78FBGA with Lead-Free & Halogen-Free
(RoHS compliant)
datasheet
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND
SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed
herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property
right is granted by one party to the other party under this document, by implication, estoppel or otherwise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or
similar applications where product failure could result in loss of life or personal or physical harm, or any
military or defense application, or any governmental procurement to which special terms or provisions
may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
1. DDR4 Load Reduced DIMM ORDERING INFORMATION ..................................................................................................................4
2. KEY FEATURES ..................................................................................................................................................................................4
9. FUNCTION BLOCK DIAGRAM: ...........................................................................................................................................................11
9.1 64GB, 8Gx72 Module (Populated as 4 ranks of x4 DDR4 SDRAMs).............................................................................................11
10. ABSOLUTE MAXIMUM RATINGS .....................................................................................................................................................14
10.1 Absolute Maximum DC Ratings.................................................................................................................................................... 14
11. AC & DC OPERATING CONDITIONS ...............................................................................................................................................14
12. AC & DC INPUT MEASUREMENT LEVELS......................................................................................................................................15
12.1 AC & DC Logic Input Levels for Single-Ended Signals................................................................................................................. 15
12.2 AC and DC Input Measurement Levels: VREF Tolerances. ......................................................................................................... 15
12.3 AC and DC Logic Input Levels for Differential Signals .................................................................................................................16
12.3.2. Differential Swing Requirements for Clock (CK_t - CK_c) ....................................................................................................17
12.3.3. Single-ended Requirements for Differential Signals .............................................................................................................18
12.3.4. Address, Command and Control Overshoot and Undershoot specifications........................................................................ 19
12.3.5. Clock Overshoot and Undershoot Specifications.................................................................................................................. 20
12.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications ...................................................................................... 21
12.4.1. Slew Rate Definitions for Differential Input Signals (CK) ......................................................................................................22
12.4.2. Slew Rate Definition for Single-ended Input Signals (CMD/ADD) ........................................................................................23
12.5 Differential Input Cross Point Voltage........................................................................................................................................... 24
12.6 CMOS rail to rail Input Levels .......................................................................................................................................................25
12.6.1. CMOS rail to rail Input Levels for RESET_n .........................................................................................................................25
12.7 AC and DC Logic Input Levels for DQS Signals........................................................................................................................... 26
12.7.1. Differential signal definition ...................................................................................................................................................26
12.7.2. Differential swing requirements for DQS (DQS_t - DQS_c).................................................................................................. 26
12.7.3. Peak voltage calculation method ..........................................................................................................................................27
12.7.4. Differential Input Cross Point Voltage ...................................................................................................................................28
13. AC and DC output Measurement levels .............................................................................................................................................30
13.1 Output Driver DC Electrical Characteristics..................................................................................................................................30
13.1.2. Output Driver Characteristic of Connectivity Test (CT) Mode............................................................................................... 33
13.2 Single-ended AC & DC Output Levels.......................................................................................................................................... 34
13.3 Differential AC & DC Output Levels.............................................................................................................................................. 34
13.6 Single-ended AC & DC Output Levels of Connectivity Test Mode ...............................................................................................37
13.7 Test Load for Connectivity Test Mode Timing ..............................................................................................................................38
16. SPEED BIN ........................................................................................................................................................................................42
16.1 Speed Bin Table Note................................................................................................................................................................... 48
17. IDD and IDDQ Specification Parameters and Test conditions ...........................................................................................................49
17.1 IDD, IPP and IDDQ Measurement Conditions.............................................................................................................................. 49
19.2 The DQ input receiver compliance mask for voltage and timing .................................................................................................. 71
19.3 Command, Control, and Address Setup, Hold, and Derating .......................................................................................................74
19.4 DDR4 Function Matrix ..................................................................................................................................................................76
Data Buffer data strobes
(positive line of differential pair)
Data Buffer data strobes
(negative line of differential pair)
Register clock input
(positive line of differential pair)
Register clocks input
(negative line of differential pair)
VTT
RFUReserved for future use
SDRAM I/O termination supply
NOTE :
1) Address A17 is only valid for 16 Gb x4 based SDRAMs.
