1: OVERVIEWGETTING STARTED ........................................................................................................................... 1-1
3: USING THE METERMENU NAVIGATION ........................................................................................................................ 3-1
SER INTERFACE ..................................................................................................................3-1
5: MISCELLANEOUSREVISION HISTORY .......................................................................................................................... 5-1
Thank you for purchasing the GE Energy EPM4500 24-point sub-meter to monitor energy
for your residential, commercial, or industrial applications. At GE Energy, we pride
ourselves by providing our customers with best-in-class products, which have been
carefully selected by GE to best serve your solution needs.
The EPM4500 is sold in KWh or Demand meter versions and is available for 120/208V and
277/480V applications. An integrated liquid crystal display (LCD) is standard on all versions,
providing local access to real-time and historical data. The meter provides two standard
communication modes: power line communications (PLC), which utilizes existing AC power
lines as the communication medium, eliminating dedicated wiring, and Modbus (RS232,
RS485, and modem).
The EPM4500 is packaged with either solid or split-core CTs in various amperages to suit
both new construction and retrofit applications.
Note
The EPM4500 is primarily used for commercial and industrial applications and is
available in voltages ranging from 120 to 600 V in both wye and delta forms. The
following installation instructions are applicable to the EPM4500 meter only.
EPM 4500 SUB METER – INSTRUCTION MANUAL1–1
APPLICATIONSCHAPTER 1: OVERVIEW
1.2Applications
1.2.1Stand-Alone Meter
The GE Energy EPM4500 can be installed as a stand-alone device that is locally accessed
via the LCD or remotely accessed via modem. A modem can be installed in each meter
allowing the meter(s) to be read remotely.
1.2.2Metering System
The GE Energy EPM4500 family of meters are ideally designed to comprise a metering
system within a residential/commercial building or industrial site. This metering system
can measure electrical usage for each tenant, cost center, or common area space and
communicate this information over the building's power wires or dedicated
communication wiring (RS485). A metering system is comprised of two or more EPM4500
meters and at least one communication transponder (see figure below). The transponder
collects metering data from multiple meters via AC power lines. For larger sites, additional
transponders may be required. Multiple transponders can communicate via a data link
network using RS485 or via a wireless network.
The metering data can be accessed from the transponder or network of transponders
using a telephone modem or local RS232 connection to a PC for data transfers.
709712A1.CDR
FIGURE 1–1: Overview of Scan Transponder Functionality
1–2EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 1: OVERVIEWAPPLICATIONS
1.2.3Interior View
The interior of the EPM4500 is shown below.
709711A1.CDR
FIGURE 1–2: Interior View of the EPM4500
Note
Where the and symbols are seen on the EPM4500 meter, the manual must be
consulted to determine the nature of any potential hazard and/or actions to be taken.
1.2.4Cautions and Warnings
• Do not install if the device is damaged. Inspect the housing for obvious defects
CAUTION
WARNING
such as cracks in the housing.
• If the device is installed or used in a manner not specified by accompanying
documents, the protection of the device may be impaired.
• If the device functions abnormally, proceed with caution. The protection of the
device may be impaired.
• Do not install the meter around combustible gas or gas vapor.
• Do not install the meter in an electrical service with current or voltage outside of
the specified limit of the device.
• Do not operate the meter with the cover removed.
• To avoid electric shock, disconnect mains before replacing fuses!
• See instructions for connection diagram.
• Risk of electric shock. Beware of working around this meter when the voltage is
live.
• For continued protection against fire, replace only with fuses of specified voltage
and current rating.
EPM 4500 SUB METER – INSTRUCTION MANUAL1–3
APPLICATIONSCHAPTER 1: OVERVIEW
1.2.5Protective Conductor Terminal
Securely fasten one end of the earthing wire so that the screw cuts the paint on the back
box. Securely fasten other end of the wire to a true earth ground connection. When
earthing to the electrical conduit, use continuous pipes, bending when necessary instead
of using couplers.
1.2.6Preventive Maintenance
There are no necessary preventative maintenance or inspection.
A Toshiba CR2032 coin battery is used in each device and is intended to be good for
decades before replacement. Return to manufacturer for replacement.
1–4EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 1: OVERVIEWSPECIFICATIONS
1.3Specifications
1.3.1Monitoring
DEMAND
Consumption and demand: .....................kW and kWh
Demand reset:.................................................allows local reset of peak demand register
INTERVAL DATA AND PEAK DEMAND
Commercial:......................................................15 minute block demand interval and peak demand with
Shipping weight:.............................................1 meter assembly 34 lbs. (total weight)
Shipping dimensions: ...................................2 enclosures, each 13.5"H × 8.5"W × 4.5"D
1.3.7Type Tests and Approvals
TYPE TESTS
Transient/surge suppression: ANSI C37.90.1-1989
Installation category:....................................III. This product falls under Installation Category III
because of its distribution level, fixed installation and has
smaller transient overvoltages than an Installation
Category IV.
