
243 VSS 137 DQ58 281 VSS
244 DQS4_c 138 VSS 282 DQ59
NOTE :
1) Light colored text indicates functions that are not applicable for UDIMM wir­ing. An example is the A17 for pin 234
254 VSS
255 DQS5_c
because UDIMMs defined by this speci­fication will never have DIMM wiring for this pin.
265 VSS
266 DQS6_c
276 VSS
277 DQS7_c
- 5 -
Page 6
datasheet DDR4 SDRAMECC Unbuffered DIMM

5. PIN DESCRIPTION

Pin Name Description Pin Name Description
1)
A0–A17
BA0, BA1 SDRAM bank select SDA
BG0, BG1 SDRAM bank group select SA0–SA2
2)
RAS_n
3)
CAS_n
4)
WE_n
CS0_n, CS1_n
CKE0, CKE1 SDRAM clock enable lines VSS Power supply return (ground)
ODT0, ODT1 SDRAM on-die termination control lines VDDSPD Serial SPD-TSE positive power supply
ACT_n SDRAM activate ALERT_n SDRAM ALERT_n
DQ0–DQ63 DIMM memory data bus VPP SDRAM Supply
CB0–CB7 DIMM ECC check bits
TDQS0_t-TDQS8_t
TDQS0_c-TDQS8_c
DQS0_t–DQS8_t
DQS0_c–DQS8_c
DM0_n–DM8_n,
DBI0_n-DBI8_n
CK0_t, CK1_t
CK0_c, CK1_c
SDRAM address bus SCL
SDRAM row address strobe PARITY SDRAM parity input
SDRAM column address strobe VDD SDRAM I/O and core power supply
SDRAM write enable 12 V
DIMM Rank Select Lines VREFCA
RESET_n
Dummy loads for mixed populations of x4 based and x8 based RDIMMs. Not used on UDIMMs.
SDRAM data strobes (positive line of differential pair)
SDRAM data strobes (negative line of differential pair)
SDRAM data masks/data bus inversion (x8-based x64 DIMMs)
SDRAM clocks (positive line of differential pair)
SDRAM clocks (negative line of differential pair)
EVENT_n SPD signals a thermal event has occurred
VTT
RFU Reserved for future use
2
I
C serial bus clock for SPD-TSE
2
C serial bus data line for SPD-TSE
I
2
C slave address select for SPD-TSE
I
Optional power Supply on socket but not used on UDIMM
Set DRAMs to a Known State
SDRAM I/O termination supply
Rev. 1.1
NOTE :
1) Address A17 is not valid for x8 and x16 based SDRAMs. For UDIMMs this connection pin is NC.
2) RAS_n is a multiplexed function with A16.
3) CAS_n is a multiplexed function with A15.
4) WE_n is a multiplexed function with A14.
[Table 3] Temperature Sensor Characteristics
Grade Range
75 < Ta < 95 - +/- 0.5 +/- 1.0
B
40 < Ta < 125 - +/- 1.0 +/- 2.0 -
-20 < Ta < 125 - +/- 2.0 +/- 3.0 -
Resolution 0.25 C /LSB -
Temperature Sensor Accuracy
Min. Typ. Max.
Units NOTE
-
C
- 6 -
Page 7
datasheet DDR4 SDRAMECC Unbuffered DIMM

6. INPUT/OUTPUT FUNCTIONAL DESCRIPTION

Symbol Type Function
CK_t, CK_c
CKE, (CKE1) Input
CS_n (CS1_n)
C0, C1, C2 Input
ODT (ODT1) Input
ACT_n Input
RAS_n/A16, CAS_n/A15,
WE_n/A14
DM_n/DBI_n/
TDQS_t,
(DMU_n/ DBIU_n),
(DML_n/ DBIL_n)
BG0 - BG1 Input
BA0 - BA1 Input
A0 - A17 Input
A10 / AP Input
A12 / BC_n Input
RESET_n
DQ
DQS_t, DQS_c,
DQSU_t, DQSU_c,
DQSL_t, DQSL_c
Input
Input
Input
Input/
Output
CMOS
Input
Input/
Output
Input/
Output
Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c.
Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and device input buffers and output drivers. Taking CKE LOW provides Precharge Power-Down and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal DQ Vref have become stable during the power on and initialization sequence, they must be maintained during all operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK_t, CK_c, ODT and CKE, are disabled during power-down. Input buffers, excluding CKE, are disabled during Self-Refresh.
Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection on systems with multiple Ranks. CS_n is considered part of the command code. CS2_n and CS3_n are not used on UDIMMs
Chip ID: Chip ID is only used for 3DS for 2,4,8 high stack via TSV to select each slice of stacked component. Chip ID is considered part of the command code. Not used on UDIMMs.
On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/TDQS_t, NU/TDQS_c (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. For x16 configuration ODT is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, DMU_n, and DML_n signal. The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM.
Activation Command Input: ACT_n defines the Activation command being entered along with CS_n. The input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14.
Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being entered. Those pins have multi function. For example, for activation with ACT_n Low, these are Addresses like A16, A15 and A14 but for non-activation command with ACT_n High, these are Command pins for Read, Write and other command defined in command truth table.
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is masked when DM_n is sampled LOW coincident with that input data during a Write access. DBI_n is an input/output identifying whether to store/output the true or inverted data. If DBI_n is LOW, the data will be stored/output after inversion inside the DDR4 SDRAM and not inverted if DBI_n is HIGH. TDQS is only supported in x8 SDRAM configurations. TDQS is not valid for UDIMMs.
Bank Group Inputs: BG0 - BG1 define which bank group an Active, Read, Write or Precharge command is being applied. BG0 also determines which mode register is to be accessed during a MRS cycle. x4/x8 SDRAM configurations have BG0 and BG1. x16 based SDRAMs only have BG0.
Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines which mode register is to be accessed during a MRS cycle.
Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/Write commands to select one location out of the memory array in the respective bank. A10/AP, A12/BC_n, RAS_n/A16, CAS_n/A15 and WE_n/A14 have additional functions. See other rows. The address inputs also provide the op-code during Mode Register Set commands. A17 is only defined for the x4 SDRAM configuration.
Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses.
Burst Chop: A12/BC_n is sampled during Read and Write commands to determine if burst chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation.
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at the end of Data Burst. Any DQ from DQ0-DQ3 may indicate the internal Vref level during test via Mode Register Setting MR4 A4=High. Refer to vendor specific data sheets to determine which DQ is used.
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS_t, DQSL_t and DQSU_t are paired with differential signals DQS_c, DQSL_c, and DQSU_c, respectively, to provide differential pair signaling to the system during reads and writes. DDR4 SDRAM supports differential data strobe only and does not support single-ended.
Rev. 1.1
- 7 -
Page 8
datasheet DDR4 SDRAMECC Unbuffered DIMM
Symbol Type Function
TDQS_t,
TDQS_c
PAR Input
ALERT_n
TEN
NC No Connect: No on DIMM electrical connection is present.
VDDQ Supply DQ Power Supply: 1.2 V +/- 0.06 V
VSSQ Supply DQ Ground
VDD
VSS Supply Ground
VPP Supply DRAM Activating Power Supply: 2.5V (2.375V min, 2.75V max)
12 V Supply 12 V supply not used on UDIMMs.
VDDSPD Supply Power supply used to power the I2C bus on the SPD-TSE 2.5V or 3.3V.
VREFCA Supply Reference voltage for CA
ZQ Supply Reference Pin for ZQ calibration
Output
Output
Input
Supply Power Supply: 1.2 V +/- 0.06 V
Termination Data Strobe: TDQS_t/TDQS_c are not valid for UDIMMs.
Command and Address Parity Input: DDR4 Supports Even Parity check in DRAMs with MR setting. Once it’s enabled via Register in MR5, then DRAM calculates Parity with ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0­BG1, BA0-BA1, A16-A0. LOW Command and address inputs shall have parity check performed when commands are latched via the rising edge of CK_t and when CS_n is low.
Alert: It has multi functions such as CRC error flag, Command and Address Parity error flag as Output signal. If there is error in CRC, then ALERT_n goes LOW for the period time interval and goes back HIGH. If there is error in Command Address Parity Check, then ALERT_n goes LOW for relatively long period until on going DRAM internal recovery transaction is complete. During Connectivity Test mode this pin functions as an input. Using this signal or not is dependent on the system.
Connectivity Test Mode Enable : Required on X16 devices and optional input on x4/x8 with densities equal to or greater than 8Gb.HIGH in this pin will enable Connectivity Test Mode operation along with other pins. It is a CMOS rail to rail signal with AC high and low at 80% and 20% of VDD. Using this signal or not is dependent on System. This pin may be DRAM internally pulled low through a weak pull-down resistor to VSS
Rev. 1.1
NOTE :
1) Input only pins (BG0-BG1,BA0-BA1, A0-A17, ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, CS_n, CKE, ODT, and RESET_n) do not supply termination.
- 8 -
Page 9
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

6.1 Address Mirroring

DDR4 two rank UDIMMs will use address mirroring. DRAMs for even ranks will be placed on the front side of the module. DRAMs for odd ranks will be placed on the back side of the module. Wiring of the address bus will be as defined in Table 4. Since the cross-wired pins have no secondary functions, there is no problem in normal operation. Any data written is read the same way. There are limitations however. When writing to the internal registers with a "load mode" operation, the specific address is required. This requires the controller to know if the rank is mirrored or not. There is a bit assignment in the SPD that indicates whether the module has been designed with the mirrored feature or not. See the DDR4 SPD specification for these details. The controller must read the SPD and have the capability of de-mirroring the address when accessing the odd ranks.
[Table 4] DIMM Wiring Definition for Address Mirroring
Signal Name DRAM Ball Lable
Connector Even Rank Odd Rank
A0 A0 A0
A1 A1 A1
A2 A2 A2
A3 A3 A4
A4 A4 A3
A5 A5 A6
A6 A6 A5
A7 A7 A8
A8 A8 A7
A9 A9 A9
A10/AP A10/AP A10/AP
A11 A11 A13
A12/BC_n A12/BC_n A12/BC_n
A13 A13 A11
A14/WE_n A14/WE_n A14/WE_n
A15/CAS_n A15/CAS_n A15/CAS_n
A16/RAS_n A16/RAS_n A16/RAS_n
A17 A17 A17 Not valid for x8 and x16 DRAM components up to 16Gb.
BA0 BA0 BA1
BA1 BA1 BA0
BG0 BG0 BG1
BG1 BG1 BG0
BG1 is not valid for x16 DRAM components. For x16 DRAM components signal BG0 will be wired to DRAM ball BG0 for both ranks.
BG1 is not valid for x16 DRAM components. For x16 DRAM components signal BG0 will be wired to DRAM ball BG0 for both ranks.
Comment
- 9 -
Page 10
datasheet DDR4 SDRAMECC Unbuffered DIMM

7. FUNCTION BLOCK DIAGRAM:

7.1 8GB, 1Gx72 ECC Module (Populated as 1 rank of x8 DDR4 SDRAMs)

Rev. 1.1
CK0_t,CK0_c
A[16:0],BA[1:0],
ACT_n,PARITY,BG[1:0]
CS0_n
ODT0 CKE0
DQS0_t
DQS0_c
DQ[7:0]
DM0_n/DBI0_n
DQS1_t
DQS1_c
DQ[15:8]
DBI1_n/DM1_n
DQS2_t
DQS2_c
DQ[23:16]
DBI2_n/DM2_n
CKE
ODT
D0
DQS_t DQS_c DQ[7:0] DBI_n/DM_n
CKE
ODT
D1
DQS_t DQS_c DQ[7:0] DBI_n/DM_n
CKE
ODT
D2
DQS_t DQS_c DQ[7:0] DBI_n/DM_n
CS_n
CS_n
CS_n
CK
ZQ
Address
CK
ZQ
Address
CK
ZQ
Address
A[16:0],BA[1:0],
ACT_n,PARITY,BG[1:0]
VSS
VSS
VSS
CK0_t,CK0_c
CS0_n
ODT0 CKE0
DQS4_t
DQS4_c
DQ[39:32]
DBI4_n/DM4_n
DQS5_t
DQS5_c
DQ[47:40]
DBI5_n/DM5_n
DQS6_t
DQS6_c
DQ[55:48]
DBI6_n/DM6_n
CKE
ODT
D4
DQS_t DQS_c DQ[7:0] DBI_n/DM_n
CKE
ODT
D5
DQS_t DQS_c DQ[7:0] DBI_n/DM_n
CKE
ODT
D6
DQS_t DQS_c DQ[7:0] DBI_n/DM_n
CS_n
CS_n
CS_n
CK
ZQ
Address
CK
ZQ
Address
CK
ZQ
Address
VSS
VSS
VSS
ODT
D3
ODT
D8
CS_n
CS_n
CK
ZQ
Address
CK
ZQ
Address
VSS
VSS
DQS7_t
DQS7_c
DQ[63:56]
DBI7_n/DM7_n
DQS3_t
DQS3_c
DQ[31:24]
DBI3_n/DM3_n
DQS8_t
DQS8_c
DQ[71:64]
DBI8_n/DM8_n
D0
CKE
DQS_t DQS_c DQ[7:0] DBI_n/DM_n
CKE
DQS_t DQS_c DQ[7:0] DBI_n/DM_n
D1 D2 D3 D8 D4 D5 D6 D7
Address, Command and Control lines
NOTE :
1) Unless otherwise noted, resistor values are 15 5%.
2) ZQ resistors are 240 1%. For all other resistor values refer to the appropriate wiring diagram.
3) For part 2 of 2 the DQ resistors are shown for simplicity but are the same physical components as shown on part 1 of 2.
4) EVENT_n is used for SPD with TS. Option Resistor for it should be placed.
ODT
CS_n
Address
D7
EVENT_nEVENT_n
SA0 SA1 SA2
SA0 SA1 SA2
CK
CKE
DQS_t DQS_c DQ[7:0] DBI_n/DM_n
SCL
Serial PD with Thermal sensor
V
DDSPD
V
PP
V
DD
V
TT
V
REFCA
V
SS
ZQ
VSS
SDA
Serial PD
D0 - D8
D0 - D8
D0 - D8
D0 - D8
- 10 -
Page 11
datasheet DDR4 SDRAMECC Unbuffered DIMM

7.2 16GB, 2Gx72 ECC Module (Populated as 2 ranks of x8 DDR4 SDRAMs)

A[16:0],BA[1:0],BG[1:0]
ACT_n, PARITY,
CK0_t,CK0_c
CS0_n
ODT0 CKE0
CK1_t,CK1_c
CS1_n
ODT1 CKE1
Rev. 1.1
DQS0_t DQS0_c
DQ [7:0]
DM0_n/DBI0_n
DQS1_t DQS1_c
DQ [15:8]
DM1_n/DBI1_n
DQS2_t DQS2_c
DQ [23:16]
DM2_n/DBI2_n
DQS3_t DQS3_c
DQ [31:24]
DM3_n/DBI3_n
DQS8_t DQS8_c
CB [7:0]
DM8_n/DBI8_n
CKE
DQS_t DQS_c
D1
DQ [7:0] DM_n/DBI_n
CKE
DQS_t DQS_c
D2
DQ [7:0] DM_n/DBI_n
CKE
DQS_t DQS_c
D3
DQ [7:0] DM_n/DBI_n
CKE
DQS_t DQS_c
D4
DQ [7:0] DM_n/DBI_n
CKE
DQS_t DQS_c
D5
DQ [7:0] DM_n/DBI_n
ODT
ODT
ODT
ODT
ODT
CS_n
CS_n
CS_n
CS_n
CS_n
CK
CK
CK
CK
CK
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
VSS
VSS
VSS
VSS
VSS
CKE
DQS_t DQS_c
D11
DQ [7:0] DM_n/DBI_n
CKE
DQS_t DQS_c
D12
DQ [7:0] DM_n/DBI_n
CKE
DQS_t DQS_c
D13
DQ [7:0] DM_n/DBI_n
CKE
CKE
DQS_t
DQS_t DQS_c
DQS_c
D0
D14
DQ [7:0]
DQ [7:0] DM_n/DBI_n
DM_n/DBI_n
CKE
DQS_t DQS_c
D15
DQ [7:0] DM_n/DBI_n
ODT
ODT
ODT
ODT
ODT
ODT
CS_n
CS_n
CS_n
CS_n
CS_n
CS_n
CK
CK
CK
CK
CK
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
ZQ
ZQ
A,BA,BG,Par
A,BA,BG,Par
ZQ
A,BA,BG,Par
VSS
DQS4_t DQS4_c
DQ [39:32]
DM4_n/DBI4_n
VSS
DQS5_t DQS5_c
DQ [47:40]
DM5_n/DBI5_n
VSS
DQS6_t DQS6_c
DQ [55:48]
DM6_n/DBI6_n
VSS
VSS
DQS7_t DQS7_c
DQ [63:56]
DM7_n/DBI7_n
VSS
CKE
DQS_t DQS_c
D6
DQ [7:0] DM_n/DBI_n
CKE
DQS_t DQS_c
D7
DQ [7:0] DM_n/DBI_n
CKE
DQS_t DQS_c
D8
DQ [7:0] DM_n/DBI_n
CKE
DQS_t DQS_c
D9
DQ [7:0] DM_n/DBI_n
CK
ZQ
ODT
ODT
ODT
ODT
CS_n
CS_n
CS_n
CS_n
CK
CK
CK
A,BA,BG,Par
A,BA,BG,Par
A,BA,BG,Par
A,BA,BG,Par
ZQ
ZQ
ZQ
VSS
DQS_t DQS_c DQ [7:0] DM_n/DBI_n
VSS
DQS_t DQS_c DQ [7:0] DM_n/DBI_n
VSS
DQS_t DQS_c DQ [7:0] DM_n/DBI_n
VSS
DQS_t DQS_c DQ [7:0] DM_n/DBI_n
Serial PD with Thermal sensor
CKE
ODT
D16
CKE
ODT
D17
CKE
ODT
D18
CKE
ODT
D19
CS_n
CS_n
CS_n
CS_n
CK
CK
CK
CK
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
VSS
VSS
VSS
VSS
Front
D1 D2 D3 D4 D6 D7 D8 D9
D5
Back
D11 D12 D13 D14 D16 D17 D18 D19
D15
Address, Command and Control lines
NOTE :
1) Unless otherwise noted, resistor values are 15 ± 5%.
2) ZQ resistors are 240 ± 1%. For all other resistor values refer to the appropriate wiring diagram.
SCL
EVENT_n
V
VREFCA
DDSPD
V
V
V
V
DD
EVENT_n
SA0 SA1 SA2
SA0 SA1
PP
TT
SS
SDA
SA2
Serial PD
D0-D19
D0-D19
D0-D19
D0-D19
- 11 -
Page 12
datasheet DDR4 SDRAMECC Unbuffered DIMM

8. ABSOLUTE MAXIMUM RATINGS

[Table 5] Absolute Maximum DC Ratings
Symbol Parameter Rating Units NOTE
VDD Voltage on VDD pin relative to Vss -0.3 ~ 1.5 V 1,3
VDDQ Voltage on VDDQ pin relative to Vss -0.3 ~ 1.5 V 1,3
VPP Voltage on VPP pin relative to Vss -0.3 ~ 3.0 V 4
Rev. 1.1
V
NOTE :
1) Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3) VDD and VDDQ must be within 300mV of each other at all times; and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREFCA may be equal to or less than 300mV
4) VPP must be equal or greater than VDD/VDDQ at all times.
5) Overshoot area above 1.5 V is specified in 10.3.4, 10.3.5 and 10.3.6.
Voltage on any pin except VREFCA relative to Vss -0.3 ~ 1.5 V 1,3,5
IN, VOUT
T
Storage Temperature -55 to +100 °C 1,2
STG

9. AC & DC OPERATING CONDITIONS

[Table 6] Recommended DC Operating Conditions
Symbol Parameter
VDD Supply Voltage 1.14 1.2 1.26 V 1,2,3
VDDQ Supply Voltage for Output 1.14 1.2 1.26 V 1,2,3
VPP Peak-to-Peak Voltage 2.375 2.5 2.75 V 3
NOTE :
1) Under all conditions V
tracks with VDD. AC parameters are measured with VDD and V
2) V
DDQ
3) DC bandwidth is limited to 20MHz.
must be less than or equal to VDD.
DDQ
Min. Typ. Max.
tied together.
DDQ
Rating
Unit NOTE
- 13 -
Page 13
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