2) RAS_n is a multiplexed function with A16.
3) CAS_n is a multiplexed function with A15.
4) WE_n is a multiplexed function with A14.
- 6 -
Rev. 1.2
SA0 SA1 SA2
SA0
SA1
SDA
SCL
EVENT_n
SA2
EVENT_n
Serial PD with
Register
Thermal sensor
SA0 SA1 SA2
SDA
SCL
SDA
SCL
ZQCAL
VSS
1K
BFUNC
VSS
datasheet
6. ON DIMM THERMAL SENSOR
NOTE :
1) All Samsung RDIMM support Thermal sensor on DIMM.
[Table 3] Temperature Sensor Characteristics
GradeRange
75 < Ta < 95-+/- 0.5+/- 1.0
B
40 < Ta < 125-+/- 1.0+/- 2.0-
-20 < Ta < 125-+/- 2.0+/- 3.0-
Resolution0.25C /LSB-
Min.Typ . Max.
Temperature Sensor Accuracy
DDR4 SDRAMLoad Reduced DIMM
UnitsNOTE
-
C
- 7 -
Rev. 1.2
datasheet
7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION
[Table 4] Input/Output Function Description
SymbolTypeFunction
CK_t, CK_c
CKE, (CKE1)Input
CS_n, (CS1_n)
C0, C1, C2Input
ODT, (ODT1)Input
ACT_nInput
RAS_n/A16.
CAS_n/A15.
WE_n/A14
DM_n/DBI_n/
TDQS_t, (DMU_n/
DBIU_n), (DML_n/
DBIL_n)
BG0 - BG1Input
BA0 - BA1Input
A0 - A17Input
A10 / APInput
A12 / BC_nInput
RESET_nInput
DQ
Input/Output
Input
Input
Input
Input/
Output
Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing
of the positive edge of CK_t and negative edge of CK_c.
Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and device input buffers and
output drivers. Taking CKE LOW provides Precharge Power-Down and Self-Refresh operation (all banks idle), or
Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal
DQ Vref have become stable during the power on and initialization sequence, they must be maintained during all
operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers,
excluding CK_t, CK_c, ODT and CKE, are disabled during power-down. Input buffers, excluding CKE are disabled
during Self-Refresh.
Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection on
systems with multiple Ranks. CS_n is considered part of the command code.
Chip ID : Chip ID is only used for 3DS for 2,4,8 high stack via TSV to select each slice of stacked component. Chip ID
is considered part of the command code.
On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the DDR4 SDRAM.
When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/ TDQS_t, NU/TDQS_c (When
TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. For x16 configuration ODT is applied
to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, DMU_n, and DML_n signal. The ODT pin will be ignored if MR1 is
programmed to disable RTT_NOM.
Activation Command Input : ACT_n defines the Activation command being entered along with CS_n. The input into
RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14
Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being entered.
Those pins have multi function. For example, for activation with ACT_n Low, these are Addressing like A16, A15 and
A14 but for non-activation command with ACT_n High, these are Command pins for Read, Write and other command
defined in command truth table
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is masked when
DM_n is sampled LOW coincident with that input data during a Write access. DM_n is sampled on both edges of
DQS. DM is muxed with DBI function by Mode Register A10,A11,A12 setting in MR5. For x8 device, the function of
DM or TDQS is enabled by Mode Register A11 setting in MR1. DBI_n is an input/output identifing whether to store/
output the true or inverted data. If DBI_n is LOW, the data will be stored/output after inversion inside the DDR4
SDRAM and not inverted if DBI_n is HIGH. TDQS is only supported in X8
Bank Group Inputs: BG0 - BG1 define to which bank group an Active, Read, Write or Precharge command is being
applied. BG0 also determines which mode register is to be accessed during a MRS cycle. X4/8 have BG0 and BG1
but X16 has only BG0.
Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is being applied.
Bank address also determines which mode register is to be accessed during a MRS cycle.
Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/Write
commands to select one location out of the memory array in the respective bank. A10/AP, A12/BC_n, RAS_n/A16,
CAS_n/A15 and WE_n/A14 have additional functions. See other rows. The address inputs also provide the op-code
during Mode Register Set commands. A17 is only defined for the x4 configurations.
Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be
performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge).
A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or
all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses.
Burst Chop: A12/BC_n is sampled during Read and Write commands to determine if burst chop (on-the-fly) will be
performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH.
RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC high and low at 80%
and 20% of VDD.
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at the end of
Data Burst. Any DQ from DQ0-DQ3 may indicate the internal Vref level during test via Mode Register Setting MR4
A4=High. During this mode, RTT value should be set to Hi-Z. Refer to vendor specific datasheets to determine which
DQ is used.
DDR4 SDRAMLoad Reduced DIMM
- 8 -
Rev. 1.2
datasheet
[Table 4] Input/Output Function Description
SymbolTypeFunction
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the
DQS_t, DQS_c,
DQSU_t, DQSU_c,
DQSL_t, DQSL_c
TDQS_t, TDQS_cOutput
PARInput
ALERT_n
TEN
NCNo Connect: No internal electrical connection is present.
VDDQSupplyDQ Power Supply: 1.2 V +/- 0.06 V
VSSQSupplyDQ Ground
VDDSupply
VSSSupply
VPPSupply
VREFCASupply
ZQSupply
Input/
Output
Input/
Output
Input
x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe
DQS_t , DQSL_t and DQSU_t are paired with differential signals DQS_c, DQSL_c, and DQSU_c, respectively, to
provide differential pair signaling to the system during reads and writes. DDR4 SDRAM supports differential data
strobe only and does not support single-ended.
Termination Data Strobe: TDQS_t/TDQS_c is applicable for x8 DRAMs only. When enabled via Mode Register A11 =
1 in MR1, the DRAM will enable the same termination resistance function on TDQS_t/TDQS_c that is applied to
DQS_t/DQS_c. When disabled via mode register A11 = 0 in MR1, DM/DBI/TDQS will provide the data mask function
or Data Bus Inversion depending on MR5; A11,12,10and TDQS_c is not used. x4/x16 DRAMs must disable the TDQS
function via mode register A11 = 0 in MR1.
Command and Address Parity Input: DDR4 Supports Even Parity check in DRAM with MR setting. Once it’s enabled
via Register in MR5, then DRAM calculates Parity with ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0-BG1, BA0BA1, A17-A0 and C0-C2 (3DS devices). Command and address inputs shall have parity check performed when
commands are latched via the rising edge of CK_t and when CS_n is low.
Alert : It has multi functions such as CRC error flag, Command and Address Parity error flag as Output signal. If there
is error in CRC, then ALERT_n goes LOW for the period time interval and goes back HIGH. If there is error in
Command Address Parity Check, then ALERT_n goes LOW for relatively long period until on going DRAM internal
recovery transaction is complete. During Connectivity Test mode, this pin works as input.
Using this signal or not is dependent on system. In case of not connected as Signal, ALERT_n Pin must be bounded
to VDD on board.
Connectivity Test Mode Enable : Required on X16 devices and optional input on x4/x8 with densities equal to or
greater than 8Gb.HIGH in this pin will enable Connectivity Test Mode operation along with other pins. It is a CMOS rail
to rail signal with AC high and low at 80% and 20% of VDD. Using this signal or not is dependent on System. This pin
may be DRAM internally pulled low through a weak pull-down resistor to VSS.
