Samsung M391A1K43BB2-CTD User Manual

Rev. 1.1, Apr. 2018

M391A1K43BB1

M391A1K43BB2

M391A2K43BB1

288pin ECC Unbuffered DIMM based on 8Gb B-die

78FBGA with Lead-Free & Halogen-Free (RoHS compliant)

datasheet

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND

SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise.

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2018 Samsung Electronics Co., Ltd.GG All rights reserved.

- 1 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

Revision History

Revision No.

History

Draft Date

Remark

Editor

0.5

- First SPEC release

15th Nov, 2017

Preliminary

J.Y.Bae

 

- Separate ECC and Non ECC datasheets.

 

 

J.H.Han

1.0

- Final datasheet.

13th Dec, 2017

Final

J.Y.Bae

 

- Correct typo.

 

 

J.H.Han

 

- Correct speed bin table numbering.

 

 

 

 

- Add DRAM Package Electrical Specifications (x4/x8) table.

 

 

 

1.1

- Correct typo in Key features.

26th Apr, 2018

Final

C.M.Kang

- Update Single-ended AC & DC Input Levels for Command and Address

J.Y.Bae

table.

 

- Update Differential AC and DC Input Levels table.

 

- Update Cross point voltage for differential input signals (CK) table.

 

- Update Differential AC and DC Input Levels for DQS table.

 

- Update Differential Input Level for DQS_t, DQS_c table.

 

- Update Differential Input Slew Rate for DQS_t, DQS_c table.

 

- Update Output Driver DC Electrical Characteristics, assuming

 

RZQ=240ohm; entire operating temperature range; after proper ZQ cali-

 

bration table.

 

- Update AC Timing table for 2666Mbps.

 

1. tDLLK : 854 -> 1024 [nCK].

 

2. tXPR_GEAR Min. : TBD -> tXPR

 

3. tXS_GEAR Min. : TBD -> tXS

 

4. tSYNC_GEAR Min. : TBD -> tMOD + 4tCK

 

5. tCMD_GEAR Min. : TBD -> tMOD

 

- Update DRAM DQs In Receive Mode table.

 

- Update Command, Address, Control Setup and Hold Values table.

 

- Command, Address, Control Input Voltage Values table.

 

- 2 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

Table Of Contents

 

288pin ECC Unbuffered DIMM based on 8Gb B-die

 

1. DDR4 Unbuffered DIMM ORDERING INFORMATION.......................................................................................................................

5

2. KEY FEATURES .................................................................................................................................................................................

5

3. ADDRESS CONFIGURATION ............................................................................................................................................................

5

4. x72 DIMM Pin Configurations (Front side/Back side)..........................................................................................................................

6

5. PIN DESCRIPTION ............................................................................................................................................................................

7

6. INPUT/OUTPUT FUNCTIONAL DESCRIPTION ................................................................................................................................

8

6.1 Address Mirroring ...........................................................................................................................................................................

10

7. FUNCTION BLOCK DIAGRAM: ..........................................................................................................................................................

11

7.1 8GB, 1Gx72 ECC Module (Populated as 1 rank of x8 DDR4 SDRAMs)........................................................................................

11

7.2 16GB, 2Gx72 ECC Module (Populated as 2 ranks of x8 DDR4 SDRAMs) ....................................................................................

12

8. ABSOLUTE MAXIMUM RATINGS ......................................................................................................................................................

13

9. AC & DC OPERATING CONDITIONS ................................................................................................................................................

13

10. AC & DC INPUT MEASUREMENT LEVELS.....................................................................................................................................

14

10.1

AC & DC Logic Input Levels for Single-Ended Signals.................................................................................................................

14

10.2

AC and DC Input Measurement Levels: VREF Tolerances..........................................................................................................

14

10.3

AC and DC Logic Input Levels for Differential Signals .................................................................................................................

15

10.3.1. Differential Signals Definition ................................................................................................................................................

15

10.3.2. Differential Swing Requirements for Clock (CK_t - CK_c) ....................................................................................................

15

10.3.3. Single-ended Requirements for Differential Signals .............................................................................................................

16

10.3.4. Address, Command and Control Overshoot and Undershoot specifications........................................................................

17

10.3.5. Clock Overshoot and Undershoot Specifications..................................................................................................................

18

10.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications......................................................................................

19

10.4

Slew Rate Definitions....................................................................................................................................................................

20

10.4.1. Slew Rate Definitions for Differential Input Signals (CK) ......................................................................................................

20

10.4.2. Slew Rate Definition for Single-ended Input Signals (CMD/ADD) ........................................................................................

21

10.5

Differential Input Cross Point Voltage...........................................................................................................................................

22

10.6

CMOS rail to rail Input Levels .......................................................................................................................................................

23

10.6.1. CMOS rail to rail Input Levels for RESET_n .........................................................................................................................

23

10.7

AC and DC Logic Input Levels for DQS Signals...........................................................................................................................

24

10.7.1. Differential signal definition ...................................................................................................................................................

24

10.7.2. Differential swing requirements for DQS (DQS_t - DQS_c)..................................................................................................

24

10.7.3. Peak voltage calculation method ..........................................................................................................................................

25

10.7.4. Differential Input Cross Point Voltage ...................................................................................................................................

26

10.7.5. Differential Input Slew Rate Definition ..................................................................................................................................

27

11. AC AND DC OUTPUT MEASUREMENT LEVELS ...........................................................................................................................

28

11.1

Output Driver DC Electrical Characteristics..................................................................................................................................

28

11.1.1. Alert_n output Drive Characteristic .......................................................................................................................................

30

11.1.2. Output Driver Characteristic of Connectivity Test (CT) Mode...............................................................................................

31

11.2

Single-ended AC & DC Output Levels..........................................................................................................................................

32

11.3

Differential AC & DC Output Levels..............................................................................................................................................

32

11.4

Single-ended Output Slew Rate ...................................................................................................................................................

33

11.5

Differential Output Slew Rate .......................................................................................................................................................

34

11.6

Single-ended AC & DC Output Levels of Connectivity Test Mode ...............................................................................................

35

11.7

Test Load for Connectivity Test Mode Timing ..............................................................................................................................

36

12. SPEED BIN .......................................................................................................................................................................................

37

12.1

Speed Bin Table Note...................................................................................................................................................................

42

13. IDD AND IDDQ SPECIFICATION PARAMETERS AND TEST CONDITIONS .................................................................................

43

13.1

IDD, IPP and IDDQ Measurement Conditions..............................................................................................................................

43

14. IDD SPEC TABLE .............................................................................................................................................................................

58

15. INPUT/OUTPUT CAPACITANCE .....................................................................................................................................................

61

16. ELECTRICAL CHARACTERISTICS & AC TIMING ..........................................................................................................................

62

16.1

Reference Load for AC Timing and Output Slew Rate .................................................................................................................

62

16.2 tREFI.............................................................................................................................................................................................

62

16.3

Clock Specification .......................................................................................................................................................................

63

16.3.1. Definition for tCK(abs)...........................................................................................................................................................

63

16.3.2. Definition for tCK(avg)...........................................................................................................................................................

63

16.3.3. Definition for tCH(avg) and tCL(avg)....................................................................................................................................

63

16.3.4. Definition for tERR(nper).......................................................................................................................................................

63

17. TIMING PARAMETERS BY SPEED GRADE ...................................................................................................................................

64

17.1

Rounding Algorithms ...................................................................................................................................................................

70

17.2

The DQ input receiver compliance mask for voltage and timing ..................................................................................................

71

17.3

Command, Control, and Address Setup, Hold, and Derating .......................................................................................................

75

17.4

DDR4 Function Matrix ..................................................................................................................................................................

77

18. PHYSICAL DIMENSIONS .................................................................................................................................................................

79

18.1

1Gx8 based 1Gx72 Module (1 Rank) - M391A1K43BB1 .............................................................................................................

79

18.2

1Gx8 based 1Gx72 Module (1 Rank) - M391A1K43BB2 .............................................................................................................

