Samsung M386A8K40CM2-CTD User Manual

Rev. 1.2, Feb. 2018
M386A8K40CM2
288pin Load Reduced DIMM
based on 8Gb C-die
78FBGA with Lead-Free & Halogen-Free (RoHS compliant)
datasheet
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other­wise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
© 2018 Samsung Electronics Co., Ltd. All rights reserved.
- 1 -
Rev. 1.2
Load Reduced DIMM
datasheet
DDR4 SDRAM
Revision History
Revision No. History Draft Date Remark Editor
1.0 - First SPEC Release 7th Apr. 2017 - J.Y.Lee
1.1 - Update Physical Dimension. 13th Jun, 2017 Final J.Y.Bae
1. Add PCB hole.
2. Change Module height information.
1.2 - Add 2933Mbps. 6th Feb, 2018 Final J.H.Han
- Correct typo. J.Y.Bae
- 2 -
Rev. 1.2
datasheet
DDR4 SDRAMLoad Reduced DIMM
Table Of Contents
288pin Load Reduced DIMM based on 8Gb C-die
1. DDR4 Load Reduced DIMM ORDERING INFORMATION ..................................................................................................................4
2. KEY FEATURES ..................................................................................................................................................................................4
3. ADDRESS CONFIGURATION .............................................................................................................................................................4
4. Load Reduced DIMM PIN COFIGURATIONS (FRONT SIDE / BACK SIDE) ......................................................................................5
5. PIN DESCRIPTION .............................................................................................................................................................................6
6. ON DIMM THERMAL SENSOR ...........................................................................................................................................................7
7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION .................................................................................................................................8
8. REGISTERING CLOCK DRIVER SPECIFICATION ............................................................................................................................10
8.1 Timing & Capacitance Values.........................................................................................................................................................10
8.2 Clock Driver Characteristics ...........................................................................................................................................................10
9. FUNCTION BLOCK DIAGRAM: ...........................................................................................................................................................11
9.1 64GB, 8Gx72 Module (Populated as 4 ranks of x4 DDR4 SDRAMs).............................................................................................11
10. ABSOLUTE MAXIMUM RATINGS .....................................................................................................................................................14
10.1 Absolute Maximum DC Ratings.................................................................................................................................................... 14
11. AC & DC OPERATING CONDITIONS ...............................................................................................................................................14
12. AC & DC INPUT MEASUREMENT LEVELS......................................................................................................................................15
12.1 AC & DC Logic Input Levels for Single-Ended Signals................................................................................................................. 15
12.2 AC and DC Input Measurement Levels: VREF Tolerances. ......................................................................................................... 15
12.3 AC and DC Logic Input Levels for Differential Signals .................................................................................................................16
12.3.1. Differential Signals Definition ................................................................................................................................................16
12.3.2. Differential Swing Requirements for Clock (CK_t - CK_c) ....................................................................................................17
12.3.3. Single-ended Requirements for Differential Signals .............................................................................................................18
12.3.4. Address, Command and Control Overshoot and Undershoot specifications........................................................................ 19
12.3.5. Clock Overshoot and Undershoot Specifications.................................................................................................................. 20
12.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications ...................................................................................... 21
12.4 Slew Rate Definitions.................................................................................................................................................................... 22
12.4.1. Slew Rate Definitions for Differential Input Signals (CK) ......................................................................................................22
12.4.2. Slew Rate Definition for Single-ended Input Signals (CMD/ADD) ........................................................................................23
12.5 Differential Input Cross Point Voltage........................................................................................................................................... 24
12.6 CMOS rail to rail Input Levels .......................................................................................................................................................25
12.6.1. CMOS rail to rail Input Levels for RESET_n .........................................................................................................................25
12.7 AC and DC Logic Input Levels for DQS Signals........................................................................................................................... 26
12.7.1. Differential signal definition ...................................................................................................................................................26
12.7.2. Differential swing requirements for DQS (DQS_t - DQS_c).................................................................................................. 26
12.7.3. Peak voltage calculation method ..........................................................................................................................................27
12.7.4. Differential Input Cross Point Voltage ...................................................................................................................................28
12.7.5. Differential Input Slew Rate Definition ..................................................................................................................................29
13. AC and DC output Measurement levels .............................................................................................................................................30
13.1 Output Driver DC Electrical Characteristics..................................................................................................................................30
13.1.1. Alert_n output Drive Characteristic .......................................................................................................................................32
13.1.2. Output Driver Characteristic of Connectivity Test (CT) Mode............................................................................................... 33
13.2 Single-ended AC & DC Output Levels.......................................................................................................................................... 34
13.3 Differential AC & DC Output Levels.............................................................................................................................................. 34
13.4 Single-ended Output Slew Rate ...................................................................................................................................................35
13.5 Differential Output Slew Rate .............................................................................................
13.6 Single-ended AC & DC Output Levels of Connectivity Test Mode ...............................................................................................37
13.7 Test Load for Connectivity Test Mode Timing ..............................................................................................................................38
14. IDD SPEC TABLE ..............................................................................................................................................................................39
15. INPUT/OUTPUT CAPACITANCE ......................................................................................................................................................41
16. SPEED BIN ........................................................................................................................................................................................42
16.1 Speed Bin Table Note................................................................................................................................................................... 48
17. IDD and IDDQ Specification Parameters and Test conditions ...........................................................................................................49
17.1 IDD, IPP and IDDQ Measurement Conditions.............................................................................................................................. 49
18. DIMM IDD SPECIFICATION DEFINITION .........................................................................................................................................52
19. TIMING PARAMETERS BY SPEED GRADE ....................................................................................................................................64
19.1 Rounding Algorithms ...................................................................................................................................................................70
19.2 The DQ input receiver compliance mask for voltage and timing .................................................................................................. 71
19.3 Command, Control, and Address Setup, Hold, and Derating .......................................................................................................74
19.4 DDR4 Function Matrix ..................................................................................................................................................................76
20. PHYSICAL DIMENSIONS ..................................................................................................................................................................78
20.1 4Gbx4(DDP) based 8Gx72 Module (4 Ranks) - M386A8K40CM2...............................................................................................78
20.1.1. x72 DIMM, populated as Quad physical ranks of x4 DDR4 SDRAMs ..................................................................................78
..........................................................36
- 3 -
Rev. 1.2
datasheet
DDR4 SDRAMLoad Reduced DIMM