10. AC & DC INPUT MEASUREMENT LEVELS

10.1 AC & DC Logic Input Levels for Single-Ended Signals

[Table 7] Single-ended AC & DC Input Levels for Command and Address
Symbol Parameter
VIH.CA(DC75)
VIH.CA(DC65) - -
VIL.CA(DC75)
VIL.CA(DC65) - - VSS
VIH.CA(AC100)
VIH.CA(AC90) - -
VIL.CA(AC100)
VIL.CA(AC90) - - Note 2
VREFCA(DC) Reference Voltage for ADD, CMD inputs 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 2,3
NOTE :
1) See “Overshoot and Undershoot Specifications” on section10.3.
2) The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)
3) For reference : approx. VDD/2 ± 12mV.
DC input logic high
DC input logic low
AC input logic high
AC input logic low
DDR4-1600/1866/2133/2400 DDR4-2666
Min. Max. Min. Max.
V
REFCA
VSS
V
REF
Note 2
+ 0.075
+ 0.1
VDD - -
V
+ 0.065
REFCA
-0.075
V
REFCA
Note 2 - -
- 0.1
V
REF
--
V
+ 0.09
REF
--
Unit NOTE
VDD
-0.065
V
REFCA
Note 2 1
V
- 0.09
REF
V
V
V
V
1
10.2 AC and DC Input Measurement Levels: V
The DC-tolerance limits and ac-noise limits for the reference voltages V
function of time. (V
(DC) is the linear average of V
V
REF
Furthermore V
stands for V
REF
(t) may temporarily deviate from V
REF
voltage
).
REFCA
(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7.
REF
Figure 1. Illustration of V
(DC) by no more than ± 1% VDD.
REF
(DC) tolerance and V
REF
is illustrated in Figure 1. It shows a valid reference voltage V
REFCA
Tolerances.
REF
AC-noise limits
REF
(t) as a
REF
V
DD
V
SS
time
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on V
" shall be understood as V
"V
REF
This clarifies, that DC-variations of V
which setup and hold is measured. System timing and voltage budgets need to account for V
data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V
and voltage effects due to AC-noise on V
(DC), as defined in Figure 1.
REF
affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
REF
(DC) deviations from the optimum position within the
REF
up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
REF
- 14 -
REF
.
AC-noise. Timing
REF
Page 14
datasheet DDR4 SDRAMECC Unbuffered DIMM

10.3 AC and DC Logic Input Levels for Differential Signals

10.3.1 Differential Signals Definition
tDVAC
VIH.DIFF.AC.MIN
.DIFF.MIN
V
IH
0.0
(CK_t - CK_c)
V
.DIFF.AC.MAX
V
IL
.DIFF.MAX
IL
half cycle
Rev. 1.1
Differential Input Voltage (CK-CK)
Figure 2. Definition of differential ac-swing and “time above ac-level” t
NOTE:
1) Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.
2) Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.
10.3.2 Differential Swing Requirements for Clock (CK_t - CK_c)
[Table 8] Differential AC and DC Input Levels
Symbol Parameter
V
IHdiff
V
ILdiff
V
(AC)
IHdiff
V
(AC)
ILdiff
NOTE :
1) Used to define a differential signal slew-rate.
2) for CK_t - CK_c use V
3) These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (V
as well as the limitations for overshoot and undershoot.
differential input high +0.150 NOTE 3 0.135 NOTE 3 V 1
differential input low NOTE 3 -0.150 NOTE 3 -0.135 V 1
differential input high ac
2 x (VIH(AC) - V
differential input low ac NOTE 3
IH.CA/VIL.CA
(AC) of ADD/CMD and V
DDR4 -1600/1866/2133 DDR4 -2400/2666
min max min max
REFCA
)
REF
NOTE 3
2 x (VIL(AC) - V
;
2 x (VIH(AC) - V
)
REF
tDVAC
NOTE 3
IH.CA
time
DVAC
)
REF
2 x (VIL(AC) - V
(DC) max, V
unit NOTE
NOTE 3 V 2
)
V2
REF
(DC)min) for single-ended signals
IL.CA
[Table 9] Allowed Time Before Ringback (tDVAC) for CK_t - CK_c
Slew Rate [V/ns]
> 4.0 120 -
4.0 115 -
3.0 110 -
2.0 105 -
1.8 100 -
1.6 95 -
1.4 90 -
1.2 85 -
1.0 80 -
< 1.0 80 -
tDVAC [ps] @ |V
(AC)| = 200mV
IH/Ldiff
min max
- 15 -
Page 15
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
10.3.3 Single-ended Requirements for Differential Signals
Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain requirements for single-ended signals.
CK_t and CK_c have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH.CA(AC) / VIL.CA(AC)) for ADD/CMD signals) in every half-cycle.
Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g., if Different value than VIH.CA(AC100)/VIL.CA(AC100) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK_c.
V
DD
VDD or V
/2 or V
V
SEH
DDQ
min
DDQ
V
SEH
/2
CK
max
V
SEL
V
VSS or V
Note that, while ADD/CMD signal requirements are with respect to VrefCA, the single-ended components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single­ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals.
SSQ
Figure 3. Single-ended requirement for differential signals.
SEL
time
[Table 10] Single-ended Levels for CK_t, CK_c
Symbol Parameter
V
V
NOTE :
1) For CK_t - CK_c use V
2) V
IH
3) These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits (V
signals as well as the limitations for overshoot and undershoot.
Single-ended high-level for CK_t, CK_c (VDD/2)+0.100 NOTE3 (VDD/2)+0.95 NOTE3 V 1, 2
SEH
Single-ended low-level for CK_t, CK_c NOTE3 (VDD/2)-0.100 NOTE3 (VDD/2)-0.95 V 1, 2
SEL
(AC)/VIL(AC) for ADD/CMD is based on V
IH.CA/VIL.CA
(AC) of ADD/CMD;
REFCA
;
DDR4-1600/1866/2133 DDR4-2400/2666
Min Max Min Max
(DC) max, V
IH.CA
Unit NOTE
(DC)min) for single-ended
IL.CA
- 16 -
Page 16
datasheet DDR4 SDRAMECC Unbuffered DIMM
10.3.4 Address, Command and Control Overshoot and Undershoot specifications
[Table 11] AC overshoot/undershoot specification for Address, Command and Control pins
Rev. 1.1
Parameter Symbol
Maximum peak amplitude above VAOS VAOSP 0.06 TBD V
Upper boundary of overshoot area AAOS1 VAOS VDD +0.24 TBD V 1
Maximum peak amplitude allowed for undershoot
Maximum overshoot area per 1 tCK above VAOS AAOS2 0.0083 0.0071 0.0062 0.0055 TBD V-ns
Maximum overshoot area per 1 tCK between VDD and VAOS AAOS1 0.2550 0.2185 0.1914 0.1699 TBD V-ns
Maximum undershoot area per 1 tCK below VSS AAUS 0.2644 0.2265 0.1984 0.1762 TBD V-ns
(A0-A13,A17,BG0-BG1,BA0-BA1,ACT_n,RAS_n/A16,CAS_n/A15,WE_n/A14,CS_n,CKE,ODT,C2-C0)
NOTE :
1) The value of VAOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC
Operating Conditions. If VDD is above the recommended operating conditions, VAOS remains at VDD absolute max as defined in Table 5.
V
AOSP
V
AOS
V
Volts
DD
VAUS 0.30 TBD V
(V)
V
SS
V
AUS
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
A
AOS2
1 tCK
Specification
A
AOS1
A
AUS
Unit NOTE
Figure 4. Address, Command and Control Overshoot and Undershoot Definition
- 17 -
Page 17
datasheet DDR4 SDRAMECC Unbuffered DIMM
10.3.5 Clock Overshoot and Undershoot Specifications
[Table 12] AC overshoot/undershoot specification for Clock
Rev. 1.1
COS2
Specification
A
COS1
A
CUS
Unit NOTE
Parameter Symbol
Maximum peak amplitude above VCOS VCOSP 0.06 TBD V
Upper boundary of overshoot area ADOS1 VCOS VDD +0.24 TBD V 1
Maximum peak amplitude allowed for undershoot VCUS 0.30 TBD V
Maximum overshoot area per 1 UI above VCOS
Maximum overshoot area per 1 UI between VDD and VDOS ACOS1 0.1125 0.0964 0.0844 0.0750 TBD V-ns
Maximum undershoot area per 1 UI below VSS ACUS 0.1144 0.0980 0.0858 0.0762 TBD V-ns
NOTE :
1) The value of VCOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC
Operating Conditions. If VDD is above the recommended operating conditions, VCOS remains at VDD absolute max as defined in Table 5.
V
COSP
V
COS
V
Volts
DD
ACOS2 0.0038 0.0032 0.0028 0.0025 TBD V-ns
(V)
V
SS
V
CUS
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
(CK_t, CK_c)
A
1 UI
Figure 5. Clock Overshoot and Undershoot Definition
- 18 -
Page 18
datasheet DDR4 SDRAMECC Unbuffered DIMM
10.3.6 Data, Strobe and Mask Overshoot and Undershoot Specifications
[Table 13] AC overshoot/undershoot specification for Data, Strobe and Mask
Rev. 1.1
A
DUS2
Specification
A
DOS1
A
DUS1
Unit NOTE
Parameter Symbol
Maximum peak amplitude above VDOS VDOSP 0.16 0.16 0.16 0.16 TBD V
Upper boundary of overshoot area ADOS1 VDOS VDDQ + 0.24 TBD V 1
Lower boundary of undershoot area ADUS1 VDUS 0.30 0.30 0.30 0.30 TBD V 2
Maximum peak amplitude below VDUS VDUSP 0.10 0.10 0.10 0.10 TBD V
Maximum overshoot area per 1 UI above VDOS ADOS2 0.0150 0.0129 0.0113 0.0100 TBD V-ns
Maximum overshoot area per 1 UI between VDDQ and VDOS
Maximum undershoot area per 1 UI between VSSQ and VDUS1
Maximum undershoot area per 1 UI below VDUS ADUS2 0.0150 0.0129 0.0113 0.0100 TBD V-ns
NOTE :
1) The value of VDOS matches (VIN, VOUT) max as defined in Table 5 Absolute Maximum DC Ratings if VDDQ equals VDDQ max as defined in Table 6 Recommended DC
Operating Conditions. If VDDQ is above the recommended operating conditions, VDOS remains at (VIN, VOUT) max as defined in Table 5.
2) The value of VDUS matches (VIN, VOUT) min as defined in Table 5 Absolute Maximum DC Ratings
V
DOSP
V
DOS
V
Volts
DDQ
ADOS1 0.1050 0.0900 0.0788 0.0700 TBD V-ns
ADUS1 0.1050 0.0900 0.0788 0.0700 TBD V-ns
(V)
V
SSQ
V
DUSP
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
A
DOS2
1 UI
Figure 6. Data, Strobe and Mask Overshoot and Undershoot Definition
- 19 -
Page 19
datasheet DDR4 SDRAMECC Unbuffered DIMM

10.4 Slew Rate Definitions

10.4.1 Slew Rate Definitions for Differential Input Signals (CK)
Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table 14 and Figure 7.
[Table 14] Differential Input Slew Rate Definition
Description
Differential input slew rate for rising edge (CK_t - CK_c)
Differential input slew rate for falling edge (CK_t - CK_c)
NOTE :
1) The differential signal (i,e.,CK_t - CK_c) must be linear between these thresholds.
Measured
from to
V
ILdiffmax
V
IHdiffmin
Delta TRdiff
V
IHdiffmin
V
ILdiffmax
[V
[V
IHdiffmin
IHdiffmin
Defined by
- V
ILdiffmax
- V
ILdiffmax
Rev. 1.1
] / DeltaTRdiff
] / DeltaTFdiff
Differential Input Voltage(i,e, CK_t - CK_c)
Figure 7. Differential Input Slew Rate Definition for CK_t, CK_c
Delta TFdiff
V
IHdiffmin
0
V
ILdiffmax
- 20 -
Page 20
datasheet DDR4 SDRAMECC Unbuffered DIMM
10.4.2 Slew Rate Definition for Single-ended Input Signals (CMD/ADD)
Delta TRsingle
V
V
IHCA(AC) Min
V
IHCA(DC) Min
VREFCA(DC)
V
ILCA(DC) Max
ILCA(AC) Max
Rev. 1.1
Delta TFsingle
Figure 8. Single-ended Input Slew Rate definition for CMD and ADD
NOTE :
1) Single-ended input slew rate for rising edge = {VIHCA(AC)Min - VILCA(DC)Max} / Delta TR single.
2) Single-ended input slew rate for falling edge = {VIHCA(DC)Min - VILCA(AC)Max} / Delta TF single.
3) Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.
4) Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope.
- 21 -
Page 21
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

10.5 Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals (CK_t, CK_c) must meet the requirements in Table 15. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS.
VDD
CK_t
Vix
VDD/2
Vix
VSEH
Figure 9. Vix Definition (CK)
[Table 15] Cross Point Voltage for Differential Input Signals (CK)
Symbol Parameter
- Area of VSEH, VSEL
VlX(CK)
Symbol Parameter
- Area of VSEH, VSEL
VlX(CK)
Differential Input Cross Point Voltage relative to VDD/2 for CK_t, CK_c
Differential Input Cross Point Voltage relative to VDD/2 for CK_t, CK_c
VSEL < VDD/2 -
145mV
-120mV
VSEL <
VDD/2 - 145 mV
-120mV
CK_c
VSEL
VSS
DDR4-1600/1866/2133
min max
VDD/2 - 145mV =<
VSEL =< VDD/2 -
100mV
-(VDD/2 - VSEL) + 25mV
min max
VDD/2 - 145 mV
=< VSEL =<
VDD/2 - 100 mV
- (VDD/2 - VSEL) + 25 mV
VDD/2 + 100mV =<
VSEH =< VDD/2 +
145mV
(VSEH - VDD/2) -
25mV
DDR4-2400
VDD/2 + 100 mV
=< VSEH =<
VDD/2 + 145 mV
(VSEH - VDD/2) -
25 mV
VDD/2 + 145mV <
VSEH
120mV
VDD/2 + 145 mV <
VSEH
120mV
Symbol Parameter
- Area of VSEH, VSEL
VlX(CK)
Differential Input Cross Point Voltage relative to VDD/2 for CK_t, CK_c
VSEL <
VDD/2 - 145 mV
-110 mV
- 22 -
DDR4-2666
min max
VDD/2 - 145 mV
=< VSEL =<
VDD/2 - 100 mV
- (VDD/2 - VSEL) + 30 mV
VDD/2 + 100 mV
=< VSEH =<
VDD/2 + 145 mV
(VSEH - VDD/2)
- 30 mV
VDD/2 + 145 mV
< VSEH
110mV
Page 22
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

10.6 CMOS rail to rail Input Levels

10.6.1 CMOS rail to rail Input Levels for RESET_n
[Table 16] CMOS rail to rail Input Levels for RESET_n
Parameter Symbol Min Max Unit NOTE
AC Input High Voltage VIH(AC)_RESET 0.8*VDD VDD V 6
DC Input High Voltage VIH(DC)_RESET 0.7*VDD VDD V 2
DC Input Low Voltage VIL(DC)_RESET VSS 0.3*VDD V 1
AC Input Low Voltage VIL(AC)_RESET VSS 0.2*VDD V 7
Rising time TR_RESET - 1.0 us 4
RESET pulse width tPW_RESET 1.0 - us 3,5
NOTE :
1) After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET, otherwise, SDRAM may not be reset.
2) Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM operation will not be guaranteed until it is reset asserting RESET_n signal LOW.
3) RESET is destructive to data contents.
4) No slope reversal(ringback) requirement during its level transition from Low to High.
5) This definition is applied only “Reset Procedure at Power Stable”.
6) Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings.
7) Undershoot might occur. It should be limited by Absolute Maximum DC Ratings.
0.8*VDD
0.7*VDD
0.3*VDD
0.2*VDD
tPW_RESET
TR_RESET
Figure 10. RESET_n Input Slew Rate Definition
- 23 -
Page 23
datasheet DDR4 SDRAMECC Unbuffered DIMM

10.7 AC and DC Logic Input Levels for DQS Signals

10.7.1 Differential signal definition
Rev. 1.1
Figure 11. Definition of differential DQS Signal AC-swing Level
10.7.2 Differential swing requirements for DQS (DQS_t - DQS_c)
[Table 17] Differential AC and DC Input Levels for DQS
Symbol Parameter
VIHDiffPeak VIH.DIFF.Peak Voltage 186 Note2 160 Note2 150 Note2 mV 1
VILDiffPeak VIL.DIFF.Peak Voltage Note2 -186 Note2 -160 Note2 -150 mV 1
NOTE :
1) Used to define a differential signal slew-rate.
2) These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective limits Overshoot, Undershoot Specification for single-ended signals.
DDR4-1600, 1866, 2133 DDR4-2400 DDR4-2666
Min Max Min Max Min Max
Unit Note
- 24 -
Page 24
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
10.7.3 Peak voltage calculation method
The peak voltage of Differential DQS signals are calculated in a following equation.
VIH.DIFF.Peak Voltage = Max(f(t))
VIL.DIFF.Peak Voltage = Min(f(t))
f(t) = VDQS_t - VDQS_c
The Max(f(t)) or Min(f(t)) used to determine the midpoint which to reference the +/-35% window of the exempt non-monotonic signaling shall be the small­est peak voltage observed in all ui’s.
DQS_t
Max(f(t))
DQS_c
Single Ended Input Voltage : DQS_t and DQS_c
Figure 12. Definition of differential DQS Peak Voltage and rage of exempt non-monotonic signaling
Min(f(t))
Time
+35%
+35%
+50%
+50%
- 25 -
Page 25
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
10.7.4 Differential Input Cross Point Voltage
To achieve tight RxMask input requirements as well as output skew parameters with respect to strobe, the cross point voltage of differential input signals (DQS_t, DQS_c) must meet the requirements in Table 18. The differential input cross point voltage VIX_DQS (VIX_DQS_FR and VIX_DQS_RF) is measured from the actual cross point of DQS_t, DQS_c relative to the VDQSmid of the DQS_t and DQS_c signals. VDQSmid is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c signals, and noted by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the transitioning DQS signals. A non-monotonic transitioning signal’s ledge is exempt or not used in determination of a horizontal tangent provided the said ledge occurs within +/- 35% of the midpoint of either VIH.DIFF.Peak Voltage (DQS_t rising) or VIL.DIFF.Peak Voltage (DQS_c rising), refer to Figure 12. A secondary horizontal tan­gent resulting from a ring-back transition is also exempt in determination of a horizontal tangent. That is, a falling transition’s horizontal tangent is derived from its negative slope to zero slope transition (point A in Figure 13) and a ring-back’s horizontal tangent derived from its positive slope to zero slope tran­sition (point B in Figure 13) is not a valid horizontal tangent; and a rising transition’s horizontal tangent is derived from its positive slope to zero slope tran­sition (point C in Figure 13) and a ring-back’s horizontal tangent derived from its negative slope to zero slope transition (point D in Figure 13) is not a valid horizontal tangent
Lowest horizontal tangent above VDQSmid of the transitioning signals
C
DQS_t
D
VIX_DQS,RF
VDQS_trans
VDQSmid
VIX_DQS,FR
VIX_DQS,RF
VIX_DQS,FR
B
DQS_c
VDQS_trans/2
A
Highest horizontal tanget below VDQSmid of the transitioning signals
V
SSQ
DQS_t,DQS_c : Single-ended Input Voltages
Figure 13. Vix Definition (DQS)
[Table 18] Cross point voltage for DQS differential input signals
Symbol Parameter
Vix_DQS_ratio
VDQSmid_to_Vcent VDQSmid offset relative to Vcent_DQ(midpoint) -
NOTE :
1) Vix_DQS_Ratio is DQS VIX crossing (Vix_DQS_FR or Vix_DQS_RF) divided by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the transitioning DQS signals.
2) VDQSmid will be similar to the VREFDQ internal setting value obtained during Vref Training if the DQS and DQs drivers and paths are matched.
3) The maximum limit shall not exceed the smaller of VIHdiff minimum limit or 50mV.
4) VIX measurements are only applicable for transitioning DQS_t and DQS_c signals when toggling data, preamble and high-z states are not applicable conditions.
5) The parameter VDQSmid is defined for simulation and ATE testing purposes, it is not expected to be tested in a system.
DQS_t and DQS_c crossing relative to the midpoint of the DQS_t and DQS_c signal swings
DDR4-1600/1866/2133/ DDR4-2666
Min Max Min Max
- 25 - 25 % 1, 2
min
(VIHdiff,50)
-
min
(VIHdiff,50)
Unit Note
mV 3, 4, 5
- 26 -
Page 26
datasheet DDR4 SDRAMECC Unbuffered DIMM
10.7.5 Differential Input Slew Rate Definition
Input slew rate for differential signals (DQS_t, DQS_c) are defined and measured as shown in Figure 13 and Figure 14.
Rev. 1.1
NOTE :
1) Differential signal rising edge from VILDiff_DQS to VIHDiff_DQS must be monotonic slope.
2) Differential signal falling edge from VIHDiff_DQS to VILDiff_DQS must be monotonic slope.
[Table 19] Differential Input Slew Rate Definition for DQS_t, DQS_c
Description
Differential input slew rate for rising edge (DQS_t - DQS_c) VILDiff_DQS VIHDiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTRdiff
Differential input slew rate for falling edge (DQS_t - DQS_c) VIHDiff_DQS VILDiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTFdiff
[Table 20] Differential Input Level for DQS_t, DQS_c
Symbol Parameter
VIHDiff_DQS Differential Input High 136 - 130 - mV
VILDiff_DQS Differential Input Low - -136 - -130 mV
[Table 21] Differential Input Slew Rate for DQS_t, DQS_c
Symbol Parameter
Figure 14. Differential Input Slew Rate Definition for DQS_t, DQS_c
Measured
From To
DDR4-1600/1866/2133 DDR4-2400/2666
Min Max Min Max
DDR4-1600/1866/2133/2400 DDR4-2666
Min Max Min Max
Defined by
Unit NOTE
Unit NOTE
SRIdiff Differential Input Slew Rate 3 18 2.5 18 V/ns
- 27 -
Page 27
datasheet DDR4 SDRAMECC Unbuffered DIMM

