Samsung M386A8K40CM2-CTD User Manual

Rev. 1.2, Feb. 2018

M386A8K40CM2

288pin Load Reduced DIMM based on 8Gb C-die

78FBGA with Lead-Free & Halogen-Free (RoHS compliant)

datasheet

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise.

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2018 Samsung Electronics Co., Ltd. All rights reserved.

- 1 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

Revision History

Revision No.

 

History

Draft Date

Remark

Editor

1.0

- First SPEC Release

7th Apr. 2017

-

J.Y.Lee

1.1

- Update Physical Dimension.

13th Jun, 2017

Final

J.Y.Bae

 

1.

Add PCB hole.

 

 

 

 

2.

Change Module height information.

 

 

 

1.2

- Add 2933Mbps.

6th Feb, 2018

Final

J.H.Han

 

- Correct typo.

 

 

J.Y.Bae

- 2 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

Table Of Contents

 

288pin Load Reduced DIMM based on 8Gb C-die

 

1. DDR4 Load Reduced DIMM ORDERING INFORMATION ..................................................................................................................

4

2. KEY FEATURES ..................................................................................................................................................................................

4

3. ADDRESS CONFIGURATION .............................................................................................................................................................

4

4. Load Reduced DIMM PIN COFIGURATIONS (FRONT SIDE / BACK SIDE) ......................................................................................

5

5. PIN DESCRIPTION .............................................................................................................................................................................

6

6. ON DIMM THERMAL SENSOR ...........................................................................................................................................................

7

7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION .................................................................................................................................

8

8. REGISTERING CLOCK DRIVER SPECIFICATION ............................................................................................................................

10

8.1 Timing & Capacitance Values.........................................................................................................................................................

10

8.2 Clock Driver Characteristics ...........................................................................................................................................................

10

9. FUNCTION BLOCK DIAGRAM: ...........................................................................................................................................................

11

9.1 64GB, 8Gx72 Module (Populated as 4 ranks of x4 DDR4 SDRAMs).............................................................................................

11

10. ABSOLUTE MAXIMUM RATINGS .....................................................................................................................................................

14

10.1

Absolute Maximum DC Ratings....................................................................................................................................................

14

11. AC & DC OPERATING CONDITIONS ...............................................................................................................................................

14

12. AC & DC INPUT MEASUREMENT LEVELS......................................................................................................................................

15

12.1

AC & DC Logic Input Levels for Single-Ended Signals.................................................................................................................

15

12.2

AC and DC Input Measurement Levels: VREF Tolerances..........................................................................................................

15

12.3

AC and DC Logic Input Levels for Differential Signals .................................................................................................................

16

12.3.1. Differential Signals Definition ................................................................................................................................................

16

12.3.2. Differential Swing Requirements for Clock (CK_t - CK_c) ....................................................................................................

17

12.3.3. Single-ended Requirements for Differential Signals .............................................................................................................

18

12.3.4. Address, Command and Control Overshoot and Undershoot specifications........................................................................

19

12.3.5. Clock Overshoot and Undershoot Specifications..................................................................................................................

20

12.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications......................................................................................

21

12.4

Slew Rate Definitions....................................................................................................................................................................

22

12.4.1. Slew Rate Definitions for Differential Input Signals (CK) ......................................................................................................

22

12.4.2. Slew Rate Definition for Single-ended Input Signals (CMD/ADD) ........................................................................................

23

12.5

Differential Input Cross Point Voltage...........................................................................................................................................

24

12.6

CMOS rail to rail Input Levels .......................................................................................................................................................

25

12.6.1. CMOS rail to rail Input Levels for RESET_n .........................................................................................................................

25

12.7

AC and DC Logic Input Levels for DQS Signals...........................................................................................................................

26

12.7.1. Differential signal definition ...................................................................................................................................................

26

12.7.2. Differential swing requirements for DQS (DQS_t - DQS_c)..................................................................................................

26

12.7.3. Peak voltage calculation method ..........................................................................................................................................

27

12.7.4. Differential Input Cross Point Voltage ...................................................................................................................................

28

12.7.5. Differential Input Slew Rate Definition ..................................................................................................................................

29

13. AC and DC output Measurement levels .............................................................................................................................................

30

13.1

Output Driver DC Electrical Characteristics..................................................................................................................................

30

13.1.1. Alert_n output Drive Characteristic .......................................................................................................................................

32

13.1.2. Output Driver Characteristic of Connectivity Test (CT) Mode...............................................................................................

33

13.2

Single-ended AC & DC Output Levels..........................................................................................................................................

34

13.3

Differential AC & DC Output Levels..............................................................................................................................................

34

13.4

Single-ended Output Slew Rate ...................................................................................................................................................

35

13.5

Differential Output Slew Rate .......................................................................................................................................................

36

13.6

Single-ended AC & DC Output Levels of Connectivity Test Mode ...............................................................................................

37

13.7

Test Load for Connectivity Test Mode Timing ..............................................................................................................................

38

14. IDD SPEC TABLE ..............................................................................................................................................................................

39

15. INPUT/OUTPUT CAPACITANCE ......................................................................................................................................................

41

16. SPEED BIN ........................................................................................................................................................................................

42

16.1

Speed Bin Table Note...................................................................................................................................................................

48

17. IDD and IDDQ Specification Parameters and Test conditions ...........................................................................................................

49

17.1

IDD, IPP and IDDQ Measurement Conditions..............................................................................................................................

49

18. DIMM IDD SPECIFICATION DEFINITION.........................................................................................................................................

52

19. TIMING PARAMETERS BY SPEED GRADE ....................................................................................................................................

64

19.1

Rounding Algorithms ...................................................................................................................................................................

70

19.2

The DQ input receiver compliance mask for voltage and timing ..................................................................................................

71

19.3

Command, Control, and Address Setup, Hold, and Derating .......................................................................................................

74

19.4

DDR4 Function Matrix ..................................................................................................................................................................

76

20. PHYSICAL DIMENSIONS ..................................................................................................................................................................

78

20.1

4Gbx4(DDP) based 8Gx72 Module (4 Ranks) - M386A8K40CM2...............................................................................................

78

20.1.1. x72 DIMM, populated as Quad physical ranks of x4 DDR4 SDRAMs ..................................................................................

78

- 3 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

1. DDR4 Load Reduced DIMM ORDERING INFORMATION

[Table 1] Ordering Information Table

Part Number 2)

Density

Organization

Component Composition 1)

Number of

Height

Rank

 

 

 

 

 

M386A8K40CM2-CRC/TD/VF

64GB

8Gx72

DDP 4Gx4(K4AAG045WC-MC##)*36

4

31.25mm

 

 

 

 

 

 

NOTE :

1)"##" - RC/TD/VF

2)RC(2400Mbps 17-17-17)/TD(2666Mbps 19-19-19)/VF(2933Mbps 21-21-21).

-Backward compatible to lower frequency.

2. KEY FEATURES

[Table 2] Speed Bins

Speed

DDR4-1600

DDR4-1866

DDR4-2133

DDR4-2400

DDR4-2666

DDR4-2933

Unit

11-11-11

13-13-13

15-15-15

17-17-17

19-19-19

21-21-21

 

 

tCK(min)

1.25

1.071

0.937

0.833

0.75

0.682

ns

 

 

 

 

 

 

 

 

CAS Latency

11

13

15

17

19

21

nCK

 

 

 

 

 

 

 

 

tRCD(min)

13.75

13.92

14.06

14.16

14.25

14.32

ns

 

 

 

 

 

 

 

 

tRP(min)

13.75

13.92

14.06

14.16

14.25

14.32

ns

 

 

 

 

 

 

 

 

tRAS(min)

35

34

33

32

32

32

ns

 

 

 

 

 

 

 

 

tRC(min)

48.75

47.92

47.06

46.16

46.25

46.32

ns

 

 

 

 

 

 

 

 

JEDEC standard 1.2V ± 0.06V Power Supply

VDDQ = 1.2V ± 0.06V

800 MHz fCK for 1600Mb/sec/pin,933 MHz fCK for 1866Mb/sec/pin, 1067MHz fCK for 2133Mb/sec/pin,1200MHz fCK for 2400Mb/sec/pin, 1333MHz fCK for 2666Mb/sec/pin and 1467MHz fCK for 2933Mb/sec/pin.

16 Banks (4 Bank Groups)

Programmable CAS Latency: 10,11,12,13,14,15,16,17,18,19,20,21

Programmable Additive Latency (Posted CAS): 0, CL - 2, or CL - 1 clock

Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12 (DDR4-1866), 11,14 (DDR4-2133), 12,16 (DDR4-2400), 14,18 (DDR4-2666) and 16, 20 (DDR4-2933).

Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS]

Bi-directional Differential Data Strobe

On Die Termination using ODT pin

Average Refresh Period 7.8us at lower then TCASE 85 C, 3.9us at 85 C < TCASE 95 C

Asynchronous Reset

3. ADDRESS CONFIGURATION

Organization

Row Address

Column Address

Bank Group Address

Bank Address

Auto Precharge

4Gx4(16Gb DDP) based Module

A0-A16

A0-A9

BG0-BG1

BA0-BA1

A10/AP

 

 

 

 

 

 

- 4 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

4. Load Reduced DIMM PIN COFIGURATIONS (FRONT SIDE / BACK SIDE)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin

Front

Pin

Back

Pin

Front

 

Pin

Back

Pin

Front

Pin

Back

Pin

Front

Pin

Back

1

3

145

12V

3

,NC

40

TDQS12_t,

 

184

VSS

78

EVENT_n

222

PARITY

117

DQ52

261

VSS

12V ,NC

 

DQS12_t

 

2

VSS

146

VREFCA

41

TDQS12_c,

 

185

DQS3_c

79

A0

223

VDD

118

VSS

262

DQ53

DQS12_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

DQ4

147

VSS

42

VSS

 

186

DQS3_t

80

VDD

224

BA1

119

DQ48

263

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

VSS

148

DQ5

43

DQ30

 

187

VSS

81

BA0

225

A10/AP

120

VSS

264

DQ49

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

DQ0

149

VSS

44

VSS

 

188

DQ31

82

RAS_n/A16

226

VDD

121

TDQS15_t,

265

VSS

 

DQS15_t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

VSS

150

DQ1

45

DQ26

 

189

VSS

83

VDD

227

RFU

122

TDQS15_c,

266

DQS6_c

 

DQS15_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

TDQS9_t,

151

VSS

46

VSS

 

190

DQ27

84

S0_n

228

WE_n/A14

123

VSS

267

DQS6_t

DQS9_t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

TDQS9_c,

152

DQS0_c

47

CB4

 

191

VSS

85

VDD

229

VDD

124

DQ54

268

VSS

DQS9_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

VSS

153

DQS0_t

48

VSS

 

192

CB5

86

CAS_n/A15

230

NC

125

VSS

269

DQ55

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

DQ6

154

VSS

49

CB0

 

193

VSS

87

ODT0

231

VDD

126

DQ50

270

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

VSS

155

DQ7

50

VSS

 

194

CB1

88

VDD

232

A13

127

VSS

271

DQ51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

DQ2

156

VSS

51

TDQS17_t,

 

195

VSS

89

S1_n

233

VDD

128

DQ60

272

VSS

DQS17_t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

VSS

157

DQ3

52

TDQS17_c,

 

196

DQS8_c

90

VDD

234

A17

129

VSS

273

DQ61

DQS17_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

DQ12

158

VSS

53

VSS

 

197

DQS8_t

91

ODT1

235

NC,C2

130

DQ56

274

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

VSS

159

DQ13

54

CB6

 

198

VSS

92

VDD

236

VDD

131

VSS

275

DQ57

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

DQ8

160

VSS

55

VSS

 

199

CB7

93

C0,CS2_n,NC

237

NC,CS3_c,C1

132

TDQS16_t,

276

VSS

 

DQS16_t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17

VSS

161

DQ9

56

CB2

 

200

VSS

94

VSS

238

SA2

133

TDQS16_c,

277

DQS7_c

 

DQS16_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

TDQS10_t,

162

VSS

57

VSS

 

201

CB3

95

DQ36

239

VSS

134

VSS

278

DQS7_t

DQS10_t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

TDQS10_c,

163

DQS1_c

58

RESET_n

 

202

VSS

96

VSS

240

DQ37

135

DQ62

279

VSS

DQS10_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

VSS

164

DQS1_t

59

VDD

 

203

CKE1

97

DQ32

241

VSS

136

VSS

280

DQ63

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21

DQ14

165

VSS

60

CKE0

 

204

VDD

98

VSS

242

DQ33

137

DQ58

281

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

VSS

166

DQ15

61

VDD

 

205

RFU

99

TDQS13_t,

243

VSS

138

VSS

282

DQ59

 

DQS13_t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23

DQ10

167

VSS

62

ACT_n

 

206

VDD

100

TDQS13_c,

244

DQS4_c

139

SA0

283

VSS

 

DQS13_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

VSS

168

DQ11

63

BG0

 

207

BG1

101

VSS

245

DQS4_t

140

SA1

284

VDDSPD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

DQ20

169

VSS

64

VDD

 

208

ALERT_n

102

DQ38

246

VSS

141

SCL

285

SDA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

VSS

170

DQ21

65

A12/BC_n

 

209

VDD

103

VSS

247

DQ39

142

VPP

286

VPP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27

DQ16

171

VSS

66

A9

 

210

A11

104

DQ34

248

VSS

143

VPP

287

VPP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28

VSS

172

DQ17

67

VDD

 

211

A7

105

VSS

249

DQ35

144

RFU

288

VPP4

29

TDQS11_t,

173

VSS

68

A8

 

212

VDD

106

DQ44

250

VSS

 

 

 

 

DQS11_t

 

 

 

 

 

30

TDQS11_c,

174

DQS2_c

69

A6

 

213

A5

107

VSS

251

DQ45

 

 

 

 

DQS11_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

VSS

175

DQS2_t

70

VDD

 

214

A4

108

DQ40

252

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

DQ22

176

VSS

71

A3

 

215

VDD

109

VSS

253

DQ41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33

VSS

177

DQ23

72

A1

 

216

A2

110

TDQS14_t,

254

VSS

 

 

 

 

 

DQS14_t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34

DQ18

178

VSS

73

VDD

 

217

VDD

111

TDQS14_c,

255

DQS5_c

 

 

 

 

 

DQS14_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

VSS

179

DQ19

74

CK0_t

 

218

CK1_t

112

VSS

256

DQS5_t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

DQ28

180

VSS

75

CK0_c

 

219

CK1_c

113

DQ46

257

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37

VSS

181

DQ29

76

VDD

 

220

VDD

114

VSS

258

DQ47

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38

DQ24

182

VSS

77

VTT

 

221

VTT

115

DQ42

259

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39

VSS

183

DQ25

 

KEY

 

 

116

VSS

260

DQ43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE:

1)VPP is 2.5V DC

2)Pin 230 is defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pin 230 is defined as SAVE_n for NVDIMMs.

3)Pins 1 and 145 are defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pins 1 and 145 are defined as 12V for Hybrid /NVDIMM

4)The 5th VPP is required on all modules. DIMMs.

- 5 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

5. PIN DESCRIPTION

Pin Name

Description

A0–A171)

Register address input

BA0, BA1

Register bank select input

 

 

BG0, BG1

Register bank group select input

 

 

RAS_n2)

Register row address strobe input

CAS_n3)

Register column address strobe input

WE_n4)

Register write enable input

CS0_n, CS1_n,

DIMM Rank Select Lines input

CS2_n, CS3_n

 

 

 

CKE0, CKE1

Register clock enable lines input

 

 

ODT0, ODT1

Register on-die termination control lines input

 

 

ACT_n

Register input for activate input

 

 

DQ0–DQ63

DIMM memory data bus

 

 

CB0–CB7

DIMM ECC check bits

 

 

DQS0_t–

Data Buffer data strobes

DQS17_t

(positive line of differential pair)

 

 

DQS0_c–

Data Buffer data strobes

DQS17_c

(negative line of differential pair)

 

 

CK0_t, CK1_t

Register clock input

(positive line of differential pair)

 

 

 

CK0_c, CK1_c

Register clocks input

(negative line of differential pair)

 

 

 

NOTE :

1)Address A17 is only valid for 16 Gb x4 based SDRAMs.

2)RAS_n is a multiplexed function with A16.

3)CAS_n is a multiplexed function with A15.

4)WE_n is a multiplexed function with A14.