1. DDR4 Load Reduced DIMM ORDERING INFORMATION

[Table 1] Ordering Information Table
Part Number
M386A8K40CM2-CRC/TD/VF 64GB 8Gx72 DDP 4Gx4(K4AAG045WC-MC##)*36 4 31.25mm
NOTE :
1) "##" - RC/TD/VF
2) RC(2400Mbps 17-17-17)/TD(2666Mbps 19-19-19)/VF(2933Mbps 21-21-21).
- Backward compatible to lower frequency.
2)
Density Organization
Component Composition
1)
Number of
Rank

2. KEY FEATURES

[Table 2] Speed Bins
Speed
tCK(min) 1.25 1.071 0.937 0.833 0.75 0.682 ns
CAS Latency 11 13 15 17 19 21 nCK
tRCD(min) 13.75 13.92 14.06 14.16 14.25 14.32 ns
tRP(min) 13.75 13.92 14.06 14.16 14.25 14.32 ns
tRAS(min) 35 34 33 32 32 32 ns
tRC(min) 48.75 47.92 47.06 46.16 46.25 46.32 ns
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933
11- 11-11 13-13-13 15-15-15 17-17-17 19-19-19 21-21-21
Height
Unit
• JEDEC standard 1.2V ± 0.06V Power Supply
•V
• 800 MHz fCK for 1600Mb/sec/pin,933 MHz fCK for 1866Mb/sec/pin, 1067MHz fCK for 2133Mb/sec/pin,1200MHz fCK for 2400Mb/sec/pin, 1333MHz
• 16 Banks (4 Bank Groups)
• Programmable CAS Latency: 10,11,12,13,14,15,16,17,18,19,20,21
• Programmable Additive Latency (Posted CAS): 0, CL - 2, or CL - 1 clock
• Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12 (DDR4-1866), 11,14 (DDR4-2133), 12,16 (DDR4-2400), 14,18 (DDR4-2666)
• Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS]
• Bi-directional Differential Data Strobe
• On Die Termination using ODT pin
• Average Refresh Period 7.8us at lower then T
• Asynchronous Reset
= 1.2V ± 0.06V
DDQ
for 2666Mb/sec/pin and 1467MHz fCK for 2933Mb/sec/pin.
f
CK
and 16, 20 (DDR4-2933).
85C, 3.9us at 85C < T
CASE
CASE
95C

3. ADDRESS CONFIGURATION

Organization Row Address Column Address Bank Group Address Bank Address Auto Precharge
4Gx4(16Gb DDP) based Module A0-A16 A0-A9 BG0-BG1 BA0-BA1 A10/AP
- 4 -
Rev. 1.2
datasheet
4. Load Reduced DIMM PIN COFIGURATIONS
DDR4 SDRAMLoad Reduced DIMM
(FRONT SIDE / BACK SIDE)
Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back
1
2 VSS 146 VREFCA 41
3 DQ4 147 VSS 42 VSS 186 DQS3
4 VSS 148 DQ5 43 DQ30 187 VSS 81 BA0 225 A10/AP 120 VSS 264 DQ49
5 DQ0 149 VSS 44 VSS 188 DQ31 82 RAS
6 VSS 150 DQ1 45 DQ26 189 VSS 83 VDD 227 RFU 122
7
8
9 VSS 153 DQS0
10 DQ6 154 VSS 49 CB0 193 VSS 87 ODT0 231 VDD 126 DQ50 270 VSS
11 VSS 155 DQ7 50 VSS 194 CB1 88 VDD 232 A13 127 VSS 271 DQ51
12 DQ2 156 VSS 51
13 VSS 157 DQ3 52
14 DQ12 158 VSS 53 VSS 197 DQS8
15 VSS 159 DQ13 54 CB6 198 VSS 92 VDD 236 VDD 131 VSS 275 DQ57
16 DQ8 160 VSS 55 VSS 199 CB7 93 C0,CS2
17 VSS 161 DQ9 56 CB2 200 VSS 94 VSS 238 SA2 133
18
19
20 VSS 164 DQS1
21 DQ14 165 VSS 60 CKE0 204 VDD 98 VSS 242 DQ33 137 DQ58 281 VSS
22 VSS 166 DQ15 61 VDD 205 RFU 99
23 DQ10 167 VSS 62 ACT
24 VSS 168 DQ11 63 BG0 207 BG1 101 VSS 245 DQS4
25 DQ20 169 VSS 64 VDD 208 ALERT
26 VSS 170 DQ21 65 A12/BC
27 DQ16 171 VSS 66 A9 210 A11 104 DQ34 248 VSS 143 VPP 287 VPP
28 VSS 172 DQ17 67 VDD 211 A7 105 VSS 249 DQ35 144 RFU 288
29
30
31 VSS 175 DQS2
32 DQ22 176 VSS 71 A3 215 VDD 109 VSS 253 DQ41
33 VSS 177 DQ23 72 A1 216 A2 110
34 DQ18 178 VSS 73 VDD 217 VDD 111
35 VSS 179 DQ19 74 CK0
36 DQ28 180 VSS 75 CK0
37 VSS 181 DQ29 76 VDD 220 VDD 114 VSS 258 DQ47
38 DQ24 182 VSS 77 VTT 221 VTT 115 DQ42 259 VSS
39 VSS 183 DQ25 KEY 116 VSS 260 DQ43
3
12V
,NC
TDQS9_t,
DQS9_t
TDQS9_c,
DQS9_c
TDQS10_t,
DQS10_t
TDQS10_c,
DQS10_c
TDQS11_t,
DQS11_t
TDQS11_c,
DQS11_c
145
12V3,NC
151 VSS 46 VSS 190 DQ27 84 S0
152 DQS0
162 VSS 57 VSS 201 CB3 95 DQ36 239 VSS 134 VSS 278 DQS7
163 DQS1
173 VSS 68 A8 212 VDD 106 DQ44 250 VSS
174 DQS2
_c
_t
_c
_t
_c
_t
TDQS12_t,
40
DQS12_t
TDQS12_c,
DQS12_c
47 CB4 191 VSS 85 VDD 229 VDD 124 DQ54 268 VSS
48 VSS 192 CB5 86 CAS_n/A15 230 NC 125 VSS 269 DQ55
TDQS17_t,
DQS17_t
TDQS17_c,
DQS17_c
58 RESET
59 VDD 203 CKE1 97 DQ32 241 VSS 136 VSS 280 DQ63
69 A6 213 A5 107 VSS 251 DQ45
70 VDD 214 A4 108 DQ40 252 VSS
184 VSS 78 EVENT
185 DQS3
195 VSS 89 S1
196 DQS8
_n
202 VSS 96 VSS 240 DQ37 135 DQ62 279 VSS
_n
206 VDD 100
_n
209 VDD 103 VSS 247 DQ39 142 VPP 286 VPP
_t
218 CK1
_c
219 CK1
_c
79 A0 223 VDD 118 VSS 262 DQ53
_t
80 VDD 224 BA1 119 DQ48 263 VSS
_c
90 VDD 234 A17 129 VSS 273 DQ61
_t
91 ODT1 235 NC,C2 130 DQ56 274 VSS
_n
102 DQ38 246 VSS 141 SCL 285 SDA
_t
112 VS S 25 6 DQS 5
_c
113 D Q46 257 VS S
_n
222 PARITY 117 DQ52 261 VSS
_n
/A16 226 VDD 121
_n
228 WE_n/A14 123 VSS 267 DQS6
_n
233 VDD 128 DQ60 272 VSS
_n
,NC 237 NC,CS3_c,C1 132
TDQS13_t,
DQS13_t
TDQS13_c,
DQS13_c
TDQS14_t,
DQS14_t
TDQS14_c,
DQS14_c
243 VSS 138 VSS 282 DQ59
244 DQS4
254 VSS
255 DQS5
TDQS15_t,
DQS15_t
TDQS15_c,
DQS15_c
TDQS16_t,
DQS16_t
TDQS16_c,
DQS16_c
_c
139 SA0 283 VSS
_t
140 SA1 284 VDDSPD
_c
_t
265 VSS
266 DQS6
276 VSS
277 DQS7
VPP
_c
_t
_c
_t
4
NOTE:
1) VPP is 2.5V DC
2) Pin 230 is defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pin 230 is defined as SAVE_n for NVDIMMs.
3) Pins 1 and 145 are defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pins 1 and 145 are defined as 12V for Hybrid /NVDIMM
4) The 5th VPP is required on all modules. DIMMs.
- 5 -
Rev. 1.2
datasheet
DDR4 SDRAMLoad Reduced DIMM