80

18.3

1Gx8 based 2Gx72 Module (2 Ranks) - M391A2K43BB1............................................................................................................

81

- 3 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

1. DDR4 Unbuffered DIMM ORDERING INFORMATION

[Table 1] Ordering Information Table

Part Number 2)

Density

Organization

Component Composition1)

Number of

Height

Rank

 

 

 

 

 

M391A1K43BB1-CPB/RC

8GB

1Gx72

1Gx8(K4A8G085WB-BCPB/RC)*9

1

31.25mm

 

 

 

 

 

 

M391A1K43BB2-CTD

8GB

1Gx72

1Gx8(K4A8G085WB-BCTD)*9

1

31.25mm

 

 

 

 

 

 

M391A2K43BB1-CPB/RC/TD

16GB

2Gx72

1Gx8(K4A8G085WB-BC##)*18

2

31.25mm

 

 

 

 

 

 

NOTE :

1)"##" -PB/RC/TD

2)PB(2133Mbps 15-15-15)/RC(2400Mbps 17-17-17)/TD(2666Mbps 19-19-19)

- DDR4-2666(19-19-19) is backward compatible to lower frequency.

2. KEY FEATURES

[Table 2] Speed Bins

Speed

DDR4-1600

DDR4-1866

DDR4-2133

DDR4-2400

DDR4-2666

Unit

11-11-11

13-13-13

15-15-15

17-17-17

19-19-19

 

 

tCK(min)

1.25

1.071

0.937

0.833

0.75

ns

 

 

 

 

 

 

 

CAS Latency

11

13

15

17

19

nCK

 

 

 

 

 

 

 

tRCD(min)

13.75

13.92

14.06

14.16

14.25

ns

 

 

 

 

 

 

 

tRP(min)

13.75

13.92

14.06

14.16

14.25

ns

 

 

 

 

 

 

 

tRAS(min)

35

34

33

32

32

ns

 

 

 

 

 

 

 

tRC(min)

48.75

47.92

47.06

46.16

46.25

ns

 

 

 

 

 

 

 

JEDEC standard 1.2V ± 0.06V Power Supply

VDDQ = 1.2V ± 0.06V

800 MHz fCK for 1600Mb/sec/pin,933 MHz fCK for 1866Mb/sec/pin, 1067MHz fCK for 2133Mb/sec/pin,1200MHz fCK for 2400Mb/sec/pin,1333MHz fCK for 2666Mb/sec/pin

16 Banks (4 Bank Groups)

Programmable CAS Latency: 10,11,12,13,14,15,16,17,18,19,20

Programmable Additive Latency (Posted CAS): 0, CL - 2, or CL - 1 clock

Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12 (DDR4-1866), 11,14 (DDR4-2133), 12,16 (DDR4-2400) and 14,18 (DDR42666)

Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS]

Bi-directional Differential Data Strobe

On Die Termination using ODT pin

Average Refresh Period 7.8us at lower then TCASE 85 C, 3.9us at 85 C < TCASE 95 C

Asynchronous Reset

3. ADDRESS CONFIGURATION

Organization

Row Address

Column Address

Bank Group Address

Bank Address

Auto Precharge

512Mx16(8Gb) based Module

A0-A15

A0-A9

BG0

BA0-BA1

A10/AP

 

 

 

 

 

 

1Gx8(8Gb) based Module

A0-A15

A0-A9

BG0-BG1

BA0-BA1

A10/AP

 

 

 

 

 

 

- 4 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

4. x72 DIMM Pin Configurations (Front side/Back side)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin

Front

Pin

Back

Pin

Front

Pin

Back

Pin

Front

Pin

Back

Pin

Front

Pin

Back

1

1.2V,NC

145

1.2V,NC

39

VSS

183

DQ25

77

VTT

221

VTT

114

VSS

258

DQ47

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TDQS12_t,DQ

 

 

 

 

 

 

 

 

 

 

2

VSS

146

VREFCA

40

S12_t,DM3_n,

184

VSS

 

KEY

 

115

DQ42

259

VSS

 

 

 

 

 

DBI3_n,NC

 

 

 

 

 

 

 

 

 

 

3

DQ4

147

VSS

41

TDQS12_c,D

185

DQS3_c

78

EVENT_n

222

PARITY

116

VSS

260

DQ43

QS12_c,NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

VSS

148

DQ5

42

VSS

186

DQS3_t

79

A0

223

VDD

117

DQ52

261

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

DQ0

149

VSS

43

DQ30

187

VSS

80

VDD

224

BA1

118

VSS

262

DQ53

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

VSS

150

DQ1

44

VSS

188

DQ31

81

BA0

225

A10/AP

119

DQ48

263

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TDQS9_t,DQS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

9_t,DM0_n,DB

151

VSS

45

DQ26

189

VSS

82

RAS_n/A16

226

VDD

120

VSS

264

DQ49

 

I0_n,NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

TDQS9_c,DQ

 

 

 

 

 

 

 

 

 

 

 

TDQS15_t,DQ

 

 

152

DQS0_c

46

VSS

190

DQ27

83

VDD

227

RFU

121

S15_t,DM6_n,

265

VSS

S9_c,NC

 

 

 

 

 

 

 

 

 

 

 

 

DBI6_n,NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

VSS

153

DQS0_t

47

CB4,NC

191

VSS

84

CS0_n

228

WE_n/A14

122

TDQS15_c,D

266

DQS6_c

QS15_c,NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

DQ6

154

VSS

48

VSS

192

CB5,NC

85

VDD

229

VDD

123

VSS

267

DQS6_t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

VSS

155

DQ7

49

CB0,NC

193

VSS

86

CAS_n/A15

230

NC,SAVE_n

124

DQ54

268

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

DQ2

156

VSS

50

VSS

194

CB1,NC

87

ODT0

231

VDD

125

VSS

269

DQ55

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TDQS17_t,DQ

 

 

 

 

 

 

 

 

 

 

13

VSS

157

DQ3

51

S17_t,DM8_n,

195

VSS

88

VDD

232

A13

126

DQ50

270

VSS

 

 

 

 

 

DBI8_n,NC

 

 

 

 

 

 

 

 

 

 

14

DQ12

158

VSS

52

TDQS17_c,D

196

DQS8_c

89

CS1_n

233

VDD

127

VSS

271

DQ51

QS17_c,NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

VSS

159

DQ13

53

VSS

197

DQS8_t

90

VDD

234

NC,A17

128

DQ60

272

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

DQ8

160

VSS

54

CB6,NC

198

VSS

91

ODT1

235

NC,C2

129

VSS

273

DQ61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17

VSS

161

DQ9

55

VSS

199

CB7,NC

92

VDD

236

VDD

130

DQ56

274

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TDQS10_t,DQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

S10_t,DM1_n,

162

VSS

56

CB2,NC

200

VSS

93

C0,CS2_n,NC

237

NC,CS3_n,C1

131

VSS

275

DQ57

 

DBI1_n,NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

TDQS10_c,DQ

 

 

 

 

 

 

 

 

 

 

 

TDQS16_t,DQ

 

 

163

DQS1_c

57

VSS

201

CB3,NC

94

VSS

238

SA2

132

S16_t,DM7_n,

276

VSS

S10_c,NC

 

 

 

 

 

 

 

 

 

 

 

 

DBI7_n,NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

VSS

164

DQS1_t

58

RESET_n

202

VSS

95

DQ36

239

VSS

133

TDQS16_c,D

277

DQS7_c

QS16_c,NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21

DQ14

165

VSS

59

VDD

203

CKE1

96

VSS

240

DQ37

134

VSS

278

DQS7_t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

VSS

166

DQ15

60

CKE0

204

VDD

97

DQ32

241

VSS

135

DQ62

279

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23

DQ10

167

VSS

61

VDD

205

RFU

98

VSS

242

DQ33

136

VSS

280

DQ63

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TDQS13_t,DQ

 

 

 

 

 

 