1–6EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 1: OVERVIEWSPECIFICATIONS
APPROVALS
ANSI: .....................................................................C12.1 and C12.16 accuracy
UL and CUL: ......................................................recognized under E204142
Industry Canada:............................................MC#AE-1148
EPM 4500 SUB METER – INSTRUCTION MANUAL1–7
ORDERING
EPM 4500 SUB METER – INSTRUCTION MANUAL
1.4 Ordering
1.4.1 Enclosure
Step 1: Select Enclosure
FamilyBack BoxVoltageOptionsDescription
PL4500BBA**Back Box Assembly
1.4.2 EPM 4500 Residential
The EPM 4500 residential package is available in single-phase 120/208 V or 120/240 V connections.
Residential use measures kWh only (no demand measurement).
The EPM 4500 commercial package is available in three-phase 120/208 V, 277/480 V, or 347/600 V
connections (delta optional). Commercial use measures kWh and kW demand.
For additional information on pulse inputs, please contact GE Energy.
2. Order Transponder Model with options
DescriptionCat. No.
120/208V with modemTRANS120M
120/208V with RS485 and RS2332 connectionsTRANS120RS
277/480V with modemTRANS277M
277/480V with RS485 and RS232 connectionsTRANS277RS
347/600V with modemTRANS347M
347/600V with RS485 and RS 232 connectionsTRANS347RS
1–9
ORDERINGCHAPTER 1: OVERVIEW
1–10EPM 4500 SUB METER – INSTRUCTION MANUAL
GE Energy
Industrial Solutions
709710A1.CDR
2.1Getting Ready
EPM4500 Sub Meter
Chapter 2: Installation
Installation
2.1.1Determination of Metering System Requirements
Determine if the application is for a metering system or for a stand-alone meter. If the
application is for a stand-alone meter, please read Overview of Meter Wiring on page 2–2.
If the application is for a metering system, then also read Installing the Scan Transponder
on page 2–18.
2.1.2Phase Association
As shown in Table 2–1: Wiring Diagram / Model Reference on page 2–3, there are four
wiring types for the EPM4500 meter. Each wiring type has a specific phase association
table to ensure that current transformers are in-phase with the reference voltage. These
phase association tables must be followed for the meter to function properly with the
chosen wiring type.
The phase association of the current transformers must be followed or meter will not
be installed correctly.
EPM 4500 SUB METER – INSTRUCTION MANUAL2–1
WIRINGCHAPTER 2: INSTALLATION
2.2Wiring
2.2.1Overview of Meter Wiring
Although this document treats the installation and certification stages separately, this
does not imply that the recommended procedure is to install the entire system at once and
then proceed to certification.
The recommended procedure is to install and certify the system in stages. By doing this,
systematic error can be corrected before it propagates through the entire installation. To
follow the recommended procedure, divide the job up into manageable stages and install
and certify at each stage before proceeding to the installation of the next stage.
For the purposes of this discussion, the colors black, red and blue have been chosen to
distinguish among the three phases of a three-phase network. White is the designated
color of neutral and green is the color of earth ground. Please substitute the correct color
according to local electrical code. For a two-phase installation, ignore the third phase (the
blue phase in the following description).
Failure to follow the proper procedures and reference the correct wiring diagram can
result in damage to the equipment and/or physical harm.
709714A1.CDR
FIGURE 2–1: Vertical Mounting Option
2.2.2Wiring Overview
Review the following wiring types and select the one that matches your installation
requirements and part number using the following table.
2–2EPM 4500 SUB METER – INSTRUCTION MANUAL
Table 2–1: Wiring Diagram / Model Reference
Three-Phase Four-Wire Wye Wiring on page 2–3
Single-Phase, Three-Wire 120 V Wiring on page 2–6
Three-Phase, Three-Wire Delta Wiring on page 2–9
Single-Phase, Three-Wire Wiring on page 2–12
2.2.3 Three-Phase Four-Wire Wye Wiring
The phase association and polarity of the current transformers must be followed or
the meter will not be correctly installed.
1. Current transformers must be in-phase with the reference voltage. The MCI board
runs in an A-B-C phase rotation (see table below) and each of the three CT
connections repeat an A-B-C order.
For example, a current transformer installed in-phase with reference voltage A must
be installed on CT1, CT4, CT7, etc. Current transformers installed in-phase with
reference voltage B must be installed on CT2, CT5, CT8, etc. Likewise, current
transformers installed in-phase with reference voltage C must be installed on CT3,
CT6, CT9, etc.