5. PIN DESCRIPTION

Pin Name Description Pin Name Description
1)
A0–A17
BA0, BA1 Register bank select input SDA I
BG0, BG1 Register bank group select input SA0–SA2 I
RAS_n
CAS_n
WE_n
CS0_n, CS1_n,
CS2_n, CS3_n
CKE0, CKE1 Register clock enable lines input VSS Power supply return (ground)
ODT0, ODT1 Register on-die termination control lines input VDDSPD Serial SPD/TS positive power supply
ACT_n Register input for activate input ALERT_n Register ALERT_n output
DQ0–DQ63 DIMM memory data bus RESET_n Set Register and SDRAMs to a Known State
CB0–CB7 DIMM ECC check bits EVENT_n SPD signals a thermal event has occurred
DQS0_t– DQS17_t
DQS0_c– DQS17_c
CK0_t, CK1_t
CK0_c, CK1_c
Register address input SCL I2C serial bus clock for SPD/TS and register
2
C serial bus data line for SPD/TS and register
2
C slave address select for SPD/TS and register
2)
Register row address strobe input PAR Register parity input
3)
Register column address strobe input VDD SDRAM core power supply
4)
Register write enable input VPP SDRAM activating power supply
DIMM Rank Select Lines input VREFCA SDRAM command/address reference supply
Data Buffer data strobes (positive line of differential pair)
Data Buffer data strobes (negative line of differential pair)
Register clock input (positive line of differential pair)
Register clocks input (negative line of differential pair)
VTT
RFU Reserved for future use
SDRAM I/O termination supply
NOTE :
1) Address A17 is only valid for 16 Gb x4 based SDRAMs.
2) RAS_n is a multiplexed function with A16.
3) CAS_n is a multiplexed function with A15.
4) WE_n is a multiplexed function with A14.
- 6 -
Rev. 1.2
SA0 SA1 SA2
SA0
SA1
SDA
SCL
EVENT_n
SA2
EVENT_n
Serial PD with
Register
Thermal sensor
SA0 SA1 SA2
SDA
SCL
SDA
SCL
ZQCAL
VSS
1K
BFUNC
VSS
datasheet

6. ON DIMM THERMAL SENSOR

NOTE :
1) All Samsung RDIMM support Thermal sensor on DIMM.
[Table 3] Temperature Sensor Characteristics
Grade Range
75 < Ta < 95 - +/- 0.5 +/- 1.0
B
40 < Ta < 125 - +/- 1.0 +/- 2.0 -
-20 < Ta < 125 - +/- 2.0 +/- 3.0 -
Resolution 0.25 C /LSB -
Min. Typ . Max.
Temperature Sensor Accuracy
DDR4 SDRAMLoad Reduced DIMM
Units NOTE
-
C
- 7 -
Rev. 1.2
datasheet