24

VSS

168

DQ11

62

ACT_n

206

VDD

99

S13_t,DM4_n,

243

VSS

137

DQ58

281

VSS

 

 

 

 

 

 

 

 

 

DBI4_n,NC

 

 

 

 

 

 

25

DQ20

169

VSS

63

BG0

207

BG1

100

TDQS13_c,D

244

DQS4_c

138

VSS

282

DQ59

QS13_c,NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

VSS

170

DQ21

64

VDD

208

ALERT_n

101

VSS

245

DQS4_t

139

SA0

283

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27

DQ16

171

VSS

65

A12/BC_n

209

VDD

102

DQ38

246

VSS

140

SA1

284

VDDSPD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28

VSS

172

DQ17

66

A9

210

A11

103

VSS

247

DQ39

141

SCL

285

SDA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TDQS11_t,DQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

S11_t,DM2_n,

173

VSS

67

VDD

211

A7

104

DQ34

248

VSS

142

VPP

286

VPP

 

DBI2_n,NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

TDQS11_t,DQ

174

DQS2_c

68

A8

212

VDD

105

VSS

249

DQ35

143

VPP

287

VPP

S11_t,NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

VSS

175

DQS2_t

69

A6

213

A5

106

DQ44

250

VSS

144

RFU

288

VPP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

DQ22

176

VSS

70

VDD

214

A4

107

VSS

251

DQ45

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE :

 

 

33

VSS

177

DQ23

71

A3

215

VDD

108

DQ40

252

VSS

 

 

1) Light colored text indicates functions

 

 

 

 

 

 

 

 

 

 

 

 

34

DQ18

178

VSS

72

A1

216

A2

109

VSS

253

DQ41

that are not applicable for UDIMM wir-

ing. An example is the A17 for pin 234

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TDQS14_t,DQ

 

 

because UDIMMs defined by this speci-

35

VSS

179

DQ19

73

VDD

217

VDD

110

S14_t,DM5_n,

254

VSS

fication will never have DIMM wiring for

 

 

 

 

 

 

 

 

 

DBI5_n,NC

 

 

this pin.

 

 

36

DQ28

180

VSS

74

CK0_t

218

CK1_t

111

TDQS14_c,D

255

DQS5_c

 

 

 

 

QS14_c,NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37

VSS

181

DQ29

75

CK0_c

219

CK1_c

112

VSS

256

DQS5_t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38

DQ24

182

VSS

76

VDD

220

VDD

113

DQ46

257

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 5 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

5. PIN DESCRIPTION

Pin Name

Description

A0–A171)

SDRAM address bus

BA0, BA1

SDRAM bank select

 

 

BG0, BG1

SDRAM bank group select

 

 

RAS_n2)

SDRAM row address strobe

CAS_n3)

SDRAM column address strobe

WE_n4)

SDRAM write enable

CS0_n, CS1_n

DIMM Rank Select Lines

 

 

CKE0, CKE1

SDRAM clock enable lines

 

 

ODT0, ODT1

SDRAM on-die termination control lines

 

 

ACT_n

SDRAM activate

 

 

DQ0–DQ63

DIMM memory data bus

 

 

CB0–CB7

DIMM ECC check bits

 

 

TDQS0_t-TDQS8_t

Dummy loads for mixed populations of x4

based and x8 based RDIMMs.

TDQS0_c-TDQS8_c

Not used on UDIMMs.

 

 

DQS0_t–DQS8_t

SDRAM data strobes

(positive line of differential pair)

 

 

 

DQS0_c–DQS8_c

SDRAM data strobes

(negative line of differential pair)

 

 

 

DM0_n–DM8_n,

SDRAM data masks/data bus inversion

DBI0_n-DBI8_n

(x8-based x64 DIMMs)

 

 

CK0_t, CK1_t

SDRAM clocks

(positive line of differential pair)

 

 

 

CK0_c, CK1_c

SDRAM clocks

(negative line of differential pair)

 

 

 

Pin Name

Description

SCL

I2C serial bus clock for SPD-TSE

SDA

I2C serial bus data line for SPD-TSE

SA0–SA2

I2C slave address select for SPD-TSE

PARITY

SDRAM parity input

 

 

VDD

SDRAM I/O and core power supply

 

 

12 V

Optional power Supply on socket but not

 

used on UDIMM

VREFCA

 

 

 

VSS

Power supply return (ground)

 

 

VDDSPD

Serial SPD-TSE positive power supply

 

 

ALERT_n

SDRAM ALERT_n

 

 

VPP

SDRAM Supply

 

 

RESET_n

Set DRAMs to a Known State

 

 

EVENT_n

SPD signals a thermal event has occurred

 

 

VTT

SDRAM I/O termination supply

 

 

RFU

Reserved for future use

 

 

NOTE :

1)Address A17 is not valid for x8 and x16 based SDRAMs. For UDIMMs this connection pin is NC.

2)RAS_n is a multiplexed function with A16.

3)CAS_n is a multiplexed function with A15.

4)WE_n is a multiplexed function with A14.

[Table 3] Temperature Sensor Characteristics

Grade

Range

 

Temperature Sensor Accuracy

Units

NOTE

Min.

 

Typ.

Max.

 

 

 

 

 

 

75 < Ta < 95

-

 

+/- 0.5

+/- 1.0

 

-

B

 

 

 

 

 

C

 

40 < Ta < 125

-

 

+/- 1.0

+/- 2.0

-

 

 

 

 

 

 

 

 

 

-20 < Ta < 125

-

 

+/- 2.0

+/- 3.0

 

-

 

 

 

 

 

 

 

 

 

Resolution

 

0.25

 

C /LSB

-

 

 

 

 

 

 

 

 

- 6 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

6. INPUT/OUTPUT FUNCTIONAL DESCRIPTION

Symbol

Type

Function

CK_t, CK_c

Input

Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the

crossing of the positive edge of CK_t and negative edge of CK_c.

 

 

 

 

 

 

 

Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and device input buffers and

 

 

output drivers. Taking CKE LOW provides Precharge Power-Down and Self-Refresh operation (all banks idle), or

CKE, (CKE1)

Input

Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal

DQ Vref have become stable during the power on and initialization sequence, they must be maintained during all

 

 

operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input

 

 

buffers, excluding CK_t, CK_c, ODT and CKE, are disabled during power-down. Input buffers, excluding CKE, are

 

 

disabled during Self-Refresh.

 

 

 

 

Input

Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection

CS_n (CS1_n)

on systems with multiple Ranks. CS_n is considered part of the command code. CS2_n and CS3_n are not used on

 

 

UDIMMs

 

 

 

C0, C1, C2

Input

Chip ID: Chip ID is only used for 3DS for 2,4,8 high stack via TSV to select each slice of stacked component. Chip ID

is considered part of the command code. Not used on UDIMMs.

 

 

 

 

 

 

 

On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the DDR4

ODT (ODT1)

Input

SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/TDQS_t, NU/TDQS_c

(When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. For x16 configuration ODT

 

 

is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, DMU_n, and DML_n signal. The ODT pin will be

 

 

ignored if MR1 is programmed to disable RTT_NOM.

 

 

 

ACT_n

Input

Activation Command Input: ACT_n defines the Activation command being entered along with CS_n. The input into

RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14.

 

 

 

 

 

RAS_n/A16,

 

Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being entered.

Input

Those pins have multi function. For example, for activation with ACT_n Low, these are Addresses like A16, A15 and

CAS_n/A15,

A14 but for non-activation command with ACT_n High, these are Command pins for Read, Write and other

WE_n/A14

 

 

command defined in command truth table.

 

 

 

 

 

DM_n/DBI_n/

 

Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is masked when

Input/

DM_n is sampled LOW coincident with that input data during a Write access. DBI_n is an input/output identifying

TDQS_t,

whether to store/output the true or inverted data. If DBI_n is LOW, the data will be stored/output after inversion

(DMU_n/ DBIU_n),

Output

inside the DDR4 SDRAM and not inverted if DBI_n is HIGH. TDQS is only supported in x8 SDRAM configurations.