11. AC AND DC OUTPUT MEASUREMENT LEVELS

11.1 Output Driver DC Electrical Characteristics

The DDR4 driver supports two different Ron values. These Ron values are referred as strong(low Ron) and weak mode(high Ron). A functional representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows:
The individual pull-up and pull-down resistors (RONPu and RONPd) are defined as follows:
Rev. 1.1
RONPu =
RONPd =
VDDQ -Vout
I out
Vout
I out
under the condition that RONPd is off
under the condition that RONPu is off
Chip In Drive Mode
Output Drive
To
other circuity like RCV, ...
I
Pu
RON
Pu
RON
Pd
I
Pd
Figure 15. Output driver
VDDQ
DQ
I
out
V
out
VSSQ
- 28 -
Page 28
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 22] Output Driver DC Electrical Characteristics, assuming RZQ=240ohm; entire operating temperature range; after proper ZQ calibration
Mismatch DQ-DQ within byte vari-
Mismatch DQ-DQ within byte vari-
NOTE :
1) The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibra­tion, see following section on voltage and temperature sensitivity (TBD).
2) Pull-up and pull-dn output driver impedances are recommended to be calibrated at 0.8 * VDDQ. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.5 * VDDQ and 1.1 * VDDQ.
3) Measurement definition for mismatch between pull-up and pull-down, MMPuPd : Measure RONPu and RONPD both at 0.8*VDD separately; Ronnom is the nominal Ron value
RON
Mismatch between pull-up and
NOM
34
48
pull-down, MMPuPd
ation pull-up, MMPudd
ation pull-dn, MMPddd
Resistor Vout Min Nom Max Unit NOTE
RON34Pd
RON34Pu
RON48Pd
RON48Pu
VOLdc= 0.5*VDDQ 0.73 1 1.1 RZQ/7 1,2
VOMdc= 0.8* VDDQ 0.83 1 1.1 RZQ/7 1,2
VOHdc= 1.1* VDDQ 0.83 1 1.25 RZQ/7 1,2
VOLdc= 0.5* VDDQ 0.9 1 1.25 RZQ/7 1,2
VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/7 1,2
VOHdc= 1.1* VDDQ 0.8 1 1.1 RZQ/7 1,2
VOLdc= 0.5*VDDQ 0.73 1 1.1 RZQ/5 1,2
VOMdc= 0.8* VDDQ 0.83 1 1.1 RZQ/5 1,2
VOHdc= 1.1* VDDQ 0.83 1 1.25 RZQ/5 1,2
VOLdc= 0.5* VDDQ 0.9 1 1.25 RZQ/5 1,2
VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/5 1,2
VOHdc= 1.1* VDDQ 0.8 1 1.1 RZQ/5 1,2
VOMdc= 0.8* VDDQ -10 - 17 % 1,2,3,4
VOMdc= 0.8* VDDQ - - 10 % 1,2,4
VOMdc= 0.8* VDDQ - - 10 % 1,2,4
RONPu -RONPd
MMPuPd =
4) RON variance range ratio to RON Nominal value in a given component, including DQS_t and DQS_c.
RONNOM
*100
RONPuMax -RONPuMin
MMPudd =
RONNOM
*100
RONPdMax -RONPdMin
MMPddd =
5) This parameter of x16 device is specified for Uper byte and Lower byte.
RONNOM
*100
- 29 -
Page 29
datasheet DDR4 SDRAMECC Unbuffered DIMM
11.1.1 Alert_n output Drive Characteristic
A functional representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows:
Vout
RONPd =
DRAM
l Iout l
under the condition that RONPu is off
Alert Driver
Alert
RON
Pd
I
Pd
I
out
V
VSSQ
out
Rev. 1.1
Resistor Vout Min Max Unit NOTE
VOLdc= 0.1* VDDQ 0.3 1.2 34Ω 1
V
V
OMdc
OHdc
= 0.8* VDDQ
= 1.1* VDDQ
RON
Pd
NOTE:
1) VDDQ voltage is at VDDQ DC. VDDQ DC definition is TBD.
0.4 1.2 34Ω 1
0.4 1.4 34Ω 1
- 30 -
Page 30
datasheet DDR4 SDRAMECC Unbuffered DIMM
11.1.2 Output Driver Characteristic of Connectivity Test (CT) Mode
Following Output driver impedance RON will be applied Test Output Pin during Connectivity Test (CT) Mode. The individual pull-up and pull-down resistors (RONPu_CT and RONPd_CT) are defined as follows:
V
RON
RON
Pu_CT
Pd_CT
=
=
DDQ-VOUT
l Iout l
V
OUT
l Iout l
Chip In Driver Mode
Output Driver
I
Pu_CT
To
other
circuity
like
RCV,...
RON
RON
I
Pd_CT
Pu_CT
Pd_CT
Iout
V
DQ
V
DDQ
Vout
SSQ
Rev. 1.1
Figure 16. Output Driver
RON
NOM_CT
34
NOTE :
1) Connectivity test mode uses un-calibrated drivers, showing the full range over PVT. No mismatch between pull up and pull down is defined
Resistor Vout Max Units NOTE
RON
RON
Pd_CT
Pu_CT
VOBdc = 0.2 x V
VOLdc = 0.5 x V
= 0.8 x V
VOM
dc
= 1.1 x V
VOH
dc
VOBdc = 0.2 x V
VOL
= 0.5 x V
dc
= 0.8 x V
VOM
dc
VOHdc = 1.1 x V
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
DDQ
1.9 34 1
2.0 34 1
2.2 34 1
2.5 34 1
2.5 34 1
2.2 34 1
2.0 34 1
1.9 34 1
.
- 31 -
Page 31
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

11.2 Single-ended AC & DC Output Levels

[Table 23] Single-ended AC & DC Output Levels
Symbol Parameter DDR4-1600/1866/2133/2400/2666 Units NOTE
VOH(DC)
V
OM
V
OL
VOH(AC)
V
OL
NOTE :
1) The swing of ± 0.15 × V
load of 50
DC output high measurement level (for IV curve linearity)
(DC)
DC output mid measurement level (for IV curve linearity)
(DC)
DC output low measurement level (for IV curve linearity)
AC output high measurement level (for output SR)
(AC)
AC output low measurement level (for output SR)
is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7Ω and an effective test
Ω to V
DDQ
= V
DDQ
.
TT

11.3 Differential AC & DC Output Levels

[Table 24] Differential AC & DC Output Levels
Symbol Parameter DDR4-1600/1866/2133/2400/2666 Units NOTE
V
(AC)
OHdiff
V
(AC)
OLdiff
NOTE :
1) The swing of ± 0.3 × V
Ω to V
of 50
AC differential output high measurement level (for output SR)
AC differential output low measurement level (for output SR)
is based on approximately 50% of the static differential output peak-to-peak swing with a driver impedance of RZQ/7Ω and an effective test load
DDQ
= V
TT
at each of the differential outputs.
DDQ
1.1 x V
DDQ
0.8 x V
DDQ
0.5 x V
DDQ
(0.7 + 0.15) x V
(0.7 - 0.15) x V
+0.3 x V
DDQ
-0.3 x V
DDQ
DDQ
DDQ
V
V
V
V1
V1
V1
V1
- 32 -
Page 32
datasheet DDR4 SDRAMECC Unbuffered DIMM

11.4 Single-ended Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V single ended signals as shown in Table 25 and Figure 17.
[Table 25] Single-ended Output Slew Rate Definition
Description
Single ended output slew rate for rising edge
Single ended output slew rate for falling edge
NOTE :
1) Output slew rate is verified by design and characterization, and may not be subject to production test.
V
VOH(AC) VOL(AC) [VOH(AC)-VOL(AC)] / Delta TFse
Measured
From To
(AC) VOH(AC) [VOH(AC)-VOL(AC)] / Delta TRse
OL
V
OH(AC)
VTT
Defined by
OL(AC)
and V
Rev. 1.1
for
OH(AC)
V
OL(AC)
delta TRsedelta TFse
Figure 17. Single-ended Output Slew Rate Definition
[Table 26] Single-ended Output Slew Rate
Parameter Symbol
Single ended output slew rate SRQse 4949494949 V/ns
Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting
NOTE :
1. In two cases, a maximum slew rate of 12 V/ns applies for a single DQ signal within a byte lane.
-Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the
same byte lane are static (i.e. they stay at either high or low).
-Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the
same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 9 V/ns applies
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Min Max Min Max Min Max Min Max Min Max
Units
- 33 -
Page 33
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

11.5 Differential Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table 27 and Figure 18.
[Table 27] Differential Output Slew Rate Definition
Description
Differential output slew rate for rising edge
Differential output slew rate for falling edge
NOTE:
1) Output slew rate is verified by design and characterization, and may not be subject to production test.
V
V
OLdiff
OHdiff
Measured
From To
(AC) V
(AC) V
OHdiff
OLdiff
(AC) [V
(AC) [V
V
(AC)
OHdiff
VTT
OHdiff
OHdiff
(AC)-V
(AC)-V
Defined by
(AC)] / Delta TRdiff
OLdiff
(AC)] / Delta TFdiff
OLdiff
V
(AC)
OLdiff
delta TRdiffdelta TFdiff
Figure 18. Differential Output Slew Rate Definition
[Table 28] Differential Output Slew Rate
Parameter Symbol
Differential output slew rate SRQdiff 8 18 8 18 8 18 8 18 8 18 V/ns
Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) diff: Differential Signals
For Ron = RZQ/7 setting
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Min Max Min Max Min Max Min Max Min Max
Units
- 34 -
Page 34
datasheet DDR4 SDRAMECC Unbuffered DIMM

11.6 Single-ended AC & DC Output Levels of Connectivity Test Mode

Following output parameters will be applied for DDR4 SDRAM Output Signal during Connectivity Test Mode.
[Table 29] Single-ended AC & DC Output Levels of Connectivity Test Mode
Symbol Parameter DDR4-1600/1866/2133/2400/2666 Unit Notes
V
OH(DC)
V
OM(DC)
V
OL(DC)
V
OB(DC)
V
OH(AC)
V
OL(AC)
NOTE :
1) The effective test load is 50Ω terminated by VTT = 0.5 * VDDQ.
DC output high measurement level (for IV curve linearity)
DC output mid measurement level (for IV curve linearity) 0.8 x VDDQ V
DC output low measurement level (for IV curve linearity) 0.5 x VDDQ V
DC output below measurement level (for IV curve linearity) 0.2 x VDDQ V
AC output high measurement level (for output SR) VTT + (0.1 x VDDQ) V 1
AC output below measurement level (for output SR) VTT - (0.1 x VDDQ) V 1
VOH(AC)
1.1 x VDDQ V
Rev. 1.1
VTT
VOL(AC)
TF_output_CT
Figure 19. Output Slew Rate Definition of Connectivity Test Mode
[Table 30] Single-ended Output Slew Rate of Connectivity Test Mode
Parameter Symbol
Output signal Falling time TF_output_CT - 10 ns/V
Output signal Rising time TR_output_CT - 10 ns/V
TR_output_CT
DDR4-1600/1866/2133/2400/2666
Min Max
0.5 * VDDQ
Unit Notes
- 35 -
Page 35
datasheet DDR4 SDRAMECC Unbuffered DIMM

11.7 Test Load for Connectivity Test Mode Timing

The reference load for ODT timings is defined in Figure 20.
V
DDQ
DQ, DM DQSL_t, DQSL_c DQSU_t, DQSU_c
CT_INPUTS
Figure 20. Connectivity Test Mode Timing Reference Load
DUT
V
SSQ
Timing Reference Points
DQS_t, DQS_c
Rterm = 50 ohm
Rev. 1.1
0.5*VDDQ
- 36 -
Page 36
datasheet DDR4 SDRAMECC Unbuffered DIMM

12. SPEED BIN

[Table 31] DDR4-1600 Speed Bins and Operations
Speed Bin DDR4-1600
Unit NOTECL-nRCD-nRP 11-11-11
Parameter Symbol min max
13)
Internal read command to first data tAA
Internal read command to first data with read DBI enabled tAA_DBI tAA(min) + 2nCK tAA(max) +2nCK ns 11
ACT to internal read or write delay time tRCD
PRE command period tRP
ACT to PRE command period tRAS 35 9 x tREFI ns 11
ACT to ACT or REF command period tRC
Normal Read DBI
CWL = 9
CWL = 9,11
Supported CL Settings (9),11,12 nCK 12,13
Supported CL Settings with read DBI (11),13,14 nCK 12
Supported CWL Settings 9,11 nCK
CL = 9
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4,10
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4
CL = 11 CL = 13 tCK(AVG) 1.25 <1.5 ns 1,2,3,4
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3
CL = 11
(Optional)
5)
tCK(AVG)
13.75
(13.50)
13.75
(13.50)
13.75
(13.50)
48.75
(48.50)
1.5
(Optional)
5),10)
5),10)
5),10)
5),10)
5),10
18.00 ns 11
- ns 11
- ns 11
- ns 11
1.6 ns 1,2,3,4,10,13
Rev. 1.1
- 37 -
Page 37
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 32] DDR4-1866 Speed Bins and Operations
Speed Bin DDR4-1866
Unit NOTECL-nRCD-nRP 13-13-13
Parameter Symbol min max
13)
Internal read command to first data tAA
Internal read command to first data with read DBI enabled tAA_DBI tAA(min) + 2nCK tAA(max) +2nCK ns 11
ACT to internal read or write delay time tRCD
PRE command period tRP
ACT to PRE command period tRAS 34 9 x tREFI ns 11
ACT to ACT or REF command period tRC
Normal Read DBI
CWL = 9
CWL = 9,11
CWL = 10,12
Supported CL Settings 9,11,12,13,14 nCK 12,13
Supported CL Settings with read DBI 11,13,14,15,16 nCK 12
Supported CWL Settings 9,10,11,12 nCK
CL = 9
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4,10
CL = 10 CL = 12 tCK(AVG) Reserved ns 4
CL = 11 CL = 13 tCK(AVG)
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,6
CL = 12 CL = 14 tCK(AVG) Reserved ns 1,2,3,4
CL = 13 CL = 15 tCK(AVG) 1.071 <1.25 ns 1,2,3,4
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3
CL = 11
(Optional)
5)
tCK(AVG)
13.92
5),11)
(13.50)
13.92
5),11)
(13.50)
13.92
5),11)
(13.50)
47.92
5),11)
(47.50)
1.5
(Optional)
5),11)
1.25 <1.5
(Optional)
18.00 ns 11
- ns 11
- ns 11
- ns 11
1.6 ns 1,2,3,4,10,13
5),11)
ns 1,2,3,4,6
Rev. 1.1
- 38 -
Page 38
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 33] DDR4-2133 Speed Bins and Operations
Speed Bin DDR4-2133
Unit NOTECL-nRCD-nRP 15-15-15
Parameter Symbol min max
13)
Internal read command to first data tAA
Internal read command to first data with read DBI enabled
ACT to internal read or write delay time tRCD
PRE command period tRP
ACT to PRE command period tRAS 33 9 x tREFI ns 11
ACT to ACT or REF command period tRC
Normal Read DBI
CWL = 9
CWL = 9,11
CWL = 10,12
CWL = 11,14
Supported CL Settings (9),(11), 12,(13),14,15,16 nCK 12,13
Supported CL Settings with read DBI (11),(13),14,(15),16,18,19 nCK
Supported CWL Settings 9,10,11,12,14 nCK
CL = 9
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,10
CL = 11 CL = 13 tCK(AVG)
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,7
CL = 13 CL = 15 tCK(AVG)
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,7
CL = 14 CL = 17 tCK(AVG) Reserved ns 1,2,3,4
CL = 15 CL = 18 tCK(AVG) 0.937 <1.071 ns 1,2,3,4
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3
CL = 11
(Optional)
tAA_DBI tAA(min) + 3nCK tAA(max) + 3nCK ns 11
tCK(AVG)
5
14.06
5),11)
(13.50)
14.06
5),11)
(13.50)
14.06
5),11)
(13.50)
47.06
5),11)
(46.50)
1.5
(Optional)
5),11)
1.25 <1.5
(Optional)
1.071 <1.25
(Optional)
5),11)
5),11)
18.00 ns 11
- ns 11
- ns 11
- ns 11
1.6 ns 1,2,3,4,10,13
ns 1,2,3,4,7
ns 1,2,3,4,7
- 39 -
Page 39
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 34] DDR4-2400 Speed Bins and Operations
Speed Bin DDR4-2400
Unit NOTECL-nRCD-nRP 17-17-17
Parameter Symbol min max
Internal read command to first data tAA
Internal read command to first data with read DBI enabled
ACT to internal read or write delay time tRCD
PRE command period tRP
ACT to PRE command period tRAS 32 9 x tREFI ns 11
ACT to ACT or REF command period tRC
Normal Read DBI
CWL = 9
CWL = 9,11
CWL = 10,12
CWL = 11,14
CWL = 12,16
Supported CL Settings 10,11,12,13,14,15,16,17,18 nCK 12
Supported CL Settings with read DBI 12,13,14,15,16,18,19,20,21 nCK
Supported CWL Settings 9,10,11,12,14,16 nCK
CL = 9
CL = 10 CL = 12 tCK(AVG) 1.5 1.6 ns 1,2,3,4,10
CL = 10 CL = 12 tCK(AVG) Reserved ns 4
CL = 11 CL = 13 tCK(AVG)
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,8
CL = 12 CL = 14 tCK(AVG) Reserved ns 4
CL = 13 CL = 15 tCK(AVG)
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,8
CL = 14 CL = 17 tCK(AVG) Reserved ns 4
CL = 15 CL = 18 tCK(AVG)
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3,8
CL = 15 CL = 18 tCK(AVG) Reserved ns 1,2,3,4
CL = 16 CL = 19 tCK(AVG) Reserved ns 1,2,3,4
CL = 17 CL = 20 tCK(AVG) 0.833 <0.937 ns
CL = 18 CL = 21 tCK(AVG) 0.833 <0.937 ns 1,2,3
CL = 11
(Optional)
tAA_DBI tAA(min) + 3nCK tAA(max) + 3nCK ns 11
tCK(AVG) Reserved ns 1,2,3,4,10
5)
14.16
5),11)
(13.75)
14.16
5),11)
(13.75)
14.16
5),11)
(13.75)
46.16
5),11)
(45.75)
1.25 <1.5
(Optional)
1.071 <1.25
(Optional)
0.937 <1.071
(Optional)
5),11)
5),11)
5),11)
18.00 ns 11
- ns 11
- ns 11
- ns 11
ns 1,2,3,4,8
ns 1,2,3,4,8
ns 1,2,3,4,8
- 40 -
Page 40
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 35] DDR4-2666 Speed Bins and Operations
Speed Bin DDR4-2666
Unit NOTECL-nRCD-nRP 19-19-19
Parameter Symbol min max
13)
Internal read command to first data tAA
Internal read command to first data with read DBI enabled
ACT to internal read or write delay time tRCD
PRE command period tRP
ACT to PRE command period tRAS 32 9 x tREFI ns 11
ACT to ACT or REF command period tRC
Normal Read DBI
CWL = 9
CWL = 9,11
CWL = 10,12
CWL = 11,14
CWL = 12,16
CWL = 14.18
Supported CL Settings 10,(11),12,(13),14,(15),16,(17),18,19,20 nCK 12
Supported CL Settings with read DBI 12,(13),14,(15),17,(18),19,(20),21,22,23 nCK
Supported CWL Settings 9,10,11,12,14,16,18 nCK
CL = 9 CL = 11 tCK(AVG) Reserved ns 1,2,3,4,10
CL = 10 CL = 12 tCK(AVG) 1.5 1.6 ns 1,2,3,10
CL = 10 CL = 12 tCK(AVG) Reserved ns 4
CL = 11 CL = 13 tCK(AVG)
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,9
CL = 12 CL = 14 tCK(AVG) Reserved ns 4
CL = 13 CL = 15 tCK(AVG)
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,9
CL = 14 CL = 17 tCK(AVG) Reserved ns 4
CL = 15 CL = 18 tCK(AVG)
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3,9
CL = 15 CL = 18 tCK(AVG) Reserved ns 4
CL = 16 CL = 19 tCK(AVG) Reserved ns 1,2,3,4,9
CL = 17 CL = 20 tCK(AVG)
CL = 18 CL = 21 tCK(AVG) 0.833 <0.937 ns 1,2,3
CL = 17 CL = 20 tCK(AVG) Reserved ns 1,2,3,4
CL = 18 CL = 21 tCK(AVG) Reserved ns 1,2,3,4
CL = 19 CL = 22 tCK(AVG) 0.75 <0.833 ns 1,2,3,4
CL = 20 CL = 23 tCK(AVG) 0.75 <0.833 ns 1,2,3
tAA_DBI tAA(min) + 3nCK tAA(max) + 3nCK ns 11
14.25
5),11)
(13.75)
14.25
5),11)
(13.75)
13)
14.25
5),11)
(13.75)
46.25
5),11)
(45.75)
1.25 <1.5
(Optional)
1.071 <1.25
(Optional)
0.937 <1.071
(Optional)
0.833 <0.937
(Optional)
5),11)
5),11)
5),11)
5),11)
18.00 ns 11
- ns 11
- ns 11
- ns 11
ns 1,2,3,4,9
ns 1,2,3,4,9
ns 1,2,3,4,9
1,2,3,4,9
ns
1,2,3,4,9
- 41 -
Page 41
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