7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION

[Table 4] Input/Output Function Description
Symbol Type Function
CK_t, CK_c
CKE, (CKE1) Input
CS_n, (CS1_n)
C0, C1, C2 Input
ODT, (ODT1) Input
ACT_n Input
RAS_n/A16. CAS_n/A15.
WE_n/A14
DM_n/DBI_n/ TDQS_t, (DMU_n/ DBIU_n), (DML_n/
DBIL_n)
BG0 - BG1 Input
BA0 - BA1 Input
A0 - A17 Input
A10 / AP Input
A12 / BC_n Input
RESET_n Input
DQ
Input/Output
Input
Input
Input
Input/
Output
Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c.
Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and device input buffers and output drivers. Taking CKE LOW provides Precharge Power-Down and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal DQ Vref have become stable during the power on and initialization sequence, they must be maintained during all operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK_t, CK_c, ODT and CKE, are disabled during power-down. Input buffers, excluding CKE are disabled during Self-Refresh.
Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection on systems with multiple Ranks. CS_n is considered part of the command code.
Chip ID : Chip ID is only used for 3DS for 2,4,8 high stack via TSV to select each slice of stacked component. Chip ID is considered part of the command code.
On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/ TDQS_t, NU/TDQS_c (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. For x16 configuration ODT is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, DMU_n, and DML_n signal. The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM.
Activation Command Input : ACT_n defines the Activation command being entered along with CS_n. The input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14
Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being entered. Those pins have multi function. For example, for activation with ACT_n Low, these are Addressing like A16, A15 and A14 but for non-activation command with ACT_n High, these are Command pins for Read, Write and other command defined in command truth table
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is masked when DM_n is sampled LOW coincident with that input data during a Write access. DM_n is sampled on both edges of DQS. DM is muxed with DBI function by Mode Register A10,A11,A12 setting in MR5. For x8 device, the function of DM or TDQS is enabled by Mode Register A11 setting in MR1. DBI_n is an input/output identifing whether to store/ output the true or inverted data. If DBI_n is LOW, the data will be stored/output after inversion inside the DDR4 SDRAM and not inverted if DBI_n is HIGH. TDQS is only supported in X8
Bank Group Inputs: BG0 - BG1 define to which bank group an Active, Read, Write or Precharge command is being applied. BG0 also determines which mode register is to be accessed during a MRS cycle. X4/8 have BG0 and BG1 but X16 has only BG0.
Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines which mode register is to be accessed during a MRS cycle.
Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/Write commands to select one location out of the memory array in the respective bank. A10/AP, A12/BC_n, RAS_n/A16, CAS_n/A15 and WE_n/A14 have additional functions. See other rows. The address inputs also provide the op-code during Mode Register Set commands. A17 is only defined for the x4 configurations.
Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses.
Burst Chop: A12/BC_n is sampled during Read and Write commands to determine if burst chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDD.
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at the end of Data Burst. Any DQ from DQ0-DQ3 may indicate the internal Vref level during test via Mode Register Setting MR4 A4=High. During this mode, RTT value should be set to Hi-Z. Refer to vendor specific datasheets to determine which DQ is used.
DDR4 SDRAMLoad Reduced DIMM
- 8 -
Rev. 1.2
datasheet
[Table 4] Input/Output Function Description
Symbol Type Function
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the
DQS_t, DQS_c,
DQSU_t, DQSU_c,
DQSL_t, DQSL_c
TDQS_t, TDQS_c Output
PAR Input
ALERT_n
TEN
NC No Connect: No internal electrical connection is present.
VDDQ Supply DQ Power Supply: 1.2 V +/- 0.06 V
VSSQ Supply DQ Ground
VDD Supply
VSS Supply
VPP Supply
VREFCA Supply
ZQ Supply
Input/
Output
Input/
Output
Input
x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS_t , DQSL_t and DQSU_t are paired with differential signals DQS_c, DQSL_c, and DQSU_c, respectively, to provide differential pair signaling to the system during reads and writes. DDR4 SDRAM supports differential data strobe only and does not support single-ended.
Termination Data Strobe: TDQS_t/TDQS_c is applicable for x8 DRAMs only. When enabled via Mode Register A11 = 1 in MR1, the DRAM will enable the same termination resistance function on TDQS_t/TDQS_c that is applied to DQS_t/DQS_c. When disabled via mode register A11 = 0 in MR1, DM/DBI/TDQS will provide the data mask function or Data Bus Inversion depending on MR5; A11,12,10and TDQS_c is not used. x4/x16 DRAMs must disable the TDQS function via mode register A11 = 0 in MR1.
Command and Address Parity Input: DDR4 Supports Even Parity check in DRAM with MR setting. Once it’s enabled via Register in MR5, then DRAM calculates Parity with ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0-BG1, BA0­BA1, A17-A0 and C0-C2 (3DS devices). Command and address inputs shall have parity check performed when commands are latched via the rising edge of CK_t and when CS_n is low.
Alert : It has multi functions such as CRC error flag, Command and Address Parity error flag as Output signal. If there is error in CRC, then ALERT_n goes LOW for the period time interval and goes back HIGH. If there is error in Command Address Parity Check, then ALERT_n goes LOW for relatively long period until on going DRAM internal recovery transaction is complete. During Connectivity Test mode, this pin works as input. Using this signal or not is dependent on system. In case of not connected as Signal, ALERT_n Pin must be bounded to VDD on board.
Connectivity Test Mode Enable : Required on X16 devices and optional input on x4/x8 with densities equal to or greater than 8Gb.HIGH in this pin will enable Connectivity Test Mode operation along with other pins. It is a CMOS rail to rail signal with AC high and low at 80% and 20% of VDD. Using this signal or not is dependent on System. This pin may be DRAM internally pulled low through a weak pull-down resistor to VSS.
Power Supply: 1.2 V ± 0.06 V
Ground
DRAM Activating Power Supply: 2.5V (2.375V min, 2.75V max)
Reference voltage for CA
Reference Pin for ZQ calibration.
DDR4 SDRAMLoad Reduced DIMM
NOTE :
1) Input only pins (BG0-BG1,BA0-BA1, A0-A17, ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, CS_n, CKE, ODT, and RESET_n) do not supply termination.
- 9 -
Rev. 1.2
datasheet
DDR4 SDRAMLoad Reduced DIMM

8. REGISTERING CLOCK DRIVER SPECIFICATION

8.1 Timing & Capacitance Values

Symbol Parameter Conditions
fclock Input Clock Frequency application frequency 625 1080 625 1350 TBD TBD MHz
t
CH/tCL
t
ACT
t
PDM
t
t
C
C
NOTE :
1) This parameter does not include package capacitance.
2) Data inputs are DCKE0/1,DODT0/1,DA0,DA17, DBA0,DBA1,DBG0,DBG1,DACT_n, DC0,DC2, DPAR, DCS0/1_n
Pulse duration, CK_t, CK_c HIGH or LOW
Inputs active time4 before DRST_n is taken HIGH
Propagation delay, single-bit switching, CK_t/ CK_c to output
output disable time
DIS
output enable time
EN
C
Input capacitance, Data inputs
I
Input capacitance, CK_t, CK_c
CK
Input capacitance, DRST_n
IR
DCKE0/1 = LOW and DCS0/1_n = HIGH
1.2V Operation 1 1.3 1 1.3 TBD TBD ns
Rising edge of Yn_t to output float
Output valid to rising edge of Yn_t
1,2
NOTE
1,2
NOTE
or VSS;
V
I=VDD
=1.2V
V
DD
DDR4-1600/1866/2133 DDR4-2400/2666 DDR4-2933
Min Max Min Max Min Max
0.4 - 0.4 - TBD -
16 - 16 - TBD -
0.5*tCK +
tQSK1(min
)
0.5*tCK -
tQSK1(ma
x)
0.8 1.1 0.8 1.0 TBD TBD
0.8 1.1 0.8 1.0 TBD TBD
0.5 2.0 0.5 2.0 TBD TBD
-
-
0.5*tCK +
tQSK1(min
)
0.5*tCK -
tQSK1(ma
x)
-TBD-ps
-TBD-ps
Units
t
CK
t
CK
pF