Pin Name

Description

SCL

I2C serial bus clock for SPD/TS and register

 

 

SDA

I2C serial bus data line for SPD/TS and register

 

 

SA0–SA2

I2C slave address select for SPD/TS and register

 

 

PAR

Register parity input

 

 

VDD

SDRAM core power supply

 

 

VPP

SDRAM activating power supply

 

 

VREFCA

SDRAM command/address reference supply

 

 

VSS

Power supply return (ground)

 

 

VDDSPD

Serial SPD/TS positive power supply

 

 

ALERT_n

Register ALERT_n output

 

 

RESET_n

Set Register and SDRAMs to a Known State

 

 

EVENT_n

SPD signals a thermal event has occurred

 

 

VTT

SDRAM I/O termination supply

 

 

RFU

Reserved for future use

 

 

- 6 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

6. ON DIMM THERMAL SENSOR

SA2 SA1

SA0

1K

 

 

 

SA0 SA1 SA2

 

 

SA0 SA1 SA2

 

 

 

 

 

SCL

 

SCL

 

SCL

BFUNC

 

 

VSS

 

 

 

 

SDA

 

 

SDA

 

 

SDA

 

 

 

 

 

 

 

 

 

 

VSS

 

 

 

EVENT_n

 

EVENT_n

 

ZQCAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Serial PD with

Register

 

 

 

 

 

 

 

 

Thermal sensor

 

 

 

 

 

 

 

NOTE :

1) All Samsung RDIMM support Thermal sensor on DIMM.

[Table 3] Temperature Sensor Characteristics

Grade

Range

 

Temperature Sensor Accuracy

Units

NOTE

Min.

 

Typ.

Max.

 

 

 

 

 

 

75 < Ta < 95

-

 

+/- 0.5

+/- 1.0

 

-

B

 

 

 

 

 

C

 

40 < Ta < 125

-

 

+/- 1.0

+/- 2.0

-

 

 

 

 

 

 

 

 

 

-20 < Ta < 125

-

 

+/- 2.0

+/- 3.0

 

-

 

 

 

 

 

 

 

 

 

Resolution

 

0.25

 

C /LSB

-

 

 

 

 

 

 

 

 

- 7 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION

[Table 4] Input/Output Function Description

Symbol

Type

Function

CK_t, CK_c

Input

Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing

of the positive edge of CK_t and negative edge of CK_c.

 

 

 

 

 

 

 

Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and device input buffers and

 

 

output drivers. Taking CKE LOW provides Precharge Power-Down and Self-Refresh operation (all banks idle), or

CKE, (CKE1)

Input

Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal

DQ Vref have become stable during the power on and initialization sequence, they must be maintained during all

 

 

operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers,

 

 

excluding CK_t, CK_c, ODT and CKE, are disabled during power-down. Input buffers, excluding CKE are disabled

 

 

during Self-Refresh.

 

 

 

CS_n, (CS1_n)

Input

Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection on

systems with multiple Ranks. CS_n is considered part of the command code.

 

 

 

 

 

C0, C1, C2

Input

Chip ID : Chip ID is only used for 3DS for 2,4,8 high stack via TSV to select each slice of stacked component. Chip ID

is considered part of the command code.

 

 

 

 

 

 

 

On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the DDR4 SDRAM.

ODT, (ODT1)

Input

When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/ TDQS_t, NU/TDQS_c (When

TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. For x16 configuration ODT is applied

 

 

to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, DMU_n, and DML_n signal. The ODT pin will be ignored if MR1 is

 

 

programmed to disable RTT_NOM.

 

 

 

ACT_n

Input

Activation Command Input : ACT_n defines the Activation command being entered along with CS_n. The input into

RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14

 

 

 

 

 

RAS_n/A16.

 

Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being entered.

Input

Those pins have multi function. For example, for activation with ACT_n Low, these are Addressing like A16, A15 and

CAS_n/A15.

A14 but for non-activation command with ACT_n High, these are Command pins for Read, Write and other command

WE_n/A14

 

 

defined in command truth table

 

 

 

 

 

 

 

Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is masked when

DM_n/DBI_n/

 

DM_n is sampled LOW coincident with that input data during a Write access. DM_n is sampled on both edges of

TDQS_t, (DMU_n/

Input/Output

DQS. DM is muxed with DBI function by Mode Register A10,A11,A12 setting in MR5. For x8 device, the function of

DBIU_n), (DML_n/

 

DM or TDQS is enabled by Mode Register A11 setting in MR1. DBI_n is an input/output identifing whether to store/

DBIL_n)

 

output the true or inverted data. If DBI_n is LOW, the data will be stored/output after inversion inside the DDR4

 

 

SDRAM and not inverted if DBI_n is HIGH. TDQS is only supported in X8

 

 

 

BG0 - BG1

Input

Bank Group Inputs: BG0 - BG1 define to which bank group an Active, Read, Write or Precharge command is being

applied. BG0 also determines which mode register is to be accessed during a MRS cycle. X4/8 have BG0 and BG1

 

 

but X16 has only BG0.

 

 

 

BA0 - BA1

Input

Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is being applied.

Bank address also determines which mode register is to be accessed during a MRS cycle.

 

 

 

 

 

 

 

Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/Write

A0 - A17

Input

commands to select one location out of the memory array in the respective bank. A10/AP, A12/BC_n, RAS_n/A16,

CAS_n/A15 and WE_n/A14 have additional functions. See other rows. The address inputs also provide the op-code

 

 

 

 

during Mode Register Set commands. A17 is only defined for the x4 configurations.

 

 

 

 

 

Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be

A10 / AP

Input

performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge).

A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or

 

 

 

 

all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses.

 

 

 

A12 / BC_n

Input

Burst Chop: A12/BC_n is sampled during Read and Write commands to determine if burst chop (on-the-fly) will be

performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.

 

 

 

 

 

RESET_n

Input

Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH.

RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC high and low at 80%

 

 

and 20% of VDD.

 

 

 

 

 

Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at the end of

DQ

Input/

Data Burst. Any DQ from DQ0-DQ3 may indicate the internal Vref level during test via Mode Register Setting MR4

Output

A4=High. During this mode, RTT value should be set to Hi-Z. Refer to vendor specific datasheets to determine which

 

 

 

DQ is used.

 

 

 

- 8 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

[Table 4] Input/Output Function Description

Symbol

Type

Function

DQS_t, DQS_c,

 

Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the

Input/

x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe

DQSU_t, DQSU_c,

DQS_t , DQSL_t and DQSU_t are paired with differential signals DQS_c, DQSL_c, and DQSU_c, respectively, to

Output

DQSL_t, DQSL_c

provide differential pair signaling to the system during reads and writes. DDR4 SDRAM supports differential data

 

 

 

strobe only and does not support single-ended.

 

 

 

 

 

Termination Data Strobe: TDQS_t/TDQS_c is applicable for x8 DRAMs only. When enabled via Mode Register A11 =

 

 

1 in MR1, the DRAM will enable the same termination resistance function on TDQS_t/TDQS_c that is applied to

TDQS_t, TDQS_c

Output

DQS_t/DQS_c. When disabled via mode register A11 = 0 in MR1, DM/DBI/TDQS will provide the data mask function

 

 

or Data Bus Inversion depending on MR5; A11,12,10and TDQS_c is not used. x4/x16 DRAMs must disable the TDQS

 

 

function via mode register A11 = 0 in MR1.

 

 

 

 

 

Command and Address Parity Input: DDR4 Supports Even Parity check in DRAM with MR setting. Once it’s enabled

PAR

Input

via Register in MR5, then DRAM calculates Parity with ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0-BG1, BA0-

BA1, A17-A0 and C0-C2 (3DS devices). Command and address inputs shall have parity check performed when

 

 

 

 

commands are latched via the rising edge of CK_t and when CS_n is low.

 

 

 

 

 

Alert : It has multi functions such as CRC error flag, Command and Address Parity error flag as Output signal. If there

 

 

is error in CRC, then ALERT_n goes LOW for the period time interval and goes back HIGH. If there is error in

ALERT_n

Input/

Command Address Parity Check, then ALERT_n goes LOW for relatively long period until on going DRAM internal

Output

recovery transaction is complete. During Connectivity Test mode, this pin works as input.

 

 

 

Using this signal or not is dependent on system. In case of not connected as Signal, ALERT_n Pin must be bounded

 

 

to VDD on board.

 

 

 

 

 

Connectivity Test Mode Enable : Required on X16 devices and optional input on x4/x8 with densities equal to or

TEN

Input

greater than 8Gb.HIGH in this pin will enable Connectivity Test Mode operation along with other pins. It is a CMOS rail

to rail signal with AC high and low at 80% and 20% of VDD. Using this signal or not is dependent on System. This pin

 

 

 

 

may be DRAM internally pulled low through a weak pull-down resistor to VSS.

 

 

 

NC

 

No Connect: No internal electrical connection is present.

