78FBGA with Lead-Free & Halogen-Free
(RoHS compliant)
datasheet
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND
SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed
herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property
right is granted by one party to the other party under this document, by implication, estoppel or otherwise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or
similar applications where product failure could result in loss of life or personal or physical harm, or any
military or defense application, or any governmental procurement to which special terms or provisions
may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
2. KEY FEATURES ................................................................................................................................................................................. 5
7. FUNCTION BLOCK DIAGRAM: .......................................................................................................................................................... 11
7.1 8GB, 1Gx72 ECC Module (Populated as 1 rank of x8 DDR4 SDRAMs)........................................................................................11
7.2 16GB, 2Gx72 ECC Module (Populated as 2 ranks of x8 DDR4 SDRAMs) ....................................................................................12
8. ABSOLUTE MAXIMUM RATINGS ...................................................................................................................................................... 13
9. AC & DC OPERATING CONDITIONS ................................................................................................................................................ 13
10. AC & DC INPUT MEASUREMENT LEVELS..................................................................................................................................... 14
10.1 AC & DC Logic Input Levels for Single-Ended Signals.................................................................................................................14
10.2 AC and DC Input Measurement Levels: VREF Tolerances..........................................................................................................14
10.3 AC and DC Logic Input Levels for Differential Signals .................................................................................................................15
10.3.2. Differential Swing Requirements for Clock (CK_t - CK_c) ....................................................................................................15
10.3.3. Single-ended Requirements for Differential Signals .............................................................................................................16
10.3.4. Address, Command and Control Overshoot and Undershoot specifications........................................................................17
10.3.5. Clock Overshoot and Undershoot Specifications..................................................................................................................18
10.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications......................................................................................19
10.4.1. Slew Rate Definitions for Differential Input Signals (CK) ......................................................................................................20
10.4.2. Slew Rate Definition for Single-ended Input Signals (CMD/ADD) ........................................................................................21
10.5 Differential Input Cross Point Voltage...........................................................................................................................................22
10.6 CMOS rail to rail Input Levels .......................................................................................................................................................23
10.6.1. CMOS rail to rail Input Levels for RESET_n .........................................................................................................................23
10.7 AC and DC Logic Input Levels for DQS Signals...........................................................................................................................24
10.7.1. Differential signal definition ...................................................................................................................................................24
10.7.2. Differential swing requirements for DQS (DQS_t - DQS_c)..................................................................................................24
10.7.3. Peak voltage calculation method .......................................................................................................................................... 25
10.7.4. Differential Input Cross Point Voltage ...................................................................................................................................26
11. AC AND DC OUTPUT MEASUREMENT LEVELS ........................................................................................................................... 28
11.1 Output Driver DC Electrical Characteristics..................................................................................................................................28
11.1.2. Output Driver Characteristic of Connectivity Test (CT) Mode...............................................................................................31
11.2 Single-ended AC & DC Output Levels..........................................................................................................................................32
11.3 Differential AC & DC Output Levels..............................................................................................................................................32
11.6 Single-ended AC & DC Output Levels of Connectivity Test Mode ...............................................................................................35
11.7 Test Load for Connectivity Test Mode Timing ..............................................................................................................................36
12. SPEED BIN ....................................................................................................................................................................................... 37
12.1 Speed Bin Table Note...................................................................................................................................................................42
13. IDD AND IDDQ SPECIFICATION PARAMETERS AND TEST CONDITIONS ................................................................................. 43
13.1 IDD, IPP and IDDQ Measurement Conditions..............................................................................................................................43
16. ELECTRICAL CHARACTERISTICS & AC TIMING .......................................................................................................................... 62
16.1 Reference Load for AC Timing and Output Slew Rate .................................................................................................................62
16.3.1. Definition for tCK(abs)...........................................................................................................................................................63
16.3.2. Definition for tCK(avg)...........................................................................................................................................................63
16.3.3. Definition for tCH(avg) and tCL(avg)....................................................................................................................................63
16.3.4. Definition for tERR(nper).......................................................................................................................................................63
17. TIMING PARAMETERS BY SPEED GRADE ................................................................................................................................... 64
17.2 The DQ input receiver compliance mask for voltage and timing ..................................................................................................71
17.3 Command, Control, and Address Setup, Hold, and Derating .......................................................................................................75
17.4 DDR4 Function Matrix ..................................................................................................................................................................77
- DDR4-2666(19-19-19) is backward compatible to lower frequency.