Power Supply: 1.2 V ± 0.06 V
Ground
DRAM Activating Power Supply: 2.5V (2.375V min, 2.75V max)
Reference voltage for CA
Reference Pin for ZQ calibration.
DDR4 SDRAMLoad Reduced DIMM
NOTE :
1) Input only pins (BG0-BG1,BA0-BA1, A0-A17, ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, CS_n, CKE, ODT, and RESET_n) do not supply termination.
9.1 64GB, 8Gx72 Module (Populated as 4 ranks of x4 DDR4 SDRAMs)
NOTE :
_t
1) CK0
_t
2) CK1
3) Unless otherwise noted resistors are 22 ± 5%.
, CK0_c terminated with 120 ± 5% resistor.
, CK1_c terminated with 120 ± 5% resistor but not used.
- 11 -
Rev. 1.2
CKE1A
VSS
CS3A_n
CKE1A
ODT1A
CS1A_n
DQ[3:0]
DQS0_t
DQS0_c
DQ[7:4]
DQS9_t
DQS9_c
CKE0A
VSS
CS2A_n
D0
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
CKE0A
ODT0A
CS0A_n
D9
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D9B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D0B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
DQ[11:8]
DQS1_t
DQS1_c
DQ[15:12]
DQS10_t
DQS10_c
D1
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
D10
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D10B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D1B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
DQ[19:16]
DQS2_t
DQS2_c
DQ[23:20]
DQS11_t
DQS11_c
D2
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
D11
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D11B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D2B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
DQ[27:24]
DQS3_t
DQS3_c
DQ[31:28]
DQS12_t
DQS12_c
D3
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
D12
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D12B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D3B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
CB[3:0]
DQS8_t
DQS8_c
CB[7:4]
DQS17_t
DQS17_c
D8
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
D17
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D17B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D8B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
datasheet
DDR4 SDRAMLoad Reduced DIMM
- 12 -
NOTE :
1) ZQ resistors are 240 ±1%. For all other resistor values refer to the appropriate wiring diagram.
2) See the Net Structure diagrams for all resistors associated with the command, address and control bus.
3) TEN pin of SDRAMs is tied to VSS.
4) DQ stub resistors are 15Ω ±5%. For all other resistor values refer to the appropriate wiring diagram.
Rev. 1.2
V
SS
D0-D35
D0-D35
V
DD
4
V
DDSPD
4
Serial PD
VREFCA
V
TT
D0-D35
V
PP
D0-D35
SA0 SA1 SA2
SA0
SA1
SDA
SCL
EVENT_n
SA2
EVENT_n
Serial PD with
Register
Thermal sensor
SA0 SA1 SA2
SDA
SCL
SDA
SCL
ZQCAL
VSS
1K
BFUNC
VSS
CKE1B
VSS
CS3B_n
CKE1B
ODT1B
CS1B_n
DQ[35:32]
DQS4_t
DQS4_c
DQ[39:36]
DQS13_t
DQS13_c
CKE0B
VSS
CS2B_n
D4
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
CKE0B
ODT0B
CS0B_n
D13
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D13B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D4B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
DQ[43:40]
DQS5_t
DQS5_c
DQ[47:44]
DQS14_t
DQS14_c
D5
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
D14
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D14B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D5B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
DQ[51:48]
DQS6_t
DQS6_c
DQ[55:52]
DQS15_t
DQS15_c
D6
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
D15
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D15B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D6B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
DQ[59:56]
DQS7_t
DQS7_c
DQ[63:60]
DQS16_t
DQS16_c
D7
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
DQ [7:4]
DQS1_t
DQS1_c
MDQ [7:4]
MDQS1_c
MDQS1_t
DQ [3:0]
DQS0_t
DQS0_c
MDQ [3:0]
MDQS0_t
MDQS0_c
Data
Buffer
C
K
E
1
C
S
1
_
n
O
D
T
1
D16
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D16B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
D7B
DQS_c
DQS_t
C
K
E
0
C
S
0
_
n
DQ [3:0]
O
D
T
0
ZQ
VSS
C
K
E
1
C
S
1
_
n
O
D
T
1
datasheet
DDR4 SDRAMLoad Reduced DIMM
NOTE:
1) ZQ resistors are 240Ω ±1%. For all other resistor values refer to the appropriate wiring diagram.