 

 

 

VDDQ

Supply

DQ Power Supply: 1.2 V +/- 0.06 V

 

 

 

VSSQ

Supply

DQ Ground

 

 

 

VDD

Supply

Power Supply: 1.2 V ± 0.06 V

 

 

 

VSS

Supply

Ground

 

 

 

VPP

Supply

DRAM Activating Power Supply: 2.5V (2.375V min, 2.75V max)

 

 

 

VREFCA

Supply

Reference voltage for CA

 

 

 

ZQ

Supply

Reference Pin for ZQ calibration.

 

 

 

NOTE :

1) Input only pins (BG0-BG1,BA0-BA1, A0-A17, ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, CS_n, CKE, ODT, and RESET_n) do not supply termination.

- 9 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

8. REGISTERING CLOCK DRIVER SPECIFICATION

8.1 Timing & Capacitance Values

Symbol

Parameter

Conditions

DDR4-1600/1866/2133

DDR4-2400/2666

DDR4-2933

Units

Min

Max

Min

Max

Min

Max

 

 

 

 

fclock

Input Clock Frequency

application frequency

625

1080

625

1350

TBD

TBD

MHz

 

 

 

 

 

 

 

 

 

 

tCH/tCL

Pulse duration, CK_t, CK_c

 

0.4

-

0.4

-

TBD

-

tCK

HIGH or LOW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tACT

Inputs active time4 before

DCKE0/1 = LOW and

16

-

16

-

TBD

-

tCK

DRST_n is taken HIGH

DCS0/1_n = HIGH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tPDM

Propagation delay, single-bit

1.2V Operation

1

1.3

1

1.3

TBD

TBD

ns

switching, CK_t/ CK_c to output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tDIS

 

Rising edge of Yn_t to

0.5*tCK +

 

0.5*tCK +

 

 

 

 

output disable time

tQSK1(min

-

tQSK1(min

-

TBD

-

ps

output float

 

 

)

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tEN

 

Output valid to rising

0.5*tCK -

 

0.5*tCK -

 

 

 

 

output enable time

tQSK1(ma

-

tQSK1(ma

-

TBD

-

ps

edge of Yn_t

 

 

x)

 

x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CI

Input capacitance, Data inputs

NOTE1,2

0.8

1.1

0.8

1.0

TBD

TBD

 

CCK

Input capacitance, CK_t, CK_c

NOTE1,2

0.8

1.1

0.8

1.0

TBD

TBD

pF

 

 

 

 

 

 

 

 

 

CIR

Input capacitance, DRST_n

VI=VDD or VSS;

0.5

2.0

0.5

2.0

TBD

TBD

 

VDD=1.2V

 

 

 

 

 

 

 

 

 

 

NOTE :

1)This parameter does not include package capacitance.

2)Data inputs are DCKE0/1,DODT0/1,DA0,DA17, DBA0,DBA1,DBG0,DBG1,DACT_n, DC0,DC2, DPAR, DCS0/1_n

8.2 Clock Driver Characteristics

 

 

 

DDR4-1600/1866/

DDR4-2400

DDR4-2666

DDR4-2933

 

Symbol

Parameter

Conditions

2133

Units

 

 

 

 

 

 

 

 

 

Min

Max

Min

Max

Min

Max

Min

Max

 

tjit (cc)

Cycle-to-cycle period jit-

CK_t/CK_c sta-

0

0.025 x

0

0.025 x tCK

0

0.025 x

TBD

TBD

ps

ter

ble

tCK

tCK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tSTAB

Stabilization time

 

-

5

-

5

-

5

-

TBD

us

tCKsk

Clock Output skew

 

-

10

-

10

-

10

-

TBD

ps

tjit(per)

Yn Clock Period jitter

 

-0.025 *

0.025 *

-0.025 *

0.025 * tCK

-0.025 *

0.025 *

TBD

TBD

ps

 

 

 

tCK

tCK

tCK

 

tCK

tCK

 

 

 

tjit(hper)

Half period jitter

 

-0.032 *

0.032 *

-0.032 *

0.032 * tCK

-0.032 *

0.032 *

TBD

TBD

ps

 

 

 

tCK

tCK

tCK

 

tCK

tCK

 

 

 

tQsk1

Qn Output to clock toler-

 

-0.125 *

0.125 *

-0.125 *

0.125 * tCK

-0.1 * tCK

0.1 * tCK

TBD

TBD

ps

 

ance

 

tCK

tCK

tCK

 

 

 

 

 

 

tdynoff

Maximum re-driven

 

-

50

-

45

-

45

-

TBD

ps

dynamic clock off-set

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 10 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

9. FUNCTION BLOCK DIAGRAM:

9.1 64GB, 8Gx72 Module (Populated as 4 ranks of x4 DDR4 SDRAMs)

BG[1:0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BA[1:0]

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

A[17:0]

 

 

 

 

 

 

 

 

 

 

 

 

PARITY, ACT_n

 

 

 

 

e

 

 

 

 

 

 

 

 

CKE0, CKE1

 

 

 

 

g

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

ODT0, ODT1

 

 

 

 

t

 

 

 

 

 

e

CS[3:0]_n

 

 

 

 

r.

 

 

 

 

 

 

 

 

 

 

 

 

CK1_t

CK1_c

CK0_t

CK0_c

RESET_n

ALERT_n

BG[1:0]A -> BG[1:0]: SDRAMs D[3:0],D8,D[12:9],D17,D[3B:0B],D8B,D[12B:9B],D17B

BG[1:0]B -> BG[1:0]: SDRAMs D[7:4],D[16:13],D[7B:4B],D[16B:13B]

BG[1:0]A -> BA[1:0]: SDRAMs D[3:0],D8,D[12:9],D17,D[3B:0B],D8B,D[12B:9B],D17B

BG[1:0]B -> BA[1:0]: SDRAMs D[7:4],D[16:13],D[7B:4B],D[16B:13B]

A[17:0]A -> A[17:0]: SDRAMs D[3:0],D8,D[12:9],D17,D[3B:0B],D8B,D[12B:9B],D17B

A[17:0]B -> A[17:0]: SDRAMs D[7:4],D[16:13],D[7B:4B],D[16B:13B]

PARA -> PAR,ACT_n: SDRAMs D[3:0],D8,D[12:9],D17,D[3B:0B],D8B,D[12B:9B],D17B

PARB -> PAR,ACT_n: SDRAMs D[7:4],D[16:13],D[7B:4B],D[16B:13B]

CKE0A -> CKE: SDRAMs D[3:0],D8,D[12:9],D17

CKE0B -> CKE: SDRAMs D[7:4],D[16:13]

CKE1A -> CKE: SDRAMs D[3B:0B],D8B,D[12B:9B],D17B

CKE1B -> CKE: SDRAMs D[7B:4B],D[16B:13B]

ODT0A -> ODT: SDRAMs D[3:0],D8,D[12:9],D17

ODT0B -> ODT: SDRAMs D[7:4],D[16:13]

ODT1A -> ODT: SDRAMs D[3B:0B],D8B,D[12B:9B],D17B

ODT1B -> ODT: SDRAMs D[7B:4B],D[16B:13B]

CS0A_n -> CS_n: SDRAMs D[3:0],D8,D[12:9],D17

CS0B_n -> CS_n: SDRAMs D[7:4],D[16:13]

CS1A_n -> CS_n: SDRAMs D[3B:0B],D8B,D[12B:9B],D17B

CS1B_n -> CS_n: SDRAMs D[7B:4B],D[16B:13B]

CS2A_n -> CS_n: SDRAMs D[3:0],D8,D[12:9],D17

CS2B_n -> CS_n: SDRAMs D[7:4],D[16:13]

CS3A_n -> CS_n: SDRAMs D[3B:0B],D8B,D[12B:9B],D17B

CS3B_n -> CS_n: SDRAMs D[7B:4B],D[16B:13B]

Y0(_t,_c) -> CK(_t,_c): SDRAMs D[16:13],D[16B:13B]

Y1(_t,_c) -> CK(_t,_c): SDRAMs D[12:9],D17,D[12B:9B],D17B

Y2(_t,_c) -> CK(_t,_c): SDRAMs D[7:4],D[7B:4B]

Y3(_t,_c) -> CK(_t,_c): SDRAMs D[3:0],D8,D[7B:4B],D8B

QRESET_n -> RESET_n: All SDRAMs

ERROR_IN_n <- ALERT_n: All SDRAMs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Front

 

 

 

D9

 

D10

 

D11

 

D12

 

D17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D0 D1 D2 D3 D8

D13 D14 D15 D16

D4

D5

D6

D7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Back

 

 

 

 

D0B

 

D1B

 

D2B

 

D3B

 

D8B

 

 

 

 

 

D4B

 

 

 

D5B

 

D6B

 

D7B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D9B

 

D10B

 

D11B

 

D12B

 

D17B

 

 

 

 

 

D13B

 

 

D14B

 

D15B

 

D16B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Address, Command and Control lines

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE :

1)CK0_t, CK0_c terminated with 120 ± 5% resistor.