2)
DensityOrganization
Component Composition
1)
2. KEY FEATURES
[Table 2] Speed Bins
Speed
tCK(min)1.251.0710.9370.8330.75ns
CAS Latency1113151719nCK
tRCD(min)13.7513.9214.0614.1614.25ns
tRP(min)13.7513.9214.0614.1614.25ns
tRAS(min)3534333232ns
tRC(min)48.7547.9247.0646.1646.25ns
DDR4-1600DDR4-1866DDR4-2133DDR4-2400DDR4-2666
11-11-1113-13-1315-15-1517-17-1719-19-19
Number of
Rank
Height
Unit
• JEDEC standard 1.2V ± 0.06V Power Supply
•V
= 1.2V ± 0.06V
DDQ
• 800 MHz fCK for 1600Mb/sec/pin,933 MHz fCK for 1866Mb/sec/pin, 1067MHz fCK for 2133Mb/sec/pin,1200MHz fCK for 2400Mb/sec/pin,1333MHz
for 2666Mb/sec/pin
f
CK
• 16 Banks (4 Bank Groups)
• Programmable CAS Latency: 10,11,12,13,14,15,16,17,18,19,20
ODT0, ODT1SDRAM on-die termination control linesVDDSPDSerial SPD-TSE positive power supply
ACT_nSDRAM activateALERT_nSDRAM ALERT_n
DQ0–DQ63DIMM memory data busVPPSDRAM Supply
CB0–CB7DIMM ECC check bits
TDQS0_t-TDQS8_t
TDQS0_c-TDQS8_c
DQS0_t–DQS8_t
DQS0_c–DQS8_c
DM0_n–DM8_n,
DBI0_n-DBI8_n
CK0_t, CK1_t
CK0_c, CK1_c
SDRAM address busSCL
SDRAM row address strobePARITYSDRAM parity input
SDRAM column address strobeVDDSDRAM I/O and core power supply
SDRAM write enable12 V
DIMM Rank Select LinesVREFCA
RESET_n
Dummy loads for mixed populations of x4
based and x8 based RDIMMs.
Not used on UDIMMs.
SDRAM data strobes
(positive line of differential pair)
SDRAM data strobes
(negative line of differential pair)
SDRAM data masks/data bus inversion
(x8-based x64 DIMMs)
SDRAM clocks
(positive line of differential pair)
SDRAM clocks
(negative line of differential pair)
EVENT_nSPD signals a thermal event has occurred
VTT
RFUReserved for future use
2
I
C serial bus clock for SPD-TSE
2
C serial bus data line for SPD-TSE
I
2
C slave address select for SPD-TSE
I
Optional power Supply on socket but not
used on UDIMM
Set DRAMs to a Known State
SDRAM I/O termination supply
Rev. 1.1
NOTE :
1) Address A17 is not valid for x8 and x16 based SDRAMs. For UDIMMs this connection pin is NC.
2) RAS_n is a multiplexed function with A16.
3) CAS_n is a multiplexed function with A15.
4) WE_n is a multiplexed function with A14.
[Table 3] Temperature Sensor Characteristics
GradeRange
75 < Ta < 95-+/- 0.5+/- 1.0
B
40 < Ta < 125-+/- 1.0+/- 2.0-
-20 < Ta < 125-+/- 2.0+/- 3.0-
Resolution0.25C /LSB-
Temperature Sensor Accuracy
Min.Typ. Max.
UnitsNOTE
-
C
- 6 -
datasheetDDR4 SDRAMECC Unbuffered DIMM
6. INPUT/OUTPUT FUNCTIONAL DESCRIPTION
SymbolTypeFunction
CK_t, CK_c
CKE, (CKE1)Input
CS_n (CS1_n)
C0, C1, C2Input
ODT (ODT1)Input
ACT_nInput
RAS_n/A16,
CAS_n/A15,
WE_n/A14
DM_n/DBI_n/
TDQS_t,
(DMU_n/ DBIU_n),
(DML_n/ DBIL_n)
BG0 - BG1Input
BA0 - BA1Input
A0 - A17Input
A10 / APInput
A12 / BC_nInput
RESET_n
DQ
DQS_t, DQS_c,
DQSU_t, DQSU_c,
DQSL_t, DQSL_c
Input
Input
Input
Input/
Output
CMOS
Input
Input/
Output
Input/
Output
Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the
crossing of the positive edge of CK_t and negative edge of CK_c.
Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and device input buffers and
output drivers. Taking CKE LOW provides Precharge Power-Down and Self-Refresh operation (all banks idle), or
Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal
DQ Vref have become stable during the power on and initialization sequence, they must be maintained during all
operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input
buffers, excluding CK_t, CK_c, ODT and CKE, are disabled during power-down. Input buffers, excluding CKE, are
disabled during Self-Refresh.
Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection
on systems with multiple Ranks. CS_n is considered part of the command code. CS2_n and CS3_n are not used on
UDIMMs
Chip ID: Chip ID is only used for 3DS for 2,4,8 high stack via TSV to select each slice of stacked component. Chip ID
is considered part of the command code. Not used on UDIMMs.
On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the DDR4
SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/TDQS_t, NU/TDQS_c
(When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. For x16 configuration ODT
is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, DMU_n, and DML_n signal. The ODT pin will be
ignored if MR1 is programmed to disable RTT_NOM.
Activation Command Input: ACT_n defines the Activation command being entered along with CS_n. The input into
RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14.
Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being entered.
Those pins have multi function. For example, for activation with ACT_n Low, these are Addresses like A16, A15 and
A14 but for non-activation command with ACT_n High, these are Command pins for Read, Write and other
command defined in command truth table.
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is masked when
DM_n is sampled LOW coincident with that input data during a Write access. DBI_n is an input/output identifying
whether to store/output the true or inverted data. If DBI_n is LOW, the data will be stored/output after inversion
inside the DDR4 SDRAM and not inverted if DBI_n is HIGH. TDQS is only supported in x8 SDRAM configurations.