12.1 Speed Bin Table Note

Absolute Specification
- VDDQ = VDD = 1.20V +/- 0.06 V
- VPP = 2.5V +0.25/-0.125 V
- The values defined with above-mentioned table are DLL ON case.
- DDR4-1600, 1866, 2133, 2400 and 2666 Speed Bin Tables are valid only when Geardown Mode is disabled.
1) The CL setting and CWL setting result in tCK(avg).MIN and tCK(avg).MAX requirements. When making a selection of tCK(avg), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.
2) tCK(avg).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guar­anteed. CL in clock cycle is calculated from tAA following rounding algorithm defined in Section 13.5.
3) tCK(avg).MAX limits: Calculate tCK(avg) = tAA.MAX / CL SELECTED and round the resulting tCK(avg) down to the next valid speed bin (i.e. 1.5ns or 1.25ns or 1.071ns or
0.937ns or 0.833ns). This result is tCK(avg).MAX corresponding to CL SELECTED.
4) ‘Reserved’ settings are not allowed. User must program a different value.
5) 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier's data sheet and/or the DIMM SPD information if and how this setting is supported.
6) Any DDR4-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization.
7) Any DDR4-2133 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization.
8) Any DDR4-2400 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization.
9) Any DDR4-2666 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization.
10) DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.
11) Parameters apply from tCK(avg) min to tCK(avg) max at all standard JEDEC clock period values as stated in the Speed Bin Tables.
12) CL number in parentheses, it means that these numbers are optional.
13) DDR4 SDRAM supports CL=9 as long as a system meets tAA(min).
14) Each speed bin lists the timing requirements that need to be supported in order for a given DRAM to be JEDEC compliant. JEDEC compliance does not require support for all speed bins within a given speed. JEDEC compliance requires meeting the parameters for a least one of the listed speed bins.
- 42 -
Page 42
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

