Navman Jupiter 12 Datasheet

Jupiter 12
GPS receiver module
Data sheet
(TU35-D410 and TU35-D420 series)
Related products
• Development kit TU10-D007-351
• Product brief LA010040
• Development kit: Quick start guide LA010088
• Development kit: Guide LA010089
• Designer’s guide MN002000
• Labmon application note LA010103
• DR receiver: Gyro application note LA010090
LA0100 65D © 2004 Navman NZ Ltd. All rights reserved. Proprietary information and specifications subject to change without notic e.
1
Contents
Features .............................................................................................................. 4
New features ................................................................................................................................4
Continuing the Jupiter legacy: ..................................................................................................4
1.0 Introduction .................................................................................................. 5
2.0 Technical description .................................................................................. 8
2.1 General information ..............................................................................................................8
2.2 Satellite acquisition ..............................................................................................................8
2.2.1 Hot start ...............................................................................................................................8
2.2.2 Warm start ...........................................................................................................................8
2.2.3 Cold start ..............................................................................................................................8
2.3 Navigation modes. ................................................................................................................8
2.3.1 Three-dimensional (3D) navigation .....................................................................................8
2.3.2 Two-dimensional (2D) navigation ........................................................................................8
3.0 Technical specifications ............................................................................. 9
3.1 Operational characteristics .................................................................................................9
3.1.1 Signal acquisition performance .............................................................................................9
3.1.2 Accuracy ...............................................................................................................................9
3.1.3 Solution update rate: once per second. ................................................................................9
3.1.4 Re-acquisition .......................................................................................................................9
3.1.5 Serial data output protocol ....................................................................................................9
3.2 Power requirements .............................................................................................................9
3.3 Radio frequency signal environment ..................................................................................9
3.3.1 Burnout protection ................................................................................................................9
3.4 Physical ..................................................................................................................................9
3.5 Environmental .......................................................................................................................9
3.5.1 Cooling: Convection. ............................................................................................................9
3.5.2 Temperature(operating/storage) ..........................................................................................9
3.5.3 Humidity ...............................................................................................................................9
3.5.4 Altitude (operating/storage) ..................................................................................................9
3.5.5 Maximum vehicle dynamic ...................................................................................................9
3.5.6 Vibration random (operating) ................................................................................................9
3.5.7 Vibration shock (non-operating) ...........................................................................................9
3.5.8 Drop: Shipping (in container) ................................................................................................9
3.6 OEM interface connector ...................................................................................................10
3.7 Mechanical layout ...............................................................................................................10
3.8 ESD sensitivity ....................................................................................................................10
4.0 Hardware interface .................................................................................... 13
4.1 DC input signals .................................................................................................................13
4.1.1 Pin J1-1: antenna preamp voltage input (PREAMP) ...........................................................13
4.1.2 Pins J1-2 and J1-4: primary VDC power input and (PWRIN) .............................................13
4.1.3 Pin J1-3: battery backup voltage input (VBATT) ................................................................13
4.1.4 Pin J1-5: master reset (M_RST)—active low .....................................................................13
4.1.5 Pin J1-6: heading rate gyro input (GYRO) ..........................................................................13
4.1.6 Pin J1-7: NMEA protocol select/backup (GPIO2) ...............................................................13
4.1.7 Pin J1-8: EEPROM default select (GPIO3) .........................................................................14
4.1.8 Pin J1-9: see application note speed indication (GPIO4) ...................................................14
4.2 Serial communication signals ...........................................................................................15
4.2.1 Pins J1-11, 12, 14, and 15: serial data ports SDO1, ...........................................................15
4.3 Output signals ....................................................................................................................15
4.3.1 Pin J1-19: 1PPS time mark pulse (TMARK) .......................................................................15
4.3.2 Pin J1-20: 10 kHz clock output (10 kHZ) ............................................................................15
5.0 Acronyms used in this document ............................................................ 17
LA0100 65D © 2004 Navman NZ Ltd. All rights reserved. Proprietary information and specifications subject to change without notic e.