TDQS is not valid for UDIMMs.
Bank Group Inputs: BG0 - BG1 define which bank group an Active, Read, Write or Precharge command is being
applied. BG0 also determines which mode register is to be accessed during a MRS cycle. x4/x8 SDRAM
configurations have BG0 and BG1. x16 based SDRAMs only have BG0.
Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is being
applied. Bank address also determines which mode register is to be accessed during a MRS cycle.
Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/Write
commands to select one location out of the memory array in the respective bank. A10/AP, A12/BC_n, RAS_n/A16,
CAS_n/A15 and WE_n/A14 have additional functions. See other rows. The address inputs also provide the op-code
during Mode Register Set commands. A17 is only defined for the x4 SDRAM configuration.
Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be
performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge).
A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW)
or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses.
Burst Chop: A12/BC_n is sampled during Read and Write commands to determine if burst chop (on-the-fly) will be
performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH.
RESET_n must be HIGH during normal operation.
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at the end
of Data Burst. Any DQ from DQ0-DQ3 may indicate the internal Vref level during test via Mode Register Setting MR4
A4=High. Refer to vendor specific data sheets to determine which DQ is used.
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the
x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data
strobe DQS_t, DQSL_t and DQSU_t are paired with differential signals DQS_c, DQSL_c, and DQSU_c,
respectively, to provide differential pair signaling to the system during reads and writes. DDR4 SDRAM supports
differential data strobe only and does not support single-ended.
Rev. 1.1
- 7 -
datasheetDDR4 SDRAMECC Unbuffered DIMM
SymbolTypeFunction
TDQS_t,
TDQS_c
PARInput
ALERT_n
TEN
NCNo Connect: No on DIMM electrical connection is present.
VDDQSupplyDQ Power Supply: 1.2 V +/- 0.06 V
VSSQSupplyDQ Ground
VDD
VSSSupplyGround
VPPSupplyDRAM Activating Power Supply: 2.5V (2.375V min, 2.75V max)
12 VSupply12 V supply not used on UDIMMs.
VDDSPDSupplyPower supply used to power the I2C bus on the SPD-TSE 2.5V or 3.3V.
VREFCASupplyReference voltage for CA
ZQSupplyReference Pin for ZQ calibration
Output
Output
Input
SupplyPower Supply: 1.2 V +/- 0.06 V
Termination Data Strobe: TDQS_t/TDQS_c are not valid for UDIMMs.
Command and Address Parity Input: DDR4 Supports Even Parity check in DRAMs with MR setting. Once it’s
enabled via Register in MR5, then DRAM calculates Parity with ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0BG1, BA0-BA1, A16-A0. LOW Command and address inputs shall have parity check performed when commands
are latched via the rising edge of CK_t and when CS_n is low.
Alert: It has multi functions such as CRC error flag, Command and Address Parity error flag as Output signal. If there
is error in CRC, then ALERT_n goes LOW for the period time interval and goes back HIGH. If there is error in
Command Address Parity Check, then ALERT_n goes LOW for relatively long period until on going DRAM internal
recovery transaction is complete. During Connectivity Test mode this pin functions as an input. Using this signal or
not is dependent on the system.
Connectivity Test Mode Enable : Required on X16 devices and optional input on x4/x8 with densities equal
to or greater than 8Gb.HIGH in this pin will enable Connectivity Test Mode operation along with other pins. It
is a CMOS rail to rail signal with AC high and low at 80% and 20% of VDD. Using this signal or not is
dependent on System. This pin may be DRAM internally pulled low through a weak pull-down resistor to
VSS
Rev. 1.1
NOTE :
1) Input only pins (BG0-BG1,BA0-BA1, A0-A17, ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, CS_n, CKE, ODT, and RESET_n) do not supply termination.
- 8 -
Rev. 1.1
datasheetDDR4 SDRAMECC Unbuffered DIMM
6.1 Address Mirroring
DDR4 two rank UDIMMs will use address mirroring. DRAMs for even ranks will be placed on the front side of the module. DRAMs for odd ranks will be
placed on the back side of the module. Wiring of the address bus will be as defined in Table 4.
Since the cross-wired pins have no secondary functions, there is no problem in normal operation. Any data written is read the same way. There are
limitations however. When writing to the internal registers with a "load mode" operation, the specific address is required. This requires the controller to
know if the rank is mirrored or not. There is a bit assignment in the SPD that indicates whether the module has been designed with the mirrored feature or
not. See the DDR4 SPD specification for these details. The controller must read the SPD and have the capability of de-mirroring the address when
accessing the odd ranks.
[Table 4] DIMM Wiring Definition for Address Mirroring
Signal NameDRAM Ball Lable
ConnectorEven RankOdd Rank
A0A0A0
A1A1A1
A2A2A2
A3A3A4
A4A4A3
A5A5A6
A6A6A5
A7A7A8
A8A8A7
A9A9A9
A10/APA10/APA10/AP
A11A11A13
A12/BC_nA12/BC_nA12/BC_n
A13A13A11
A14/WE_nA14/WE_nA14/WE_n
A15/CAS_nA15/CAS_nA15/CAS_n
A16/RAS_nA16/RAS_nA16/RAS_n
A17A17A17Not valid for x8 and x16 DRAM components up to 16Gb.