8.2 Clock Driver Characteristics

Symbol Parameter Conditions
t
jit
t
t
t
jit
t
jit
t
t
(cc)
STAB
CKsk
(per)
(hper)
Qsk1
dynoff
Cycle-to-cycle period jit­ter
Stabilization time - 5 - 5 - 5 - TBD us
Clock Output skew - 10 - 10 - 10 - TBD ps
Yn Clock Period jitter
Half period jitter
Qn Output to clock toler­ance
Maximum re-driven dynamic clock off-set
CK_t/CK_c sta­ble
-0.025 *
-0.032 *
-0.125 *
DDR4-1600/1866/
2133
Min Max Min Max Min Max Min Max
0
tCK
tCK
tCK
-50-45-45-TBDps
0.025 x tCK
0.025 * tCK
0.032 * tCK
0.125 * tCK
DDR4-2400 DDR4-2666 DDR4-2933
0 0.025 x tCK 0
-0.025 *
-0.032 *
-0.125 *
0.025 * tCK
tCK
0.032 * tCK
tCK
0.125 * tCK -0.1 * tCK 0.1 * tCK TBD TBD ps
tCK
-0.025 * tCK
-0.032 * tCK
0.025 x tCK
0.025 * tCK
0.032 * tCK
TBD TBD ps
TBD TBD ps
TBD TBD ps
Units
- 10 -
Rev. 1.2
CK0_t
CK0_c
BA[1:0]
BG[1:0]A -> BA[1:0]: SDRAMs D[3:0],D8,D[12:9],D17,D[3B:0B],D8B,D[12B:9B],D17B
A[17:0]
A[17:0]A -> A[17:0]: SDRAMs D[3:0],D8,D[12:9],D17,D[3B:0B],D8B,D[12B:9B],D17B
CS[3:0]_n
ODT0, ODT1
RESET_n
BG[1:0]B -> BA[1:0]: SDRAMs D[7:4],D[16:13],D[7B:4B],D[16B:13B]
A[17:0]B -> A[17:0]: SDRAMs D[7:4],D[16:13],D[7B:4B],D[16B:13B]
QRESET_n -> RESET_n: All SDRAMs
PARITY, ACT_n
CK1_t
CK1_c
Y0(_t,_c) -> CK(_t,_c): SDRAMs D[16:13],D[16B:13B]
BG[1:0]
BG[1:0]A -> BG[1:0]: SDRAMs D[3:0],D8,D[12:9],D17,D[3B:0B],D8B,D[12B:9B],D17B
BG[1:0]B -> BG[1:0]: SDRAMs D[7:4],D[16:13],D[7B:4B],D[16B:13B]
CKE1A -> CKE: SDRAMs D[3B:0B],D8B,D[12B:9B],D17B
CKE1B -> CKE: SDRAMs D[7B:4B],D[16B:13B]
ODT0A -> ODT: SDRAMs D[3:0],D8,D[12:9],D17
ODT0B -> ODT: SDRAMs D[7:4],D[16:13]
CS0A_n -> CS_n: SDRAMs D[3:0],D8,D[12:9],D17
CS0B_n -> CS_n: SDRAMs D[7:4],D[16:13]
PARA -> PAR,ACT_n: SDRAMs D[3:0],D8,D[12:9],D17,D[3B:0B],D8B,D[12B:9B],D17B
PARB -> PAR,ACT_n: SDRAMs D[7:4],D[16:13],D[7B:4B],D[16B:13B]
CKE0, CKE1
CKE0A -> CKE: SDRAMs D[3:0],D8,D[12:9],D17
CKE0B -> CKE: SDRAMs D[7:4],D[16:13]
R e g
i
s
t e r.
ODT1A -> ODT: SDRAMs D[3B:0B],D8B,D[12B:9B],D17B
ODT1B -> ODT: SDRAMs D[7B:4B],D[16B:13B]
CS1A_n -> CS_n: SDRAMs D[3B:0B],D8B,D[12B:9B],D17B
CS1B_n -> CS_n: SDRAMs D[7B:4B],D[16B:13B]
Y1(_t,_c) -> CK(_t,_c): SDRAMs D[12:9],D17,D[12B:9B],D17B
Y2(_t,_c) -> CK(_t,_c): SDRAMs D[7:4],D[7B:4B]
Y3(_t,_c) -> CK(_t,_c): SDRAMs D[3:0],D8,D[7B:4B],D8B
ALERT_n
ERROR_IN_n <- ALERT_n: All SDRAMs
CS2A_n -> CS_n: SDRAMs D[3:0],D8,D[12:9],D17
CS2B_n -> CS_n: SDRAMs D[7:4],D[16:13]
CS3A_n -> CS_n: SDRAMs D[3B:0B],D8B,D[12B:9B],D17B
CS3B_n -> CS_n: SDRAMs D[7B:4B],D[16B:13B]
Address, Command and Control lines
Back
Front
D13D14D15D16
D4 D5 D6 D7
D9 D10 D11 D12 D17
D0 D1 D2 D3 D8
D9B D10B D11B D12B D17B
D0B D1B D2B D3B D8B
D13B D14B D15B D16B
D4B D5B D6B D7B
datasheet
DDR4 SDRAMLoad Reduced DIMM

9. FUNCTION BLOCK DIAGRAM:

9.1 64GB, 8Gx72 Module (Populated as 4 ranks of x4 DDR4 SDRAMs)