2
Figures
Figure 1-1 Jupiter 12 GPS receiver ..............................................................................................5
Figure 1-2 Jupiter 12 GPS receiver ..............................................................................................5
Figure 1-3 Jupiter 12 block diagram ..............................................................................................6
Figure 1-4 Jupiter 12 block diagram with dead-reckoning ............................................................7
Figure 1-5 Jupiter receiver application architecture ......................................................................7
Figure 3-1. SAE composite curve (random) ................................................................................11
Figure 3-2 The 20-pin interface connector (J1) ...........................................................................11
Figure 3-3 Mechanical drawings of the Jupiter GPS receiver board ...........................................12
Tables
Table 1-1 Jupiter 12 module descriptions ......................................................................................5
Table 2-1 Jupiter receiver signal acquisition ..................................................................................8
Table 2-2 Jupiter navigational accuracies .....................................................................................9
Table 3-1 Jupiter operational power requirements (typ at 25oC) .................................................10
Table 3-2 Standard Jupiter power management table (at 25oC) .................................................10
Table 4-1 Jupiter receiver J1 interface pin descriptions ..............................................................13
Table 4-2 Jupiter digital signal requirements ...............................................................................15
Table 4-3 Jupiter receiver supported RTCM SC-104 data messages .........................................16
Table 4-4 Jupiter receiver binary data messages .......................................................................16
Table 4-5 Jupiter receiver NMEA v2.01 data messages .............................................................17
LA0100 65D © 2004 Navman NZ Ltd. All rights reserved. Proprietary information and specifications subject to change without notic e.
3
Features
New features
• power management control
• 3.3–5 V operation (autosensing)
• superior dead-reckoning (DR) capability in absence of GPS signals (DR model only)
• reliable single-chip RF containing: Fractional-N synthesiser, VCO, LNA
Continuing the Jupiter legacy:
• 12 parallel satellite tracking channels for fast acquisition and re-acquisition
• Fast Time-To-First-Fix (TTFF)
—24 second hot start
—42 seconds warm start
—Less than 2 second re-acquisition after blockages for up to 10 seconds
• enhanced algorithms for superior navigation performance in dense urban areas and foliage environments
• adaptive threshold-based signal detection for improved reception of weak signals
• maximum navigation accuracy using Standard Positioning Service (SPS)
• automatic altitude hold mode from 3D to 2D navigation
• automatic cold start acquisition process (no initialisation data entered)
• flexible and configurable operation via user commands over host serial port
• position and velocity initialisation via the host serial port
• user selectable satellites
• user-specifiable visible satellite mask angle
• serial data output including Navman binary protocol and selected National Marine Electronics
Association (NMEA-0183) v2.1 messages
LA0100 65D © 2004 Navman NZ Ltd. All rights reserved. Proprietary information and specifications subject to change without notic e.
4
1.0 Introduction
Navman’s Jupiter 12 Global Positioning System (GPS) module is a single board, 12 parallel channel receiver that is intended as a component for an Original Equipment Manufacturer (OEM) product. The receiver continuously tracks all visible satellites, providing accurate satellite positioning data. Jupiter 12 is designed for high performance and maximum flexibility in a wide range of OEM applications including handhelds, panel mounts, sensors, and in-vehicle automotive products.
The highly integrated digital receiver uses the Zodiac chipset composed of two custom SiRF devices: the CX74051 RF Front-End, and the CX11577 Scorpio Baseband Processor (BP). These two custom chips, together with memory devices and a minimum of external components, form a complete low power, high-performance, high reliability GPS receiver solution for OEMs. Different module configurations allow the OEM to design for multi-voltage operation and dead reckoning navigation that uses vehicle sensors in the absence of GPS signals. Each configuration provides different options for different types of antenna connectors (refer to table 1-1).
must be selected at the time of ordering and is not available for field retrofitting.
The 12-channel architecture provides rapid TTFF under all startup conditions. While the best TTFF performance is achieved when time of day and current position estimates are provided to the receiver, the flexible signal acquisition system uses all available information to provide a rapid TTFF.