(DML_n/ DBIL_n)

 

 

TDQS is not valid for UDIMMs.

 

 

 

 

 

BG0 - BG1

Input

Bank Group Inputs: BG0 - BG1 define which bank group an Active, Read, Write or Precharge command is being

applied. BG0 also determines which mode register is to be accessed during a MRS cycle. x4/x8 SDRAM

 

 

configurations have BG0 and BG1. x16 based SDRAMs only have BG0.

 

 

 

BA0 - BA1

Input

Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is being

applied. Bank address also determines which mode register is to be accessed during a MRS cycle.

 

 

 

 

 

 

 

Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/Write

A0 - A17

Input

commands to select one location out of the memory array in the respective bank. A10/AP, A12/BC_n, RAS_n/A16,

CAS_n/A15 and WE_n/A14 have additional functions. See other rows. The address inputs also provide the op-code

 

 

 

 

during Mode Register Set commands. A17 is only defined for the x4 SDRAM configuration.

 

 

 

 

 

Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be

A10 / AP

Input

performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge).

A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW)

 

 

 

 

or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses.

 

 

 

A12 / BC_n

Input

Burst Chop: A12/BC_n is sampled during Read and Write commands to determine if burst chop (on-the-fly) will be

performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.

 

 

 

 

 

RESET_n

CMOS

Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH.

Input

RESET_n must be HIGH during normal operation.

 

 

 

 

DQ

Input/

Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at the end

of Data Burst. Any DQ from DQ0-DQ3 may indicate the internal Vref level during test via Mode Register Setting MR4

Output

 

A4=High. Refer to vendor specific data sheets to determine which DQ is used.

 

 

 

 

 

DQS_t, DQS_c,

 

Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the

Input/

x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data

DQSU_t, DQSU_c,

strobe DQS_t, DQSL_t and DQSU_t are paired with differential signals DQS_c, DQSL_c, and DQSU_c,

Output

DQSL_t, DQSL_c

respectively, to provide differential pair signaling to the system during reads and writes. DDR4 SDRAM supports

 

 

 

differential data strobe only and does not support single-ended.

 

 

 

 

 

- 7 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

Symbol

Type

Function

TDQS_t,

Output

Termination Data Strobe: TDQS_t/TDQS_c are not valid for UDIMMs.

TDQS_c

 

 

 

 

 

 

 

Command and Address Parity Input: DDR4 Supports Even Parity check in DRAMs with MR setting. Once it’s

PAR

Input

enabled via Register in MR5, then DRAM calculates Parity with ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0-

BG1, BA0-BA1, A16-A0. LOW Command and address inputs shall have parity check performed when commands

 

 

 

 

are latched via the rising edge of CK_t and when CS_n is low.

 

 

 

 

 

Alert: It has multi functions such as CRC error flag, Command and Address Parity error flag as Output signal. If there

ALERT_n

 

is error in CRC, then ALERT_n goes LOW for the period time interval and goes back HIGH. If there is error in

Output

Command Address Parity Check, then ALERT_n goes LOW for relatively long period until on going DRAM internal

 

 

recovery transaction is complete. During Connectivity Test mode this pin functions as an input. Using this signal or

 

 

not is dependent on the system.

 

 

 

 

 

Connectivity Test Mode Enable : Required on X16 devices and optional input on x4/x8 with densities equal

TEN

 

to or greater than 8Gb.HIGH in this pin will enable Connectivity Test Mode operation along with other pins. It

Input

is a CMOS rail to rail signal with AC high and low at 80% and 20% of VDD. Using this signal or not is

 

 

dependent on System. This pin may be DRAM internally pulled low through a weak pull-down resistor to

 

 

VSS

 

 

 

NC

 

No Connect: No on DIMM electrical connection is present.

 

 

 

VDDQ

Supply

DQ Power Supply: 1.2 V +/- 0.06 V

 

 

 

VSSQ

Supply

DQ Ground

 

 

 

VDD

Supply

Power Supply: 1.2 V +/- 0.06 V

 

 

 

VSS

Supply

Ground

 

 

 

VPP

Supply

DRAM Activating Power Supply: 2.5V (2.375V min, 2.75V max)

 

 

 

12 V

Supply

12 V supply not used on UDIMMs.

 

 

 

VDDSPD

Supply

Power supply used to power the I2C bus on the SPD-TSE 2.5V or 3.3V.

 

 

 

VREFCA

Supply

Reference voltage for CA

 

 

 

ZQ

Supply

Reference Pin for ZQ calibration

 

 

 

NOTE :

1) Input only pins (BG0-BG1,BA0-BA1, A0-A17, ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, CS_n, CKE, ODT, and RESET_n) do not supply termination.

- 8 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

6.1 Address Mirroring

DDR4 two rank UDIMMs will use address mirroring. DRAMs for even ranks will be placed on the front side of the module. DRAMs for odd ranks will be placed on the back side of the module. Wiring of the address bus will be as defined in Table 4.

Since the cross-wired pins have no secondary functions, there is no problem in normal operation. Any data written is read the same way. There are limitations however. When writing to the internal registers with a "load mode" operation, the specific address is required. This requires the controller to know if the rank is mirrored or not. There is a bit assignment in the SPD that indicates whether the module has been designed with the mirrored feature or not. See the DDR4 SPD specification for these details. The controller must read the SPD and have the capability of de-mirroring the address when accessing the odd ranks.

[Table 4] DIMM Wiring Definition for Address Mirroring

Signal Name

DRAM Ball Lable

Comment

Connector

Even Rank

Odd Rank

 

A0

A0

A0

 

 

 

 

 

A1

A1

A1

 

 

 

 

 

A2

A2

A2

 

 

 

 

 

A3

A3

A4

 

 

 

 

 

A4

A4

A3

 

 

 

 

 

A5

A5

A6

 

 

 

 

 

A6

A6

A5

 

 

 

 

 

A7

A7

A8

 

 

 

 

 

A8

A8

A7

 

 

 

 

 

A9

A9

A9

 

 

 

 

 

A10/AP

A10/AP

A10/AP

 

 

 

 

 

A11

A11

A13

 

 

 

 

 

A12/BC_n

A12/BC_n

A12/BC_n

 

 

 

 

 

A13

A13

A11

 

 

 

 

 

A14/WE_n

A14/WE_n

A14/WE_n

 

 

 

 

 

A15/CAS_n

A15/CAS_n

A15/CAS_n

 

 

 

 

 

A16/RAS_n

A16/RAS_n

A16/RAS_n

 

 

 

 

 

A17

A17

A17

Not valid for x8 and x16 DRAM components up to 16Gb.

 

 

 

 

BA0

BA0

BA1

 

 

 

 

 

BA1

BA1

BA0

 

 

 

 

 

BG0

BG0

BG1

BG1 is not valid for x16 DRAM components. For x16 DRAM components

signal BG0 will be wired to DRAM ball BG0 for both ranks.

 

 

 

 

 

 

 

BG1

BG1

BG0

BG1 is not valid for x16 DRAM components. For x16 DRAM components

signal BG0 will be wired to DRAM ball BG0 for both ranks.