WIRINGCHAPTER 2: INSTALLATION
Section
2. For the “C” or commercial 3-phase/4-wire model, each A-B-C combination is a single
meter point (see the following table for full listing). That is,
3. – Meter 1 (M#1) is CT1, CT2, and CT3
– Meter 2 (M#2) is CT4, CT5, and CT6
– Repeated for M#3 to M#8
4. After completing all current transformer terminations, connect four (4) current
connectors and then remove the twenty-four (24) shorting links.
5. Follow all local codes for installation requirements; e.g. conduit, fused disconnect,
distance, and wiring.
6. Installation of “L” (0.1 A inputs) and “H” (CL10 or 5A inputs) are the same. For 6 point
models, use meter points M#1 to M#6; M#7 and M#8 are not functional.
If breakers are energized, shorting links must be installed before:
1. disconnecting the CT headers
2. replacing or installing meter heads on the panel.
Bodily injury may result if shorting links are not installed!
EPM 4500 SUB METER – INSTRUCTION MANUAL
2-3
WIRINGCHAPTER 2: INSTALLATION
Table 2–2: Phase Association Table for 3-Phase 4-Wire Wye Wiring
MeterMCI Board CTVoltage
Phase
1A
1
2B14B
3C15C
4A
2
5B17B
6C18C
7A
3
8B20B
9C21C
10A
4
11B23B
12C24C
MeterMCI Board CTVoltage
Phase
13A
5
16A
6
19A
7
22A
8
2–4EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 2: INSTALLATIONWIRING
C
Power
A
Load
Phase A (ØA)
N
Source
Neutral
BK/RD/BL
Dot
H1
Dot or H1 should point
source.
towards the line or
WHITE
LINE SOURCE
Diagram 3. CT Phasing.
CT Header
CT Header
CT4
CT2
meterhead
Connect CT Header to
To CT2
To CT4
CT Header
CT Header
To CT1
To CT3
Power Header
Beads
Ferrite
inside tenant breaker panel.
CT3
Diagram 1. Current Transformers installed
CT1
347/600V
BK
RD
BL
WH
277/480V
120/208V
ØC
BL
MC-5
NA NB
IB
IC
NCN
ØAØB ØCIA
Meter #2
ØB
RD
WH
WH
B
Load
Reference Voltage
BK
15A Fast Acting Only
Service Disconnect Switch
RECOMMENDED:
Load
Phase B (ØB)
Phase C (ØC)
Tenant Breaker Panel
Conduit
RD
BL
WH
installed correctly. See Diagram 1 for CT installation
CRITICAL - Current Transformers (CT) must be
and Table 1 for Phase Association relationships.
for each meter point. See Diagram 3 for CT polarity
BL
BK
RD
Meter #1
ØA
BK
BK RD BL WH
ØC
WH
BL
ØA
ØB
RD
BK
WH
WH
WH
WH
Meter #1Meter #2Meter #3
BK
RD
BL
BK
BL
WH
RD
WH
Shorting Links
Installation Notes for details.
Diagram 2. Shorting Links. See
BL
RD
BK
WH
WH
WH
WH
WH
BK
RD
WH
WH
BK
RD
WH
BK
RD
BL
MCI INTERFACE
WH
WH
WH
BK
RD
BL
Meter #5
709701A3.CDR
Meter #4
TENANT BREAKER PANEL
WH
WH
WH
WH
WH
WH
BK
RD
BL
BL
BL
WH
WH
WH
WH
BK
RD
BL
WH
BK
RD
BL
WH
WH
WH
BK
RD
BL
TENANT BREAKER PANEL
Meter #8
Meter #7
Meter #6
FIGURE 2–2: 3-Phase 4-Wire Wye Wiring
EPM 4500 SUB METER – INSTRUCTION MANUAL2–5
WIRING
CHAPTER 2: INSTALLATION
2.2.4 Single-Phase, Three-Wire 120 V Wiring
The phase association and polarity of the current transformers must be followed or
the meter will not be correctly installed.
1. Current transformers must be in-phase with the reference voltage. The MCI board
runs in an A-B-C phase rotation (see table below) and each of the three CT
connections repeat an A-B-C order.
For example, a current transformer installed in-phase with reference voltage A must
be installed on CT1, CT4, CT7, etc. Current transformers installed in-phase with
reference voltage B must be installed on CT2, CT5, CT8, etc. Likewise, current
transformers installed in-phase with reference voltage C must be installed on CT3,
CT6, CT9, etc.