2)CK1_t, CK1_c terminated with 120 ± 5% resistor but not used.

3)Unless otherwise noted resistors are 22 ± 5%.

- 11 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

CS0A_n

 

 

 

 

CS1A_n

 

ODT0A

 

 

 

 

 

ODT1A

 

 

 

 

 

CKE0A

 

 

 

 

 

CKE1A

CS2A_n

 

 

 

 

 

 

 

 

 

CS3A_n

VSS

 

 

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

CKE0A

 

 

 

 

 

 

 

 

CKE1A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQS0_t

DQS0_t

MDQS0_t

DQS0_c

DQS0_c

MDQS0_c

DQ[3:0]

DQ [3:0]

MDQ [3:0]

 

Data

 

Buffer

DQS9_t

 

 

 

DQS1_t

MDQS1_t

 

 

 

 

 

 

DQS9_c

 

 

 

DQS1_c

MDQS1_c

 

 

 

 

 

 

 

 

 

DQ[7:4]

 

 

 

DQ [7:4]

MDQ [7:4]

 

 

 

 

 

 

 

 

 

 

 

 

C O C C O C

VSS

 

 

E T

0 E T

1 ZQ

 

K D S K D S

 

 

DQS_t

 

 

 

 

 

n

 

n

 

 

 

 

 

 

 

_

 

 

_

 

 

DQS_c

0

0

1 1

 

 

 

 

 

 

 

D0

 

 

 

 

 

 

 

 

 

 

 

DQ [3:0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C O C C O C

VSS

 

 

E T

0 E T

1 ZQ

 

K D S K D S

 

 

DQS_t

 

 

 

 

 

n

 

n

 

 

 

0

 

 

_

 

 

_

 

 

DQS_c

 

 

0

1 1

 

 

 

 

 

 

 

D9

 

 

 

 

 

 

 

 

 

 

 

DQ [3:0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C O C C O C

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

n

 

 

0

0

_

_

 

 

1 1

 

 

DQS_c

 

D0B

 

 

DQ [3:0]

 

 

 

 

 

 

 

 

C O C C O C

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

n

 

 

0

0

_

_

 

 

1 1

 

 

DQS_c

 

D9B

 

 

DQ [3:0]

 

 

 

 

 

C O C C O C

VSS

 

 

 

 

E T

0 E T

1 ZQ

DQS1_t

 

 

K D S K D S

 

DQS0_t

MDQS0_t

DQS_t

0

0

_ 1 1

_

 

DQS1_c

 

 

 

n

 

 

n

 

DQS0_c

MDQS0_c

DQS_c

 

 

D1

 

 

 

 

DQ[11:8]

DQ [3:0]

MDQ [3:0]

DQ [3:0]

 

 

 

 

 

 

Data

 

 

 

 

 

 

 

 

 

 

Buffer

 

 

D

 

 

D

 

 

 

 

 

 

C O C C O C

VSS

 

 

 

 

E T

0 E T

1 ZQ

DQS10_t

 

 

K

 

S K

 

S

 

DQS1_t

MDQS1_t

DQS_t

 

 

 

n

 

 

n

 

 

 

 

 

0

0

_

 

 

_

 

 

 

 

 

1 1

 

 

DQS10_c

DQS1_c

MDQS1_c

DQS_c

 

 

D10

 

 

 

 

DQ[15:12]

DQ [7:4]

MDQ [7:4]

DQ [3:0]

 

 

 

 

 

 

 

 

C O C C O C

VSS

 

 

 

 

E T

0 E T

1 ZQ

DQS2_t

 

 

K D S K D S

 

DQS0_t

MDQS0_t

DQS_t

0

0 _ 1 1 _

 

DQS2_c

 

 

 

n

 

 

n

 

DQS0_c

MDQS0_c

DQS_c

 

 

D2

 

 

 

 

DQ[19:16]

DQ [3:0]

MDQ [3:0]

DQ [3:0]

 

 

 

 

 

 

Data

 

 

 

 

 

 

 

 

 

 

Buffer

 

 

D

 

 

D

 

 

 

 

 

 

C O C C O C

VSS

 

 

 

 

E T

0 E T

1 ZQ

DQS11_t

 

 

K

 

S K

 

S

 

DQS1_t

MDQS1_t

DQS_t

 

 

 

n

 

 

n

 

 

 

 

 

0

0

_

 

 

_

 

 

 

 

 

1 1

 

 

DQS11_c

DQS1_c

MDQS1_c

DQS_c

 

 

D11

 

 

 

 

DQ[23:20]

DQ [7:4]

MDQ [7:4]

DQ [3:0]

 

 

 

 

 

 

 

 

C O C C O C

VSS

 

 

 

 

E T

0 E T

1 ZQ

DQS3_t

 

 

K D S K D S

 

DQS0_t

MDQS0_t

DQS_t

0

0

_ 1 1

_

 

DQS3_c

 

 

 

n

 

 

n

 

DQS0_c

MDQS0_c

DQS_c

 

 

D3

 

 

 

 

DQ[27:24]

DQ [3:0]

MDQ [3:0]

DQ [3:0]

 

 

 

 

 

 

Data

 

 

 

 

 

 

 

 

 

 

Buffer

 

 

D

 

 

D

 

 

 

 

 

 

C O C C O C

VSS

 

 

 

 

E T

0 E T

1 ZQ

DQS12_t

 

 

K

 

S K

 

S

 

DQS1_t

MDQS1_t

DQS_t

 

 

 

n

 

 

n

 

 

 

 

 

0

0

_

 

 

_

 

 

 

 

 

1 1

 

 

DQS12_c

DQS1_c

MDQS1_c

DQS_c

 

 

D12

 

 

 

 

DQ[31:28]

DQ [7:4]

MDQ [7:4]

DQ [3:0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C O C C O C

VSS

 

 

 

 

 

 

 

 

E T

0 E T

1 ZQ

DQS8_t

 

 

 

 

 

 

K D S K D S

 

 

 

 

DQS0_t

MDQS0_t

 

DQS_t

0

0 _ 1 1 _

 

 

 

 

 

 

 

 

 

 

 

DQS8_c

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

n

 

 

 

 

DQS0_c

MDQS0_c

 

DQS_c

 

 

 

 

D8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CB[3:0]

 

 

 

DQ [3:0]

MDQ [3:0]

 

DQ [3:0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Buffer

 

 

 

 

D

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

C O C C O C

VSS

 

 

 

 

 

 

 

 

E T

0 E T

1 ZQ

 

 

 

 

 

 

 

K

 

 

S K

 

 

S

 

DQS17_t

 

 

 

DQS1_t

MDQS1_t

 

DQS_t

 

 

 

 

 

 

n

 

 

 

 

n

 

 

 

 

 

 

 

 

 

0

 

 

 

_

 

 

 

 

_

 

DQS17_c

 

 

 

DQS1_c

MDQS1_c

 

DQS_c

 

 

0

1 1

 

 

 

 

 

 

 

 

 

 

 

D17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CB[7:4]

 

 

 

DQ [7:4]

MDQ [7:4]

 

DQ [3:0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C O C C O C

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

n

 

 

0

0

_

_

 

 

1 1

 

 

DQS_c

 

D1B

 

 

DQ [3:0]

 

 

 

 

 

 

 

 

C O C C O C

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

n

 

 

0

0

_

_

 

 

1 1

 

 

DQS_c

 

D10B

 

 

DQ [3:0]

 

 

 

 

C O C C O C

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

0

 

n

n

 

 

0 _ 1 1

_

 

DQS_c

 

D2B

 

 

DQ [3:0]

 

 

 

 

 

 

 

 

C O C C O C

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

n

 

 

0

0

_

_

 

 

1 1

 

 

DQS_c

 

D11B

 

 

DQ [3:0]

 

 

 

 

C O C C O C

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

n

 

 

0

0

_

_

 

 

1 1

 

 

DQS_c

 

D3B

 

 

DQ [3:0]

 

 

 

 

 

 

 

 

C O C C O C

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

n

 

 

0

0

_

_

 

 

1 1

 

 

DQS_c

 

D12B

 

 

DQ [3:0]

 

 

 

 

C O C C O C

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

0

 

n

n

 

 

0 _ 1 1

_

 

DQS_c

 

D8B

 

 

DQ [3:0]

 

 

 

 

 

 

 

 

C O C C O C

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

n

 

 

0

0

_

_

 

 

1 1

 

 

DQS_c

 

D17B

 

 

DQ [3:0]

 

 

NOTE :

1)ZQ resistors are 240 ±1%. For all other resistor values refer to the appropriate wiring diagram.