13. IDD AND IDDQ SPECIFICATION PARAMETERS AND TEST CONDITIONS

13.1 IDD, IPP and IDDQ Measurement Conditions

In this chapter, IDD, IPP and IDDQ measurement conditions such as test load and patterns are defined. Figure 21 shows the setup and test load for IDD, IPP and IDDQ measurements.
• IDD currents (such as IDD0, IDD0A, IDD1, IDD1A, IDD2N, IDD2NA, IDD2NL, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3NA, IDD3P, IDD4R, IDD4RA, IDD4W, IDD4WA, IDD5B, IDD5F2, IDD5F4, IDD6N, IDD6E, IDD6R, IDD6A, IDD7 and IDD8) are measured as time-averaged currents with all VDD balls of the DDR4 SDRAM under test tied together. Any IPP or IDDQ current is not included in IDD currents.
• IPP currents have the same definition as IDD except that the current on the VPP supply is measured.
• IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR4 SDRAM under test tied together. Any IDD current is not included in IDDQ currents. Attention: IDDQ values cannot be directly used to calculate IO power of the DDR4 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 22. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB.
For IDD, IPP and IDDQ measurements, the following definitions apply:
• “0” and “LOW” is defined as VIN <= VILAC(max).
• “1” and “HIGH” is defined as VIN >= VIHAC(min).
• “MID-LEVEL” is defined as inputs are VREF = VDD / 2.
• Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns are provided in Table 36.
• Basic IDD, IPP and IDDQ Measurement Conditions are described in Table 38.
• Detailed IDD, IPP and IDDQ Measurement-Loop Patterns are described in Table 39 through Table 46.
• IDD Measurements are done after properly initializing the DDR4 SDRAM. This includes but is not limited to setting RON = RZQ/7 (34 Ohm in MR1); RTT_NOM = RZQ/6 (40 Ohm in MR1); RTT_WR = RZQ/2 (120 Ohm in MR2); RTT_PARK = Disable; Qoff = 0B (Output Buffer enabled) in MR1;
TDQS_t disabled in MR1; CRC disabled in MR2; CA parity feature disabled in MR5; Gear down mode disabled in MR3 Read/Write DBI disabled in MR5; DM disabled in MR5
• Attention: The IDD, IPP and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.
• Define D = {CS_n, ACT_n, RAS_n, CAS_n, WE_n} := {HIGH, LOW, LOW, LOW, LOW} ; apply BG/BA changes when directed.
• Define D# = {CS_n, ACT_n, RAS_n, CAS_n, WE_n} := {HIGH, HIGH, HIGH, HIGH, HIGH} ;apply invert of BG/BA changes when directed above.
- 43 -
Page 43
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
I
DD
V
DD
RESET CK_t/CK_c
CKE CS
C
ACT,RAS,CAS,WE
A,BG,BA
ODT ZQ
Figure 21. Measurement Setup and Test Load for IDD, IPP and IDDQ Measurements
NOTE :
1) DIMM level Output test load condition may be different from above.
Application specific
memory channel
environment
DDR4 SDRAM
V
SS
I
PP
V
PP
V
DQS_t/DQS_c
V
SSQ
DDQ
I
DDQ
DQ DM
IDDQ
Test Load
Channel
IO Power
Simulation
IDDQ
Simulation
X
IDDQ
Measurement
Correlation
X
Channel IO Power
Number
Figure 22. Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.
- 44 -
Page 44
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 36] Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns
Symbol
tCK 1.25 1.071 0.937 0.833 0.75 ns
CL 11 13 15 17 19 nCK
CWL 11 12 14 16 18 nCK
nRCD 11 13 15 17 19 nCK
nRC 39 45 51 56 62 nCK
nRAS 28 32 36 39 43 nCK
nRP 11 13 15 17 19 nCK
nFAW
nRRDS
nRRDL
tCCD_S 4 4 4 4 4 nCK
tCCD_L 5 5 6 6 7 nCK
tWTR_S 2 3 3 3 4 nCK
tWTR_L 6 7 8 9 10 nCK
nRFC 2Gb 128 150 171 193 214 nCK
nRFC 4Gb 208 243 278 313 347 nCK
nRFC 8Gb 280 327 374 421 467 nCK
nRFC 16Gb 440 514 587 661 734 nCK
x4 16 16 16 16 16 nCK
x8 20 22 23 26 28 nCK
x4 4 4 4 4 4 nCK
x8 4 4 4 4 4 nCK
x4 5 5 6 6 7 nCK
x8 5 5 6 6 7 nCK
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
11-11-11 13-13-13 15-15-15 17-17-17 19-19-19
Rev. 1.1
Unit
- 45 -
Page 45
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 37] Basic IDD, IPP and IDDQ Measurement Conditions
Symbol Description
Operating One Bank Active-Precharge Current (AL=0)
IDD0
IDD0A
IPP0
IDD1
IDD1A
IPP1
IDD2N
IDD2NA
IPP2N
IDD2NT
IDDQ2NT (Optional)
IDD2NL
IDD2NG
IDD2ND
IDD2N_par
IDD2P
IPP2P
IDD2Q
IDD3N
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 36; BL: 8 Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 38; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 38); Output Buffer and RTT: Enabled in Mode Regis-
ters2); ODT Signal: stable at 0; Pattern Details: see Table 38
Operating One Bank Active-Precharge Current (AL=CL-1) AL = CL-1, Other conditions: see IDD0
Operating One Bank Active-Precharge IPP Current Same condition with IDD0
Operating One Bank Active-Read-Precharge Current (AL=0)
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 36; BL: 8 Command, Address, Bank Group Address, Bank Address Inputs, Data IO: partially toggling according to Table 39; DM_n: stable at 1; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 39); Output Buffer and RTT: Enabled in Mode Regis-
2)
; ODT Signal: stable at 0; Pattern Details: see Table 39
ters
Operating One Bank Active-Read-Precharge Current (AL=CL-1) AL = CL-1, Other conditions: see IDD1
Operating One Bank Active-Read-Precharge IPP Current Same condition with IDD1
Precharge Standby Current (AL=0)
CKE: High; External clock: On; tCK, CL: see Table 36; BL: 8 Bank Address Inputs: partially toggling according to Table 40; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Out-
put Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 40
Precharge Standby Current (AL=CL-1) AL = CL-1, Other conditions: see IDD2N
Precharge Standby IPP Current Same condition with IDD2N
Precharge Standby ODT Current
CKE: High; External clock: On; tCK, CL: see Table 36; BL: 8 Bank Address Inputs: partially toggling according to Table 41; Data IO: VSSQ; DM_n: stable at 1; Bank Activity: all banks closed; Out-
put Buffer and RTT: Enabled in Mode Registers
Precharge Standby ODT IDDQ Current
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current
Precharge Standby Current with CAL enabled
Same definition like for IDD2N, CAL enabled
Precharge Standby Current with Gear Down mode enabled
Same definition like for IDD2N, Gear Down mode enabled
Precharge Standby Current with DLL disabled
Same definition like for IDD2N, DLL disabled
Precharge Standby Current with CA parity enabled
Same definition like for IDD2N, CA parity enabled
Precharge Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 36; BL: 81); AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed;
Output Buffer and RTT: Enabled in Mode Registers
Precharge Power-Down IPP Current Same condition with IDD2P
Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: see Table 36; BL: 81); AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0
Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 36; BL: 81); AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 40; Data IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 40
2)
; ODT Signal: toggling according to Table 41; Pattern Details: see Table 41
3)
3)
3)
2)
1)
; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address,
1)
; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address,
3),5)
; ODT Signal: stable at 0
Rev. 1.1
1)
; AL: 0; CS_n: High between ACT and PRE; Command,
1)
; AL: 0; CS_n: High between ACT, RD and PRE;
- 46 -
Page 46
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 37] Basic IDD, IPP and IDDQ Measurement Conditions
Symbol Description
IDD3NA
IPP3N
IDD3P
IPP3P
IDD4R
IDD4RA
IDD4RB
IPP4R
IDDQ4R
(Optional)
IDDQ4RB (Optional)
IDD4W
IDD4WA
IDD4WB
IDD4WC
IDD4W_par
IPP4W
IDD5B
IPP5B
IDD5F2
IPP5F2
IDD5F4
IPP5F4
Active Standby Current (AL=CL-1) AL = CL-1, Other conditions: see IDD3N
Active Standby IPP Current Same condition with IDD3N
Active Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 36; BL: 81); AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0
Active Power-Down IPP Current Same condition with IDD3P
Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 36; BL: 82); AL: 0; CS_n: High between RD; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 42; Data IO: seamless read data burst with different data between
one burst and the next one according to Table 42; DM_n: stable at 1; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 42); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 42
Operating Burst Read Current (AL=CL-1) AL = CL-1, Other conditions: see IDD4R
Operating Burst Read Current with Read DBI Read DBI enabled3), Other conditions: see IDD4R
Operating Burst Read IPP Current Same condition with IDD4R
Operating Burst Read IDDQ Current
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current
Operating Burst Read IDDQ Current with Read DBI
Same definition like for IDD4RB, however measuring IDDQ current instead of IDD current
Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 36; BL: 81); AL: 0; CS_n: High between WR; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 43; Data IO: seamless write data burst with different data between
one burst and the next one according to Table 43; DM_n: stable at 1; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 43); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at HIGH; Pattern Details: see Table 43
Operating Burst Write Current (AL=CL-1) AL = CL-1, Other conditions: see IDD4W
Operating Burst Write Current with Write DBI Write DBI enabled3), Other conditions: see IDD4W
Operating Burst Write Current with Write CRC Write CRC enabled3), Other conditions: see IDD4W
Operating Burst Write Current with CA Parity CA Parity enabled3), Other conditions: see IDD4W
Operating Burst Write IPP Current Same condition with IDD4W
Burst Refresh Current (1X REF) CKE: High; External clock: On; tCK, CL, nRFC: see Table 36; BL: 81); AL: 0; CS_n: High between REF; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 45; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: REF
command every nRFC (see Table 45); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 45
Burst Refresh Write IPP Current (1X REF) Same condition with IDD5B
Burst Refresh Current (2X REF) tRFC=tRFC_x2, Other conditions: see IDD5B
Burst Refresh Write IPP Current (2X REF) Same condition with IDD5F2
Burst Refresh Current (4X REF) tRFC=tRFC_x4, Other conditions: see IDD5B
Burst Refresh Write IPP Current (4X REF) Same condition with IDD5F4
Rev. 1.1
- 47 -
Page 47
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 37] Basic IDD, IPP and IDDQ Measurement Conditions
Symbol Description
Self Refresh Current: Normal Temperature Range
T
: 0 - 85°C; Low Power Auto Self Refresh (LP ASR) : Normal4); CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see
IDD6N
IPP6N
IDD6E
IPP6E
IDD6R
IPP6R
IDD6A
IPP6A
IDD7
IPP7
IDD8
IPP8
CASE
Table 36; BL: 81); AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: MID-LEVEL
Self Refresh IPP Current: Normal Temperature Range Same condition with IDD6N
Self-Refresh Current: Extended Temperature Range
T
: 0 - 95°C; Low Power Auto Self Refresh (LP ASR) : Extended4); CKE: Low; External clock: Off; CK_t and CK_c: LOW; CL: see
CASE
)
Table 36; BL: 81); AL: 0; CS_n, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank
Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: MID-LEVEL
Self Refresh IPP Current: Extended Temperature Range Same condition with IDD6E
Self-Refresh Current: Reduced Temperature Range
T
: 0 - 45°C; Low Power Auto Self Refresh (LP ASR) : Reduced4); CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see
CASE
Table 36; BL: 81); AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: MID-LEVEL
Self Refresh IPP Current: Reduced Temperature Range Same condition with IDD6R
Auto Self-Refresh Current
T
: 0 - 95°C; Low Power Auto Self Refresh (LP ASR) : Auto4);CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see
CASE
Table 36; BL: 81); AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank Activity: Auto Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL
Auto Self-Refresh IPP Current Same condition with IDD6A
Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 36; BL: 81); AL: CL-1; CS_n: High between ACT
and RDA; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 46; Data IO: read data bursts with different data between one burst and the next one according to Table 46; DM_n: stable at 1; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 46; Output Buffer and RTT: Enabled in Mode Registers2); ODT
Signal: stable at 0; Pattern Details: see Table 46
Operating Bank Interleave Read IPP Current Same condition with IDD7
Maximum Power Down Current TBD
Maximum Power Down IPP Current Same condition with IDD8
Rev. 1.1
NOTE:
1) Burst Length: BL8 fixed by MRS: set MR0 [A1:0=00].
2) Output Buffer Enable
- set MR1 [A12 = 0]: Qoff = Output buffer enabled
- set MR1 [A2:1 = 00]: Output Driver Impedance Control = RZQ/7
RTT_Nom enable
- set MR1 [A10:8 = 011]: RTT_NOM = RZQ/6
RTT_WR enable
- set MR2 [A10:9 = 01]: RTT_WR = RZQ/2
RTT_PARK disable
- set MR5 [A8:6 = 000]
3) CAL enabled: set MR4 [A8:6 = 001]: 1600MT/s
010]: 1866MT/s, 2133MT/s 011]: 2400MT/s, 2666MT/s Gear Down mode enabled: set MR3 [A3 = 1]: 1/4 Rate DLL disabled: set MR1 [A0 = 0] CA parity enabled: set MR5 [A2:0 = 001]: 1600MT/s,1866MT/s, 2133MT/s 010]: 2400MT/s, 2666MT/s Read DBI enabled: set MR5 [A12 = 1] Write DBI enabled: set MR5 [A11 = 1]
4) Low Power Array Self Refresh (LP ASR): set MR2 [A7:6 = 00]: Normal
01]: Reduced Temperature range 10]: Extended Temperature range 11]: Auto Self Refresh
5) IDD2NG should be measured after sync pules (NOP) input.
- 48 -
Page 48
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 38] IDD0, IDD0A and IPP0 Measurement-Loop Pattern
CKE
CK_t /CK_c
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
0 ACT 000000000000000 -
1,2 D, D 100000000000000 -
0
3,4 D_#, D_# 1 1 1 1 1 0 0
... repeat pattern 1...4 until nRAS - 1, truncate if necessary
nRAS PRE 0 1 0 1 0 0 000000000 -
... repeat pattern 1...4 until nRC - 1, truncate if necessary
1 1*nRC
2 2*nRC
3 3*nRC
4 4*nRC
5 5*nRC
6 6*nRC
toggling
Static High
7 7*nRC
8 8*nRC
9 9*nRC
10 10*nRC
11 11*nRC
12 12*nRC
13 13*nRC
14 14*nRC
15 15*nRC
NOTE :
1) DQS_t, DQS_c are VDDQ.
2) BG1 is don’t care for x16 device
3) C[2:0] are used only for 3DS device
4) DQ signals are VDDQ.
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
1)
ODT
WE_n/ A14
CAS_n/ A15
2)
= 1, BA[1:0] = 1 instead
2)
= 0, BA[1:0] = 2 instead
2)
= 1, BA[1:0] = 3 instead
2)
= 0, BA[1:0] = 1 instead
2)
= 1, BA[1:0] = 2 instead
2)
= 0, BA[1:0] = 3 instead
2)
= 1, BA[1:0] = 0 instead
2)
= 2, BA[1:0] = 0 instead
2)
= 3, BA[1:0] = 1 instead
2)
= 2, BA[1:0] = 2 instead
2)
= 3, BA[1:0] = 3 instead
2)
= 2, BA[1:0] = 1 instead
2)
= 3, BA[1:0] = 2 instead
2)
= 2, BA[1:0] = 3 instead
2)
= 3, BA[1:0] = 0 instead
3)
C[2:0]
2)
A[9:7]
BA[1:0]
BG[1:0]
2)
3
A12/BC_n
30007F0 -
A[17,13,11]
A[10]/AP
A[6:3]
A[2:0]
For x4 and
Data
x8 only
4)
- 49 -
Page 49
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
ACT_n
1)
RAS_n/A16
CAS_n/A15
ODT
WE_n/A14
3)
C[2:0]
2)
BG[1:0]
BA[1:0]
[Table 39] IDD1, IDD1A and IPP1 Measurement-Loop Pattern
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
Command
CS_n
0 ACT 0000000000000 0 0 -
1, 2 D, D 1000000000000 0 0 -
3, 4 D#, D# 11111 00
b)
30007 F0 -
3
... repeat pattern 1...4 until nRCD - AL - 1, truncate if necessary
0
nRCD -AL RD 0110100000000 0 0
... repeat pattern 1...4 until nRAS - 1, truncate if necessary
nRAS PRE 01010 000000000 0 -
... repeat pattern 1...4 until nRC - 1, truncate if necessary
1*nRC + 0 ACT 0001 100110000 0 0 -
1*nRC + 1, 2 D, D 100000000000 0 00 -
b)
1*nRC + 3, 4 D#, D# 1111100
30007 F0 -
3
... repeat pattern nRC + 1...4 until 1*nRC + nRAS - 1, truncate if necessary
1
1*nRC + nRCD - AL RD 0110100110000 00
... repeat pattern 1...4 until nRAS - 1, truncate if necessary
toggling
Static High
NOTE :
1) DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.
1*nRC + nRAS PRE 0101001100000 0 0 -
... repeat nRC + 1...4 until 2*nRC - 1, truncate if necessary
2 2*nRC
3 3*nRC
4 4*nRC
5 5*nRC
6 6*nRC
8 7*nRC
9 9*nRC
10 10*nRC
11 11*nRC
12 12*nRC
13 13*nRC
14 14*nRC
15 15*nRC
16 16*nRC
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
2)
= 0, BA[1:0] = 2 instead
2)
= 1, BA[1:0] = 3 instead
2)
= 0, BA[1:0] = 1 instead
2)
= 1, BA[1:0] = 2 instead
2)
= 0, BA[1:0] = 3 instead
2)
= 1, BA[1:0] = 0 instead
2)
= 2, BA[1:0] = 0 instead
2)
= 3, BA[1:0] = 1 instead
2)
= 2, BA[1:0] = 2 instead
2)
= 3, BA[1:0] = 3 instead
2)
= 2, BA[1:0] = 1 instead
2)
= 3, BA[1:0] = 2 instead
2)
= 2, BA[1:0] = 3 instead
2)
= 3, BA[1:0] = 0 instead
A12/BC_n
A[17,13,11]
A[9:7]
A[10]/AP
A[6:3]
A[2:0]
Data
D0=00, D1=FF
D2=FF, D3=00 D4=FF, D5=00
D6=00, D7=FF
D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF
D6=FF, D7=00
For x4 and x8 only
4)
- 50 -
Page 50
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 40] IDD2N, IDD2NA, IDD2NL, IDD2NG, IDD2ND, IDD2N_par, IPP2,IDD3N, IDD3NA and IDD3P Measurement-Loop Pattern
2)
3)
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
CS_n
Command
ACT_n
RAS_n/A16
CAS_n/A15
ODT
WE_n/A14
C[2:0]
BA[1:0]
BG[1:0]
A12/BC_n
A[17,13,11]
A[9:7]
A[10]/AP
A[6:3]
0 D, D 1000000000000000
1 D, D 1000000000000000
0
2 D#, D# 1111100
3 D#, D# 1111100
1 4-7
2 8-11
3 12-15
4 16-19
5 20-23
6 24-27
toggling
7 28-31
Static High
8 32-35
9 36-39
10 40-43
11 44-47
12 48-51
13 52-55
14 56-59
15 60-63
NOTE :
1) DQS_t, DQS_c are VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) DQ signals are VDDQ.
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
2)
= 1, BA[1:0] = 1 instead
2)
= 0, BA[1:0] = 2 instead
2)
= 1, BA[1:0] = 3 instead
2
) = 0, BA[1:0] = 1 instead
2)
= 1, BA[1:0] = 2 instead
repeat Sub-Loop 0, use BG[1:0]2) = 0, BA[1:0] = 3 instead
2)
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
= 1, BA[1:0] = 0 instead
2)
= 2, BA[1:0] = 0 instead
2)
= 3, BA[1:0] = 1 instead
2)
= 2, BA[1:0] = 2 instead
2)
= 3, BA[1:0] = 3 instead
2)
= 2, BA[1:0] = 1 instead
2)
= 3, BA[1:0] = 2 instead
2)
= 2, BA[1:0] = 3 instead
2)
= 3, BA[1:0] = 0 instead
2)
3 0007F00
3
2)
3 0007F00
3
1)
A[2:0]
Data
4)
- 51 -
Page 51
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 41] IDD2NT and IDDQ2NT Measurement-Loop Pattern
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
Command
CS_n
0 D, D 1000 00000000000-
1 D, D 1000 00000000000-
0
2 D#, D# 1111 100
3 D#, D# 1111 100
1 4-7
2 8-11
3 12-15
4 16-19
5 20-23
6 24-27
toggling
7 28-31
Static High
8 32-35
9 36-39
10 40-43
11 44-47
12 48-51
13 52-55
14 56-59
15 60-63
NOTE :
1) DQS_t, DQS_c are VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) DQ signals are VDDQ.
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2) = 3, BA[1:0] = 1 instead
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2) = 2, BA[1:0] = 1 instead
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2) = 3, BA[1:0] = 0 instead
1)
ACT_n
RAS_n/A16
CAS_n/A15
ODT
WE_n/A14
2)
2)
2)
2)
2)
2)
2)
2)
2)
2)
2)
2)
2)
3)
C[2:0]
BA[1:0]
BG[1:0]
2
3
2
3
A12/BC_n
3 0007F0-
3 0007F0-
= 1, BA[1:0] = 1 instead
= 0, BA[1:0] = 2 instead
= 1, BA[1:0] = 3 instead
= 0, BA[1:0] = 1 instead
= 1, BA[1:0] = 2 instead
= 0, BA[1:0] = 3 instead
= 1, BA[1:0] = 0 instead
= 2, BA[1:0] = 0 instead
= 2, BA[1:0] = 2 instead
= 3, BA[1:0] = 3 instead
= 3, BA[1:0] = 2 instead
= 2, BA[1:0] = 3 instead
A[17,13,11]
A[9:7]
A[10]/AP
A[6:3]
Data
A[2:0]
For x4 and x8
4)
only
- 52 -
Page 52
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 42] IDD4R, IDDR4RA, IDD4RB and IDDQ4R Measurement-Loop Pattern
3)
CKE
CK_t, CK_c
Cycle
Sub-Loop
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
ODT
WE_n/A14
C[2:0]
0 RD 011010000000000
0
1 D 100000000000000-
2,3 D#, D# 1 1 1 1 1 0 0
3
4 RD 0110100110007F0
1
5 D 100000000000000-
6,7 D#, D# 1 1 1 1 1 0 0
2 8-11
3 12-15
4 16-19
toggling
5 20-23
Static High
6 24-27
7 28-31
8 32-35
9 36-39
10 40-43
11 44-47
12 48-51
13 52-55
14 56-59
15 60-63
NOTE :
1) DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) Burst Sequence driven on each DQ signal by Read Command.
repeat Sub-Loop 0, use BG[1:0]2) = 0, BA[1:0] = 2 instead
2)
repeat Sub-Loop 1, use BG[1:0]
= 1, BA[1:0] = 3 instead
repeat Sub-Loop 0, use BG[1:0]2) = 0, BA[1:0] = 1 instead
2)
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
= 1, BA[1:0] = 2 instead
2)
= 0, BA[1:0] = 3 instead
repeat Sub-Loop 1, use BG[1:0]2) = 1, BA[1:0] = 0 instead
2)
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
= 2, BA[1:0] = 0 instead
2)
= 3, BA[1:0] = 1 instead
2)
= 2, BA[1:0] = 2 instead
2)
= 3, BA[1:0] = 3 instead
2)
= 2, BA[1:0] = 1 instead
2)
= 3, BA[1:0] = 2 instead
2)
= 2, BA[1:0] = 3 instead
2)
= 3, BA[1:0] = 0 instead
3
1)
2)
4)
Data
BA[1:0]
BG[1:0]
A12/BC_n
A[17,13,11]
A[9:7]
A[10]/AP
A[6:3]
A[2:0]
D0=00, D1=FF D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
2)
3 0007F0-
D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
2)
3 0007F0-
For x4 and x8 only
- 53 -
Page 53
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 43] IDD4W, IDD4WA, IDD4WB and IDD4W_par Measurement-Loop Pattern
2)
3)
CKE
CK_t, CK_c
Cycle
Sub-Loop
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
ODT
WE_n/A14
C[2:0]
BG[1:0]
0 WR 011001000000000
0
1 D 100001000000000-
2,3 D#, D# 1111110
2)
3
4 WR 0110010110007F0
1
5 D 100001000000000-
6,7 D#, D# 1111110
2 8-11
3 12-15
4 16-19
toggling
5 20-23
Static High
6 24-27
7 28-31
8 32-35
9 36-39
10 40-43
11 44-47
12 48-51
13 52-55
14 56-59
15 60-63
NOTE :
1) DQS_t, DQS_c are used according to WR Commands, otherwise VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) Burst Sequence driven on each DQ signal by Write Command.
repeat Sub-Loop 0, use BG[1:0]2) = 0, BA[1:0] = 2 instead
2)
repeat Sub-Loop 1, use BG[1:0]
= 1, BA[1:0] = 3 instead
repeat Sub-Loop 0, use BG[1:0]2) = 0, BA[1:0] = 1 instead
2)
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
= 1, BA[1:0] = 2 instead
2)
= 0, BA[1:0] = 3 instead
repeat Sub-Loop 1, use BG[1:0]2) = 1, BA[1:0] = 0 instead
2)
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
= 2, BA[1:0] = 0 instead
2)
= 3, BA[1:0] = 1 instead
2)
= 2, BA[1:0] = 2 instead
2)
= 3, BA[1:0] = 3 instead
2)
= 2, BA[1:0] = 1 instead
2)
= 3, BA[1:0] = 2 instead
2)
= 2, BA[1:0] = 3 instead
2)
= 3, BA[1:0] = 0 instead
2)
3
1)
4)
Data
BA[1:0]
A12/BC_n
A[17,13,11]
A[9:7]
A[10]/AP
A[6:3]
A[2:0]
D0=00, D1=FF D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
3 000 7F0-
D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
3 000 7F0-
For x4 and x8 only
- 54 -
Page 54
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 44] IDD4WC Measurement-Loop Pattern
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
1)
CS_n
Command
0 WR 011001000000000
1,2 D, D 100001000000000-
3,4 D#, D# 1111110
0
5 WR 0110010110007F0
6,7 D, D 100001000000000-
8,9 D#, D# 1111110
2 10-14
3 15-19
toggling
4 20-24
Static High
5 25-29
6 30-34
7 35-39
8 40-44
9 45-49
10 50-54
11 55-59
12 60-64
13 65-69
14 70-74
15 75-79
NOTE :
1) DQS_t, DQS_c are VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) Burst Sequence driven on each DQ signal by Write Command.
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]2) = 0, BA[1:0] = 1 instead
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]2) = 1, BA[1:0] = 0 instead
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]2) = 2, BA[1:0] = 2 instead
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]2) = 3, BA[1:0] = 2 instead
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
ACT_n
RAS_n/A16
CAS_n/A15
2)
2)
2)
2)
2)
2)
2)
2)
2)
2)
2)
3)
ODT
WE_n/A14
C[2:0]
BA[1:0]
BG[1:0]
2)
3 0007F0-
3
2)
3 0007F0-
3
= 0, BA[1:0] = 2 instead
= 1, BA[1:0] = 3 instead
= 1, BA[1:0] = 2 instead
= 0, BA[1:0] = 3 instead
= 2, BA[1:0] = 0 instead
= 3, BA[1:0] = 1 instead
= 3, BA[1:0] = 3 instead
= 2, BA[1:0] = 1 instead
= 2, BA[1:0] = 3 instead
= 3, BA[1:0] = 0 instead
A12/BC_n
A[17,13,11]
A[9:7]
A[10]/AP
A[6:3]
A[2:0]
D0=00, D1=FF
D2=FF, D3=00 D4=FF, D5=00
D6=00, D7=FF
D8=CRC
D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF
D6=FF, D7=00
D8=CRC
For x4 and x8 only
Data
4)
- 55 -
Page 55
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 45] IDD5B Measurement-Loop Pattern
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
Command
00 REF 100000000000000-
1 D 100000000000000-
2 D 100000000000000-
3 D#, D# 1111100
4 D#, D# 1111100
toggling
Static High
4-7
8-11
12-15
16-19
20-23
24-27
1
28-31
32-35
36-39
40-43
44-47
48-51
52-55
56-59
60-63
repeat pattern 1...4, use BG[1:0]2) = 1, BA[1:0] = 1 instead
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]2) = 3, BA[1:0] = 1 instead
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]
2 64 ... nRFC - 1 repeat Sub-Loop 1, Truncate, if necessary
NOTE :
1) DQS_t, DQS_c are VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) DQ signals are VDDQ.
1)
2)
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
2)
= 0, BA[1:0] = 2 instead
2)
= 1, BA[1:0] = 3 instead
2)
= 0, BA[1:0] = 1 instead
2)
= 1, BA[1:0] = 2 instead
2)
= 0, BA[1:0] = 3 instead
2)
= 1, BA[1:0] = 0 instead
2)
= 2, BA[1:0] = 0 instead
2)
= 2, BA[1:0] = 2 instead
2)
= 3, BA[1:0] = 3 instead
2)
= 2, BA[1:0] = 1 instead
2)
= 3, BA[1:0] = 2 instead
2)
= 2, BA[1:0] = 3 instead
2)
= 3, BA[1:0] = 0 instead
ODT
WE_n/A14
3)
C[2:0]
A[9:7]
A[6:3]
BA[1:0]
BG[1:0]
2)
3
2)
3
A12/BC_n
3 0007F0-
3 0007F0-
A[17,13,11]
A[10]/AP
A[2:0]
For x4 and x8 only
Data
4)
- 56 -
Page 56
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 46] IDD7 Measurement-Loop Pattern
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
0 ACT 000000000000000 -
1 RDA 011010 00001000
0
2 D 100000000000000-
3 D# 1111100
... repeat pattern 2...3 until nRRD - 1, if nRRD > 4. Truncate if necessary
nRRD ACT 000000011000000 -
1
nRRD + 1 RDA 011010 11001000
... repeat pattern 2 ... 3 until 2*nRRD - 1, if nRRD > 4. Truncate if necessary
2 2*nRRD
3 3*nRRD
repeat Sub-Loop 0, use BG[1:0]2) = 0, BA[1:0] = 2 instead
repeat Sub-Loop 1, use BG[1:0]
4 4*nRRD repeat pattern 2 ... 3 until nFAW - 1, if nFAW > 4*nRRD. Truncate if necessary
1)
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
2)
= 1, BA[1:0] = 3 instead
ODT
WE_n/A14
3)
C[2:0]
2)
Data
A[9:7]
A[6:3]
BA[1:0]
BG[1:0]
A12/BC_n
A[17,13,11]
A[10]/AP
A[2:0]
D0=00, D1=FF D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
2
3 0007F0-
3
D0=FF, D1=00 D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
4)
2)
= 0, BA[1:0] = 1 instead
2)
= 0, BA[1:0] = 3 instead
2)
= 1, BA[1:0] = 0 instead
toggling
Static High
5nFAW
6 nFAW + nRRD
7 nFAW + 2*nRRD
8 nFAW + 3*nRRD
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]2) = 1, BA[1:0] = 2 instead
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
9 nFAW + 4*nRRD repeat Sub-Loop 4
10 2*nFAW
11 2*nFAW + nRRD
12 2*nFAW + 2*nRRD
13 2*nFAW + 3*nRRD
repeat Sub-Loop 0, use BG[1:0]2) = 2, BA[1:0] = 0 instead
2)
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
= 3, BA[1:0] = 1 instead
2)
= 2, BA[1:0] = 2 instead
2)
= 3, BA[1:0] = 3 instead
14 2*nFAW + 4*nRRD repeat Sub-Loop 4
15 3*nFAW
16 3*nFAW + nRRD
17 3*nFAW + 2*nRRD
18 3*nFAW + 3*nRRD
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]2) = 2, BA[1:0] = 3 instead
repeat Sub-Loop 1, use BG[1:0]
2)
= 2, BA[1:0] = 1 instead
2)
= 3, BA[1:0] = 2 instead
2)
= 3, BA[1:0] = 0 instead
19 3*nFAW + 4*nRRD repeat Sub-Loop 4
20 4*nFAW repeat pattern 2 ... 3 until nRC - 1, if nRC > 4*nFAW. Truncate if necessary
NOTE:
1) DQS_t, DQS_c are VDDQ.
2) BG1 is don’t care for x16 device.
3) C[2:0] are used only for 3DS device.
4) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.
For x4 and x8 only
- 57 -
Page 57
datasheet DDR4 SDRAMECC Unbuffered DIMM

14. IDD SPEC TABLE

IDD and IPP values are for typical operating range of voltage and temperature unless otherwise noted.
Rev. 1.1
[ Table 47 ] IDD and I
Specification for M391A1K43BB1 and M391A1K43BB2
DDQ
M391A1K43BB1:
8GB(1Gx72) Module
DDR4-2133 DDR4-2400 DDR4-2666
Symbol
15-15-15 17-17-17 19-19-19
VDD 1.2V VPP 2.5V VDD 1.2V VPP 2.5V VDD 1.2V VPP 2.5V
IDD Max. IPP Max. IDD Max. IPP Max. IDD Max. IPP Max.
I
DD0
I
DD0A
I
DD1
I
DD1A
I
DD2N
I
DD2NA
I
DD2NT
I
DD2NL
I
DD2NG
I
DD2ND
I
DD2N_par
I
DD2P
I
DD2Q
I
DD3N
I
DD3NA
I
DD3P
I
DD4R
I
DD4RA
I
DD4RB
I
DD4W
I
DD4WA
I
DD4WB
I
DD4WC
I
DD4W_par
I
DD5B
I
DD5F2
I
DD5F4
I
DD6N
I
DD6E
I
DD6R
I
DD6A
I
DD7
I
DD8
NOTE :
1) DIMM IDD SPEC is based on the condition that de-actived rank(IDLE) is IDD2N. Please refer to Table 49.
2) IDD current measure method and detail patterns are described on DDR4 component datasheet.
3) VDD and VDDQ are merged on module PCB (IDDQ values are not considered by Qoff condition)
4) DIMM IDD Values are calculated based on the component IDD spec and Register power.
279 36 279 36
288 36 306 36
396 36 405 36
423 36 432 36
198 27 207 27
225 27 234 27
225 27 234 27
135 27 153 27
198 27 207 27
180 27 189 27
207 27 216 27
144 27 144 27
180 27 189 27
324 27 324 27
342 27 342 27
189 27 198 27
909 27 963 27
945 27 999 27
918 27 981 27
756 27 801 27
792 27 846 27
756 27 810 27
666 27 747 27
828 27 891 27
1791 162 1791 162
1242 135 1251 135
1044 126 1053 126
207 36 207 36
306 45 306 45
144 32 144 32
198 36 198 36
1278 72 1287 77
99 27 99 27
M391A1K43BB2:
8GB(1Gx72) Module
288 36
315 36
405 36
459 36
207 27
234 27
234 27
153 27
207 27
189 27
216 27
144 27
189 27
324 27
342 27
198 27
1116 27
1170 27
1125 27
909 27
954 27
918 27
846 27
1008 27
1944 162
1350 135
1134 126
216 36
324 54
144 36
198 36
1395 81
99 27
Unit NOTE
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
- 58 -
Page 58
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[ Table 48 ] IDD and I
Specification for M391A2K43BB1
DDQ
M391A2K43BB1:
16GB(2Gx72) Module
DDR4-2133 DDR4-2400 DDR4-2666
Symbol
15-15-15 17-17-17 19-19-19
VDD 1.2V VPP 2.5V VDD 1.2V VPP 2.5V VDD 1.2V VPP 2.5V
IDD Max. IPP Max. IDD Max. IPP Max. IDD Max. IPP Max.
I
DD0
I
DD0A
I
DD1
I
DD1A
I
DD2N
I
DD2NA
I
DD2NT
I
DD2NL
I
DD2NG
I
DD2ND
I
DD2N_par
I
DD2P
I
DD2Q
I
DD3N
I
DD3NA
I
DD3P
I
DD4R
I
DD4RA
I
DD4RB
I
DD4W
I
DD4WA
I
DD4WB
I
DD4WC
I
DD4W_par
I
DD5B
I
DD5F2
I
DD5F4
I
DD6N
I
DD6E
I
DD6R
I
DD6A
I
DD7
I
DD8
NOTE :
1) DIMM IDD SPEC is based on the condition that de-actived rank(IDLE) is IDD2N. Please refer to Table 49.
2) IDD current measure method and detail patterns are described on DDR4 component datasheet.
3) VDD and VDDQ are merged on module PCB (IDDQ values are not considered by Qoff condition)
4) DIMM IDD Values are calculated based on the component IDD spec and Register power.
477 63 486 63
486 63 513 63
594 63 612 63
621 63 639 63
396 54 414 54
450 54 468 54
450 54 468 54
270 54 306 54
396 54 414 54
360 54 378 54
414 54 432 54
288 54 288 54
360 54 378 54
648 54 648 54
684 54 684 54
378 54 396 54
1107 54 1170 54
1143 54 1206 54
1116 54 1188 54
954 54 1008 54
990 54 1053 54
954 54 1017 54
864 54 954 54
1026 54 1098 54
1989 189 1998 189
1440 162 1458 162
1242 153 1260 153
414 72 414 72
612 90 612 90
288 63 288 63
396 72 396 72
1476 99 1494 104
198 54 198 54
495 63
522 63
612 63
666 63
414 54
468 54
468 54
306 54
414 54
378 54
432 54
288 54
378 54
648 54
684 54
396 54
1323 54
1377 54
1332 54
1116 54
1161 54
1125 54
1053 54
1215 54
2151 189
1557 162
1341 153
432 72
648 108
288 72
396 72
1602 108
198 54
Unit NOTE
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
- 59 -
Page 59
[ Table 49 ] DIMM Rank Status
SEC DIMM Operating Rank The other Rank
I
DD0
I
DD1
I
DD2P
I
DD2N
I
DD2Q
I
DD3P
I
DD3N
I
DD4R
I
DD4W
I
DD5B
I
DD6
I
DD7
I
DD8
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
I
DD0
I
DD1
I
DD2P
I
DD2N
I
DD2Q
I
DD3P
I
DD3N
I
DD4R
I
DD4W
I
DD5B
I
DD6
I
DD7
I
DD8
I
DD2N
I
DD2N
I
DD2P
I
DD2N
I
DD2Q
I
DD3P
I
DD3N
I
DD2N
I
DD2N
I
DD2N
I
DD6
I
DD2N
I
DD8
- 60 -
Page 60
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