BA0BA0BA1
BA1BA1BA0
BG0BG0BG1
BG1BG1BG0
BG1 is not valid for x16 DRAM components. For x16 DRAM components
signal BG0 will be wired to DRAM ball BG0 for both ranks.
BG1 is not valid for x16 DRAM components. For x16 DRAM components
signal BG0 will be wired to DRAM ball BG0 for both ranks.
Comment
- 9 -
datasheetDDR4 SDRAMECC Unbuffered DIMM
7. FUNCTION BLOCK DIAGRAM:
7.1 8GB, 1Gx72 ECC Module (Populated as 1 rank of x8 DDR4 SDRAMs)
Rev. 1.1
CK0_t,CK0_c
A[16:0],BA[1:0],
ACT_n,PARITY,BG[1:0]
CS0_n
ODT0
CKE0
DQS0_t
DQS0_c
DQ[7:0]
DM0_n/DBI0_n
DQS1_t
DQS1_c
DQ[15:8]
DBI1_n/DM1_n
DQS2_t
DQS2_c
DQ[23:16]
DBI2_n/DM2_n
CKE
ODT
D0
DQS_t
DQS_c
DQ[7:0]
DBI_n/DM_n
CKE
ODT
D1
DQS_t
DQS_c
DQ[7:0]
DBI_n/DM_n
CKE
ODT
D2
DQS_t
DQS_c
DQ[7:0]
DBI_n/DM_n
CS_n
CS_n
CS_n
CK
ZQ
Address
CK
ZQ
Address
CK
ZQ
Address
A[16:0],BA[1:0],
ACT_n,PARITY,BG[1:0]
VSS
VSS
VSS
CK0_t,CK0_c
CS0_n
ODT0
CKE0
DQS4_t
DQS4_c
DQ[39:32]
DBI4_n/DM4_n
DQS5_t
DQS5_c
DQ[47:40]
DBI5_n/DM5_n
DQS6_t
DQS6_c
DQ[55:48]
DBI6_n/DM6_n
CKE
ODT
D4
DQS_t
DQS_c
DQ[7:0]
DBI_n/DM_n
CKE
ODT
D5
DQS_t
DQS_c
DQ[7:0]
DBI_n/DM_n
CKE
ODT
D6
DQS_t
DQS_c
DQ[7:0]
DBI_n/DM_n
CS_n
CS_n
CS_n
CK
ZQ
Address
CK
ZQ
Address
CK
ZQ
Address
VSS
VSS
VSS
ODT
D3
ODT
D8
CS_n
CS_n
CK
ZQ
Address
CK
ZQ
Address
VSS
VSS
DQS7_t
DQS7_c
DQ[63:56]
DBI7_n/DM7_n
DQS3_t
DQS3_c
DQ[31:24]
DBI3_n/DM3_n
DQS8_t
DQS8_c
DQ[71:64]
DBI8_n/DM8_n
D0
CKE
DQS_t
DQS_c
DQ[7:0]
DBI_n/DM_n
CKE
DQS_t
DQS_c
DQ[7:0]
DBI_n/DM_n
D1D2D3D8D4D5D6D7
Address, Command and Control lines
NOTE :
1) Unless otherwise noted, resistor values are 155%.
2) ZQ resistors are 2401%. For all other resistor values refer to the appropriate wiring diagram.
3) For part 2 of 2 the DQ resistors are shown for simplicity but are the same physical components as shown on part 1 of 2.
4) EVENT_n is used for SPD with TS. Option Resistor for it should be placed.