NOTE :
_t
1) CK0 _t
2) CK1
3) Unless otherwise noted resistors are 22 ± 5%.
, CK0_c terminated with 120 ± 5% resistor. , CK1_c terminated with 120 ± 5% resistor but not used.
- 11 -
Rev. 1.2
CKE1A
VSS
CS3A_n
CKE1A
ODT1A
CS1A_n
DQ[3:0]
DQS0_t DQS0_c
DQ[7:4]
DQS9_t
DQS9_c
CKE0A
VSS
CS2A_n
D0
DQS_c
DQS_t
C
K
E
0
C
S
0 _
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t DQS0_c
MDQ [3:0]
MDQS0_t MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
CKE0A
ODT0A
CS0A_n
D9
DQS_c
DQS_t
C
K
E
0
C
S
0 _
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D9B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D0B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
DQ[11:8]
DQS1_t DQS1_c
DQ[15:12]
DQS10_t
DQS10_c
D1
DQS_c
DQS_t
C
K
E
0
C
S
0 _
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t DQS0_c
MDQ [3:0]
MDQS0_t MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
D10
DQS_c
DQS_t
C
K
E
0
C
S
0 _
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D10B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D1B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
DQ[19:16]
DQS2_t DQS2_c
DQ[23:20]
DQS11_t
DQS11_c
D2
DQS_c
DQS_t
C
K
E
0
C
S
0 _
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t DQS0_c
MDQ [3:0]
MDQS0_t MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
D11
DQS_c
DQS_t
C
K
E
0
C
S
0 _
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D11B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D2B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
DQ[27:24]
DQS3_t DQS3_c
DQ[31:28]
DQS12_t
DQS12_c
D3
DQS_c
DQS_t
C
K
E
0
C
S
0 _
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t DQS0_c
MDQ [3:0]
MDQS0_t MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
D12
DQS_c
DQS_t
C
K
E
0
C
S
0 _
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D12B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D3B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
CB[3:0]
DQS8_t DQS8_c
CB[7:4]
DQS17_t
DQS17_c
D8
DQS_c
DQS_t
C
K
E
0
C
S
0 _
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t DQS0_c
MDQ [3:0]
MDQS0_t MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
D17
DQS_c
DQS_t
C
K
E
0
C
S
0 _
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D17B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D8B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
datasheet
DDR4 SDRAMLoad Reduced DIMM
- 12 -
NOTE :
1) ZQ resistors are 240 ±1%. For all other resistor values refer to the appropriate wiring diagram.
2) See the Net Structure diagrams for all resistors associated with the command, address and control bus.
3) TEN pin of SDRAMs is tied to VSS.
4) DQ stub resistors are 15 ±5%. For all other resistor values refer to the appropriate wiring diagram.
Rev. 1.2
V
SS
D0-D35
D0-D35
V
DD
4
V
DDSPD
4
Serial PD
VREFCA
V
TT
D0-D35
V
PP
D0-D35
SA0 SA1 SA2
SA0
SA1
SDA
SCL
EVENT_n
SA2
EVENT_n
Serial PD with
Register
Thermal sensor
SA0 SA1 SA2
SDA
SCL
SDA
SCL
ZQCAL
VSS
1K
BFUNC
VSS
CKE1B
VSS
CS3B_n
CKE1B
ODT1B
CS1B_n
DQ[35:32]
DQS4_t DQS4_c
DQ[39:36]
DQS13_t
DQS13_c
CKE0B
VSS
CS2B_n
D4
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t DQS0_c
MDQ [3:0]
MDQS0_t MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
CKE0B
ODT0B
CS0B_n
D13
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D13B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D4B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
DQ[43:40]
DQS5_t DQS5_c
DQ[47:44]
DQS14_t
DQS14_c
D5
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t DQS0_c
MDQ [3:0]
MDQS0_t MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
D14
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D14B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D5B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
DQ[51:48]
DQS6_t DQS6_c
DQ[55:52]
DQS15_t
DQS15_c
D6
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t DQS0_c
MDQ [3:0]
MDQS0_t MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
D15
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D15B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D6B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
DQ[59:56]
DQS7_t DQS7_c
DQ[63:60]
DQS16_t
DQS16_c
D7
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t DQS0_c
MDQ [3:0]
MDQS0_t MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
D16
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D16B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D7B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
datasheet
DDR4 SDRAMLoad Reduced DIMM
NOTE:
1) ZQ resistors are 240 ±1%. For all other resistor values refer to the appropriate wiring diagram.
2) See the Net Structure diagrams for all resistors associated with the command, address and control bus.
3) TEN pin of SDRAMs is tied to VSS.
4) VDDSPD is also applied to the register. VDD is also applied to the register and the data buffers.
5) DQ stub resistors are 15 ±5%. For all other resistor values refer to the appropriate wiring diagram.
- 13 -
Rev. 1.2
datasheet
DDR4 SDRAMLoad Reduced DIMM

10. ABSOLUTE MAXIMUM RATINGS

10.1 Absolute Maximum DC Ratings

[Table 5] Absolute Maximum DC Ratings
Symbol Parameter Rating Units NOTE
VDD Voltage on VDD pin relative to Vss -0.3 ~ 1.5 V 1,3
VDDQ Voltage on VDDQ pin relative to Vss -0.3 ~ 1.5 V 1,3
VPP Voltage on VPP pin relative to Vss -0.3 ~ 3.0 V 4
V
NOTE :
1) Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3) VDD and VDDQ must be within 300mV of each other at all times; and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREFCA
may be equal to or less than 300mV
4) VPP must be equal or greater than VDD/VDDQ at all times.
5) Overshoot area above 1.5 V is specified in section Address, Command and Control Overshoot and Undershoot specifications, Clock Overshoot and Undershoot
Specifications and section Data, Strobe and Mask Overshoot and Undershoot Specifications.
Voltage on any pin except VREFCA relative to Vss -0.3 ~ 1.5 V 1,3,5
IN, VOUT
T
Storage Temperature -55 to +100 °C 1,2
STG

11. AC & DC OPERATING CONDITIONS

[Table 6] Recommended DC Operating Conditions
Symbol Parameter
VDD Supply Voltage 1.14 1.2 1.26 V 1,2,3
VDDQ Supply Voltage for Output 1.14 1.2 1.26 V 1,2,3
VPP Peak-to-Peak Voltage 2.375 2.5 2.75 V 3
NOTE :
1) Under all conditions V
tracks with VDD. AC parameters are measured with VDD and V
2) V
DDQ
3) DC bandwidth is limited to 20MHz.
must be less than or equal to VDD.
DDQ
Min. Typ. Max.
tied together.
DDQ
Rating
Unit NOTE
- 14 -
Rev. 1.2
voltage
V
DD
V
SS
time
datasheet
DDR4 SDRAMLoad Reduced DIMM

12. AC & DC INPUT MEASUREMENT LEVELS

12.1 AC & DC Logic Input Levels for Single-Ended Signals

[Table 7] Single-ended AC & DC Input Levels for Command and Address
Symbol Parameter
VIH.CA(DC75)
VIH.CA(DC65) - -
VIL.CA(DC75)
VIL.CA(DC65) - - VSS
VIH.CA(AC100)
VIH.CA(AC90) - -
VIL.CA(AC100)
VIL.CA(AC90) - - Note 2
VREFCA(DC) Reference Voltage for ADD, CMD inputs 0.49*VDD 0.51*VDD - - V 2,3
NOTE :
1) See “Overshoot and Undershoot Specifications” on section.
2) The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)
3) For reference : approx. VDD/2 ± 12mV.
DC input logic high
DC input logic low
AC input logic high
AC input logic low
DDR4-1600/1866/2133/2400 DDR4-2666/2933
Min. Max. Min. Max.
+ 0.075
V
REFCA
V
VSS
+ 0.1
REF
Note 2
VDD - -
V
+ 0.065
REFCA
V
-0.075
REFCA
Note 2 - -
V
- 0.1
REF
--
V
+ 0.09
REF
--
V
REFCA
V
VDD
Note 2
REF
-0.065
- 0.09
Unit NOTE
V
V
V
V
1
1
12.2 AC and DC Input Measurement Levels: V
The DC-tolerance limits and ac-noise limits for the reference voltages V
function of time. (V
V
(DC) is the linear average of V
REF
Furthermore V
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on V
stands for V
REF
(t) may temporarily deviate from V
REF
).
REFCA
(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7.
REF
(DC) by no more than ± 1% VDD.
REF
Figure 1. Illustration of V
(DC) tolerance and V
REF
is illustrated in Figure 1. It shows a valid reference voltage V
REFCA
Tolerances.
REF
AC-noise limits
REF
REF
(t) as a
REF
.
"V
" shall be understood as V
REF
This clarifies, that DC-variations of V
which setup and hold is measured. System timing and voltage budgets need to account for V
data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V
and voltage effects due to AC-noise on V
(DC), as defined in Figure 1.
REF
affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
REF
(DC) deviations from the optimum position within the
REF
up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
REF
- 15 -
AC-noise. Timing
REF
Rev. 1.2
0.0
tDVAC
V
IH
.DIFF.MIN
half cycle
Differential Input Voltage (CK-CK)
time
tDVAC
VIH.DIFF.AC.MIN
V
IL
.DIFF.MAX
V
IL
.DIFF.AC.MAX
(CK_t - CK_c)
datasheet