15. INPUT/OUTPUT CAPACITANCE

[Table 50] Silicon Pad I/O Capacitance
Symbol Parameter
CIO
C
DIO
C
DDQS
CCK
C
DCK
C
I
C
DI_ CTRL
C
DI_ ADD_CMD
C
ALERT
C
ZQ
C
TEN Input capacitance of TEN 0.2 2.3 0.2 2.3 pF 1,3,13
NOTE :
1) This parameter is not subject to production test. It is verified by design and characterization. The silicon only capacitance is validated by de-embedding the package L & C parasitic. The capacitance is measured with VDD, VDDQ, VSS, VSSQ applied with all other signal pins floating. Measurement procedure tbd.
2) DQ, DM_n, DQS_T, DQS_c, TDQS_T, TDQS_C. Although the DM, TDQS_T and TDQS_C pins have different functions, the loading matches DQ and DQS
3) This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4) Absolute value CK_T-CK_C
5) Absolute value of CIO(DQS_T)-CIO (DQS_c)
6) CI applies to ODT, CS_n, CKE, A0-A17, BA0-BA1, BG0-BG1, RAS_n/A16, CAS_n/A15, WE_n/A14, ACT_n and PAR.
7) CDI CTRL applies to ODT, CS_n and CKE
8) CDI_CTRL = CI(CTRL)-0.5*(CI(CLK_T)+CI(CLK_C))
9) CDI_ADD_ CMD applies to, A0-A17, BA0-BA1, BG0-BG1,RAS_n/A16, CAS_n/A15, WE_n/A14, ACT_n and PAR.
10) CDI_ADD_CMD = CI(ADD_CMD)-0.5*(CI(CLK_T)+CI(CLK_C))
11) CDIO = CIO(DQ,DM)-0.5*(CIO(DQS_T)+CIO(DQS_c))
12) Maximum external load capacitance on ZQ pin: tbd pF.
13) TEN pin may be DRAM internally pulled low through a weak pull-down resistor to VSS. In this case C specific information.
Input/output capacitance 0.55 1.4 0.55 1.15 pF 1,2,3
Input/output capacitance delta -0.1 0.1 -0.1 0.1 pF 1,2,3,11
Input/output capacitance delta DQS_t and DQS_c
Input capacitance, CK_t and CK_c 0.2 0.8 0.2 0.7 pF 1,3
Input capacitance delta CK_t and CK_c - 0.05 - 0.05 pF 1,3,4
Input capacitance (CTRL, ADD, CMD pins only)
Input capacitance delta (All CTRL pins only) -0.1 0.1 -0.1 0.1 pF 1,3,7,8
Input capacitance delta (All ADD/CMD pins only)
Input/output capacitance of ALERT 0.5 1.5 0.5 1.5 pF 1,3
Input/output capacitance of ZQ - 2.3 - 2.3 pF 1,3,12
DDR4-1600/1866/2133 DDR4-2400/2666
min max min max
- 0.05 - 0.05 pF 1,2,3,5
0.2 0.8 0.2 0.7 pF 1,3,6
-0.1 0.1 -0.1 0.1 pF 1,2,9,10
TEN might not be valid and system shall verify TEN signal with Vendor
Unit NOTE
- 61 -
Page 61
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

16. ELECTRICAL CHARACTERISTICS & AC TIMING

16.1 Reference Load for AC Timing and Output Slew Rate

Figure 23 represents the effective reference load of 50 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements.
Ron nominal of DQ, DQS_t and DQS_c drivers uses 34 ohms to specify the relevant AC timing parameter values of the device.
The maximum DC High level of Output signal = 1.0 * VDDQ,
The minimum DC Low level of Output signal = {34 /(34 + 50)} *VDDQ = 0.4* VDDQ
The nominal reference level of an Output signal can be approximated by the following:
The center of maximum DC High and minimum DC Low = {(1 + 0.4) / 2} * VDDQ = 0.7 * VDDQ
The actual reference level of Output signal might vary with driver Ron and reference load tolerances. Thus, the actual reference level or midpoint of an output signal is at the widest part of the output signal’s eye. Prior to measuring AC parameters, the reference level of the verification tool should be set to an appropriate level.
It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.
VDDQ
CK_t, CK_c
Timing Reference Point
Figure 23. Reference Load for AC Timing and Output Slew Rate
DUT
DQ DQS_t
DQS_c
Timing Reference Point
50 Ohm
VTT = VDDQ

16.2 tREFI

Average periodic Refresh interval (tREFI) of DDR4 SDRAM is defined as shown in the table.
[Table 51] tREFI by device density
Parameter Symbol 2Gb 4Gb 8Gb 16Gb Units NOTE
All Bank Refresh to active/refresh cmd time tRFC 160 260 350 550 ns
0CT
Average periodic refresh interval tREFI
NOTE :
1) Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR4 SDRAM devices support the following options or requirements referred to in this material.
2) Supported only for Industrial Temperature.
-40CT
85CT
CASE
CASE
CASE
85C
85C
95C
7.8 7.8 7.8 7.8 s
7.8 7.8 7.8 7.8 s 2
3.9 3.9 3.9 3.9
s 1
- 62 -
Page 62
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

16.3 Clock Specification

The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR4 SDRAM device.
16.3.1 Definition for tCK(abs)
tCK(abs) is defined as the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject t o pro­duction test.
16.3.2 Definition for tCK(avg)
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to rising edge.
N
tCK avg tCK absj
 

j 1=
N=
N 200=
16.3.3 Definition for tCH(avg) and tCL(avg)
tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses.
N
tCH avg tCHj
tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses.
tCL avg tCLj


j 1=
N
 

j 1=

N tCK avg=
NtCKavg=
N 200=
N 200=
16.3.4 Definition for tERR(nper)
tERR is defined as the cumulative error across n consecutive cycles of n x tCK(avg). tERR is not subject to production test.
- 63 -
Page 63
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