 

 

 

 

 

 

 

- 9 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

7. FUNCTION BLOCK DIAGRAM:

7.1 8GB, 1Gx72 ECC Module (Populated as 1 rank of x8 DDR4 SDRAMs)

CK0_t,CK0_c

A[16:0],BA[1:0],

ACT_n,PARITY,BG[1:0]

CS0_n

ODT0

CKE0

DQS0_t

DQS0_c

DQ[7:0]

DM0_n/DBI0_n

DQS1_t

DQS1_c

DQ[15:8]

DBI1_n/DM1_n

DQS2_t

DQS2_c

DQ[23:16]

DBI2_n/DM2_n

DQS3_t

DQS3_c

DQ[31:24]

DBI3_n/DM3_n

DQS8_t

DQS8_c

DQ[71:64]

DBI8_n/DM8_n

Address

CS_n

ODT

CKE

D0

DQS_t

DQS_c

DQ[7:0]

DBI_n/DM_n

Address

CS_n

ODT

CKE

D1

DQS_t

DQS_c

DQ[7:0]

DBI_n/DM_n

Address

CS_n

ODT

CKE

D2

DQS_t

DQS_c

DQ[7:0]

DBI_n/DM_n

Address

CS_n

ODT

CKE

D3

DQS_t

DQS_c

DQ[7:0]

DBI_n/DM_n

Address

CS_n

ODT

CKE

D8

DQS_t

DQS_c

DQ[7:0]

DBI_n/DM_n

CK0_t,CK0_c

A[16:0],BA[1:0],

ACT_n,PARITY,BG[1:0]

CS0_n

ODT0

CKE0

CK

ZQ VSS

DQS4_t

DQS4_c

DQ[39:32]

DBI4_n/DM4_n

CK

ZQ VSS

DQS5_t

DQS5_c

DQ[47:40]

DBI5_n/DM5_n

CK

ZQ VSS

DQS6_t

DQS6_c

DQ[55:48]

DBI6_n/DM6_n

CK

ZQ VSS

DQS7_t

DQS7_c

DQ[63:56]

DBI7_n/DM7_n

CK

ZQ VSS

 

D0

 

D1

 

D2

 

D3

 

D8

 

D4

 

D5

 

D6

 

D7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CKE ODT CS n Address

CK

VSS

 

ZQ

D4

DQS_t

DQS_c

DQ[7:0]

DBI_n/DM_n

CKE ODT CS n Address

CK

VSS

 

ZQ

D5

DQS_t

DQS_c

DQ[7:0]

DBI_n/DM_n

CKE ODT CS n Address

CK

VSS

 

ZQ

D6

DQS_t

DQS_c

DQ[7:0]

DBI_n/DM_n

CKE ODT CS n Address

CK

VSS

 

ZQ

D7

DQS_t

DQS_c

DQ[7:0]

DBI_n/DM_n

SCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EVENT_n

 

 

EVENT_n

 

 

 

 

 

 

 

 

 

SA0

SA1

SA2

 

 

 

 

 

 

 

 

 

 

 

 

SA0

SA1

SA2

Serial PD with Thermal sensor

VDDSPD

VPP

VDD

VTT

VREFCA

VSS

Address, Command and Control lines

NOTE :

1)Unless otherwise noted, resistor values are 15 5%.

2)ZQ resistors are 240 1%. For all other resistor values refer to the appropriate wiring diagram.

3)For part 2 of 2 the DQ resistors are shown for simplicity but are the same physical components as shown on part 1 of 2.

4)EVENT_n is used for SPD with TS. Option Resistor for it should be placed.

SDA

Serial PD D0 - D8 D0 - D8

D0 - D8

D0 - D8

- 10 -

Samsung M391A1K43BB2-CTD User Manual

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

7.2 16GB, 2Gx72 ECC Module (Populated as 2 ranks of x8 DDR4 SDRAMs)

A[16:0],BA[1:0],BG[1:0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACT_n, PARITY,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CK0_t,CK0_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS0_n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ODT0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CKE0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CK1_t,CK1_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS1_n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ODT1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CKE1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ [39:32]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ [7:0]

 

 

 

CK A,BA,BG,Par

 

 

DQ [7:0]

ODT CS n

 

 

A,BA,BG,Par

 

DQS0_t

 

CKE ODT n CS

 

 

 

ZQ

VSS

CKE

CK

 

 

ZQ

VSS

 

DQS_t

D1

 

 

 

 

 

DQS_t

D11

 

 

 

DQS4_t

DQS0_c

 

 

DQS_c

 

 

 

 

 

DQS_c

 

 

 

 

 

 

 

 

 

 

 

 

 

DQS4_c

DQ [7:0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DM0_n/DBI0_n

 

DM_n/DBI_n

 

 

 

 

 

DM_n/DBI_n

 

 

 

 

 

DM4_n/DBI4_n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ [47:40]

 

 

 

 

DQ [7:0]

 

 

 

CK A,BA,BG,Par

 

 

DQ [7:0]

 

 

 

 

 

A,BA,BG,Par

 

DQS1_t

 

CKE ODT n CS

 

 

 

ZQ

VSS

CKE ODT n CS

CK

 

 

ZQ

VSS

 

DQS_t

D2

 

 

 

 

 

DQS_t

D12

 

 

 

DQS5_t

DQS1_c

 

 

DQS_c

 

 

 

 

 

DQS_c

 

 

 

 

 

 

 

 

 

 

 

 

 

DQS5_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ [15:8]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DM1_n/DBI1_n

 

DM_n/DBI_n

 

 

 

 

 

DM_n/DBI_n

 

 

 

 

 

DM5_n/DBI5_n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ [55:48]

 

 

 

 

DQ [7:0]

 

 

 

CK A,BA,BG,Par

 

 

DQ [7:0]

 

 

 

 

 

A,BA,BG,Par

 

DQS2_t

 

CKE ODT n CS

 

 

 

ZQ

VSS

CKE ODT n CS

CK

 

 

ZQ

VSS

 

DQS_t

D3

 

 

 

 

 

DQS_t

D13

 

 

 

DQS6_t

DQS2_c

 

 

DQS_c

 

 

 

 

 

DQS_c

 

 

 

 

 

 

 

 

 

 

 

 

 

DQS6_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ [23:16]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DM2_n/DBI2_n

 

DM_n/DBI_n

 

 

 

 

 

DM_n/DBI_n

 

 

 

 

 

DM6_n/DBI6_n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ [7:0]

 

 

 

CK A,BA,BG,Par

 

VSS

DQ [7:0]

 

CS CS

BG,BA,A ,Par

 

DQ [63:56]

 

 

 

 

CKE ODT n CS

 

 

 

 

CKE

 

 

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

ZQ

 

 

 

 

n n

 

 

ZQ

 

DQS3_t

 

DQS_t

D4

 

 

 

 

 

DQS_t

D140

 

 

 

DQS7_t

DQS3_c

 

 

DQS_c

 

 

 

 

 

DQS_c

 

 

 

 

 

 

 

 

 

 

 

 

 

DQS7_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ [31:24]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DM3_n/DBI3_n

 

DM_n/DBI_n

 

 

 

 

 

DM_n/DBI_n

 

 

 

 

 

DM7_n/DBI7_n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CB [7:0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ [7:0]

 

 

 

CK A,BA,BG,Par

 

 

DQ [7:0]

ODT CS n

 

 

A,BA,BG,Par

 

 

DQS8_t

 

CKE ODT n CS

 

 

 

ZQ

VSS

CKE

CK

 

 

ZQ

VSS

 

DQS_t

D5

 

 

 

 

 

DQS_t

D15

 

 

 

 

DQS8_c

 

 

DQS_c

 

 

 

 

 

DQS_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DM8_n/DBI8_n

 

DM_n/DBI_n

 

 

 

 

 

DM_n/DBI_n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Front

 

 

 

 

D1

 

D2

 

D3

 

D4

 

D5

 

 

 

D6

 

D7

 

D8

 

D9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Back

 

 

 

 

 

 

 

 

D11

D12

D13

D14

D15

D16

D17

D18

D19

Address, Command and Control lines

NOTE :

1)Unless otherwise noted, resistor values are 15 ± 5%.