12.3 AC and DC Logic Input Levels for Differential Signals

12.3.1 Differential Signals Definition

Figure 2. Definition of differential ac-swing and “time above ac-level” t
NOTE:
1) Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.
2) Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.
DDR4 SDRAMLoad Reduced DIMM
DVAC
- 16 -
Rev. 1.2
datasheet

12.3.2 Differential Swing Requirements for Clock (CK_t - CK_c)

[Table 8] Differential AC and DC Input Levels
Symbol Parameter
V
IHdiff
V
ILdiff
V
(AC)
IHdiff
V
(AC)
ILdiff
NOTE :
1) Used to define a differential signal slew-rate.
2) for CK_t - CK_c use V
3) These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (V
as well as the limitations for overshoot and undershoot.
[Table 9] Allowed Time Before Ringback (tDVAC) for CK_t - CK_c
differential input high +0.150 NOTE 3 TBD NOTE 3 V 1
differential input low NOTE 3 -0.150 NOTE 3 TBD V 1
differential input high ac
differential input low ac NOTE 3
IH.CA/VIL.CA
Slew Rate [V/ns]
> 4.0 120 -
4.0 115 -
3.0 110 -
2.0 105 -
1.8 100 -
1.6 95 -
1.4 90 -
1.2 85 -
1.0 80 -
< 1.0 80 -
(AC) of ADD/CMD and V
2 x (VIH(AC) - V
DDR4 -1600/1866/2133 DDR4 -2400/2666/2933
min max min max
REFCA
)
REF
;
min max
NOTE 3
2 x (VIL(AC) - V
tDVAC [ps] @ |V
2 x (VIH(AC) - V
)
REF
IH/Ldiff
REF
NOTE 3
(DC) max, V
IH.CA
(AC)| = 200mV
DDR4 SDRAMLoad Reduced DIMM
)
NOTE 3 V 2
2 x (VIL(AC) - V
(DC)min) for single-ended signals
IL.CA
REF
unit NOTE
)
V2
- 17 -
Rev. 1.2
VDD or V
DDQ
V
SEH
min
V
DD
/2 or V
DDQ
/2
V
SEL
max
V
SEH
VSS or V
SSQ
V
SEL
CK
time
datasheet
DDR4 SDRAMLoad Reduced DIMM

12.3.3 Single-ended Requirements for Differential Signals

Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain requirements for single-ended signals.
CK_t and CK_c have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH.CA(AC) / VIL.CA(AC)) for ADD/CMD signals) in every half-cycle.
Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g., if Different value than VIH.CA(AC100)/VIL.CA(AC100) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK_c.
Figure 3. Single-ended requirement for differential signals.
Note that, while ADD/CMD signal requirements are with respect to VrefCA, the single-ended components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single­ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals.
[Table 10] Single-ended Levels for CK_t, CK_c
Symbol Parameter
V
V
NOTE :
1) For CK_t - CK_c use V
2) V
IH
3) These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits (V
signals as well as the limitations for overshoot and undershoot.
Single-ended high-level for
SEH
Single-ended low-level for
SEL
(AC)/VIL(AC) for ADD/CMD is based on V
IH.CA/VIL.CA
(AC) of ADD/CMD;
CK_t, CK_c
CK_t, CK_c
;
REFCA
DDR4-1600/1866/2133 DDR4-2400/2666/2933
Min Max Min Max
(VDD/2)+0.100 NOTE3 TBD NOTE3 V 1, 2
NOTE3 (VDD/2)-0.100 NOTE3 TBD V 1, 2
(DC) max, V
IH.CA
IL.CA
Unit NOTE
(DC)min) for single-ended
- 18 -
Rev. 1.2
A
AOS1
V
DD
A
AUS
V
SS
Volts
(V)
1 tCK
V
AOSP
A
AOS2
V
AOS
V
AUS
datasheet
DDR4 SDRAMLoad Reduced DIMM

12.3.4 Address, Command and Control Overshoot and Undershoot specifications

[Table 11] AC overshoot/undershoot specification for Address, Command and Control pins
Parameter
Maximum peak amplitude above VAOS VAOSP 0.06 TBD TBD V
Upper boundary of overshoot area AAOS1 VAOS VDD +0.24 TBD TBD V 1
Maximum peak amplitude allowed for undershoot
Maximum overshoot area per 1 tCK above VAOS AAOS2 0.0083 0.0071 0.0062 0.0055 TBD TBD V-ns
Maximum overshoot area per 1 tCK between VDD and VAOS
Maximum undershoot area per 1 tCK below VSS AAUS 0.2644 0.2265 0.1984 0.1762 TBD TBD V-ns
(A0-A13,A17,BG0-BG1,BA0-BA1,ACT_n,RAS_n/A16,CAS_n/A15,WE_n/A14,CS_n,CKE,ODT,C2-C0)
NOTE :
1) The value of VAOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC
Operating Conditions. If VDD is above the recommended operating conditions, VAOS remains at VDD absolute max as defined in Table 5.
Sym-
bol
VAUS 0.30 TBD TBD V
AAOS1 0.2550 0.2185 0.1914 0.1699 TBD TBD V-ns
DDR4-
1600
DDR4-
1866
Specification
DDR4-
2133
DDR4-
2400
DDR4-
2666
DDR4-
2933
Unit NOTE
Figure 4. Address, Command and Control Overshoot and Undershoot Definition
- 19 -
Rev. 1.2
A
COS1
V
DD
A
CUS
V
SS
Volts
(V)
1 UI
V
COSP
A
COS2
V
COS
V
CUS
datasheet
DDR4 SDRAMLoad Reduced DIMM