2. For the “R” or residential 3-phase/3-wire model, each A-B, C-A, and B-C combination
is a single meter point (see the table below for full listing). That is,
3. – Meter 1 (M#1) is CT1 and CT2
– Meter 2 (M#2) is CT3 and CT4
– Repeated for M#3 to M#12
4. After completing all current transformer terminations, connect four (4) current
connectors and then remove the twenty-four (24) shorting links.
5. Follow all local codes for installation requirements; e.g. conduit, fused disconnect,
distance, and wiring.
6. Installation of “L” (0.1 A inputs) and “H” (CL10 or 5 A inputs) are the same. For the 3,
6 and 9 point models, use meter points M#1 to M#3, M#1 to M#6, and M#1 to M#9,
respectively. M#4 to M#12, M#7 to M#12, and M#10 to M#12 are not functional for
the 3, 6 and 9 point models, respectively.
If breakers are energized, shorting links must be installed before:
1. disconnecting the CT headers
2. replacing or installing meter heads on the panel.
Bodily injury may result if shorting links are not installed!
2-6
EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 2: INSTALLATIONWIRING
Table 2–3: Phase Association Table for 1-Phase 3-Wire 120 V Wiring
MeterMCI Board CTVoltage
Phase
1A
1
2B14B
3C
2
4A16A
5B
3
6C18C
7A
4
8B20B
9C
5
10A22A
11B
6
12C24C
MeterMCI Board CTVoltage
Phase
13A
7
15C
8
17B
9
19A
10
21C
11
23B
12
EPM 4500 SUB METER – INSTRUCTION MANUAL2–7
WIRINGCHAPTER 2: INSTALLATION
C
Power
A
Load
Phase A (ØA)
N
Source
Neutral
BK/RD/BL
Dot
H1
Dot or H1 should point
source.
towards the line or
WHITE
LINE SOURCE
Diagram 3. CT Phasing.
CT Header
CT Header
CT4
CT2
meterhead
Connect CT Header to
To CT2
To CT4
CT Header
CT Header
Power Header
Beads
Ferrite
CT3
CT1
347/600V
277/480V
120/208V
MC-5
NA NB
IB
IC
NC
ØAØB
ØCIA
N
To C T 1
Diagram 1. Current Transformers installed
inside tenant breaker panel.
Meter #3
BK
ØB
To C T 3
BLRD
WH
ØC
RD
BL
WH
Meter #2
ØA
BK
RD BL
WH
WH
WH
BK
Reference Voltage
ØC
B
Load
BK
15A Fast Acting Only
RECOMMENDED:
Service Disconnect Switch
Load
Phase B (ØB)
Phase C (ØC)
Tenant Breaker Panel
Conduit
RD
BL
WH
CRITICAL - Current Transformers (CT) must be
installed correctly. See Diagram 1 for CT installation
and Table 1 for Phase Association relationships.
for each meter point. See Diagram 3 for CT polarity
BL
BK
RD
WH
Meter #1
ØA
BK
ØB
RD BL
WH
BL
RD
BK
WH
WH
WH
Meter #5Meter #6
709722A1.CDR
Meter #4
TENANT BREAKER PANEL
WH
WH
WH
WH
WH
WH
BK
RD
BL
WH
WH
WH
BK
RD
BL
WH
BK
RD
BL
WH
RD
BL
RD
BL
WH
WH
WH
BK
RD
BL
TENANT BREAKER PANEL
Meter #11Meter #12Mete r #10
Meter #9 Meter #8 Meter #7
WH
WH
Meter #2
WH
BK
WH
BK
Meter #1Meter #3
BK
RD
BL
BK
BL
WH
RD
WH
Shorting Links
Installation Notes for details.
Diagram 2. Shorting Links. See
BL
RD
BK
WH
WH
WH
WH
BK
RD
BL
MCI INTERFACE
WH
WH
WH
BK
RD
BL
FIGURE 2–3: 1-Phase 3-Wire 120 V Wiring (Network)
2–8EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 2: INSTALLATIONWIRING
2.2.5Three-Phase, Three-Wire Delta Wiring
The phase association and polarity of the current transformers must be followed or the
meter will not be correctly installed.
1. Current transformers must be in-phase with the reference voltage. The MCI
board runs in an A-C phase rotation (see table below) and every two CT connections repeat an A-C order.
For example, a current transformer installed in-phase with reference voltage A must
be installed on CT1, CT3, CT5, etc. Current transformers installed in-phase with
reference voltage C must be installed on CT2, CT4, CT6, etc.
2. For the “C” or commercial 3-phase/3-wire model, each A-C combination is a
single meter point (see the table below for full listing). That is,
– Meter 1 (M#1) is CT1 and CT2
– Meter 2 (M#2) is CT3 and CT4
– Repeated for M#3 to M#12
3. After completing all current transformer terminations, connect four (4) current
connectors and then remove the twenty-four (24) shorting links.