ODT
CS_n
Address
D7
EVENT_nEVENT_n
SA0 SA1 SA2
SA0 SA1 SA2
CK
CKE
DQS_t
DQS_c
DQ[7:0]
DBI_n/DM_n
SCL
Serial PD with Thermal sensor
V
DDSPD
V
PP
V
DD
V
TT
V
REFCA
V
SS
ZQ
VSS
SDA
Serial PD
D0 - D8
D0 - D8
D0 - D8
D0 - D8
- 10 -
datasheetDDR4 SDRAMECC Unbuffered DIMM
7.2 16GB, 2Gx72 ECC Module (Populated as 2 ranks of x8 DDR4 SDRAMs)
A[16:0],BA[1:0],BG[1:0]
ACT_n, PARITY,
CK0_t,CK0_c
CS0_n
ODT0
CKE0
CK1_t,CK1_c
CS1_n
ODT1
CKE1
Rev. 1.1
DQS0_t
DQS0_c
DQ [7:0]
DM0_n/DBI0_n
DQS1_t
DQS1_c
DQ [15:8]
DM1_n/DBI1_n
DQS2_t
DQS2_c
DQ [23:16]
DM2_n/DBI2_n
DQS3_t
DQS3_c
DQ [31:24]
DM3_n/DBI3_n
DQS8_t
DQS8_c
CB [7:0]
DM8_n/DBI8_n
CKE
DQS_t
DQS_c
D1
DQ [7:0]
DM_n/DBI_n
CKE
DQS_t
DQS_c
D2
DQ [7:0]
DM_n/DBI_n
CKE
DQS_t
DQS_c
D3
DQ [7:0]
DM_n/DBI_n
CKE
DQS_t
DQS_c
D4
DQ [7:0]
DM_n/DBI_n
CKE
DQS_t
DQS_c
D5
DQ [7:0]
DM_n/DBI_n
ODT
ODT
ODT
ODT
ODT
CS_n
CS_n
CS_n
CS_n
CS_n
CK
CK
CK
CK
CK
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
VSS
VSS
VSS
VSS
VSS
CKE
DQS_t
DQS_c
D11
DQ [7:0]
DM_n/DBI_n
CKE
DQS_t
DQS_c
D12
DQ [7:0]
DM_n/DBI_n
CKE
DQS_t
DQS_c
D13
DQ [7:0]
DM_n/DBI_n
CKE
CKE
DQS_t
DQS_t
DQS_c
DQS_c
D0
D14
DQ [7:0]
DQ [7:0]
DM_n/DBI_n
DM_n/DBI_n
CKE
DQS_t
DQS_c
D15
DQ [7:0]
DM_n/DBI_n
ODT
ODT
ODT
ODT
ODT
ODT
CS_n
CS_n
CS_n
CS_n
CS_n
CS_n
CK
CK
CK
CK
CK
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
ZQ
ZQ
A,BA,BG,Par
A,BA,BG,Par
ZQ
A,BA,BG,Par
VSS
DQS4_t
DQS4_c
DQ [39:32]
DM4_n/DBI4_n
VSS
DQS5_t
DQS5_c
DQ [47:40]
DM5_n/DBI5_n
VSS
DQS6_t
DQS6_c
DQ [55:48]
DM6_n/DBI6_n
VSS
VSS
DQS7_t
DQS7_c
DQ [63:56]
DM7_n/DBI7_n
VSS
CKE
DQS_t
DQS_c
D6
DQ [7:0]
DM_n/DBI_n
CKE
DQS_t
DQS_c
D7
DQ [7:0]
DM_n/DBI_n
CKE
DQS_t
DQS_c
D8
DQ [7:0]
DM_n/DBI_n
CKE
DQS_t
DQS_c
D9
DQ [7:0]
DM_n/DBI_n
CK
ZQ
ODT
ODT
ODT
ODT
CS_n
CS_n
CS_n
CS_n
CK
CK
CK
A,BA,BG,Par
A,BA,BG,Par
A,BA,BG,Par
A,BA,BG,Par
ZQ
ZQ
ZQ
VSS
DQS_t
DQS_c
DQ [7:0]
DM_n/DBI_n
VSS
DQS_t
DQS_c
DQ [7:0]
DM_n/DBI_n
VSS
DQS_t
DQS_c
DQ [7:0]
DM_n/DBI_n
VSS
DQS_t
DQS_c
DQ [7:0]
DM_n/DBI_n
Serial PD with Thermal sensor
CKE
ODT
D16
CKE
ODT
D17
CKE
ODT
D18
CKE
ODT
D19
CS_n
CS_n
CS_n
CS_n
CK
CK
CK
CK
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
ZQ
A,BA,BG,Par
VSS
VSS
VSS
VSS
Front
D1D2D3D4D6D7D8D9
D5
Back
D11 D12 D13 D14D16 D17 D18 D19
D15
Address, Command and Control lines
NOTE :
1) Unless otherwise noted, resistor values are 15 ± 5%.
2) ZQ resistors are 240 ± 1%. For all other resistor values refer to the appropriate wiring diagram.
SCL
EVENT_n
V
VREFCA
DDSPD
V
V
V
V
DD
EVENT_n
SA0 SA1 SA2
SA0 SA1
PP
TT
SS
SDA
SA2
Serial PD
D0-D19
D0-D19
D0-D19
D0-D19
- 11 -
datasheetDDR4 SDRAMECC Unbuffered DIMM
8. ABSOLUTE MAXIMUM RATINGS
[Table 5] Absolute Maximum DC Ratings
SymbolParameter RatingUnitsNOTE
VDDVoltage on VDD pin relative to Vss-0.3 ~ 1.5V 1,3
VDDQ Voltage on VDDQ pin relative to Vss-0.3 ~ 1.5V 1,3
VPPVoltage on VPP pin relative to Vss-0.3 ~ 3.0V4
Rev. 1.1
V
NOTE :
1) Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3) VDD and VDDQ must be within 300mV of each other at all times; and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREFCA
may be equal to or less than 300mV
4) VPP must be equal or greater than VDD/VDDQ at all times.
5) Overshoot area above 1.5 V is specified in 10.3.4, 10.3.5 and 10.3.6.
Voltage on any pin except VREFCA relative to Vss-0.3 ~ 1.5V 1,3,5
IN, VOUT
T
Storage Temperature -55 to +100°C 1,2
STG
9. AC & DC OPERATING CONDITIONS
[Table 6] Recommended DC Operating Conditions
SymbolParameter
VDDSupply Voltage1.141.21.26V1,2,3
VDDQSupply Voltage for Output1.141.21.26V1,2,3
VPPPeak-to-Peak Voltage2.3752.52.75V3
NOTE :
1) Under all conditions V
tracks with VDD. AC parameters are measured with VDD and V
2) V
DDQ
3) DC bandwidth is limited to 20MHz.
must be less than or equal to VDD.