Acquisition is guaranteed under all initialisation conditions as long as paths to the satellites are not obscured. The receiver supports 2D positioning when fewer than four satellites are available or when required by operating conditions. Altitude information required for 2D operation is assumed by the receiver or may be provided by the OEM application.
The Jupiter 12 receiver decodes and processes signals from all visible GPS satellites. These satellites, in various orbits around the Earth, broadcast Radio Frequency (RF) ranging codes,
Figure 1-1 Jupiter 12 GPS receiver
(top view, shown approx. actual size)
timing information, and navigation data messages. The receiver uses all available signals to produce a highly accurate navigation solution that can be used in a wide variety of end product applications. The all-in-view tracking of the Jupiter receiver provides robust performance in applications that require high vehicle dynamics or that operate in areas of high signal blockage such as dense urban centres.
The Jupiter receiver is packaged on a miniature printed circuit board with a metallic RF enclosure on one side (see figures 1-1 and 1-2). The receiver is available in several configurations. The configuration and type of antenna connector
Part No.* Model Antenna
TU35-D410-021 Jupiter 12, +3.3–5.0 V autosensing, standard operation right angle OSX
TU35-D410-031 Jupiter 12, +3.3–5.0 V autosensing, standard operation straight OSX
Figure 1-2 Jupiter 12 GPS receiver
(bottom view, shown approx. actual size)
TU35-D410-041 Jupiter 12, +3.3–5.0 V autosensing, standard operation right angle SMB
TU35-D420-021 Jupiter 12 DR, +3.3– 5.0 V autosensing with dead reckoning right angle OSX
(*) Contact Navman for the latest revision part numbers and optional GPS antenna connector.
Table 1-1 Jupiter 12 module descriptions
LA0100 65D © 2004 Navman NZ Ltd. All rights reserved. Proprietary information and specifications subject to change without notic e.
5
Communication with the receiver is established through one of two asynchronous serial I/O ports that support full duplex data communication. The receiver’s serial port provides navigation data and accepts commands from the OEM application in proprietary Navman binary message format. NMEA formatted message protocol is also available with software and/or hardware selection.
microprocessor and the required GPS-specific signal processing hardware. Memory and other external supporting components complete the receiver navigation system.
Product applications
The Jupiter 12 receiver is suitable for a wide range of modular
OEM GPS design applications such as:
Receiver architecture
The functional architecture of the basic Jupiter 12 receiver is shown in figure 1-3. The functional architecture of Jupiter 12 DR, with dead-reckoning circuitry, is shown in figure 1-4.
The receiver design is based on the SiRF Zodiac chipset: the RF1A and the Scorpio Baseband Processor (BP). The RF1A contains all the RF down-conversion and amplification circuitry, and presents the In-Phase (I) and Quadrature­Phase (Q) Intermediate Frequency (IF) sampled data to the BP. The BP contains an integral
CX74051
RF
connec tor
pre-select
filter
receiver front- end
LNA
post-select
filter
down
converter
0
10.949 M Hz Xtal
signal samples
clock signals
A/ D control
• automotive and vehicular transport
• marine navigation
• aviation
Figure 1-5 illustrates a design that might be used to integrate the receiver with an applications processor that drives peripheral devices such as a display and keyboard.
Communication between the applications processor and the receiver is through the serial data interface.
CX1157 7
baseban d processor
serial p ort 2
serial p ort 1
1PPS, 10 kHz
12 channel
GPS
correlator
GDGPS d ata (RTCMSC-104)
OEM host i nterfac e
timing reference
serial
EEPROM
RTC
0
32 kHz Xta l
+3.3 or 5.0 VDC input
+3.3 or 5.0 VDC bat. backup
regulated DC power
bat. backup to SRAM & RTC
SRAM
ROM*
*contains
software
EMI filtering
& power supply
ADD BUS
12C
BUS
Figure 1-3 Jupiter 12 block diagram
LA0100 65D © 2004 Navman NZ Ltd. All rights reserved. Proprietary information and specifications subject to change without notic e.
6
Loading...
+ 12 hidden pages