2)See the Net Structure diagrams for all resistors associated with the command, address and control bus.

3)TEN pin of SDRAMs is tied to VSS.

4)DQ stub resistors are 15Ω ±5%. For all other resistor values refer to the appropriate wiring diagram.

- 12 -

Samsung M386A8K40CM2-CTD User Manual

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

CS0B_n

ODT0B

CKE0B

CS2B_n

VSS

CKE0B

 

 

 

 

 

 

 

C OC C OC

VSS

 

 

 

 

 

 

 

 

E T

0 E T

1 ZQ

DQS4_t

 

 

 

 

 

 

K D S K DS

 

 

 

 

DQS0_t

MDQS0_t

 

DQS_t

0

0

_ 1 1

_

 

 

 

 

 

 

 

 

 

 

 

 

 

DQS4_c

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

n

 

 

 

 

DQS0_c

MDQS0_c

 

DQS_c

 

 

 

 

D4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ[35:32]

 

 

 

DQ [3:0]

MDQ [3:0]

 

DQ [3:0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Buffer

 

 

 

 

D

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

C OC C OC

VSS

 

 

 

 

 

 

 

 

E T

0 E T

1 ZQ

DQS13_t

 

 

 

 

 

 

K

 

 

S K

 

 

S

 

 

 

 

DQS1_t

MDQS1_t

 

DQS_t

 

 

 

 

 

 

n

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

0

0

_

1 1

_

 

DQS13_c

 

 

 

DQS1_c

MDQS1_c

 

DQS_c

 

 

 

 

D13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ[39:36]

 

 

 

DQ [7:4]

MDQ [7:4]

 

DQ [3:0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS1B_n

ODT1B

CKE1B

CS3B_n

VSS

CKE1B

C OC C OC

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

 

n

 

 

0

0

_

1 1

_

 

 

 

 

 

DQS_c

 

D4B

 

 

DQ [3:0]

 

 

C OC C OC

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

 

n

 

 

0

0

_

1 1

_

 

 

 

 

 

DQS_c

 

D13B

 

 

DQ [3:0]

 

 

 

 

 

C OC C OC

VSS

 

 

 

 

E T

0 E T

1 ZQ

DQS5_t

 

 

K D S K DS

 

DQS0_t

MDQS0_t

DQS_t

0

0

_ 1 1

_

 

DQS5_c

 

 

 

n

 

 

 

n

 

DQS0_c

MDQS0_c

DQS_c

 

 

D5

 

 

 

 

 

DQ[43:40]

DQ [3:0]

MDQ [3:0]

DQ [3:0]

 

 

 

 

 

 

 

Data

 

 

 

 

 

 

 

 

 

 

 

Buffer

 

 

D

 

 

 

D

 

 

 

 

 

 

C OC C OC

VSS

 

 

 

 

E T

0 E T

1 ZQ

DQS14_t

 

 

K

 

S K

 

S

 

DQS1_t

MDQS1_t

DQS_t

 

 

 

n

 

 

 

n

 

 

 

 

 

0

0

_

1 1

_

 

 

 

 

 

 

 

 

DQS14_c

DQS1_c

MDQS1_c

DQS_c

 

 

D14

 

 

 

 

DQ[47:44]

DQ [7:4]

MDQ [7:4]

DQ [3:0]

 

 

 

 

 

 

 

 

C OC C OC

VSS

 

 

 

 

E T

0 E T

1 ZQ

DQS6_t

 

 

K D S K DS

 

DQS0_t

MDQS0_t

DQS_t

0

0

_ 1 1

_

 

DQS6_c

 

 

 

n

 

 

 

n

 

DQS0_c

MDQS0_c

DQS_c

 

 

D6

 

 

 

 

 

DQ[51:48]

DQ [3:0]

MDQ [3:0]

DQ [3:0]

 

 

 

 

 

 

 

Data

 

 

 

 

 

 

 

 

 

 

 

Buffer

K D S K DS

 

 

 

 

C OC C OC

 

DQS15_t

DQS1_t

MDQS1_t

DQS_t

E T 0 E T 1 ZQ

VSS

 

 

 

n

 

 

 

n

 

 

 

 

 

0

0

_

1 1

_

 

 

 

 

 

 

 

 

DQS15_c

DQS1_c

MDQS1_c

DQS_c

 

 

D15

 

 

 

 

DQ[55:52]

DQ [7:4]

MDQ [7:4]

DQ [3:0]

 

 

 

 

 

 

 

 

C OC C OC

VSS

 

 

 

 

E T

0 E T

1 ZQ

DQS7_t

 

 

K D S K DS

 

DQS0_t

MDQS0_t

DQS_t

0

0

_ 1 1

_

 

DQS7_c

 

 

 

n

 

 

 

n

 

DQS0_c

MDQS0_c

DQS_c

 

 

D7

 

 

 

 

 

DQ[59:56]

DQ [3:0]

MDQ [3:0]

DQ [3:0]

 

 

 

 

 

 

 

Data

 

 

 

 

 

 

 

 

 

 

 

Buffer

 

 

D

 

 

 

D

 

 

 

 

 

 

C OC C OC

VSS

 

 

 

 

E T

0 E T

1 ZQ

DQS16_t

 

 

K

 

S K

 

S

 

DQS1_t

MDQS1_t

DQS_t

 

 

 

n

 

 

 

n

 

 

 

 

 

0

0

_

1 1

_

 

DQS16_c

DQS1_c

MDQS1_c

DQS_c

 

 

D16

 

 

 

 

DQ[63:60]

DQ [7:4]

MDQ [7:4]

DQ [3:0]

 

 

 

 

 

C OC C OC

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

 

n

 

 

0

0

_

1 1

_

 

 

 

 

 

DQS_c

 

D5B

 

 

DQ [3:0]

 

 

C OC C OC

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

 

n

 

 

0

0

_

1 1

_

 

 

 

 

 

DQS_c

 

D14B

 

 

DQ [3:0]

 

 

C OC C OC

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

 

n

 

 

0

0

_

1 1

_

 

 

 

 

 

DQS_c

 

D6B

 

 

DQ [3:0]

 

 

C OC C OC

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

 

n

 

 

0

0

_

1 1

_

 

 

 

 

 

DQS_c

 

D15B

 

 

DQ [3:0]

 

 

C OC C OC

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

 

n

 

 

0

0

_

1 1

_

 

 

 

 

 

DQS_c

 

D7B

 

 

DQ [3:0]

 

 

C OC C OC

VSS

 

E T

0 E T

1 ZQ

K D S K D S

 

DQS_t

 

 

n

 

n

 

 

0

0

_

1 1

_

 

 

 

 

 

DQS_c

 

D16B

 

 

DQ [3:0]

 

 

SA2 SA1

SA0

1K

 

 

 

SA0 SA1 SA2

 

 

SA0 SA1 SA2

 

 

 

 

 

SCL

 

SCL

 

SCL

BFUNC

 

 

VSS

 

 

 

 

SDA

 

 

SDA

 

 

SDA

 

 

 

 

 

 

 

 

 

 

VSS

 

 

 

EVENT_n

 

EVENT_n

 

ZQCAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Serial PD with

Register

 

 

 

 

 

 

 

 

Thermal sensor

 

 

 

 

 

 

 

NOTE:

VDDSPD4 Serial PD

VPP D0-D35

VDD4 D0-D35

VTT

VREFCA D0-D35

VSS D0-D35

1)ZQ resistors are 240Ω ±1%. For all other resistor values refer to the appropriate wiring diagram.

2)See the Net Structure diagrams for all resistors associated with the command, address and control bus.

3)TEN pin of SDRAMs is tied to VSS.

4)VDDSPD is also applied to the register. VDD is also applied to the register and the data buffers.

5)DQ stub resistors are 15 Ω ±5%. For all other resistor values refer to the appropriate wiring diagram.

- 13 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

10. ABSOLUTE MAXIMUM RATINGS

10.1 Absolute Maximum DC Ratings

[Table 5] Absolute Maximum DC Ratings

Symbol

Parameter

Rating

Units

NOTE

 

 

 

 

 

VDD

Voltage on VDD pin relative to Vss

-0.3 ~ 1.5

V

1,3

 

 

 

 

 

VDDQ

Voltage on VDDQ pin relative to Vss

-0.3 ~ 1.5

V

1,3

 

 

 

 

 

VPP

Voltage on VPP pin relative to Vss

-0.3 ~ 3.0

V

4

 

 

 

 

 

VIN, VOUT

Voltage on any pin except VREFCA relative to Vss

-0.3 ~ 1.5

V

1,3,5

TSTG

Storage Temperature

-55 to +100

°C

1,2

NOTE :

1)Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability

2)Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.