4. Follow all local codes for installation requirements; e.g. conduit, fused
disconnect, distance, and wiring.
5. Installation of “L” (0.1 A inputs) and “H” (CL10 or 5 A inputs) are the same.
If breakers are energized, shorting links must be installed before:
1.disconnecting the CT headers
2.replacing or installing meter heads on the panel.
Bodily injury may result if shorting links are not installed!
EPM 4500 SUB METER – INSTRUCTION MANUAL2–9
WIRINGCHAPTER 2: INSTALLATION
Table 2–4: Phase Association Table for 3-Phase 3-Wire Delta Wiring
MeterMCI Board CTVoltage
Phase
1A
1
2C14C
3A
2
4C16C
5A
3
6C18C
7A
4
8C20C
9A
5
10C22C
11A
6
12C24C
MeterMCI Board CTVoltage
Phase
13A
7
15A
8
17A
9
19A
10
21A
11
23A
12
2–10EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 2: INSTALLATIONWIRING
BK/RD/BL
Dot
H1
Dot or H1 should point
source.
towards the line or
WHITE
LINE SOURCE
Diagram 3. CT Phasing.
CT Header
CT Header
CT4
CT2
meterhead
Connect CT Header to
To CT2
To CT4
CT Header
CT Header
To CT1
To CT3
Power Header
Beads
Ferrite
inside tenant breaker panel.
Diagram 1. Current Transformers installed
CT3
CT1
347/600V
BK
RD
BL
NA NB
IB
277/480V
120/208V
IC
NCN
ØAØB ØCIA
Meter #2
ØA
ØC
BL
BK
WH
RECOMMENDED:
Conduit
Load
Load
Phase A (ØA)
Phase B (ØB)
Phase C (ØC)
Tenant Breaker Panel
C
POWER
SOURCE
MC-5
B
UNGROUNDED
GROUNDED OR
NOTE: CORNER CAN BE
A
15A Fast Acting Only
Fused Disconnect
BK
RD
BL
CRITICAL - Current Transformers (CT) must be
installed correctly. See Diagram 1 for CT installation
and Table 2-5 for Phase Association relationships.
for each meter point. See Diagram 3 for CT polarity
BL
BK
RD
Meter #1
ØC
ØA
BL
BK
WH
WH
BKBL
RD
WH
Meter#5
Meter#6
TENANT BREAKER PANEL
WH
WH
WH
BL
BK
BL
BK
Meter#3Meter#4
Meter#2
Meter#1
WH
WH
WH
WH
BK
BL
BL
WH
WH
BK
WH
WH
BL
WH
BK
BL
BK
MCI INTERFACE
BK
BL
RD
Installation Notes for details.
Diagram 2. Shorting Links. See
BL
BK
RD
709723A1.CDR
WH
WH
WH
WH
WH
WH
BL
BK
BL
BK
WH
BK
BL
BL
WH
WH
WH
WH
BL
BK
WH
BK
BL
BK
Shorting Links
BK
TENANT BREAKER PANEL
Meter #11
Meter #12
Meter #10
Meter#7Meter#8Meter#9
BL
RD
FIGURE 2–4: 3-Phase 3-Wire Delta Wiring
EPM 4500 SUB METER – INSTRUCTION MANUAL2–11
WIRING
CHAPTER 2: INSTALLATION
2.2.6 Single-Phase, Three-Wire Wiring
The line association and polarity of the current transformers must be followed or the
meter will not be correctly installed.
1. Line sources Line 1 and Line 2 are fed through the current transformers (CTs). Line 1
points towards the ‘dot’ or H1 of the CT while Line 2 points away from the ‘dot’ or H1
of the CT. The MCI board runs CT terminals CT#1 to CT#24 with each terminal
connected to Meter 1 (M#1) to Meter 24 (M#24). The number of CT terminal and
meter connections is dependent on the number of suites available. For example:
– Meter 1 (M#1) connects to CT#1
– Meter 2 (M#2) connects to CT#2
– Repeated for M#3 to M#24
2. After completing all current transformer terminations, connect four (4) current
connectors and then remove the twenty-four (24) shorting links.
3. Follow all local codes for installation requirements; e.g. conduit, fused disconnect,
distance, and wiring.
6. Installation of “L” (0.1 A inputs) and “H” (CL10 or 5 A inputs) are the same. For 12,
18 and 24 point models, use meter points M#1 to M#12, M#1 to M#18, and M#1 to
M#24, respectively.
If breakers are energized, shorting links must be installed before:
1. disconnecting the CT headers
2. replacing or installing meter heads on the panel.
Bodily injury may result if shorting links are not installed!