2) See the Net Structure diagrams for all resistors associated with the command, address and control bus.
3) TEN pin of SDRAMs is tied to VSS.
4) VDDSPD is also applied to the register. VDD is also applied to the register and the data buffers.
5) DQ stub resistors are 15 Ω ±5%. For all other resistor values refer to the appropriate wiring diagram.
- 13 -
Rev. 1.2
datasheet
DDR4 SDRAMLoad Reduced DIMM
10. ABSOLUTE MAXIMUM RATINGS
10.1 Absolute Maximum DC Ratings
[Table 5] Absolute Maximum DC Ratings
SymbolParameter RatingUnitsNOTE
VDDVoltage on VDD pin relative to Vss-0.3 ~ 1.5V 1,3
VDDQ Voltage on VDDQ pin relative to Vss-0.3 ~ 1.5V 1,3
VPPVoltage on VPP pin relative to Vss-0.3 ~ 3.0V4
V
NOTE :
1) Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3) VDD and VDDQ must be within 300mV of each other at all times; and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREFCA
may be equal to or less than 300mV
4) VPP must be equal or greater than VDD/VDDQ at all times.
5) Overshoot area above 1.5 V is specified in section Address, Command and Control Overshoot and Undershoot specifications, Clock Overshoot and Undershoot
Specifications and section Data, Strobe and Mask Overshoot and Undershoot Specifications.
Voltage on any pin except VREFCA relative to Vss-0.3 ~ 1.5V 1,3,5
IN, VOUT
T
Storage Temperature -55 to +100°C 1,2
STG
11. AC & DC OPERATING CONDITIONS
[Table 6] Recommended DC Operating Conditions
SymbolParameter
VDDSupply Voltage1.141.21.26V1,2,3
VDDQSupply Voltage for Output1.141.21.26V1,2,3
VPPPeak-to-Peak Voltage2.3752.52.75V3
NOTE :
1) Under all conditions V
tracks with VDD. AC parameters are measured with VDD and V
2) V
DDQ
3) DC bandwidth is limited to 20MHz.
must be less than or equal to VDD.
DDQ
Min.Typ.Max.
tied together.
DDQ
Rating
UnitNOTE
- 14 -
Rev. 1.2
voltage
V
DD
V
SS
time
datasheet
DDR4 SDRAMLoad Reduced DIMM
12. AC & DC INPUT MEASUREMENT LEVELS
12.1 AC & DC Logic Input Levels for Single-Ended Signals
[Table 7] Single-ended AC & DC Input Levels for Command and Address
SymbolParameter
VIH.CA(DC75)
VIH.CA(DC65)--
VIL.CA(DC75)
VIL.CA(DC65) --VSS
VIH.CA(AC100)
VIH.CA(AC90)--
VIL.CA(AC100)
VIL.CA(AC90)--Note 2
VREFCA(DC) Reference Voltage for ADD, CMD inputs 0.49*VDD 0.51*VDD --V2,3
NOTE :
1) See “Overshoot and Undershoot Specifications” on section.
2) The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)
3) For reference : approx. VDD/2 ± 12mV.
DC input logic high
DC input logic low
AC input logic high
AC input logic low
DDR4-1600/1866/2133/2400DDR4-2666/2933
Min.Max.Min.Max.