DDQ
Min.Typ.Max.
tied together.
DDQ
Rating
UnitNOTE
- 13 -
Rev. 1.1
datasheetDDR4 SDRAMECC Unbuffered DIMM
10. AC & DC INPUT MEASUREMENT LEVELS
10.1 AC & DC Logic Input Levels for Single-Ended Signals
[Table 7] Single-ended AC & DC Input Levels for Command and Address
SymbolParameter
VIH.CA(DC75)
VIH.CA(DC65)--
VIL.CA(DC75)
VIL.CA(DC65) --VSS
VIH.CA(AC100)
VIH.CA(AC90)--
VIL.CA(AC100)
VIL.CA(AC90)--Note 2
VREFCA(DC) Reference Voltage for ADD, CMD inputs 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V2,3
NOTE :
1) See “Overshoot and Undershoot Specifications” on section10.3.
2) The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)
3) For reference : approx. VDD/2 ± 12mV.
DC input logic high
DC input logic low
AC input logic high
AC input logic low
DDR4-1600/1866/2133/2400DDR4-2666
Min.Max.Min.Max.
V
REFCA
VSS
V
REF
Note 2
+ 0.075
+ 0.1
VDD --
V
+ 0.065
REFCA
-0.075
V
REFCA
Note 2 --
- 0.1
V
REF
--
V
+ 0.09
REF
--
UnitNOTE
VDD
-0.065
V
REFCA
Note 21
V
- 0.09
REF
V
V
V
V
1
10.2 AC and DC Input Measurement Levels: V
The DC-tolerance limits and ac-noise limits for the reference voltages V
function of time. (V
(DC) is the linear average of V
V
REF
Furthermore V
stands for V
REF
(t) may temporarily deviate from V
REF
voltage
).
REFCA
(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7.
REF
Figure 1. Illustration of V
(DC) by no more than ± 1% VDD.
REF
(DC) tolerance and V
REF
is illustrated in Figure 1. It shows a valid reference voltage V
REFCA
Tolerances.
REF
AC-noise limits
REF
(t) as a
REF
V
DD
V
SS
time
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on V
" shall be understood as V
"V
REF
This clarifies, that DC-variations of V
which setup and hold is measured. System timing and voltage budgets need to account for V
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V
and voltage effects due to AC-noise on V
(DC), as defined in Figure 1.
REF
affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
REF
(DC) deviations from the optimum position within the
REF
up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
REF
- 14 -
REF
.
AC-noise. Timing
REF
datasheetDDR4 SDRAMECC Unbuffered DIMM
10.3 AC and DC Logic Input Levels for Differential Signals
10.3.1 Differential Signals Definition
tDVAC
VIH.DIFF.AC.MIN
.DIFF.MIN
V
IH
0.0
(CK_t - CK_c)
V
.DIFF.AC.MAX
V
IL
.DIFF.MAX
IL
half cycle
Rev. 1.1
Differential Input Voltage (CK-CK)
Figure 2. Definition of differential ac-swing and “time above ac-level” t
NOTE:
1) Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.
2) Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.
10.3.2 Differential Swing Requirements for Clock (CK_t - CK_c)
[Table 8] Differential AC and DC Input Levels
SymbolParameter
V
IHdiff
V
ILdiff
V
(AC)
IHdiff
V
(AC)
ILdiff
NOTE :
1) Used to define a differential signal slew-rate.
2) for CK_t - CK_c use V
3) These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (V
as well as the limitations for overshoot and undershoot.
[Table 9] Allowed Time Before Ringback (tDVAC) for CK_t - CK_c
Slew Rate [V/ns]
> 4.0120-
4.0115-
3.0110-
2.0105-
1.8100-
1.695-
1.490-
1.285-
1.080-
< 1.080-
tDVAC [ps] @ |V
(AC)| = 200mV
IH/Ldiff
minmax
- 15 -
Rev. 1.1
datasheetDDR4 SDRAMECC Unbuffered DIMM
10.3.3 Single-ended Requirements for Differential Signals
Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain requirements for single-ended signals.
CK_t and CK_c have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH.CA(AC) / VIL.CA(AC)) for ADD/CMD
signals) in every half-cycle.
Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g., if Different value than VIH.CA(AC100)/VIL.CA(AC100) is used
for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK_c.
V
DD
VDD or V
/2 or V
V
SEH
DDQ
min
DDQ
V
SEH
/2
CK
max
V
SEL
V
VSS or V
Note that, while ADD/CMD signal requirements are with respect to VrefCA, the single-ended components of differential signals have a requirement with
respect to VDD / 2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common
mode characteristics of these signals.
SSQ
Figure 3. Single-ended requirement for differential signals.
SEL
time
[Table 10] Single-ended Levels for CK_t, CK_c
SymbolParameter
V
V
NOTE :
1) For CK_t - CK_c use V
2) V
IH
3) These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits (V
signals as well as the limitations for overshoot and undershoot.