17. TIMING PARAMETERS BY SPEED GRADE

[Table 52] Timing Parameters by Speed Bin for DDR4-1600 to DDR4-2666
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
Clock Timing
Minimum Clock Cycle Time (DLL off mode)
Average Clock Period tCK(avg) 1.25 <1.5 1.071 <1.25 0.937 <1.071 0.833 <0.937 0.750 <0.833 ns 35,36
Average high pulse width tCH(avg) 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 tCK(avg)
Average low pulse width tCL(avg) 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 tCK(avg)
Absolute Clock Period tCK(abs)
Absolute clock HIGH pulse width tCH(abs) 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - tCK(avg) 23
Absolute clock LOW pulse width tCL(abs) 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - tCK(avg) 24
Clock Period Jitter- total JIT(per)_tot -63 63 -54 54 -47 47 -42 42 -38 38 ps 23
Clock Period Jitter- deterministic JIT(per)_dj -31 31 -27 27 -23 23 -21 21 -19 19 ps 26
Clock Period Jitter during DLL locking pe­riod
Cycle to Cycle Period Jitter tJIT(cc) - 125 - 107 - 94 - 83 - 75 ps
Cycle to Cycle Period Jitter during DLL locking period
Duty Cycle Jitter tJIT(duty) TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD ps
Cumulative error across 2 cycles tERR(2per) -92 92 -79 79 -69 69 -61 61 -55 55 ps
Cumulative error across 3 cycles tERR(3per) -109 109 -94 94 -82 82 -73 73 -66 66 ps
Cumulative error across 4 cycles tERR(4per) -121 121 -104 104 -91 91 -81 81 -73 73 ps
Cumulative error across 5 cycles tERR(5per) -131 131 -112 112 -98 98 -87 87 -78 78 ps
Cumulative error across 6 cycles tERR(6per) -139 139 -119 119 -104 104 -92 92 -83 83 ps
Cumulative error across 7 cycles tERR(7per) -145 145 -124 124 -109 109 -97 97 -87 87 ps
Cumulative error across 8 cycles tERR(8per) -151 151 -129 129 -113 113 -101 101 -91 91 ps
Cumulative error across 9 cycles tERR(9per) -156 156 -134 134 -117 117 -104 104 -94 94 ps
Cumulative error across 10 cycles tERR(10per) -160 160 -137 137 -120 120 -107 107 -96 96 ps
Cumulative error across 11 cycles tERR(11per) -164 164 -141 141 -123 123 -110 110 -99 99 ps
Cumulative error across 12 cycles tERR(12per) -168 168 -144 144 -126 126 -112 112 -101 101 ps
Cumulative error across 13 cycles tERR(13per) -172 172 -147 147 -129 129 -114 114 -103 103 ps
Cumulative error across 14 cycles tERR(14per) -175 175 -150 150 -131 131 -116 116 -104 104 ps
Cumulative error across 15 cycles tERR(15per) -178 178 -152 152 -133 133 -118 118 -106 106 ps
Cumulative error across 16 cycles tERR(16per) -180 189 -155 155 -135 135 -120 120 -108 108 ps
Cumulative error across 17 cycles tERR(17per) -183 183 -157 157 -137 137 -122 122 -110 110 ps
Cumulative error across 18 cycles tERR(18per) -185 185 -159 159 -139 139 -124 124 -112 112 ps
Cumulative error across n = 13, 14 . . . 49, 50 cycles
Command and Address setup time to CK_t, CK_c referenced to Vih(ac) / Vil(ac) levels
Command and Address setup time to CK_t, CK_c referenced to Vref levels
Command and Address hold time to CK_t, CK_c referenced to Vih(dc) / Vil(dc) levels
Command and Address hold time to CK_t, CK_c referenced to Vref levels
Control and Address Input pulse width for each input
Command and Address Timing
CAS_n to CAS_n command delay for same bank group
CAS_n to CAS_n command delay for dif­ferent bank group
ACTIVATE to ACTIVATE Command delay
to different bank group for 2KB page size
ACTIVATE to ACTIVATE Command delay
to different bank group for 2KB page size
ACTIVATE to ACTIVATE Command delay
to different bank group for 1/2KB page size
ACTIVATE to ACTIVATE Command delay
to same bank group for 2KB page size
ACTIVATE to ACTIVATE Command delay
to same bank group for 1KB page size
tCK (DLL_OFF) 8 20 8 20 8 20 8 20 8 20 ns
MIN : tCK(avg)min + tJIT(per)min_tot
MAX : tCK(avg)max + tJIT(per)max_tot
tJIT(per, lck) -50 50 -43 43 -38 38 -33 33 -30 30 ps
tJIT(cc, lck) - 100 - 86 - 75 - 67 - 60 ps
tERR(nper)
tIS(base) 115 - 100 - 80 - 62 - 55 - ps
tIS(Vref) 215 - 200 - 180 - 162 - 145 - ps
tIH(base) 140 - 125 - 105 - 87 - 80 - ps
tIH(Vref) 215 - 200 - 180 - 162 - 145 - ps
tIPW 600 - 525 - 460 - 410 - 385 - ps
tCCD_L
tCCD_S 4 - 4 - 4 - 4 - 4 - nCK 34
tRRD_S(2K)
tRRD_S(1K)
tRRD_S(1/2K)
tRRD_L(2K)
tRRD_L(1K)
max(5 nCK,
6.250 ns)
Max(4nCK,6
ns)
Max(4nCK,5
ns)
Max(4nCK,5
ns)
Max(4nCK,7
.5ns)
Max(4nCK,6
ns)
-
-
MIN : tERR(nper)min = ((1 + 0.68ln(n)) * tJIT(per)_total min)
MAX : tERR(nper)max = ((1 + 0.68ln(n)) *
max(5 nCK,
5.355 ns)
Max(4nCK,5
.3ns)
Max(4nCK,4
.2ns)
Max(4nCK,4
.2ns)
Max(4nCK,6
.4ns)
Max(4nCK,5
.3ns)
-
-
max(5 nCK,
5.355 ns)
Max(4nCK,5
.3ns)
Max(4nCK,3
.7ns)
Max(4nCK,3
.7ns)
Max(4nCK,6
.4ns)
Max(4nCK,5
.3ns)
t
JIT(per)_total max)
max(5 nCK,
-
Max(4nCK,5
-
Max(4nCK,3
Max(4nCK,3
Max(4nCK,6
Max(4nCK,4
5 ns)
.3ns)
.3ns)
.3ns)
.4ns)
.9ns)
-
-
-
-
-
-
max(5 nCK,
5 ns)
Max(4nCK,5
.3ns)
Max(4nCK,3
ns)
Max(4nCK,3
ns)
Max(4nCK,6
.4ns)
Max(4nCK,4
.9ns)
Units NOTE
tCK(avg)
ps
- nCK 34
- nCK 34
- nCK 34
- nCK 34
- nCK 34
- nCK 34
- 64 -
Page 64
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 52] Timing Parameters by Speed Bin for DDR4-1600 to DDR4-2666
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
ACTIVATE to ACTIVATE Command delay
to same bank group for 1/2KB page size
Four activate window for 2KB page size tFAW_2K
Four activate window for 1KB page size tFAW_1K
Four activate window for 1/2KB page size tFAW_1/2K
Delay from start of internal write transac­tion to internal read command for different bank group
Delay from start of internal write transac­tion to internal read command for same bank group
Internal READ Command to PRE­CHARGE Command delay
WRITE recovery time tWR 15 - 15 - 15 - 15 - 15 - ns 1
Write recovery time when CRC and DM are enabled
Delay from start of internal write transac­tion to internal read command for different bank group with both CRC and DM en­abled
Delay from start of internal write transac­tion to internal read command for same bank group with both CRC and DM en­abled
DLL locking time tDLLK 597 - 597 - 768 - 768 - 1024 - nCK
Mode Register Set command cycle time tMRD 8 - 8 - 8 - 8 - 8 - nCK
Mode Register Set command update de­lay
Multi-Purpose Register Recovery Time tMPRR 1 - 1 - 1 - 1 - 1 - nCK 33
Multi Purpose Register Write Recovery Time
Auto precharge write recovery + pre­charge time
DQ0 or DQL0 driven to 0 set-up time to first DQS rising edge
DQ0 or DQL0 driven to 0 hold time from last DQS falling edge
CS_n to Command Address Latency
CS_n to Command Address Latency tCAL
Mode Register Set command cycle time in CAL mode
Mode Register Set update delay in CAL mode
DRAM Data Timing
DQS_t, DQS_c to DQ skew, per group, per access
DQ output hold time per group, per access from DQS_t, DQS_c
Data Valid Window per device, per UI: (tQH - tDQSQ) of each UI on a given DRAM
Data Valid Window, per pin, per UI: (tQH ­tDQSQ) each UI on a pin of a given DRAM
DQ low impedance time from CK_t, CK_c tLZ(DQ) -450 225 -390 195 -360 180 -330 175 -310 170 ps 39
DQ high impedance time from CK_t, CK_c tHZ(DQ) - 225 - 195 - 180 - 175 - 170 ps 39
Data Strobe Timing
DQS_t, DQS_c differential READ Pre-am­ble (1 clock preamble)
DQS_t, DQS_c differential READ Pream­ble (2 clock preamble)
DQS_t, DQS_c differential READ Postam­ble
DQS_t, DQS_c differential output high time
DQS_t, DQS_c differential output low time tQSL 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - tCK 20
tRRD_L(1/2K)
tWTR_S
tWTR_L
tWR_CRC _DM
tWTR_S_C
RC_DM
tWTR_L_C
RC_DM
tWR_MPR
tDAL(min) Programmed WR + roundup (tRP / tCK(avg)) nCK
tPDA_S 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - UI 45,47
tPDA_H 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - UI 46,47
tMRD_tCAL tMOD+ tCAL - tMOD+ tCAL - tMOD+ tCAL - tMOD+ tCAL - tMOD+ tCAL - nCK
tMOD_tCAL tMOD+ tCAL - tMOD+ tCAL - tMOD+ tCAL - tMOD+ tCAL - tMOD+ tCAL - nCK
tRPRE2 NA NA NA NA NA NA 1.8 NOTE 44 1.8 NOTE 44 tCK 41
Max(4nCK,6
ns)
Max(28nCK,
35ns)
Max(20nCK,
25ns)
Max(16nCK,
20ns)
max(2nCK,2
.5ns)
max(4nCK,7
.5ns)
max(4nCK,7
tRTP
tMOD
tDQSQ - 0.16 - 0.16 - 0.16 - 0.17 - 0.18 tCK(avg)/2
tQH 0.76 - 0.76 - 0.76 - 0.74 - 0.74 - tCK(avg)/2
tDVWd 0.63 - 0.63 - 0.64 - 0.64 - TBD - UI
tDVWp 0.66 - 0.66 - 0.69 - 0.72 - 0.72 - UI
tRPRE 0.9 NOTE44 0.9 NOTE44 0.9 NOTE44 0.9 NOTE 44 0.9 NOTE 44 tCK 40
tRPST 0.33 NOTE 45 0.33 NOTE 45 0.33 NOTE 45 0.33 NOTE 45 0.33 NOTE 45 tCK
tQSH 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - tCK 21
.5ns)
tWR+max
(4nCK,3.75ns)-
tWTR_S+ma
x
(4nCK,3.75n
s)
tWTR_L+ma
x
(4nCK,3.75n
s)
max(24nCK,
15ns)
tMOD (min)
+ AL + PL
max(3 nCK,
3.748 ns)
Max(4nCK,5
Max(28nCK,
Max(20nCK,
Max(16nCK,
max(2nCK,2
-
max(4nCK,7
-
max(4nCK,7
-
(5nCK,3.75ns)-
tWTR_S+ma
­(5nCK,3.75n
tWTR_L+ma
­(5nCK,3.75n
max(24nCK,
-
tMOD (min)
-
max(3 nCK,
-
.3ns)
30ns)
23ns)
17ns)
.5ns)
.5ns)
.5ns)
tWR+max
x
s)
x
s)
15ns)
+ AL + PL
3.748 ns)
Max(4nCK,5
Max(28nCK,
Max(20nCK,
Max(16nCK,
max(2nCK,2
-
max(4nCK,7
-
max(4nCK,7
-
(5nCK,3.75ns)-
tWTR_S+ma
­(5nCK,3.75n
tWTR_L+ma
­(5nCK,3.75n
max(24nCK,
-
tMOD (min)
-
max(3 nCK,
-
.3ns)
30ns)
21ns)
15ns)
.5ns)
.5ns)
.5ns)
tWR+max
x
s)
x
s)
15ns)
+ AL + PL
3.748 ns)
Max(4nCK,4
Max(28nCK,
Max(20nCK,
Max(16nCK,
Max (2nCK,
-
-
(4nCK,7.5ns)-
-
(4nCK,7.5ns)-
(5nCK,3.75ns)-
tWTR_S+ma
­(5nCK,3.75n
tWTR_L+ma
­(5nCK,3.75n
max(24nCK,
-
tMOD (min)
-
max(3 nCK,
-
.9ns)
30ns)
21ns)
13ns)
2.5ns)
max
max
tWR+max
x
s)
x
s)
15ns)
+ AL + PL
3.748 ns)
Max(4nCK,4
­.9ns)
Max(28nCK,
-
30ns)
Max(20nCK,
-
21ns)
Max(16nCK,
-
12ns)
Max (2nCK,
-
2.5ns)
max
(4nCK,7.5ns)- 1,34
max
(4nCK,7.5ns)-
tWR+max
(5nCK,3.75ns)- ns 1, 28
tWTR_S+ma
-
-
-
-
-
x
(5nCK,3.75n
s)
tWTR_L+ma
x
(5nCK,3.75n
s)
max(24nCK,
15ns)
tMOD (min)
+ AL + PL
max(3 nCK,
3.748 ns)
Units NOTE
- nCK 34
-ns34
-ns34
-ns34
- ns 1,2,e,34
- ns 2, 29, 34
- ns 3,30, 34
- nCK 50
-
- nCK
13,18,39
,49
13,17,18
,39,49
17,18,39
,49
17,18,39
,49
- 65 -
Page 65
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 52] Timing Parameters by Speed Bin for DDR4-1600 to DDR4-2666
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
DQS_t, DQS_c differential WRITE Pream­ble (1 clock preamble)
DQS_t, DQS_c differential WRITE Pream­ble (2 clock preamble)
DQS_t, DQS_c differential WRITE Postamble
DQS_t and DQS_c low-impedance time (Referenced from RL-1)
DQS_t and DQS_c high-impedance time (Referenced from RL+BL/2)
DQS_t, DQS_c differential input low pulse width
DQS_t, DQS_c differential input high pulse width
DQS_t, DQS_c rising edge to CK_t, CK_c rising edge (1 clock preamble)
DQS_t, DQS_c rising edge to CK_t, CK_c rising edge (2 clock preamble)
DQS_t, DQS_c falling edge setup time to CK_t, CK_c rising edge
DQS_t, DQS_c falling edge hold time from CK_t, CK_c rising edge
DQS_t, DQS_c rising edge output timing location from rising CK_t, CK_c with DLL On mode
DQS_t, DQS_c rising edge output vari­ance window per DRAM
MPSM Timing
Command path disable delay upon MPSM entry
Valid clock requirement after MPSM entry tCKMPE
Valid clock requirement before MPSM exit tCKMPX
Exit MPSM to commands not requiring a locked DLL
Exit MPSM to commands requiring a locked DLL
CS setup time to CKE tMPX_S
CS_n High hold time to CKE rising edge tMPX_HH tXP(min) - tXP(min) - tXP(min) - tXP(min) - tXP(min) -
CS_n Low hold time to CKE rising edge tMPX_LH 12
Calibration Timing
Power-up and RESET calibration time tZQinit 1024 - 1024 - 1024 - 1024 - 1024 - nCK
Normal operation Full calibration time tZQoper 512 - 512 - 512 - 512 - 512 - nCK
Normal operation Short calibration time tZQCS 128 - 128 - 128 - 128 - 128 - nCK
Reset/Self Refresh Timing
Exit Reset from CKE HIGH to a valid com­mand
Exit Self Refresh to commands not requir­ing a locked DLL
SRX to commands not requiring a locked DLL in Self Refresh ABORT
Exit Self Refresh to ZQCL,ZQCS and MRS (CL,CWL,WR,RTP and Gear Down)
Exit Self Refresh to commands requiring a locked DLL
Minimum CKE low width for Self refresh entry to exit timing
Minimum CKE low width for Self refresh entry to exit timing with CA Parity enabled
Valid Clock Requirement after Self Re­fresh Entry (SRE) or Power-Down Entry (PDE)
tWPRE 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - tCK 42
tWPRE2 NA NA NA 1.8 - 1.8 - tCK 43
tWPST 0.33 - 0.33 - 0.33 - 0.33 - 0.33 - tCK
tLZ(DQS) -450 225 -390 195 -360 180 -330 175 -310 170 ps
tHZ(DQS) - 225 - 195 - 180 - 175 - 170 ps
tDQSL 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 tCK
tDQSH 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 0.46 0.54 tCK
tDQSS -0.27 0.27 -0.27 0.27 -0.27 0.27 -0.27 0.27 -0.27 0.27 tCK 42
tDQSS2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A tCK 43
tDSS 0.18 - 0.18 - 0.18 - 0.18 - 0.18 - tCK
tDSH 0.18 - 0.18 - 0.18 - 0.18 - 0.18 - tCK
tDQSCK (DLL On)
tDQSCKI (DLL On)
tMPED
tXMP tXS(min) - tXS(min) - tXS(min) - tXS(min) - tXS(min) -
tXMPDLL
tXPR
tXS
tX-
S_ABORT(min)
tXS_FAST
(min)
tXSDLL tDLLK(min) - tDLLK(min) - tDLLK(min) - tDLLK(min) - tDLLK(min) - nCK
tCKESR
tCKESR_ PAR
tCKSRE
-225 225 -195 195 -180 180 -175 175 -170 170 ps 37,38,39
- 370 - 330 - 310 - 290 - 270 ps 37,38,39
tMOD(min) +
tCP-
DED(min)
tMOD(min)
+tCP-
DED(min)
tCKSRX(min
)
tXMP(min) + tXSDLL(min)
tIS(min) +
tIH(min)
max
(5nCK,tRFC
(min)+
10ns)
tRFC(min)+1
0ns
tRFC4(min)+
10ns
tRFC4(min)+
10ns
tCKE(min)+1
nCK
tCKE(min)+
1nCK+PL
max(5nCK,1
0ns)
-
-
-
-
-
tXMP-
10ns
-
-
-
-
-
-
-
tMOD(min) +
tCP-
DED(min)
tMOD(min) +
tCP-
DED(min)
tCKSRX(min
)
tXMP(min) + tXSDLL(min)
tIS(min) +
tIH(min)
12
max
(5nCK,tRFC
(min)+
10ns)
tRFC(min)+1
0ns
tRFC4(min)+
10ns
tRFC4(min)+
10ns
tCKE(min)+1
nCK
tCKE(min)+
1nCK+PL
max(5nCK,1
0ns)
-
-
-
-
-
tXMP-
10ns
-
-
-
-
-
-
-
tMOD(min) +
tCP-
DED(min)
tMOD(min) +
tCP-
DED(min)
tCKSRX(min
)
tXMP(min)
+tXS-
DLL(min)
tIS(min) +
tIH(min)
12
max
(5nCK,tRFC
(min)+
10ns)
tRFC(min)+1
0ns
tRFC4(min)+
10ns
tRFC4(min)+
10ns
tCKE(min)+1
nCK
tCKE(min)+
1nCK+PL
max(5nCK,1
0ns)
-
-
-
-
-
tXMP-
10ns
-
-
-
-
-
-
-
tMOD(min) +
tCP-
DED(min)
tMOD(min) +
tCP-
DED(min)
tCKSRX(min
)
tXMP(min) +
tXSDLL(min)
tIS(min) +
tIH(min)
12
max
(5nCK,tRFC
(min)+10ns)
tRFC(min)+1
0ns
tRFC4(min)+
10ns
tRFC4(min)+
10ns
tCKE(min)+1
nCK
tCKE(min)+
1nCK+PL
max
(5nCK,10ns)
-
-
-
-
-
tXMP-
10ns
-
-
-
-
-
-
-
tMOD(min) +
tCP-
DED(min)
tMOD(min) +
tCP-
DED(min)
tCKSRX(min
)
tXMP(min) +
tXSDLL(min)
tIS(min) +
tIH(min)
12
max
(5nCK,tRFC (min)+10ns)
tRFC(min)+1
0ns
tRFC4(min)+
10ns
tRFC4(min)+
10ns
tCKE(min)+1
nCK
tCKE(min)+
1nCK+PL
max
(5nCK,10ns)
-
-
-
-
-
tXMP-
10ns
- nCK
- nCK
- nCK
- nCK
- nCK
- nCK
- nCK
Rev. 1.1
Units NOTE
ns 51
- 66 -
Page 66
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 52] Timing Parameters by Speed Bin for DDR4-1600 to DDR4-2666
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
Valid Clock Requirement after Self Re­fresh Entry (SRE) or Power-Down when CA Parity is enabled
Valid Clock Requirement before Self Re­fresh Exit (SRX) or Power-Down Exit (PDX) or Reset Exit
Power Down Timing
Exit Power Down with DLL on to any valid command; Exit Precharge Power Down with DLL frozen to commands not requir­ing a locked DLL
CKE minimum pulse width tCKE
Command pass disable delay tCPDED 4 - 4 - 4 - 4 - 4 - nCK
Power Down Entry to Exit Timing tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI nCK 6
Timing of ACT command to Power Down entry
Timing of PRE or PREA command to Pow­er Down entry
Timing of RD/RDA command to Power Down entry
Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)
Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)
Timing of WR command to Power Down entry (BC4MRS)
Timing of WRA command to Power Down entry (BC4MRS)
Timing of REF command to Power Down entry
Timing of MRS command to Power Down entry
PDA Timing
Mode Register Set command cycle time in PDA mode
Mode Register Set command update de­lay in PDA mode
ODT Timing
Asynchronous RTT turn-on delay (Power-
Down with DLL frozen)
Asynchronous RTT turn-off delay (Power-
Down with DLL frozen)
RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.28 0.72 tCK(avg)
Write Leveling Timing
First DQS_t/DQS_c rising edge after write leveling mode is programmed
DQS_t/DQS_c delay after write leveling mode is programmed
Write leveling setup time from rising CK_t, CK_c crossing to rising DQS_t/DQS_c crossing
Write leveling hold time from rising DQS_t/ DQS_c crossing to rising CK_t, CK_c crossing
Write leveling output delay
Write leveling output error tWLOE 0 2 0 2 0 2 0 2 0 2 ns
CA Parity Timing
Commands not guaranteed to be execut­ed during this time
Delay from errant command to ALERT_n assertion
Pulse width of ALERT_n signal when as­serted
Time from when Alert is asserted till con­troller must start providing DES com­mands in Persistent CA parity mode
Parity Latency
CRC Error Reporting
CRC error to ALERT_n latency
CRC ALERT_n pulse width
tCKSRE_PAR
tCKSRX
tXP
tACTPDEN 1 - 1 - 2 - 2 - 2 - nCK 7
tPRPDEN 1 - 1 - 2 - 2 - 2 - nCK 7
tRDPDEN RL+4+1 - RL+4+1 - RL+4+1 - RL+4+1 - RL+4+1 - nCK
tWRPDEN
tWRAPDEN
tWRPBC4DEN
tWRAP-
BC4DEN
tREFPDEN 1 - 1 - 2 - 2 - 2 - nCK 7
tMRSPDEN tMOD(min) - tMOD(min) - tMOD(min) - tMOD(min) - tMOD(min) -
tMRD_PDA
tMOD_PDA tMOD tMOD tMOD tMOD tMOD
tAONAS 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 ns
tAOFAS 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 ns
tWLMRD 40 - 40 - 40 - 40 - 40 - nCK 12
tWLDQSEN 25 - 25 - 25 - 25 - 25 - nCK 12
tWLS 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - tCK(avg)
tWLH 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - tCK(avg)
tWLO 0 9.5 0 9.5 0 9.5 0 9.5 0 9.5 ns
tPAR_UN-
KNOWN
tPAR_ALERT_
ON
tPAR_ALERT_
PW
tPAR_ALERT_
RSP
PL 4 4 4 5 5 nCK
tCRC_ALERT 3 13 3 13 3 13 3 13 3 13 ns
CRC_ALERT_
PW
max
(5nCK,10ns)
+PL
max(5nCK,1
0ns)
max
(4nCK,6ns)
max (3nCK,
5ns)
WL+4+(tWR
/tCK(avg))
WL+4+WR+
1
WL+2+(tWR
/tCK(avg))
WL+2+WR+
1
max(16nCK,
10ns)
- PL - PL - PL - PL -PL
- PL+6ns - PL+6ns - PL+6ns - PL+6ns - PL+6ns
48 96 56 112 64 128 72 144 80 160 nCK
- 43 - 50 - 57 - 64 - 71 nCK
6 10 6 10 6 10 6 10 6 10 nCK
-
-
-
-
-
-
-
-
-
max
(5nCK,10ns)
+PL
max(5nCK,1
0ns)
max
(4nCK,6ns)
max (3nCK,
5ns)
WL+4+(tWR
/tCK(avg))
WL+4+WR+
1
WL+2+(tWR
/tCK(avg))
WL+2+WR+
1
max(16nCK,
10ns)
-
-
-
-
-
-
-
-
-
max
(5nCK,10ns)
+PL
max(5nCK,1
0ns)
max
(4nCK,6ns)
max (3nCK,
5ns)
WL+4+(tWR
/tCK(avg))
WL+4+WR+
1
WL+2+(tWR
/tCK(avg))
WL+2+WR+
1
max(16nCK,
10ns)
-
-
-
-
-
-
-
-
-
max
(5nCK,10ns)
+PL
max
(5nCK,10ns)
max
(4nCK,6ns)
max
(3nCK, 5ns)
WL+4+(tWR
/tCK(avg))
WL+4+WR+
1
WL+2+(tWR
/tCK(avg))
WL+2+WR+
1
max(16nCK,
10ns)
-
-
-
-
-
-
-
-
-
max
(5nCK,10ns)
+PL
max
(5nCK,10ns)
max
(4nCK,6ns)
max
(3nCK, 5ns)
WL+4+(tWR
/tCK(avg))
WL+4+WR+
1
WL+2+(tWR
/tCK(avg))
WL+2+WR+
1
max(16nCK,
10ns)
Units NOTE
- nCK
- nCK
- nCK
- nCK 31,32
- nCK 4
- nCK 5
- nCK 4
- nCK 5
- nCK
- 67 -
Page 67
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 52] Timing Parameters by Speed Bin for DDR4-1600 to DDR4-2666
Speed DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
Geardown timing
Exit RESET from CKE HIGH to a valid MRS geardown (T2/Reset)
CKE High Assert to Gear Down Enable time(T2/CKE)
MRS command to Sync pulse time(T3) tSYNC_GEA R - - - - - - - -
Sync pulse to First valid command(T4)
Geardown setup time
Geardown hold time
tREFI
tRFC1 (min)
tRFC2 (min)
tRFC4 (min)
tXPR_GEAR - - - - - - - - tXPR
tXS_GEAR - - - - - - - - tXS -
tCMD_GEAR - - - - - - - - tMOD - 27
tGEAR_setup - - - - - - - -2- nCK
tGEAR_hold - - - - - - - -2- nCK
2Gb 160 - 160 - 160 - 160 - 160
4Gb 260 - 260 - 260 - 260 - 260
8Gb 350 - 350 - 350 - 350 - 350
16Gb 550 - 550 - 550 - 550 - 550
2Gb110-110-110-110-110
4Gb 160 - 160 - 160 - 160 - 160
8Gb 260 - 260 - 260 - 260 - 260
16Gb 350 - 350 - 350 - 350 - 350
2Gb 90 - 90 - 90 - 90 - 90
4Gb110-110-110-110-110
8Gb 160 - 160 - 160 - 160 - 160
16Gb 260 - 260 - 260 - 260 - 260 - ns 34
tMOD +
4tCK
Rev. 1.1
Units NOTE
-
- 27
-ns34
-ns34
-ns34
-ns34
-ns34
-ns34
-ns34
-ns34
-ns34
-ns34
-ns34
- 68 -
Page 68
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
NOTE :
1) Start of internal write transaction is defined as follows : For BL8 (Fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL. For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL. For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL.
2) A separate timing parameter will cover the delay from write to read when CRC and DM are simultaneously enabled
3) Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
4) tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR/tCK following rounding algorithm defined in "17.1 Rounding Algorithms".
5) WR in clock cycles as programmed in MR0.
6) tREFI depends on TOPER.
7) CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down IDD spec will not be applied until finishing those operations.
8) For these parameters, the DDR4 SDRAM device supports tnPARAM[nCK]=RU{tPARAM[ns]/tCK(avg)[ns]}, which is in clock cycles assuming all input clock jitter specifica­tions are satisfied.
9) When CRC and DM are both enabled, tWR_CRC_DM is used in place of tWR.
10) When CRC and DM are both enabled tWTR_S_CRC_DM is used in place of tWTR_S.
11) When CRC and DM are both enabled tWTR_L_CRC_DM is used in place of tWTR_L.
12) The max values are system dependent.
13) DQ to DQS total timing per group where the total includes the sum of deterministic and random timing terms for a specified BER. BER spec and measurement method are tbd.
14) The deterministic component of the total timing. Measurement method tbd.
15) DQ to DQ static offset relative to strobe per group. Measurement method tbd.
16) This parameter will be characterized and guaranteed by design.
17) When the device is operated with the input clock jitter, this parameter needs to be derated by the actual tjit(per)_total of the input clock. (output deratings are relative to the SDRAM input clock). Example tbd.
18) DRAM DBI mode is off.
19) DRAM DBI mode is enabled. Applicable to x8 and x16 DRAM only.
20) tQSL describes the instantaneous differential output low pulse width on DQS_t - DQS_c, as measured from on falling edge to the next consecutive rising edge
21) tQSH describes the instantaneous differential output high pulse width on DQS_t - DQS_c, as measured from on falling edge to the next consecutive rising edge
22) There is no maximum cycle time limit besides the need to satisfy the refresh interval tREFI
23) tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge
24) tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge
25) Total jitter includes the sum of deterministic and random jitter terms for a specified BER. BER target and measurement method are tbd.
26) The deterministic jitter component out of the total jitter. This parameter is characterized and guaranteed by design.
27) This parameter has to be even number of clocks
28) When CRC and DM are both enabled, tWR_CRC_DM is used in place of tWR.
29) When CRC and DM are both enabled tWTR_S_CRC_DM is used in place of tWTR_S.
30) When CRC and DM are both enabled tWTR_L_CRC_DM is used in place of tWTR_L.
31) After CKE is registered LOW, CKE signal level shall be maintained below VILDC for tCKE specification (Low pulse width).
32) After CKE is registered HIGH, CKE signal level shall be maintained above VIHDC for tCKE specification (HIGH pulse width).
33) Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
34) Parameters apply from tCK(avg)min to tCK(avg)max at all standard JEDEC clock period values as stated in the Speed Bin Tables.
35) This parameter must keep consistency with Speed-Bin Tables shown in section 10.
36) DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate. UI=tCK(avg).min/2.
37) applied when DRAM is in DLL ON mode.
38) Assume no jitter on input clock signals to the DRAM.
39) Value is only valid for RONNOM = 34 ohms.
40) 1tCK toggle mode with setting MR4:A11 to 0.
41) 2tCK toggle mode with setting MR4:A11 to 1, which is valid for DDR4-2400 and 2666 speed grade.
42) 1tCK mode with setting MR4:A12 to 0.
43) 2tCK mode with setting MR4:A12 to 1, which is valid for DDR4-2400 and 2666 speed grade.
44) The maximum read preamble is bounded by tLZ(DQS)min on the left side and tDQSCK(max) on the right side. See Figure “Clock to Data Strobe Relationship” in Operation datasheet. Boundary of DQS Low-Z occur one cycle earlier in 2tCK toggle mode which is illustrated in “Read Preamble” section.
45) DQ falling signal middle-point of transferring from High to Low to first rising edge of DQS diff-signal cross-point
46) last falling edge of DQS diff-signal cross-point to DQ rising signal middle-point of transferring from Low to High
47) VrefDQ value must be set to either its midpoint or Vcent_DQ(midpoint) in order to capture DQ0 or DQL0 low level for entering PDA mode.
48) The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See Figure “Clock to Data Strobe Relation­ship” in Operation datasheet.
49) Reference level of DQ output signal is specified with a midpoint as a widest part of Output signal eye which should be approximately 0.7 * VDDQ as a center level of the static single-ended output peak-to-peak swing with a driver impedance of 34 ohms and an effective test load of 50 ohms to VTT = VDDQ.
50) For MR7 commands, the minimum delay to a subsequent non-MRS command is 5nCK.
51) tMPX_LH(max) is defined with respect to actual tXMP in system as opposed to tXMP(min).
- 69 -
Page 69
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