+ 0.075
V
REFCA
V
VSS
+ 0.1
REF
Note 2
VDD --
V
+ 0.065
REFCA
V
-0.075
REFCA
Note 2 --
V
- 0.1
REF
--
V
+ 0.09
REF
--
V
REFCA
V
VDD
Note 2
REF
-0.065
- 0.09
UnitNOTE
V
V
V
V
1
1
12.2 AC and DC Input Measurement Levels: V
The DC-tolerance limits and ac-noise limits for the reference voltages V
function of time. (V
V
(DC) is the linear average of V
REF
Furthermore V
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on V
stands for V
REF
(t) may temporarily deviate from V
REF
).
REFCA
(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7.
REF
(DC) by no more than ± 1% VDD.
REF
Figure 1. Illustration of V
(DC) tolerance and V
REF
is illustrated in Figure 1. It shows a valid reference voltage V
REFCA
Tolerances.
REF
AC-noise limits
REF
REF
(t) as a
REF
.
"V
" shall be understood as V
REF
This clarifies, that DC-variations of V
which setup and hold is measured. System timing and voltage budgets need to account for V
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V
and voltage effects due to AC-noise on V
(DC), as defined in Figure 1.
REF
affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
REF
(DC) deviations from the optimum position within the
REF
up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
REF
- 15 -
AC-noise. Timing
REF
Rev. 1.2
0.0
tDVAC
V
IH
.DIFF.MIN
half cycle
Differential Input Voltage (CK-CK)
time
tDVAC
VIH.DIFF.AC.MIN
V
IL
.DIFF.MAX
V
IL
.DIFF.AC.MAX
(CK_t - CK_c)
datasheet
12.3 AC and DC Logic Input Levels for Differential Signals
12.3.1 Differential Signals Definition
Figure 2. Definition of differential ac-swing and “time above ac-level” t
NOTE:
1) Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.
2) Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.
DDR4 SDRAMLoad Reduced DIMM
DVAC
- 16 -
Rev. 1.2
datasheet
12.3.2 Differential Swing Requirements for Clock (CK_t - CK_c)
[Table 8] Differential AC and DC Input Levels
SymbolParameter
V
IHdiff
V
ILdiff
V
(AC)
IHdiff
V
(AC)
ILdiff
NOTE :
1) Used to define a differential signal slew-rate.
2) for CK_t - CK_c use V
3) These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (V
as well as the limitations for overshoot and undershoot.
[Table 9] Allowed Time Before Ringback (tDVAC) for CK_t - CK_c
differential input high+0.150NOTE 3 TBDNOTE 3 V1
differential input low NOTE 3 -0.150NOTE 3 TBDV1
differential input high ac
differential input low acNOTE 3
IH.CA/VIL.CA
Slew Rate [V/ns]
> 4.0120-
4.0115-
3.0110-
2.0105-
1.8100-
1.695-
1.490-
1.285-
1.080-
< 1.080-
(AC) of ADD/CMD and V
2 x (VIH(AC) - V
DDR4 -1600/1866/2133DDR4 -2400/2666/2933
minmaxminmax
REFCA
)
REF
;
minmax
NOTE 3
2 x (VIL(AC) - V
tDVAC [ps] @ |V
2 x (VIH(AC) - V
)
REF
IH/Ldiff
REF
NOTE 3
(DC) max, V
IH.CA
(AC)| = 200mV
DDR4 SDRAMLoad Reduced DIMM
)
NOTE 3V2
2 x (VIL(AC) - V
(DC)min) for single-ended signals
IL.CA
REF
unit NOTE
)
V2
- 17 -
Rev. 1.2
VDD or V
DDQ
V
SEH
min
V
DD
/2 or V
DDQ
/2
V
SEL
max
V
SEH
VSS or V
SSQ
V
SEL
CK
time
datasheet
DDR4 SDRAMLoad Reduced DIMM
12.3.3 Single-ended Requirements for Differential Signals
Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain requirements for single-ended signals.
CK_t and CK_c have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH.CA(AC) / VIL.CA(AC)) for ADD/CMD
signals) in every half-cycle.
Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g., if Different value than VIH.CA(AC100)/VIL.CA(AC100) is used
for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK_c.