2)ZQ resistors are 240 ± 1%. For all other resistor values refer to the appropriate wiring diagram.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ [7:0]

D6

 

 

A,BA,BG,Par

 

 

DQ [7:0] D16 A,BA,BG,Par

 

 

CKE ODT CS n

CK

 

 

ZQ

VSS

CKE ODT CS n

CK

 

 

ZQ

 

DQS_t

 

 

 

 

 

 

 

 

 

DQS_t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQS_c

 

 

 

 

 

 

 

 

 

DQS_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DM_n/DBI_n

 

 

 

 

 

 

DM_n/DBI_n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ [7:0]

 

 

 

 

 

A,BA,BG,Par

 

 

DQ [7:0]

 

 

A,BA,BG,Par

 

 

CKE ODT n CS

CK

 

 

ZQ

VSS

CKE ODT n CS

CK

 

 

ZQ

 

DQS_t

 

 

 

 

 

 

 

 

 

DQS_t

 

 

 

 

 

 

DQS_c

D7

 

 

 

 

 

 

DQS_c D17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DM_n/DBI_n

 

 

 

 

 

 

DM_n/DBI_n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ [7:0]

 

 

 

 

 

A,BA,BG,Par

 

 

DQ [7:0]

 

 

A,BA,BG,Par

 

 

CKE ODT n CS

CK

 

 

ZQ

VSS

CKE ODT n CS

CK

 

 

ZQ

 

DQS_t

 

 

 

 

 

 

 

 

 

DQS_t

 

 

 

 

 

 

DQS_c

D8

 

 

 

 

 

 

DQS_c D18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DM_n/DBI_n

 

 

 

 

 

 

DM_n/DBI_n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ [7:0]

 

 

 

CK

A,BA,BG,Par

 

 

DQ [7:0]

CK

A,BA,BG,Par

 

 

CKE ODT n CS

 

 

 

 

ZQ

VSS

CKE ODT n CS

 

 

ZQ

 

DQS_t

 

 

 

 

 

 

 

 

 

DQS_t

 

 

 

 

 

 

DQS_c

D9

 

 

 

 

 

 

DQS_c D19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DM_n/DBI_n

 

 

 

 

 

 

DM_n/DBI_n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Serial PD with Thermal sensor

SCL

EVENT_n

SDA

EVENT_n

 

 

SA0 SA1 SA2

 

 

SA0 SA1 SA2

 

VDDSPD

Serial PD

 

VPP

D0-D19

 

VDD

D0-D19

 

VTT

 

VREFCA

D0-D19

 

VSS

D0-D19

VSS

VSS

VSS

VSS

- 11 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

8. ABSOLUTE MAXIMUM RATINGS

[Table 5] Absolute Maximum DC Ratings

Symbol

Parameter

Rating

Units

NOTE

 

 

 

 

 

VDD

Voltage on VDD pin relative to Vss

-0.3 ~ 1.5

V

1,3

 

 

 

 

 

VDDQ

Voltage on VDDQ pin relative to Vss

-0.3 ~ 1.5

V

1,3

 

 

 

 

 

VPP

Voltage on VPP pin relative to Vss

-0.3 ~ 3.0

V

4

 

 

 

 

 

VIN, VOUT

Voltage on any pin except VREFCA relative to Vss

-0.3 ~ 1.5

V

1,3,5

TSTG

Storage Temperature

-55 to +100

°C

1,2

NOTE :

1)Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability

2)Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.

3)VDD and VDDQ must be within 300mV of each other at all times; and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREFCA may be equal to or less than 300mV

4)VPP must be equal or greater than VDD/VDDQ at all times.

5)Overshoot area above 1.5 V is specified in 10.3.4, 10.3.5 and 10.3.6.

9. AC & DC OPERATING CONDITIONS

[Table 6] Recommended DC Operating Conditions

Symbol

Parameter

 

Rating

 

Unit

NOTE

Min.

Typ.

Max.

 

 

 

 

VDD

Supply Voltage

1.14

1.2

1.26

V

1,2,3

 

 

 

 

 

 

 

VDDQ

Supply Voltage for Output

1.14

1.2

1.26

V

1,2,3

 

 

 

 

 

 

 

VPP

Peak-to-Peak Voltage

2.375

2.5

2.75

V

3

 

 

 

 

 

 

 

NOTE :

1)Under all conditions VDDQ must be less than or equal to VDD.

2)VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.

3)DC bandwidth is limited to 20MHz.

- 13 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

10. AC & DC INPUT MEASUREMENT LEVELS

10.1 AC & DC Logic Input Levels for Single-Ended Signals

[Table 7] Single-ended AC & DC Input Levels for Command and Address

Symbol

Parameter

DDR4-1600/1866/2133/2400

DDR4-2666

Unit

NOTE

Min.

Max.

Min.

Max.

 

 

 

 

VIH.CA(DC75)

DC input logic high

VREFCA+ 0.075

VDD

-

-

V

 

VIH.CA(DC65)

-

-

VREFCA+ 0.065

VDD

 

 

 

 

VIL.CA(DC75)

DC input logic low

VSS

VREFCA-0.075

-

-

V

 

VIL.CA(DC65)

-

-

VSS

VREFCA-0.065

 

 

 

 

VIH.CA(AC100)

AC input logic high

VREF + 0.1

Note 2

-

-

V

 

VIH.CA(AC90)

-

-

VREF + 0.09

Note 2

1

 

 

VIL.CA(AC100)

AC input logic low

Note 2

VREF - 0.1

-

-

V

 

VIL.CA(AC90)

-

-

Note 2

VREF - 0.09

1

 

 

VREFCA(DC)

Reference Voltage for ADD, CMD inputs

0.49*VDD

0.51*VDD

0.49*VDD

0.51*VDD

V

2,3

 

 

 

 

 

 

 

 

NOTE :

1)See “Overshoot and Undershoot Specifications” on section10.3.

2)The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)

3)For reference : approx. VDD/2 ± 12mV.

10.2 AC and DC Input Measurement Levels: VREF Tolerances.

The DC-tolerance limits and ac-noise limits for the reference voltages VREFCA is illustrated in Figure 1. It shows a valid reference voltage VREF(t) as a function of time. (VREF stands for VREFCA).

VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7.

Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD.

voltage

VDD

VSS

time

Figure 1. Illustration of VREF(DC) tolerance and VREF AC-noise limits

The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF.

"VREF" shall be understood as VREF(DC), as defined in Figure 1.

This clarifies, that DC-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the data-eye of the input signals.

This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF AC-noise. Timing and voltage effects due to AC-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.

- 14 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

10.3 AC and DC Logic Input Levels for Differential Signals

10.3.1 Differential Signals Definition

 

tDVAC

 

VIH.DIFF.AC.MIN

 

VIH.DIFF.MIN

-CK)t - CK c)

0.0

(CK

half cycle

Voltage

VIL.DIFF.MAX

Input

 

Differential

VIL.DIFF.AC.MAX

 

 

tDVAC

time

Figure 2. Definition of differential ac-swing and “time above ac-level” tDVAC

NOTE:

1)Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.

2)Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.

10.3.2 Differential Swing Requirements for Clock (CK_t - CK_c)

[Table 8] Differential AC and DC Input Levels

Symbol

Parameter

DDR4 -1600/1866/2133

DDR4 -2400/2666

unit

NOTE

 

 

 

 

min

max

min

max

 

 

 

 

 

 

 

 

 

 

 

 

VIHdiff

differential input high

+0.150

NOTE 3

0.135

NOTE 3

V

1

VILdiff

differential input low

NOTE 3

-0.150

NOTE 3

-0.135

V

1

VIHdiff(AC)

differential input high ac

2 x (VIH(AC) - VREF)

NOTE 3

2 x (VIH(AC) - VREF)

NOTE 3

V

2

VILdiff(AC)

differential input low ac

NOTE 3

2 x (VIL(AC) - VREF)

NOTE 3

2 x (VIL(AC) - VREF)

V

2

NOTE :

1)Used to define a differential signal slew-rate.

2)for CK_t - CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD and VREFCA;

3)These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (VIH.CA(DC) max, VIL.CA(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.

[Table 9] Allowed Time Before Ringback (tDVAC) for CK_t - CK_c

Slew Rate [V/ns]

 

tDVAC [ps] @ |VIH/Ldiff(AC)| = 200mV

 

min

 

max

 

 

 

 

> 4.0

120

 

-

 

 

 

 

4.0

115

 

-

 

 

 

 

3.0

110

 

-

 

 

 

 

2.0

105

 

-

 

 

 

 

1.8

100

 

-

 

 

 

 

1.6

95

 

-

 

 

 

 

1.4

90

 

-

 

 

 

 

1.2

85

 

-

 

 

 

 

1.0

80

 

-

 

 

 

 

< 1.0

80

 

-

 

 

 

 

- 15 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

10.3.3 Single-ended Requirements for Differential Signals

Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain requirements for single-ended signals.