17.1 Rounding Algorithms

Software algorithms for calculation of timing parameters are subject to rounding errors from many sources. For example, a system may use a memory clock with a nominal frequency of 933.33... MHz, or a clock period of 1.0714... ns. Similarly, a system with a memory clock frequency of 1066.66... MHz yields mathematically a clock period of 0.9375... ns. In most cases, it is impossible to express all digits after the decimal point exactly, and rounding must be done because the DDR4 SDRAM specification establishes a minimum granularity for timing parameters of 1 ps.
Rules for rounding must be defined to allow optimization of device performance without violating device parameters. These algorithms rely on results that are within correction factors on device testing and specification to avoid losing performance due to rounding errors.
These rules are:
•Clock periods such as tCKAVGmin are defined to 1 ps of accuracy; for example, 0.9375... ns is defined as 937 ps and 1.0714... ns is defined as
1071 ps.
•Using real math, parameters like tAAmin, tRCDmin, etc. which are programmed in systems in numbers of clocks (nCK) but expressed in units of time (in ns) are divided by the clock period (in ns) yielding a unitless ratio, a correction factor of 2.5% is subtracted, then the result is set to the next higher integer number of clocks:
nCK = ceiling [(parameter_in_ns / application_tCK_in_ns) - 0.025]
•Alternatively, programmers may prefer to use integer math instead of real math by expressing timing in ps, scaling the desired parameter value by 1000, dividing by the application clock period, adding an inverse correction factor of 97.4%, dividing the result by 1000, then truncating down to the next lower integer value:
nCK = truncate [{(parameter_in_ps x 1000) / (application_tCK_in_ps) + 974} / 1000]
•Either algorithm yields identical results
- 70 -
Page 70
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

17.2 The DQ input receiver compliance mask for voltage and timing

The DQ input receiver compliance mask for voltage and timing is shown in the figure below. The receiver mask (Rx Mask) defines area the input signal must not encroach in order for the DRAM input receiver to be expected to be able to successfully capture a valid input signal with BER of 1e-16; any input signal encroaching within the Rx Mask is subject to being invalid data. The Rx Mask is the receiver property for each DQ input pin and it is not the valid data-eye.
Figure 24. DQ Receiver(Rx) compliance mask
DQx
Vcent_DQx Vcent_DQy
DQy
(Smallest Vref_DQ Level)
DQz
(Largest Vref_DQ Level)
Vcent_DQz
Vcent_DQ(midpoint)
Vref variation (Component)
Figure 25. Vcent_DQ Variation to Vcent_DQ(midpoint)
The Vref_DQ voltage is an internal reference voltage level that shall be set to the properly trained setting, which is generally Vcent_DQ(midpoint), in order to have valid Rx Mask values.
Vcent_DQ is defined as the midpoint between the largest Vref_DQ voltage level and the smallest Vref_DQ voltage level across all DQ pins for a given DDR4 DRAM component. Each DQ pin Vref level is defined by the center, i.e. widest opening, of the cumulative data input eye as depicted in Figure 25. This clarifies that any DDR4 DRAM component level variation must be accounted for within the DDR4 DRAM Rx mask.The component level Vref will be set by the system to account for Ron and ODT settings.
- 71 -
Page 71
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
DRAMa
DQx-z
DRAMb
DQy
DRAMb
DQz
DQS, DQs Data-in at DRAM Ball
Rx Mask
DQS_t
DQS_c
0.5xTdiVW 0.5xTdiVW
Rx Mask
TdiVW
t
DQS2DQ
Rx Mask
t
DQ2DQ
Rx Mask
t
DQS2DQ
DRAMa
VdiVW
DRAMb
VdiVW
DRAMb
VdiVW
DQx-z
DQy
DQz
t
DQS, DQs Data-in at DRAM Ball
Rx Mask - Alternative View
DQS_t
DQS_c
0.5xTdiVW 0.5xTdiVW
Rx Mask
TdiVW
t
+ 0.5 x TdiVW
DQS2DQ
Rx Mask
TdiVW
Rx Mask
TdiVW
DQ2DQ
t
DQS2DQ
t
DQ2DQ
+ 0.5 x TdiVW
VdiVW
VdiVW
VdiVW
DRAMc
Rx Mask
DQz
t
DQ2DQ
DRAMc
Rx Mask
DQy
NOTE : DQx represents an optimally centered mask. NOTE : DRAMa represents a DRAM without any DQS/DQ skews. DQy represents earliest valid mask. DRAMb represents a DRAM with early skews (negative t DQz represents latest valid mask.
NOTE : Figures show skew allowed between DRAM to DRAM and DQ to DQ for a DRAM. Signals assume data centered aligned at DRAM Latch.
TdiPW is not shown; composite data-eyes shown would violate TdiPW. VCENT DQ(midpoint) is not shown but is assummed to be midpoint of VdiVW..
Figure 26. DQS to DQ and DQ to DQ Timings at DRAM Balls
All of the timing terms in Figure 26 are measured at the VdIVW voltage levels centered around Vcent_DQ and are referenced to the DQS_t/DQS_c center aligned to the DQ per pin.
DRAMc
VdiVW
DQz
t
DQ2DQ
DRAMc
VdiVW
DQy
DRAMc represents a DRAM with delayed skews (positive t
Rx Mask
TdiVW
Rx Mask
TdiVW
t
DQ2DQ
DQS2DQ
DQS2DQ).
VdiVW
VdiVW
).
- 72 -
Page 72
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
The rising edge slew rates are defined by srr1 and srr2. The slew rate measurement points for a rising edge are shown in Figure 27 below: A low to high transition tr1 is measured from 0.5*VdiVW(max) below Vcent_DQ(midpoint) to the last transition through 0.5*VdiVW(max) above Vcent_DQ(midpoint) while tr2 is measured from the last transition through 0.5*VdiVW(max) above Vcent_DQ(midpoint) to the first transition through the 0.5*VIHL_AC(min) above Vcent_DQ(midpoint).
Rising edge slew rate equations: srr1 = VdIVW(max) / tr1 srr2 = (VIHL_AC(min) – VdIVW(max)) / (2*tr2)
Figure 27. Slew Rate Conditions For Rising Transition
The falling edge slew rates are defined by srf1 and srf2. The slew rate measurement points for a falling edge are shown in Figure 28 below: A high to low transition tf1 is measured from 0.5*VdiVW(max) above Vcent_DQ(midpoint) to the last transition through 0.5*VdiVW(max) below Vcent_DQ(midpoint) while tf2 is measured from the last transition through 0.5*VdiVW(max) below Vcent_DQ(midpoint) to the first transition through the 0.5*VIHL_AC(min) below Vcent_DQ(pin mid).
Falling edge slew rate equations: srf1 = VdIVW(max) / tf1 srf2 = (VIHL_AC(min) – VdIVW(max)) / (2*tf2)
Figure 28. Slew Rate Conditions For Falling Transition
- 73 -
Page 73
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 53] DRAM DQs In Receive Mode;
Symbol Parameter
VdIVW Rx Mask voltage - pk-pk - 136 - 130 - 120 mV 1,2,10
TdIVW Rx timing window - 0.2 - 0.2 - 0.22 UI* 1,2,10
VIHL_AC DQ AC input swing pk-pk 186 - 160 - 150 - mV 3,4,10
TdIPW DQ input pulse width 0.58 - 0.58 - 0.58 - UI* 5,10
tDQS2DQ Rx Mask DQS to DQ offset -0.17 0.17 -0.17 0.17 -0.19 0.19 UI* 6, 10
tDQ2DQ Rx Mask DQ to DQ offset - TBD - TBD - 0.105 UI* 7
Input Slew Rate over VdIVW
srr1, srf1
srr2
srf2
NOTE :
1) Data Rx mask voltage and timing total input valid window where VdIVW is centered around Vcent_DQ(midpoint) after VrefDQ training is completed. The data Rx mask is applied per bit and should include voltage and temperature drift terms. The input buffer design specification is to achieve at least a BER = e-16 when the RxMask is not violated. The BER will be characterized and extrapolated if necessary using a dual dirac method from a higher BER(tbd).
2) Defined over the DQ internal Vref range 1.
3) See Overshoot and Undershoot Specifications.
4) DQ input pulse signal swing into the receiver must meet or exceed VIHL AC(min). VIHL_AC(min) is to be achieved on an UI basis when a rising and falling edge occur in the same UI, i.e. a valid TdiPW.
5) DQ minimum input pulse width defined at the Vcent_DQ(midpoint).
6) DQS to DQ offset is skew between DQS and DQs within a nibble (x4) or word (x8, x16) at the DDR4 SDRAM balls over process, voltage, and temperature.
7) DQ to DQ offset is skew between DQs within a nibble (x4) or word (x8, x16) at the DDR4 SDRAM balls for a given component over process, voltage, and temperature.
8) Input slew rate over VdIVW Mask centered at Vcent_DQ(midpoint). Slowest DQ slew rate to fastest DQ slew rate per transition edge must be within 1.7 V/ns of each other.
9) Input slew rate between VdIVW Mask edge and VIHL_AC(min) points.
10) All Rx Mask specifications must be satisfied for each UI. For example, if the minimum input pulse width is violated when satisfying TdiVW(min), VdiVW(max), and minimum
slew rate limits, then either TdiVW(min) or minimum slew rates would have to be increased to the point where the minimum input pulse width would no longer be violated.
if tCK >0.937ns
Input Slew Rate over VdIVW if 0.937ns > tCK >= 0.625ns
Rising Input Slew Rate over 1/2 VIHL_AC
Falling Input Slew Rate over 1/2 VIHL_AC
1600/1866/2133 2400 2666
min max min max min max
1.0 9 1.0 9 1.0 9 V/ns 8,10
- - 1.25 9 1.25 9 V/ns 8,10
0.2*srr1 9 0.2*srr1 9 0.2*srr1 9 V/ns 9,10
0.2*srf1 9 0.2*srf1 9 0.2*srr1 9 V/ns 9,10
Unit NOTE
* UI=tck(avg)min/2
- 74 -
Page 74
Rev. 1.1
datasheet DDR4 SDRAMECC Unbuffered DIMM

17.3 Command, Control, and Address Setup, Hold, and Derating

The total tIS (setup time) and tIH (hold time) required is calculated to account for slew rate variation by adding the data sheet tIS (base) values, the VIL(AC)/VIH(AC) points, and tIH (base) values, the VIL(DC)/VIH(DC) points; to the ΔtIS and ΔtIH derating values, respectively. The base values are derived with single-end signals at 1V/ns and differential clock at 2V/ns. Example: tIS (total setup time) = tIS (base) + ΔtIS.
For a valid transition, the input signal has to remain above/below VIH(AC)/VIL(AC) for the time defined by tVAC. Although the total setup time for slow slew rates might be negative (for example, a valid input signal will not have reached VIH(AC)/ VIL(AC) at the time of
the rising clock transition), a valid input signal is still required to complete the transition and to reach VIH(AC)/ VIL(AC). For slew rates that fall between the values listed in derating tables, the derating values may be obtained by linear interpolation.
Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VIH(AC)min that does not ring back below VIH(DC)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VIL(AC)max that does not ring back above VIL(DC)max. Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VIH(AC)min that does not ring back below VIH(DC)min. Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VIL(AC)minthat does not ring back above VIL(DC)max.
[Table 54] Command, Address, Control Setup and Hold Values
DDR4 1600 1866 2133 2400 2666 Unit Reference
tIS(base, AC100) 115 100 80 62 - ps VIH/L(ac)
tIH(base, DC75) 140 125 105 87 - ps VIH/L(dc)
tIS(base, AC 90) ----55psVIH/L(ac)
tIH(base, DC 65) ----80psVIH/L(dc)
tIS/tIH @ VREF 215 200 180 162 145 ps
NOTE :
1) Base ac/dc referenced for 1V/ns slew rate and 2 V/ns clock slew rate.
2) Values listed are referenced only; applicable limits are defined elsewhere.
[Table 55] Command, Address, Control Input Voltage Values
DDR4 1600 1866 2133 2400 2666 Unit Reference
VIH.CA(AC)min 100 100 100 100 90 mV VIH/L(ac)
VIH.CA(DC)min 75 75 75 75 65 mV VIH/L(dc)
VIL.CA(DC)max -75 -75 -75 -75 -65 mV VIH/L(dc)
VIL.CA(AC)max -100 -100 -100 -100 -90 mV VIH/L(ac)
NOTE :
1) Command, Address, Control input levels relative to VREFCA.
2) Values listed are referenced only; applicable limits are defined elsewhere.
- 75 -
Page 75
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 56] Derating values DDR4-1600/1866/2133/2400 tIS/tIH - ac/dc based
ΔtIS, ΔIH derating in [ps] AC/DC based
CK_t, CK_c Differential Slew Rate
10V/ns 8V/ns 6V/ns 4V/ns 3.0V/ns 2.0V/ns 1.5V/ns 1V/ns
ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH
7 765476557756795882608664947311189
6 735374537554775679588363927110888
5 705071517252745476568060886810585
4 654666476748695071527556836510081
CMD,
ADDR,
CNTL
Input Slew
rate
V/ns
NOTE :
1) VIH/L(ac) = +/-100mV, VIH/L(dc) = +/-75mV; relative to VREFCA.
3 57405741584260446346675075589275
2 40284128422944314633503858467563
1.5 23 15 24 16 25 17 27 19 29 21 33 25 42 33 58 50
1 -10 -10 -9 -9 -8 -8 -6 -6 -4 -4 0 0 8 8 25 25
0.9 -17 -14 -16 -14 -15 -13 -13 -10 -11 -8 -7 -4 1 4 18 21
0.8 -26 -19 -25 -19 -24 -18 -22 -16 -20 -14 -16 -9 -7 -1 9 16
0.7 -37 -26 -36 -25 -35 -24 -33 -22 -31 -20 -27 -16 -18 -8 -2 9
0.6 -52 -35 -51 -34 -50 -33 -48 -31 -46 -29 -42 -25 -33 -17 -17 0
0.5 -73 -48 -72 -47 -71 -46 -69 -44 -67 -42 -63 -38 -54 -29 -38 -13
0.4 -104 -66 -103 -66 -102 -65 -100 -63 -98 -60 -94 -56 -85 -48 -69 -31
Rev. 1.1
1)
[Table 57] Derating values DDR4-2666 tIS/tIH - ac/dc based
ΔtIS, ΔIH derating in [ps] AC/DC based
10V/ns 8V/ns 6V/ns 4V/ns 3.0V/ns 2.0V/ns 1.5V/ns 1V/ns
ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH
7 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
6 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
5 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
4 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
CMD,
ADDR,
CNTL
Input Slew
rate
V/ns
NOTE :
1) VIH/L(ac) = +/-tbd mV, VIH/L(dc) = +/- tbd mV; relative to VREFCA
3 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
2 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
1.5 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
1 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
0.9 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
0.8 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
0.7 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
0.6 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
0.5 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
0.4 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
1)
CK_t, CK_c Differential Slew Rate
- 76 -
Page 76
datasheet DDR4 SDRAMECC Unbuffered DIMM

17.4 DDR4 Function Matrix

DDR4 SDRAM has several features supported by ORG and also by Speed. The following Table is the summary of the features.
[Table 58] Function Matrix (By ORG. V:Supported, Blank:Not supported)
Functions x4 x8 NOTE
Write Leveling
Temperature controlled Refresh
Low Power Auto Self Refresh
Fine Granularity Refresh
Multi Purpose Register
Data Mask
Data Bus Inversion
TDQS
ZQ calibration
DQ Vref Training
Per DRAM Addressability
Mode Register Readout
CAL
WRITE CRC
CA Parity
Control Gear Down Mode
Programmable Preamble
Maximum Power Down Mode
Boundary Scan Mode
Additive Latency
3DS
VV
VV
VV
VV
VV
V
V
V
VV
VV
VV
VV
VV
VV
VV
VV
VV
VV
VV
VV
Rev. 1.1
- 77 -
Page 77
datasheet DDR4 SDRAMECC Unbuffered DIMM
[Table 59] Function Matrix (By Speed. V:Supported, Blank:Not supported)
DLL Off mode DLL On mode
Functions
Write Leveling
Temperature controlled Refresh
Low Power Auto Self Refresh
Fine Granularity Refresh
Multi Purpose Register
Data Mask
Data Bus Inversion
TDQS
ZQ calibration
DQ Vref Training
Per DRAM Addressability
Mode Register Readout
CAL
WRITE CRC
CA Parity
Control Gear Down Mode
Programmable Preamble (= 2tCK)
Maximum Power Down Mode
Boundary Scan Mode
3DS
equal or slower
than 250Mbps
VVVV
VVVV
VVVV
VVVV
VVVV
VVVV
VVVV
VVVV
VVVV
VVVV
VVVV
VVVV
1600/1866/2133
Mbps
VVV
VVV
VVV
VVV
VVV
VVV
2400Mbps 2666Mbps
V
VV
Rev. 1.1
NOTE
- 78 -
Page 78
datasheet DDR4 SDRAMECC Unbuffered DIMM

18. PHYSICAL DIMENSIONS

18.1 1Gx8 based 1Gx72 Module (1 Rank) - M391A1K43BB1

133.35
126.65
(2X 3.35)
30.75
Rev. 1.1
Units : Millimeters
31.25
0.35 Max
C A D B
56.10
4.30
1.50±0.05
0.35 Max
E
64.60
3.85±0.10
Detail A
0.6 ± 0.03
0.85
Max 1.20
1.40±0.10
NOTE : Passive devices are in the back
side only for M391A1K43BB1
2.1 B
2.60 E
0.25
0.50
Detail B,E
The used device is 1G x8 DDR4 SDRAM, FBGA. DDR4 SDRAM Part NO : K4A8G085WB-BC**
NOTE :
1) Tolerances on all dimensions ±0.15 unless otherwise specified.
2.10
9.35
10.20
Detail C
- 79 -
2.60
2.60
9.35
10.20
Detail D
2.10
0.50
Page 79
datasheet DDR4 SDRAMECC Unbuffered DIMM

18.2 1Gx8 based 1Gx72 Module (1 Rank) - M391A1K43BB2

133.35
126.65
(2X 3.35)
30.75
31.25
Max 1.20
Rev. 1.1
Units : Millimeters
0.35 Max
2.1 B
2.60 E
C A D B
56.10
4.30
1.50±0.05
0.35 Max
E
3.85±0.10
Detail A
0.6 ± 0.03
0.85
2.10
0.25
0.50
Detail B,E
64.60
9.35
10.20
Detail C
2.60
2.60
1.40±0.10
9.35
10.20
Detail D
2.10
0.50
The used device is 1G x8 DDR4 SDRAM, FBGA. DDR4 SDRAM Part NO : K4A8G085WB-BC**
NOTE :
1) Tolerances on all dimensions ±0.15 unless otherwise specified.
- 80 -
Page 80
datasheet DDR4 SDRAMECC Unbuffered DIMM

18.3 1Gx8 based 2Gx72 Module (2 Ranks) - M391A2K43BB1

133.35
30.75
126.65
(2X 3.35)
Rev. 1.1
Units : Millimeters
31.25
E
0.35 Max
C A D B
56.10
4.30
1.50±0.05
0.35 Max
Detail A
0.6 ± 0.03
0.85
2.1 B
2.60 E
0.25
0.50
Detail B,E
The used device is 1G x8 DDR4 SDRAM, FBGA. DDR4 SDRAM Part NO : K4A8G085WB-BC**
NOTE :
1) Tolerances on all dimensions ±0.15 unless otherwise specified.
3.85±0.10
2.10
64.60
9.35
10.20
Detail C
Max 3.9
1.40±0.10
2.60
2.60
9.35
10.20
Detail D
2.10
0.50
- 81 -
Loading...