12.3.5 Clock Overshoot and Undershoot Specifications

[Table 12] AC overshoot/undershoot specification for Clock
Specification
Parameter Symbol
Maximum peak amplitude above VCOS VCOSP 0.06 TBD TBD V
Upper boundary of overshoot area ADOS1 VCOS VDD +0.24 TBD TBD V 1
Maximum peak amplitude allowed for undershoot VCUS 0.30 TBD TBD V
ACOS2 0.0038 0.0032 0.0028 0.0025 TBD TBD V-ns
Maximum overshoot area per 1 UI above VCOS
Maximum overshoot area per 1 UI between VDD and VDOS
Maximum undershoot area per 1 UI below VSS ACUS 0.1144 0.0980 0.0858 0.0762 TBD TBD V-ns
NOTE :
1) The value of VCOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC
Operating Conditions. If VDD is above the recommended operating conditions, VCOS remains at VDD absolute max as defined in Table 5.
ACOS1 0.1125 0.0964 0.0844 0.0750 TBD TBD V-ns
DDR4-
1600
(CK_t, CK_c)
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
DDR4-
2933
Unit NOTE
Figure 5. Clock Overshoot and Undershoot Definition
- 20 -
Rev. 1.2
A
DOS1
V
DDQ
A
DUS2
V
SSQ
Volts
(V)
1 UI
V
DOSP
A
DOS2
V
DOS
V
DUSP
A
DUS1
datasheet
DDR4 SDRAMLoad Reduced DIMM

12.3.6 Data, Strobe and Mask Overshoot and Undershoot Specifications

[Table 13] AC overshoot/undershoot specification for Data, Strobe and Mask
Specification
Parameter Symbol
Maximum peak amplitude above VDOS VDOSP 0.16 0.16 0.16 0.16 TBD TBD V
Upper boundary of overshoot area ADOS1 VDOS VDDQ + 0.24 TBD TBD V 1
Lower boundary of undershoot area ADUS1 VDUS 0.30 0.30 0.30 0.30 TBD TBD V 2
Maximum peak amplitude below VDUS VDUSP 0.10 0.10 0.10 0.10 TBD TBD V
Maximum overshoot area per 1 UI above VDOS ADOS2 0.0150 0.0129 0.0113 0.0100 TBD TBD V-ns
Maximum overshoot area per 1 UI between VDDQ and VDOS
Maximum undershoot area per 1 UI between VSSQ and VDUS1
Maximum undershoot area per 1 UI below VDUS ADUS2 0.0150 0.0129 0.0113 0.0100 TBD TBD V-ns
NOTE :
1) The value of VDOS matches (VIN, VOUT) max as defined in Table 5 Absolute Maximum DC Ratings if VDDQ equals VDDQ max as defined in Table 6 Recommended DC
Operating Conditions. If VDDQ is above the recommended operating conditions, VDOS remains at (VIN, VOUT) max as defined in Table 5.
2) The value of VDUS matches (VIN, VOUT) min as defined in Table 5 Absolute Maximum DC Ratings
ADOS1 0.1050 0.0900 0.0788 0.0700 TBD TBD V-ns
ADUS1 0.1050 0.0900 0.0788 0.0700 TBD TBD V-ns
DDR4-
1600
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
DDR4-
2933
Unit
NOT
E
Figure 6. Data, Strobe and Mask Overshoot and Undershoot Definition
- 21 -
Rev. 1.2
Delta TRdiff
Delta TFdiff
V
IHdiffmin
0
V
ILdiffmax
Differential Input Voltage(i,e, CK_t - CK_c)
datasheet

12.4 Slew Rate Definitions

12.4.1 Slew Rate Definitions for Differential Input Signals (CK)

Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table 14 and Figure 7.
[Table 14] Differential Input Slew Rate Definition
Description
Differential input slew rate for rising edge (CK_t - CK_c)
Differential input slew rate for falling edge (CK_t - CK_c)
NOTE :
1) The differential signal (i,e.,CK_t - CK_c) must be linear between these thresholds.
Measured
from to
V
ILdiffmax
V
IHdiffmin
V
IHdiffmin
V
ILdiffmax
[V
[V
IHdiffmin
IHdiffmin
DDR4 SDRAMLoad Reduced DIMM
Defined by
- V
ILdiffmax
- V
ILdiffmax
] / DeltaTRdiff
] / DeltaTFdiff
Figure 7. Differential Input Slew Rate Definition for CK_t, CK_c
- 22 -
Rev. 1.2
Delta TRsingle
Delta TFsingle
V
IHCA(AC) Min
V
IHCA(DC) Min
VREFCA(DC)
V
ILCA(DC) Max
V
ILCA(AC) Max
datasheet

12.4.2 Slew Rate Definition for Single-ended Input Signals (CMD/ADD)

DDR4 SDRAMLoad Reduced DIMM
Figure 8. Single-ended Input Slew Rate definition for CMD and ADD
NOTE :
1) Single-ended input slew rate for rising edge = {VIHCA(AC)Min - VILCA(DC)Max} / Delta TR single.
2) Single-ended input slew rate for falling edge = {VIHCA(DC)Min - VILCA(AC)Max} / Delta TF single.
3) Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.
4) Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope.
- 23 -
Rev. 1.2
Vix
CK_t
VDD/2
VSS
VDD
CK_c
Vix
VSEL
VSEH
datasheet
DDR4 SDRAMLoad Reduced DIMM

12.5 Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals (CK_t, CK_c) must meet the requirements in Table 15. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS.
Figure 9. Vix Definition (CK)
[Table 15] Cross Point Voltage for Differential Input Signals (CK)
Symbol Parameter
- Area of VSEH, VSEL
VlX(CK)
Symbol Parameter
VlX(CK)
Differential Input Cross Point Voltage relative to VDD/2 for CK_t, CK_c
- Area of VSEH, VSEL TBD TBD TBD TBD
Differential Input Cross Point Voltage relative to VDD/2 for CK_t, CK_c
VSEL =< VDD/2 -
145mV
-120mV
TBD TBD TBD TBD
min max
min max
DDR4-1600/1866/2133
VDD/2 - 145mV =<
VSEL =< VDD/2 -
100mV
-(VDD/2 - VSEL) + 25mV
DDR4-2400/2666/2933
VDD/2 + 100mV =<
VSEH =< VDD/2 +
145mV
(VSEH - VDD/2) -
25mV
VDD/2 + 145mV =<
VSEH
120mV
- 24 -
Loading...
+ 54 hidden pages