2-12
EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 2: INSTALLATIONWIRING
Table 2–5: Line Association Table for 1-Phase 3-Wire Wiring
MeterMCI
Board CT
Reference Voltage
Line
MeterMCI
Board CT
Reference Voltage
Line
11L#1(+) and L#2(–)1313L#1(+) and L#2(–)
22L#1(+) and L#2(–)1414L#1(+) and L#2(–)
33L#1(+) and L#2(–)1515L#1(+) and L#2(–)
44L#1(+) and L#2(–)1616L#1(+) and L#2(–)
55L#1(+) and L#2(–)1717L#1(+) and L#2(–)
66L#1(+) and L#2(–)1818L#1(+) and L#2(–)
77L#1(+) and L#2(–)1919L#1(+) and L#2(–)
88L#1(+) and L#2(–)2020L#1(+) and L#2(–)
99L#1(+) and L#2(–)2121L#1(+) and L#2(–)
1010L#1(+) and L#2(–)2222L#1(+) and L#2(–)
1111L#1(+) and L#2(–)2323L#1(+) and L#2(–)
1212L#1(+) and L#2(–)2424L#1(+) and L#2(–)
Note
In the above table:
• L#1(+) indicates that Line 1 points towards the ‘dot’ or H1 of the CT
• L#2(–) indicates that Line 2 points away from the ‘dot’ or H1 of the CT
EPM 4500 SUB METER – INSTRUCTION MANUAL2–13
WIRINGCHAPTER 2: INSTALLATION
Load
Source
Power
N
Line 1
BK/RD/BL
Dot
H1
Dot or H1 should point
source.
towards the line or
WHITE
LINE SOURCE
Diagram 3. CT Phasing.
CT Header
CT Header
CT4
CT2
meterhead
To CT2
To CT4
Connect CT Header to
CT Header
CT Header
To CT1
To CT3
Power Header
Ferrite
Beads
CT3
CT1
inside tenant breaker panel.
Diagram 1. Current Transformers installed
NA NB
IB
347/600V
277/480V
120/208V
IC
NCN
ØAØB
ØCIA
Meter #2
MC-5
Load
15A Fast Acting Only
Fused Disconnect
RECOMMENDED:
BK
Conduit
Neutral
Line 2
Tenant Breaker Panel
RD
WH
CRITICAL - Current Transformers (CT) must be
installed correctly. See Diagram 1 for CT installation
and Table 1 for Phase Association relationships.
for each meter point. See Diagram 3 for CT polarity
BK
RD
BKRD
Meter #1
BK
WH
RD
WH
WH
RD
WH
RD
WH
Met er #12
Met er #11
TENANT BREAKER PANEL
BK
RD
RD
Meter#8
Met er #10
BK
RD
Meter#7
Meter#9
BK
RD
Meter#6
Meter#5
Meter#4
Meter#3
Meter#2
Meter#1
BK
BK
BK
BK
BK
BK
RD
RD
RD
RD
BK
BK
RD
BK
RD
RD
RD
MCI INTERFACE
BK
WH
RD
Installation Notes for details.
Diagram 2. Shorting Links. See
BK
RD
WH
Shor tin g L inks
709724A1.CDR
BK
BK
BK
BK
BK
RD
Meter #20
RD
Met er #19
BK
RD
Met er #18
BK
RD
RD
RD
Met er #24
RD
TENANT BREAKER PANEL
Met er #22
Met er #23
Meter #21
RD
Met er #17
BK
BK
RD
Met er #15
RD
Meter #14
RD
Meter #13
BK
BK
RD
WH
BK
BK
RD
Met er #16
FIGURE 2–5: 1-Phase 3-Wire Wiring
2–14EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 2: INSTALLATIONINSTALLATION OF METER, MCI BOARD, AND CTS
2.3Installation of Meter, MCI Board, and CTs
2.3.1Procedure
Note
The use of the following procedure is mandatory. Certification requires a visual inspection
of the current transformers and the voltage taps on the incoming feeder phase wires.
Z Locate a section of wall to mount the EPM4500 back box and the
MCI board box.
Keep in mind that the metal conduit must be mounted between the
two boxes to allow the four large block connectors on the MCI
board to connect to the meter head. The conduit is 2 inches long.
Z Determine how the back box and the MCI board box will be
oriented on the wall.
• Remove the square punch-outs from the side of the back box
that will be interfacing with the MCI board box.
Z Mount the metal conduit to the side opening of the back box prior
to mounting the box to the wall to ease the spacing between boxes
when mounting the MCI board box.
Z Mount the back box to the wall, or in the wall for flush mount
installations.
• Connect the breaker panel box to the back box of the meter with
a metal conduit through which the 3 or 4 feeder phase voltage
taps will be run.
• Make sure to use at least a ¾-inch diameter conduit to allow for
all wires to pass easily.