Figure 3. Single-ended requirement for differential signals.
Note that, while ADD/CMD signal requirements are with respect to VrefCA, the single-ended components of differential signals have a requirement with
respect to VDD / 2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common
mode characteristics of these signals.
[Table 10] Single-ended Levels for CK_t, CK_c
SymbolParameter
V
V
NOTE :
1) For CK_t - CK_c use V
2) V
IH
3) These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits (V
signals as well as the limitations for overshoot and undershoot.
Single-ended high-level for
SEH
Single-ended low-level for
SEL
(AC)/VIL(AC) for ADD/CMD is based on V
IH.CA/VIL.CA
(AC) of ADD/CMD;
CK_t, CK_c
CK_t, CK_c
;
REFCA
DDR4-1600/1866/2133DDR4-2400/2666/2933
MinMaxMinMax
(VDD/2)+0.100NOTE3TBDNOTE3V1, 2
NOTE3(VDD/2)-0.100NOTE3TBDV1, 2
(DC) max, V
IH.CA
IL.CA
Unit NOTE
(DC)min) for single-ended
- 18 -
Rev. 1.2
A
AOS1
V
DD
A
AUS
V
SS
Volts
(V)
1 tCK
V
AOSP
A
AOS2
V
AOS
V
AUS
datasheet
DDR4 SDRAMLoad Reduced DIMM
12.3.4 Address, Command and Control Overshoot and Undershoot specifications
[Table 11] AC overshoot/undershoot specification for Address, Command and Control pins
Parameter
Maximum peak amplitude above VAOS VAOSP0.06 TBDTBDV
Upper boundary of overshoot area AAOS1 VAOS VDD +0.24 TBDTBDV1
Maximum peak amplitude allowed for undershoot
Maximum overshoot area per 1 tCK above VAOS AAOS2 0.00830.00710.00620.0055TBDTBDV-ns
Maximum overshoot area per 1 tCK between VDD and
VAOS
Maximum undershoot area per 1 tCK below VSS AAUS 0.2644 0.22650.19840.1762TBDTBDV-ns
1) The value of VAOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC
Operating Conditions. If VDD is above the recommended operating conditions, VAOS remains at VDD absolute max as defined in Table 5.
Sym-
bol
VAUS 0.30 TBDTBDV
AAOS1 0.25500.21850.19140.1699TBDTBDV-ns
DDR4-
1600
DDR4-
1866
Specification
DDR4-
2133
DDR4-
2400
DDR4-
2666
DDR4-
2933
Unit NOTE
Figure 4. Address, Command and Control Overshoot and Undershoot Definition
- 19 -
Rev. 1.2
A
COS1
V
DD
A
CUS
V
SS
Volts
(V)
1 UI
V
COSP
A
COS2
V
COS
V
CUS
datasheet
DDR4 SDRAMLoad Reduced DIMM
12.3.5 Clock Overshoot and Undershoot Specifications
[Table 12] AC overshoot/undershoot specification for Clock
Specification
ParameterSymbol
Maximum peak amplitude above VCOSVCOSP0.06 TBDTBDV
Upper boundary of overshoot area ADOS1VCOS VDD +0.24 TBDTBDV1
Maximum peak amplitude allowed for undershootVCUS 0.30 TBDTBDV
ACOS2 0.00380.00320.00280.0025TBDTBDV-ns
Maximum overshoot area per 1 UI above VCOS
Maximum overshoot area per 1 UI between VDD and
VDOS
Maximum undershoot area per 1 UI below VSSACUS 0.11440.09800.08580.0762TBDTBDV-ns
NOTE :
1) The value of VCOS matches VDD absolute max as defined in Table 5 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC
Operating Conditions. If VDD is above the recommended operating conditions, VCOS remains at VDD absolute max as defined in Table 5.