CK_t and CK_c have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH.CA(AC) / VIL.CA(AC)) for ADD/CMD signals) in every half-cycle.

Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g., if Different value than VIH.CA(AC100)/VIL.CA(AC100) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK_c.

VDD or VDDQ

 

VSEH min

 

 

VSEH

VDD/2 or VDDQ/2

 

 

CK

VSEL max

 

VSS or VSSQ

VSEL

time

Figure 3. Single-ended requirement for differential signals.

Note that, while ADD/CMD signal requirements are with respect to VrefCA, the single-ended components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals.

[Table 10] Single-ended Levels for CK_t, CK_c

Symbol

Parameter

DDR4-1600/1866/2133

DDR4-2400/2666

Unit

NOTE

Min

Max

Min

Max

 

 

 

 

VSEH

Single-ended high-level for CK_t, CK_c

(VDD/2)+0.100

NOTE3

(VDD/2)+0.95

NOTE3

V

1, 2

VSEL

Single-ended low-level for CK_t, CK_c

NOTE3

(VDD/2)-0.100

NOTE3

(VDD/2)-0.95

V

1, 2

NOTE :

1)For CK_t - CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD;

2)VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA;

3)These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits (VIH.CA(DC) max, VIL.CA(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.

- 16 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

10.3.4 Address, Command and Control Overshoot and Undershoot specifications

[Table 11] AC overshoot/undershoot specification for Address, Command and Control pins

Parameter

Symbol

 

 

Specification

 

 

Unit

NOTE

DDR4-1600

DDR4-1866

DDR4-2133

DDR4-2400

DDR4-2666

 

 

 

 

Maximum peak amplitude above VAOS

VAOSP

 

 

0.06

 

 

TBD

V

 

 

 

 

 

 

 

 

 

Upper boundary of overshoot area AAOS1

VAOS

 

VDD +0.24

 

TBD

V

1

 

 

 

 

 

 

 

 

 

 

Maximum peak amplitude allowed for undershoot

VAUS

 

 

0.30

 

 

TBD

V

 

 

 

 

 

 

 

 

 

 

 

 

Maximum overshoot area per 1 tCK above VAOS

AAOS2

0.0083

0.0071

 

0.0062

 

0.0055

TBD

V-ns

 

 

 

 

 

 

 

 

 

 

 

 

Maximum overshoot area per 1 tCK between VDD and VAOS

AAOS1

0.2550

0.2185

 

0.1914

 

0.1699

TBD

V-ns

 

 

 

 

 

 

 

 

 

 

 

 

Maximum undershoot area per 1 tCK below VSS

AAUS

0.2644

0.2265

 

0.1984

 

0.1762

TBD

V-ns

 

 

 

 

 

 

 

 

 

 

(A0-A13,A17,BG0-BG1,BA0-BA1,ACT_n,RAS_n/A16,CAS_n/A15,WE_n/A14,CS_n,CKE,ODT,C2-C0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE :

1)The value of VAOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC Operating Conditions. If VDD is above the recommended operating conditions, VAOS remains at VDD absolute max as defined in Table 5.

 

VAOSP

AAOS2

 

VAOS

 

AAOS1

 

 

Volts

VDD

1 tCK

(V)

VSS

 

 

 

 

V

AAUS

 

AUS

 

Figure 4. Address, Command and Control Overshoot and Undershoot Definition

- 17 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

10.3.5 Clock Overshoot and Undershoot Specifications

[Table 12] AC overshoot/undershoot specification for Clock

Parameter

Symbol

 

 

Specification

 

 

Unit

NOTE

DDR4-1600

DDR4-1866

DDR4-2133

DDR4-2400

DDR4-2666

 

 

 

 

Maximum peak amplitude above VCOS

VCOSP

 

 

0.06

 

 

TBD

V

 

 

 

 

 

 

 

 

 

Upper boundary of overshoot area ADOS1

VCOS

 

VDD +0.24

 

TBD

V

1

 

 

 

 

 

 

 

 

 

 

Maximum peak amplitude allowed for undershoot

VCUS

 

 

0.30

 

 

TBD

V

 

 

 

 

 

 

 

 

 

 

 

 

Maximum overshoot area per 1 UI above VCOS

ACOS2

0.0038

0.0032

 

0.0028

 

0.0025

TBD

V-ns

 

 

 

 

 

 

 

 

 

 

 

 

Maximum overshoot area per 1 UI between VDD and VDOS

ACOS1

0.1125

0.0964

 

0.0844

 

0.0750

TBD

V-ns

 

 

 

 

 

 

 

 

 

 

 

 

Maximum undershoot area per 1 UI below VSS

ACUS

0.1144

0.0980

 

0.0858

 

0.0762

TBD

V-ns

 

 

 

 

 

 

 

 

 

 

 

 

 

(CK_t, CK_c)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE :

 

 

 

 

 

 

 

 

 

 

1)The value of VCOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC Operating Conditions. If VDD is above the recommended operating conditions, VCOS remains at VDD absolute max as defined in Table 5.

 

VCOSP

ACOS2

 

VCOS

 

ACOS1

 

 

Volts

VDD

1 UI

(V)

VSS

 

 

 

 

VCUS

ACUS

Figure 5. Clock Overshoot and Undershoot Definition

- 18 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

10.3.6 Data, Strobe and Mask Overshoot and Undershoot Specifications

[Table 13] AC overshoot/undershoot specification for Data, Strobe and Mask

Parameter

Symbol

 

 

Specification

 

 

Unit

NOTE

DDR4-1600

DDR4-1866

DDR4-2133

DDR4-2400

DDR4-2666

 

 

 

 

Maximum peak amplitude above VDOS

VDOSP

0.16

0.16

 

0.16

 

0.16

TBD

V

 

 

 

 

 

 

 

 

 

 

 

Upper boundary of overshoot area ADOS1

VDOS

 

VDDQ + 0.24

 

TBD

V

1

 

 

 

 

 

 

 

 

 

 

 

Lower boundary of undershoot area ADUS1

VDUS

0.30

0.30

 

0.30

 

0.30

TBD

V

2

 

 

 

 

 

 

 

 

 

 

 

Maximum peak amplitude below VDUS

VDUSP

0.10

0.10

 

0.10

 

0.10

TBD

V

 

 

 

 

 

 

 

 

 

 

 

 

Maximum overshoot area per 1 UI above VDOS

ADOS2

0.0150

0.0129

 

0.0113

 

0.0100

TBD

V-ns

 

 

 

 

 

 

 

 

 

 

 

 

Maximum overshoot area per 1 UI between

ADOS1

0.1050

0.0900

 

0.0788

 

0.0700

TBD

V-ns

 

VDDQ and VDOS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum undershoot area per 1 UI between

ADUS1

0.1050

0.0900

 

0.0788

 

0.0700

TBD

V-ns

 

VSSQ and VDUS1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum undershoot area per 1 UI below VDUS

ADUS2

0.0150

0.0129

 

0.0113

 

0.0100

TBD

V-ns

 

 

 

 

 

 

 

 

 

 

 

 

NOTE :

1)The value of VDOS matches (VIN, VOUT) max as defined in Table 5 Absolute Maximum DC Ratings if VDDQ equals VDDQ max as defined in Table 6 Recommended DC Operating Conditions. If VDDQ is above the recommended operating conditions, VDOS remains at (VIN, VOUT) max as defined in Table 5.