Z Screw the corresponding opening on the MCI board box to the
conduit and mount the box to the wall.
Z Locate the incoming feeder phase (hot) wires at the top of the
breaker panel.
• Tape the incoming feeder wires according to phase with black,
red and blue electrical tape for identification purposes.
Z Extend the CT wires with AWG #16 stranded with black, red and
blue jackets so as to be the correct length to pass through the
conduit and reach the MCI board.
• Extend the white wire of each CT with a white wire, but place a
black, red or blue electrical tape on the end of the extended wire
to identify the correct neutral.
• Refer to these CT white wires with tape as white/black, white/red
and white/blue respectively.
Refer to the Phase Association tables in Wiring on page 2–2 when wiring the MCI board.
Failure to improperly observe proper phase association will result in incorrect
metering data.
Z Remove the incoming feeder hot wires one at a time and place
each CT over the proper feeder wire.
EPM 4500 SUB METER – INSTRUCTION MANUAL2–15
INSTALLATION OF METER, MCI BOARD, AND CTSCHAPTER 2: INSTALLATION
• Ensure that the colors of the CT leads correspond to the color of
the tape on the phase feeder.
• Make certain that the white wire from the CT is closest to the line
side of the feed, away from the top of the breaker panel.
• For split-core CTs, ensure that the X1 is toward the line side.
• Run the CT secondary wires through conduit to the back box of
the meter.
Z Tap the feeder wires with AWG #12 stranded wire with black, red
and blue jackets taking care to match the color of the insulation of
the #12 wires to correspond to the color of the tape on the feeder
wire.
Z If the service is 4-wire, tap the neutral connection with a #12 AWG
stranded wire with a white jacket.
Z Run the current transformer wires black, white/black, red, white/
red and blue, white/blue to terminals CT-1 (I, N), CT-2 (I, N), CT-3 (I,
N), etc. on the MCI board (see the following figure).
The shorting links MUST remain in place while wiring the CTs to the MCI board. Failure
to do could result in severe injury and equipment damage.
Shorting links MUST BE in
place when wiring CT leads
to the MCI board.
White wire connects to "I" terminal
Colored wire connects to "N" terminal
709715A1.CDR
FIGURE 2–6: Wiring of the MCI Board
Z Take the black, red, blue and white (if available) #12 AWG feeder
phase tap wires and run them to VA, VB, VC and N (if available)
respectively (see the following figure).
2–16EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 2: INSTALLATIONINSTALLATION OF METER, MCI BOARD, AND CTS
709716A1.CDR
FIGURE 2–7: Internal Fuse Block
Z Plug the fuse block into the meter head and hang the meter head
on the back box.
EPM 4500 SUB METER – INSTRUCTION MANUAL2–17
INSTALLING THE SCAN TRANSPONDERCHAPTER 2: INSTALLATION
2.4Installing the Scan Transponder
2.4.1Procedure
If your application is for a metering system, use the following procedure to install
the scan transponder.
Z Plan for the transponders.
• Determine the number of services in order to determine the
number of transponders.
• Do not rely solely on the memory of the local engineers or of the
existing drawings.
Drawings may not have been properly updated to reflect as-built
conditions and memories are not always accurate. Use these as
guidelines and then perform a survey.
• Open electrical cabinets as necessary and locate every master
meter from the utility.
• Make careful note of the voltages of the various transponders.
Z Determine the number of tenant spaces.
• In residential applications, this number should be fixed.
Often apartments are laid out on a grid, such as by floor and by
line. In this case, the number of meters is simply the number of
floors times the number of lines. This information is needed
before any meters are installed or entered into the transponders.
• Determine which service feeds each metering point. This
information is vital to proper system operation.
Without this information, a laborious process of trial and error is
necessary to determine which transponder must be used for
each meter. This will increase the cost of certification and
commissioning of the system.
Z Determine the service size and type of meter for each metering
point.
• In residential applications, this is probably a constant amperage
across the entire job (either 50 A or 100 A with Series 10 meters).
Z Determine the number of telephone lines required and ensure
the lines are installed before the installation of any metering
equipment.
Z Determine the number of independent services.
• Typically there is one service per distribution transformer that
feeds the property, unless distribution transformers have parallel
secondaries, which is rare.
Z Determine the best location for each transponder.
• This is the closest point to the first point at which the feeders for
the service branch out into sub-feeders.
To find this point, follow the feeders from the secondary of the
distribution transformer (or the service entrance if the
transformer is off the property) and place the transponder at the
last point before the feeder breaks into multiple feeders.
2–18EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 2: INSTALLATIONINSTALLING THE SCAN TRANSPONDER
Z Determine which of the transponders should have a telephone
modem, and order a telephone line to terminate at that point .