3)VDD and VDDQ must be within 300mV of each other at all times; and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREFCA may be equal to or less than 300mV

4)VPP must be equal or greater than VDD/VDDQ at all times.

5)Overshoot area above 1.5 V is specified in section Address, Command and Control Overshoot and Undershoot specifications, Clock Overshoot and Undershoot Specifications and section Data, Strobe and Mask Overshoot and Undershoot Specifications.

11. AC & DC OPERATING CONDITIONS

[Table 6] Recommended DC Operating Conditions

Symbol

Parameter

 

Rating

 

Unit

NOTE

Min.

Typ.

Max.

 

 

 

 

VDD

Supply Voltage

1.14

1.2

1.26

V

1,2,3

 

 

 

 

 

 

 

VDDQ

Supply Voltage for Output

1.14

1.2

1.26

V

1,2,3

 

 

 

 

 

 

 

VPP

Peak-to-Peak Voltage

2.375

2.5

2.75

V

3

 

 

 

 

 

 

 

NOTE :

1)Under all conditions VDDQ must be less than or equal to VDD.

2)VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.

3)DC bandwidth is limited to 20MHz.

- 14 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

12. AC & DC INPUT MEASUREMENT LEVELS

12.1 AC & DC Logic Input Levels for Single-Ended Signals

[Table 7] Single-ended AC & DC Input Levels for Command and Address

Symbol

Parameter

DDR4-1600/1866/2133/2400

DDR4-2666/2933

Unit

NOTE

Min.

Max.

Min.

Max.

 

 

 

 

VIH.CA(DC75)

DC input logic high

VREFCA+ 0.075

VDD

-

-

V

 

VIH.CA(DC65)

-

-

VREFCA+ 0.065

VDD

 

 

 

 

VIL.CA(DC75)

DC input logic low

VSS

VREFCA-0.075

-

-

V

 

VIL.CA(DC65)

-

-

VSS

VREFCA-0.065

 

 

 

 

VIH.CA(AC100)

AC input logic high

VREF + 0.1

Note 2

-

-

V

1

VIH.CA(AC90)

-

-

VREF + 0.09

Note 2

 

 

 

 

VIL.CA(AC100)

AC input logic low

Note 2

VREF - 0.1

-

-

V

1

VIL.CA(AC90)

-

-

Note 2

VREF - 0.09

 

 

 

 

VREFCA(DC)

Reference Voltage for ADD, CMD inputs

0.49*VDD

0.51*VDD

-

-

V

2,3

 

 

 

 

 

 

 

 

NOTE :

1)See “Overshoot and Undershoot Specifications” on section.

2)The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)

3)For reference : approx. VDD/2 ± 12mV.

12.2 AC and DC Input Measurement Levels: VREF Tolerances.

The DC-tolerance limits and ac-noise limits for the reference voltages VREFCA is illustrated in Figure 1. It shows a valid reference voltage VREF(t) as a function of time. (VREF stands for VREFCA).

VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD.

voltage

VDD

VSS

time

Figure 1. Illustration of VREF(DC) tolerance and VREF AC-noise limits

The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF.

"VREF" shall be understood as VREF(DC), as defined in Figure 1.

This clarifies, that DC-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the

data-eye of the input signals.

This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF AC-noise. Timing and voltage effects due to AC-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.

- 15 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

12.3 AC and DC Logic Input Levels for Differential Signals

12.3.1 Differential Signals Definition

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tDVAC

 

 

 

 

VIH.DIFF.AC.MIN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c)

 

VIH.DIFF.MIN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-CK)t - CK

0.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CK

 

 

 

 

 

 

 

 

 

 

half cycle

Voltage

VIL.DIFF.MAX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differential

VIL.DIFF.AC.MAX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tDVAC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

time

Figure 2. Definition of differential ac-swing and “time above ac-level” tDVAC

NOTE:

1)Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.

2)Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.

- 16 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

12.3.2 Differential Swing Requirements for Clock (CK_t - CK_c)

[Table 8] Differential AC and DC Input Levels

Symbol

Parameter

DDR4 -1600/1866/2133

DDR4 -2400/2666/2933

unit

NOTE

min

max

min

max

 

 

 

 

VIHdiff

differential input high

+0.150

NOTE 3

TBD

NOTE 3

V

1

VILdiff

differential input low

NOTE 3

-0.150

NOTE 3

TBD

V

1

VIHdiff(AC)

differential input high ac

2 x (VIH(AC) - VREF)

NOTE 3

2 x (VIH(AC) - VREF)

NOTE 3

V

2

VILdiff(AC)

differential input low ac

NOTE 3

2 x (VIL(AC) - VREF)

NOTE 3

2 x (VIL(AC) - VREF)

V

2

NOTE :

1)Used to define a differential signal slew-rate.

2)for CK_t - CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD and VREFCA;

3)These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (VIH.CA(DC) max, VIL.CA(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.

[Table 9] Allowed Time Before Ringback (tDVAC) for CK_t - CK_c

Slew Rate [V/ns]

 

tDVAC [ps] @ |VIH/Ldiff(AC)| = 200mV

 

min

 

max

> 4.0

120

 

-

 

 

 

 

4.0

115

 

-

 

 

 

 

3.0

110

 

-

 

 

 

 

2.0

105

 

-

 

 

 

 

1.8

100

 

-

 

 

 

 

1.6

95

 

-

 

 

 

 

1.4

90

 

-

 

 

 

 

1.2

85

 

-

 

 

 

 

1.0

80

 

-

 

 

 

 

< 1.0

80

 

-

 

 

 

 

- 17 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

12.3.3 Single-ended Requirements for Differential Signals

Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain requirements for single-ended signals.

CK_t and CK_c have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH.CA(AC) / VIL.CA(AC)) for ADD/CMD signals) in every half-cycle.

Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g., if Different value than VIH.CA(AC100)/VIL.CA(AC100) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK_c.

VDD or VDDQ

VSEH min

VDD/2 or VDDQ/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSEL max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSEL

 

VSS or VSSQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

time

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Single-ended requirement for differential signals.

Note that, while ADD/CMD signal requirements are with respect to VrefCA, the single-ended components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals.

[Table 10] Single-ended Levels for CK_t, CK_c

Symbol

Parameter

DDR4-1600/1866/2133

DDR4-2400/2666/2933

Unit

NOTE

Min

Max

Min

Max

 

 

 

 

VSEH

Single-ended high-level for CK_t, CK_c

(VDD/2)+0.100

NOTE3

TBD

NOTE3

V

1, 2

VSEL

Single-ended low-level for CK_t, CK_c

NOTE3

(VDD/2)-0.100

NOTE3

TBD

V

1, 2

NOTE :

1)For CK_t - CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD;

2)VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA;

3)These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits (VIH.CA(DC) max, VIL.CA(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.

- 18 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

12.3.4 Address, Command and Control Overshoot and Undershoot specifications

[Table 11] AC overshoot/undershoot specification for Address, Command and Control pins

 

Sym-

 

 

 

Specification

 

 

 

 

Parameter

DDR4-

DDR4-

 

DDR4-

DDR4-

DDR4-

DDR4-

Unit

NOTE

bol

 

 

 

1600

1866

 

2133

2400

2666

2933

 

 

Maximum peak amplitude above VAOS

VAOSP

 

 

0.06

 

TBD

TBD

V

 

 

 

 

 

 

 

 

 

 

Upper boundary of overshoot area AAOS1

VAOS

 

VDD +0.24

 

TBD

TBD

V

1

 

 

 

 

 

 

 

 

 

 

Maximum peak amplitude allowed for undershoot

VAUS

 

 

0.30

 

TBD

TBD

V

 

 

 

 

 

 

 

 

 

 

 

 

Maximum overshoot area per 1 tCK above VAOS

AAOS2

0.0083

0.0071

 

0.0062

0.0055

TBD

TBD

V-ns

 

 

 

 

 

 

 

 

 

 

 

 

Maximum overshoot area per 1 tCK between VDD and

AAOS1

0.2550

0.2185

 

0.1914

0.1699

TBD

TBD

V-ns

 

VAOS

 

 

 

 

 

 

 

 

 

 

Maximum undershoot area per 1 tCK below VSS

AAUS

0.2644

0.2265

 

0.1984

0.1762

TBD

TBD

V-ns

 

 

 

 

 

 

 

 

 

 

 

(A0-A13,A17,BG0-BG1,BA0-BA1,ACT_n,RAS_n/A16,CAS_n/A15,WE_n/A14,CS_n,CKE,ODT,C2-C0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE :

1)The value of VAOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC Operating Conditions. If VDD is above the recommended operating conditions, VAOS remains at VDD absolute max as defined in Table 5.