Single-ended high-level for CK_t, CK_c(VDD/2)+0.100NOTE3(VDD/2)+0.95NOTE3V1, 2
SEH
Single-ended low-level for CK_t, CK_cNOTE3(VDD/2)-0.100NOTE3(VDD/2)-0.95V1, 2
SEL
(AC)/VIL(AC) for ADD/CMD is based on V
IH.CA/VIL.CA
(AC) of ADD/CMD;
REFCA
;
DDR4-1600/1866/2133DDR4-2400/2666
MinMaxMinMax
(DC) max, V
IH.CA
Unit NOTE
(DC)min) for single-ended
IL.CA
- 16 -
datasheetDDR4 SDRAMECC Unbuffered DIMM
10.3.4 Address, Command and Control Overshoot and Undershoot specifications
[Table 11] AC overshoot/undershoot specification for Address, Command and Control pins
Rev. 1.1
ParameterSymbol
Maximum peak amplitude above VAOS VAOSP0.06 TBDV
Upper boundary of overshoot area AAOS1 VAOS VDD +0.24 TBDV1
Maximum peak amplitude allowed for undershoot
Maximum overshoot area per 1 tCK above VAOS AAOS2 0.00830.00710.00620.0055TBDV-ns
Maximum overshoot area per 1 tCK between VDD and VAOS AAOS1 0.25500.21850.19140.1699TBDV-ns
Maximum undershoot area per 1 tCK below VSS AAUS 0.2644 0.22650.19840.1762TBDV-ns
1) The value of VAOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC
Operating Conditions. If VDD is above the recommended operating conditions, VAOS remains at VDD absolute max as defined in Table 5.
V
AOSP
V
AOS
V
Volts
DD
VAUS 0.30 TBDV
(V)
V
SS
V
AUS
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
A
AOS2
1 tCK
Specification
A
AOS1
A
AUS
Unit NOTE
Figure 4. Address, Command and Control Overshoot and Undershoot Definition
- 17 -
datasheetDDR4 SDRAMECC Unbuffered DIMM
10.3.5 Clock Overshoot and Undershoot Specifications
[Table 12] AC overshoot/undershoot specification for Clock
Rev. 1.1
COS2
Specification
A
COS1
A
CUS
Unit NOTE
ParameterSymbol
Maximum peak amplitude above VCOSVCOSP0.06 TBDV
Upper boundary of overshoot area ADOS1VCOS VDD +0.24 TBDV1
Maximum peak amplitude allowed for undershootVCUS 0.30 TBDV
Maximum overshoot area per 1 UI above VCOS
Maximum overshoot area per 1 UI between VDD and VDOS ACOS1 0.11250.09640.08440.0750TBDV-ns
Maximum undershoot area per 1 UI below VSSACUS 0.11440.09800.08580.0762TBDV-ns
NOTE :
1) The value of VCOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC
Operating Conditions. If VDD is above the recommended operating conditions, VCOS remains at VDD absolute max as defined in Table 5.
V
COSP
V
COS
V
Volts
DD
ACOS2 0.00380.00320.00280.0025TBDV-ns
(V)
V
SS
V
CUS
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
(CK_t, CK_c)
A
1 UI
Figure 5. Clock Overshoot and Undershoot Definition
- 18 -
datasheetDDR4 SDRAMECC Unbuffered DIMM
10.3.6 Data, Strobe and Mask Overshoot and Undershoot Specifications
[Table 13] AC overshoot/undershoot specification for Data, Strobe and Mask
Upper boundary of overshoot area ADOS1 VDOS VDDQ + 0.24TBDV1
Lower boundary of undershoot area ADUS1 VDUS 0.300.300.300.30TBDV2
Maximum peak amplitude below VDUSVDUSP 0.100.100.100.10TBDV
Maximum overshoot area per 1 UI above VDOS ADOS2 0.01500.01290.01130.0100TBDV-ns
Maximum overshoot area per 1 UI between
VDDQ and VDOS
Maximum undershoot area per 1 UI between
VSSQ and VDUS1
Maximum undershoot area per 1 UI below VDUS ADUS20.01500.01290.01130.0100TBDV-ns
NOTE :
1) The value of VDOS matches (VIN, VOUT) max as defined in Table 5 Absolute Maximum DC Ratings if VDDQ equals VDDQ max as defined in Table 6 Recommended DC
Operating Conditions. If VDDQ is above the recommended operating conditions, VDOS remains at (VIN, VOUT) max as defined in Table 5.
2) The value of VDUS matches (VIN, VOUT) min as defined in Table 5 Absolute Maximum DC Ratings
V
DOSP
V
DOS
V
Volts
DDQ
ADOS1 0.10500.09000.07880.0700TBDV-ns
ADUS1 0.10500.09000.07880.0700TBDV-ns
(V)
V
SSQ
V
DUSP
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666
A
DOS2
1 UI
Figure 6. Data, Strobe and Mask Overshoot and Undershoot Definition
- 19 -
datasheetDDR4 SDRAMECC Unbuffered DIMM
10.4 Slew Rate Definitions
10.4.1 Slew Rate Definitions for Differential Input Signals (CK)
Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table 14 and Figure 7.
3) Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.
4) Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope.