ACOS1 0.11250.09640.08440.0750TBDTBDV-ns
DDR4-
1600
(CK_t, CK_c)
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
DDR4-
2933
Unit NOTE
Figure 5. Clock Overshoot and Undershoot Definition
- 20 -
Rev. 1.2
A
DOS1
V
DDQ
A
DUS2
V
SSQ
Volts
(V)
1 UI
V
DOSP
A
DOS2
V
DOS
V
DUSP
A
DUS1
datasheet
DDR4 SDRAMLoad Reduced DIMM
12.3.6 Data, Strobe and Mask Overshoot and Undershoot Specifications
[Table 13] AC overshoot/undershoot specification for Data, Strobe and Mask
Upper boundary of overshoot area ADOS1 VDOS VDDQ + 0.24TBDTBDV1
Lower boundary of undershoot area ADUS1 VDUS 0.300.300.300.30TBDTBDV2
Maximum peak amplitude below VDUSVDUSP 0.100.100.100.10TBDTBDV
Maximum overshoot area per 1 UI above VDOS ADOS2 0.01500.01290.01130.0100TBDTBDV-ns
Maximum overshoot area per 1 UI between
VDDQ and VDOS
Maximum undershoot area per 1 UI between
VSSQ and VDUS1
Maximum undershoot area per 1 UI below VDUS ADUS20.01500.01290.01130.0100TBDTBDV-ns
NOTE :
1) The value of VDOS matches (VIN, VOUT) max as defined in Table 5 Absolute Maximum DC Ratings if VDDQ equals VDDQ max as defined in Table 6 Recommended DC
Operating Conditions. If VDDQ is above the recommended operating conditions, VDOS remains at (VIN, VOUT) max as defined in Table 5.
2) The value of VDUS matches (VIN, VOUT) min as defined in Table 5 Absolute Maximum DC Ratings
ADOS1 0.10500.09000.07880.0700TBDTBDV-ns
ADUS1 0.10500.09000.07880.0700TBDTBDV-ns
DDR4-
1600
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
DDR4-
2933
Unit
NOT
E
Figure 6. Data, Strobe and Mask Overshoot and Undershoot Definition
- 21 -
Rev. 1.2
Delta TRdiff
Delta TFdiff
V
IHdiffmin
0
V
ILdiffmax
Differential Input Voltage(i,e, CK_t - CK_c)
datasheet
12.4 Slew Rate Definitions
12.4.1 Slew Rate Definitions for Differential Input Signals (CK)
Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table 14 and Figure 7.
3) Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.
4) Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope.
- 23 -
Rev. 1.2
Vix
CK_t
VDD/2
VSS
VDD
CK_c
Vix
VSEL
VSEH
datasheet
DDR4 SDRAMLoad Reduced DIMM
12.5 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals
(CK_t, CK_c) must meet the requirements in Table 15. The differential input cross point voltage VIX is measured from the actual cross point of true and
complement signals to the midlevel between of VDD and VSS.
Figure 9. Vix Definition (CK)
[Table 15] Cross Point Voltage for Differential Input Signals (CK)
SymbolParameter
-Area of VSEH, VSEL
VlX(CK)
SymbolParameter
VlX(CK)
Differential Input Cross Point Voltage relative to
VDD/2 for CK_t, CK_c
-Area of VSEH, VSELTBDTBDTBDTBD
Differential Input Cross Point Voltage relative to
VDD/2 for CK_t, CK_c
VSEL =< VDD/2 -
145mV
-120mV
TBDTBDTBDTBD
minmax
minmax
DDR4-1600/1866/2133
VDD/2 - 145mV =<
VSEL =< VDD/2 -
100mV
-(VDD/2 - VSEL) +
25mV
DDR4-2400/2666/2933
VDD/2 + 100mV =<
VSEH =< VDD/2 +
145mV
(VSEH - VDD/2) -
25mV
VDD/2 + 145mV =<
VSEH
120mV
- 24 -
Loading...
+ 54 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.