 

VAOSP

 

 

 

 

 

 

 

 

 

AAOS2

 

 

 

 

 

 

 

 

 

 

 

VAOS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AAOS1

Volts

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 tCK

 

(V)

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AAUS

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Address, Command and Control Overshoot and Undershoot Definition

- 19 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

12.3.5 Clock Overshoot and Undershoot Specifications

[Table 12] AC overshoot/undershoot specification for Clock

 

 

 

 

 

Specification

 

 

 

 

Parameter

Symbol

DDR4-

DDR4-

 

DDR4-

DDR4-

DDR4-

DDR4-

Unit

NOTE

 

 

1600

1866

 

2133

2400

2666

2933

 

 

Maximum peak amplitude above VCOS

VCOSP

 

 

0.06

 

TBD

TBD

V

 

 

 

 

 

 

 

 

 

 

Upper boundary of overshoot area ADOS1

VCOS

 

VDD +0.24

 

TBD

TBD

V

1

 

 

 

 

 

 

 

 

 

 

Maximum peak amplitude allowed for undershoot

VCUS

 

 

0.30

 

TBD

TBD

V

 

 

 

 

 

 

 

 

 

 

 

 

Maximum overshoot area per 1 UI above VCOS

ACOS2

0.0038

0.0032

 

0.0028

0.0025

TBD

TBD

V-ns

 

 

 

 

 

 

 

 

 

 

 

 

Maximum overshoot area per 1 UI between VDD and

ACOS1

0.1125

0.0964

 

0.0844

0.0750

TBD

TBD

V-ns

 

VDOS

 

 

 

 

 

 

 

 

 

 

Maximum undershoot area per 1 UI below VSS

ACUS

0.1144

0.0980

 

0.0858

0.0762

TBD

TBD

V-ns

 

 

 

 

 

 

 

 

 

 

 

 

(CK_t, CK_c)

NOTE :

1)The value of VCOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC Operating Conditions. If VDD is above the recommended operating conditions, VCOS remains at VDD absolute max as defined in Table 5.

 

VCOSP

 

 

 

 

 

 

 

 

 

ACOS2

 

 

 

 

 

 

 

 

 

 

 

VCOS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACOS1

Volts

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 UI

 

(V)

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACUS

 

VCUS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Clock Overshoot and Undershoot Definition

- 20 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

12.3.6 Data, Strobe and Mask Overshoot and Undershoot Specifications

[Table 13] AC overshoot/undershoot specification for Data, Strobe and Mask

 

 

 

 

Specification

 

 

 

NOT

Parameter

Symbol

DDR4-

DDR4-

DDR4-

DDR4-

DDR4-

DDR4-

Unit

E

 

 

1600

1866

2133

2400

2666

2933

 

 

Maximum peak amplitude above VDOS

VDOSP

0.16

0.16

0.16

0.16

TBD

TBD

V

 

 

 

 

 

 

 

 

 

 

 

Upper boundary of overshoot area ADOS1

VDOS

 

VDDQ + 0.24

 

TBD

TBD

V

1

 

 

 

 

 

 

 

 

 

 

Lower boundary of undershoot area ADUS1

VDUS

0.30

0.30

0.30

0.30

TBD

TBD

V

2

 

 

 

 

 

 

 

 

 

 

Maximum peak amplitude below VDUS

VDUSP

0.10

0.10

0.10

0.10

TBD

TBD

V

 

 

 

 

 

 

 

 

 

 

 

Maximum overshoot area per 1 UI above VDOS

ADOS2

0.0150

0.0129

0.0113

0.0100

TBD

TBD

V-ns

 

 

 

 

 

 

 

 

 

 

 

Maximum overshoot area per 1 UI between

ADOS1

0.1050

0.0900

0.0788

0.0700

TBD

TBD

V-ns

 

VDDQ and VDOS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum undershoot area per 1 UI between

ADUS1

0.1050

0.0900

0.0788

0.0700

TBD

TBD

V-ns

 

VSSQ and VDUS1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum undershoot area per 1 UI below VDUS

ADUS2

0.0150

0.0129

0.0113

0.0100

TBD

TBD

V-ns

 

 

 

 

 

 

 

 

 

 

 

NOTE :

1)The value of VDOS matches (VIN, VOUT) max as defined in Table 5 Absolute Maximum DC Ratings if VDDQ equals VDDQ max as defined in Table 6 Recommended DC Operating Conditions. If VDDQ is above the recommended operating conditions, VDOS remains at (VIN, VOUT) max as defined in Table 5.

2)The value of VDUS matches (VIN, VOUT) min as defined in Table 5 Absolute Maximum DC Ratings

 

VDOSP

 

 

 

 

 

 

 

 

ADOS2

 

 

 

 

 

 

 

 

 

 

VDOS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADOS1

 

 

 

 

 

 

 

 

 

 

 

Volts

VDDQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 UI

 

(V)

VSSQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADUS1

VDUSP

Figure 6. Data, Strobe and Mask Overshoot and Undershoot Definition

- 21 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

12.4 Slew Rate Definitions

12.4.1 Slew Rate Definitions for Differential Input Signals (CK)

Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table 14 and Figure 7.

[Table 14] Differential Input Slew Rate Definition

Description

Measured

Defined by

from

to

 

 

Differential input slew rate for rising edge (CK_t - CK_c)

VILdiffmax

VIHdiffmin

[VIHdiffmin - VILdiffmax] / DeltaTRdiff

Differential input slew rate for falling edge (CK_t - CK_c)

VIHdiffmin

VILdiffmax

[VIHdiffmin - VILdiffmax] / DeltaTFdiff

NOTE :

1) The differential signal (i,e.,CK_t - CK_c) must be linear between these thresholds.

Delta TRdiff

Differential Input Voltage(i,e, CK_t - CK_c)

VIHdiffmin

0

VILdiffmax

Delta TFdiff

Figure 7. Differential Input Slew Rate Definition for CK_t, CK_c

- 22 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

12.4.2 Slew Rate Definition for Single-ended Input Signals (CMD/ADD)

Delta TRsingle

VIHCA(AC) Min

VIHCA(DC) Min

VREFCA(DC)

VILCA(DC) Max

VILCA(AC) Max

Delta TFsingle

Figure 8. Single-ended Input Slew Rate definition for CMD and ADD

NOTE :

1)Single-ended input slew rate for rising edge = {VIHCA(AC)Min - VILCA(DC)Max} / Delta TR single.

2)Single-ended input slew rate for falling edge = {VIHCA(DC)Min - VILCA(AC)Max} / Delta TF single.

3)Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.

4)Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope.

- 23 -

Load Reduced DIMM

datasheet

Rev. 1.2

DDR4 SDRAM

12.5 Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals (CK_t, CK_c) must meet the requirements in Table 15. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS.

VDD

CK_t

Vix

VDD/2

CK_c

VSEH

VSEL

VSS

Figure 9. Vix Definition (CK)

[Table 15] Cross Point Voltage for Differential Input Signals (CK)

Symbol

Parameter

 

 

DDR4-1600/1866/2133

 

 

min

max

 

 

 

 

 

VSEL =< VDD/2 -

 

VDD/2 - 145mV =<

VDD/2 + 100mV =<

VDD/2 + 145mV =<

-

Area of VSEH, VSEL

 

VSEL =< VDD/2 -

VSEH =< VDD/2 +

 

 

145mV

 

100mV

145mV

VSEH

 

 

 

 

 

 

 

 

 

 

 

 

VlX(CK)

Differential Input Cross Point Voltage relative to

-120mV

 

-(VDD/2 - VSEL) +

(VSEH - VDD/2) -

120mV

VDD/2 for CK_t, CK_c

 

25mV

25mV

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

 

 

DDR4-2400/2666/2933

 

 

min

 

 

max

 

 

 

 

-

Area of VSEH, VSEL

TBD

 

TBD

TBD

 

TBD

 

 

 

 

 

 

 

 

VlX(CK)

Differential Input Cross Point Voltage relative to

TBD

 

TBD

TBD

 

TBD

VDD/2 for CK_t, CK_c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 24 -

Loading...
+ 54 hidden pages