2)The value of VDUS matches (VIN, VOUT) min as defined in Table 5 Absolute Maximum DC Ratings

 

VDOSP

ADOS2

 

VDOS

 

ADOS1

 

 

Volts

VDDQ

1 UI

(V)

VSSQ

 

 

 

 

VDUSP

ADUS1

 

ADUS2

 

 

Figure 6. Data, Strobe and Mask Overshoot and Undershoot Definition

- 19 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

10.4 Slew Rate Definitions

10.4.1 Slew Rate Definitions for Differential Input Signals (CK)

Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table 14 and Figure 7.

[Table 14] Differential Input Slew Rate Definition

Description

Measured

Defined by

from

to

 

 

Differential input slew rate for rising edge (CK_t - CK_c)

VILdiffmax

VIHdiffmin

[VIHdiffmin - VILdiffmax] / DeltaTRdiff

Differential input slew rate for falling edge (CK_t - CK_c)

VIHdiffmin

VILdiffmax

[VIHdiffmin - VILdiffmax] / DeltaTFdiff

NOTE :

1) The differential signal (i,e.,CK_t - CK_c) must be linear between these thresholds.

Delta TRdiff

Differential Input Voltage(i,e, CK_t - CK_c)

VIHdiffmin

0

VILdiffmax

Delta TFdiff

Figure 7. Differential Input Slew Rate Definition for CK_t, CK_c

- 20 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

10.4.2 Slew Rate Definition for Single-ended Input Signals (CMD/ADD)

Delta TRsingle

VIHCA(AC) Min

VIHCA(DC) Min

VREFCA(DC)

VILCA(DC) Max

VILCA(AC) Max

Delta TFsingle

Figure 8. Single-ended Input Slew Rate definition for CMD and ADD

NOTE :

1)Single-ended input slew rate for rising edge = {VIHCA(AC)Min - VILCA(DC)Max} / Delta TR single.

2)Single-ended input slew rate for falling edge = {VIHCA(DC)Min - VILCA(AC)Max} / Delta TF single.

3)Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.

4)Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope.

- 21 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

10.5 Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals (CK_t, CK_c) must meet the requirements in Table 15. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS.

VDD

CK_t

Vix

VDD/2

Vix

CK_c

VSEH

VSEL

VSS

Figure 9. Vix Definition (CK)

[Table 15] Cross Point Voltage for Differential Input Signals (CK)

Symbol

Parameter

 

 

DDR4-1600/1866/2133

 

 

min

max

 

 

 

 

 

VSEL < VDD/2 -

 

VDD/2 - 145mV =<

VDD/2 + 100mV =<

VDD/2 + 145mV <

-

Area of VSEH, VSEL

 

VSEL =< VDD/2 -

VSEH =< VDD/2 +

 

 

145mV

 

100mV

145mV

VSEH

 

 

 

 

 

 

 

 

 

 

 

 

VlX(CK)

Differential Input Cross Point Voltage relative to

-120mV

 

-(VDD/2 - VSEL) +

(VSEH - VDD/2) -

120mV

VDD/2 for CK_t, CK_c

 

25mV

25mV

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

 

 

DDR4-2400

 

 

min

max

 

 

 

 

 

VSEL <

 

VDD/2 - 145 mV

VDD/2 + 100 mV

VDD/2 + 145 mV <

-

Area of VSEH, VSEL

 

=< VSEL =<

=< VSEH =<

VDD/2 - 145 mV

 

VSEH

 

 

 

VDD/2 - 100 mV

VDD/2 + 145 mV

 

 

 

 

 

 

 

 

 

 

 

 

VlX(CK)

Differential Input Cross Point Voltage relative to

-120mV

 

- (VDD/2 - VSEL) +

(VSEH - VDD/2) -

120mV

VDD/2 for CK_t, CK_c

 

25 mV

25 mV

 

 

 

 

 

Symbol

Parameter

 

 

DDR4-2666

 

 

min

max

 

 

 

 

 

VSEL <

 

VDD/2 - 145 mV

VDD/2 + 100 mV

VDD/2 + 145 mV

-

Area of VSEH, VSEL

 

=< VSEL =<

=< VSEH =<

VDD/2 - 145 mV

 

< VSEH

 

 

 

VDD/2 - 100 mV

VDD/2 + 145 mV

 

 

 

 

 

 

 

 

 

 

 

 

VlX(CK)

Differential Input Cross Point Voltage relative to

-110 mV

 

- (VDD/2 - VSEL)

(VSEH - VDD/2)

110mV

VDD/2 for CK_t, CK_c

 

+ 30 mV

- 30 mV

 

 

 

 

 

 

 

 

 

 

 

- 22 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

10.6 CMOS rail to rail Input Levels

10.6.1 CMOS rail to rail Input Levels for RESET_n

[Table 16] CMOS rail to rail Input Levels for RESET_n

Parameter

Symbol

Min

Max

Unit

NOTE

AC Input High Voltage

VIH(AC)_RESET

0.8*VDD

VDD

V

6

 

 

 

 

 

 

DC Input High Voltage

VIH(DC)_RESET

0.7*VDD

VDD

V

2

 

 

 

 

 

 

DC Input Low Voltage

VIL(DC)_RESET

VSS

0.3*VDD

V

1

 

 

 

 

 

 

AC Input Low Voltage

VIL(AC)_RESET

VSS

0.2*VDD

V

7

 

 

 

 

 

 

Rising time

TR_RESET

-

1.0

us

4

 

 

 

 

 

 

RESET pulse width

tPW_RESET

1.0

-

us

3,5

 

 

 

 

 

 

NOTE :

1)After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET, otherwise, SDRAM may not be reset.

2)Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM operation will not be guaranteed until it is reset asserting RESET_n signal LOW.

3)RESET is destructive to data contents.

4)No slope reversal(ringback) requirement during its level transition from Low to High.

5)This definition is applied only “Reset Procedure at Power Stable”.

6)Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings.

7)Undershoot might occur. It should be limited by Absolute Maximum DC Ratings.

tPW_RESET

0.8*VDD

0.7*VDD

0.3*VDD

0.2*VDD

TR_RESET

Figure 10. RESET_n Input Slew Rate Definition

- 23 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

10.7 AC and DC Logic Input Levels for DQS Signals

10.7.1 Differential signal definition

Figure 11. Definition of differential DQS Signal AC-swing Level

10.7.2 Differential swing requirements for DQS (DQS_t - DQS_c)

[Table 17] Differential AC and DC Input Levels for DQS

Symbol

Parameter

DDR4-1600, 1866, 2133

DDR4-2400

DDR4-2666

Unit

Note

Min

Max

Min

Max

Min

Max

 

 

 

 

VIHDiffPeak

VIH.DIFF.Peak Voltage

186

Note2

160

Note2

150

Note2

mV

1

 

 

 

 

 

 

 

 

 

 

VILDiffPeak

VIL.DIFF.Peak Voltage

Note2

-186

Note2

-160

Note2

-150

mV

1

 

 

 

 

 

 

 

 

 

 

NOTE :

1)Used to define a differential signal slew-rate.

2)These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective limits Overshoot, Undershoot Specification for single-ended signals.

- 24 -

ECC Unbuffered DIMM

datasheet

Rev. 1.1

DDR4 SDRAM

10.7.3 Peak voltage calculation method

The peak voltage of Differential DQS signals are calculated in a following equation. VIH.DIFF.Peak Voltage = Max(f(t))

VIL.DIFF.Peak Voltage = Min(f(t)) f(t) = VDQS_t - VDQS_c

The Max(f(t)) or Min(f(t)) used to determine the midpoint which to reference the +/-35% window of the exempt non-monotonic signaling shall be the smallest peak voltage observed in all ui’s.

DQS c

DQS_t

 

 

t and

 

 

 

Max(f(t))

 

: DQS

 

 

Min(f(t))

 

+50%

Input Voltage

 

+35%

 

 

 

+35%

 

Ended

 

+50%

 

 

 

 

 

Single

DQS_c

 

 

 

 

 

 

Time

 

 

Figure 12. Definition of differential DQS Peak Voltage and rage of exempt non-monotonic signaling

- 25 -

Loading...
+ 56 hidden pages