- 21 -
Rev. 1.1
datasheetDDR4 SDRAMECC Unbuffered DIMM
10.5 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals
(CK_t, CK_c) must meet the requirements in Table 15. The differential input cross point voltage VIX is measured from the actual cross point of true and
complement signals to the midlevel between of VDD and VSS.
VDD
CK_t
Vix
VDD/2
Vix
VSEH
Figure 9. Vix Definition (CK)
[Table 15] Cross Point Voltage for Differential Input Signals (CK)
SymbolParameter
-Area of VSEH, VSEL
VlX(CK)
SymbolParameter
-Area of VSEH, VSEL
VlX(CK)
Differential Input Cross Point Voltage relative to
VDD/2 for CK_t, CK_c
Differential Input Cross Point Voltage relative to
VDD/2 for CK_t, CK_c
VSEL < VDD/2 -
145mV
-120mV
VSEL <
VDD/2 - 145 mV
-120mV
CK_c
VSEL
VSS
DDR4-1600/1866/2133
minmax
VDD/2 - 145mV =<
VSEL =< VDD/2 -
100mV
-(VDD/2 - VSEL) +
25mV
minmax
VDD/2 - 145 mV
=< VSEL =<
VDD/2 - 100 mV
- (VDD/2 - VSEL) +
25 mV
VDD/2 + 100mV =<
VSEH =< VDD/2 +
145mV
(VSEH - VDD/2) -
25mV
DDR4-2400
VDD/2 + 100 mV
=< VSEH =<
VDD/2 + 145 mV
(VSEH - VDD/2) -
25 mV
VDD/2 + 145mV <
VSEH
120mV
VDD/2 + 145 mV <
VSEH
120mV
SymbolParameter
-Area of VSEH, VSEL
VlX(CK)
Differential Input Cross Point Voltage relative to
VDD/2 for CK_t, CK_c
VSEL <
VDD/2 - 145 mV
-110 mV
- 22 -
DDR4-2666
minmax
VDD/2 - 145 mV
=< VSEL =<
VDD/2 - 100 mV
- (VDD/2 - VSEL)
+ 30 mV
VDD/2 + 100 mV
=< VSEH =<
VDD/2 + 145 mV
(VSEH - VDD/2)
- 30 mV
VDD/2 + 145 mV
< VSEH
110mV
Rev. 1.1
datasheetDDR4 SDRAMECC Unbuffered DIMM
10.6 CMOS rail to rail Input Levels
10.6.1 CMOS rail to rail Input Levels for RESET_n
[Table 16] CMOS rail to rail Input Levels for RESET_n
ParameterSymbolMinMaxUnitNOTE
AC Input High Voltage VIH(AC)_RESET 0.8*VDDVDDV6
DC Input High Voltage VIH(DC)_RESET 0.7*VDDVDDV2
DC Input Low Voltage VIL(DC)_RESET VSS0.3*VDDV1
AC Input Low Voltage VIL(AC)_RESET VSS0.2*VDDV7
Rising time TR_RESET -1.0us4
RESET pulse width tPW_RESET 1.0-us3,5
NOTE :
1) After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET, otherwise, SDRAM may not be reset.
2) Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM operation will not be guaranteed until it is reset
asserting RESET_n signal LOW.
3) RESET is destructive to data contents.
4) No slope reversal(ringback) requirement during its level transition from Low to High.
5) This definition is applied only “Reset Procedure at Power Stable”.
6) Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings.
7) Undershoot might occur. It should be limited by Absolute Maximum DC Ratings.
0.8*VDD
0.7*VDD
0.3*VDD
0.2*VDD
tPW_RESET
TR_RESET
Figure 10. RESET_n Input Slew Rate Definition
- 23 -
datasheetDDR4 SDRAMECC Unbuffered DIMM
10.7 AC and DC Logic Input Levels for DQS Signals
10.7.1 Differential signal definition
Rev. 1.1
Figure 11. Definition of differential DQS Signal AC-swing Level
10.7.2 Differential swing requirements for DQS (DQS_t - DQS_c)
[Table 17] Differential AC and DC Input Levels for DQS
1) Used to define a differential signal slew-rate.
2) These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective limits Overshoot, Undershoot Specification for single-ended
signals.
DDR4-1600, 1866, 2133DDR4-2400DDR4-2666
MinMaxMinMaxMinMax
UnitNote
- 24 -
Rev. 1.1
datasheetDDR4 SDRAMECC Unbuffered DIMM
10.7.3 Peak voltage calculation method
The peak voltage of Differential DQS signals are calculated in a following equation.
VIH.DIFF.Peak Voltage = Max(f(t))
VIL.DIFF.Peak Voltage = Min(f(t))
f(t) = VDQS_t - VDQS_c
The Max(f(t)) or Min(f(t)) used to determine the midpoint which to reference the +/-35% window of the exempt non-monotonic signaling shall be the smallest peak voltage observed in all ui’s.
DQS_t
Max(f(t))
DQS_c
Single Ended Input Voltage : DQS_t and DQS_c
Figure 12. Definition of differential DQS Peak Voltage and rage of exempt non-monotonic signaling
Min(f(t))
Time
+35%
+35%
+50%
+50%
- 25 -
Loading...
+ 56 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.