Do not proceed with the installation until the telephone line is
installed.
Z After the telephone line is installed, install the scan transponder
with the modem next to the telephone line.
Install all three phases and the neutral to the transponder (see
Installation of Meter, MCI Board, and CTs on page 2–15 for details).
Z If there is more than one transponder, install the other
transponders and the interconnecting RS485 line, if required, which
links all of the transponders (go directly to Installation of Meter, MCI Board, and CTs on page 2–15 if there is only one transponder in the
system or if each transponder in the system has a modem and
telephone line connection).
• An RS485 line is a pair of wires, AWG #20 or larger in diameter,
which begins at one transponder where a terminator is placed.
• The RS485 line runs from transponder to transponder ending at
the final transponder, where another terminator is placed.
•It is critically important that there should never be three RS485
pairs entering or leaving a transponder box.
• For the two transponders which have terminators, only one
RS485 pair leaves each box.
• For the other transponders, if there are more than two, exactly
two RS485 lines should leave the box: each line goes to another
transponder in the daisy-chain.
Only one modem should be installed in a data link system. If there
are two or more modems in a data link system, the transponders
will not communicate with each other.
• There may be no more than 32 transponders on a daisy-chain.
If there are more than 32, special care must be taken, which is
beyond the scope of these instructions.
Z If possible, run the RS485 lines in a conduit to protect them from
damage.
Z It is critically important to observe the polarity of the wires. The
RS485 data link uses a black and yellow color code. Match black to
black and yellow to yellow; otherwise the data link will not work.
Z To test the data link, measure the DC voltage across the yellow to
black wire.
This should measure between 0.1 and 0.3 V. If it is negative or
outside of that range, re-check all of the transponder boxes
according to the above specifications.
EPM 4500 SUB METER – INSTRUCTION MANUAL2–19
INSTALLING THE SCAN TRANSPONDERCHAPTER 2: INSTALLATION
2–20EPM 4500 SUB METER – INSTRUCTION MANUAL
GE Energy
Industrial Solutions
709710A1.CDR
Using the Meter
3.1Menu Navigation
EPM4500 Sub Meter
Chapter 3: Using the Meter
3.1.1User Interface
The following figure shows the EPM4500 user interface located on the front panel of the
meter. It is easy to navigate the various sub-menus to read metering data, reset values and
view configuration data.
Press and hold the “Display Scroll” button. After two seconds, the LCD will display the
REVERSE message. Two seconds later, the LCD will display FORWARD. Two seconds later,
a different sub-menu register heading as shown on the following page (the top row) in will
be displayed in two-second intervals. Note that the EPM4500 defaults to the kWh register.
709719A1.CDR
FIGURE 3–1: EPM4500 User Interface
EPM 4500 SUB METER – INSTRUCTION MANUAL3–1
MENU NAVIGATIONCHAPTER 3: USING THE METER
Releasing the display scroll button at a given submenu heading will allow you to cycle
through the registers listed under the selected submenu heading. Pressing and releasing
the display button will advance to the next block of registers in the sub-menu.
To reverse scrolling direction at either the heading level or within a submenu, press and
hold the display scroll button. When
REVERSE is displayed after two seconds, release the
display scroll button. You can now go backwards through the menu selections by pressing
and releasing the display scroll button.
To go back to the forward scrolling option, follow the same procedure, except release the
display scroll button when
FORWARD is displayed.
3–2EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 3: USING THE METERMENU NAVIGATION
Figure 3–2: EPM4500 Display Structure
EPM 4500 SUB METER – INSTRUCTION MANUAL3–3
CT MULTIPLIER TABLECHAPTER 3: USING THE METER
3.2CT Multiplier Table
3.2.1CT Multipliers
Note
The following table MUST BE used to verify the correct current readings, based on the
rating of the CT installed.
Table 3–1: CT Multiplier Tables
For “L” or 0.1 A modelsFor “H” or 5 A models
CT SizeMultiplierCT SizeMultiplier
50 A× 0.5200 A× 40
100 A× 1400 A× 80
200 A× 2
400 A× 4
800 A× 8
Note
The multiplier that corresponds with the CT rating MUST BE applied to the current reading
shown on the display of the EPM4500 by multiplying that reading by the multiplier shown
above. The multiplier MUST also be applied in the same manner when calculating kW and
kWh. Fai
lure to use the appropriate multiplier wil
l result in an incorrect diagnosis of the
meter's functionality and incorrect revenue billing.
3–4EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 3: USING THE METERVERIFYING METER FUNCTIONALITY
3.3Verifying Meter Functionality
3.3.1Overview
Once you have familiarized yourself with the EPM4500 menu structure, it is critical to verify
that the meter and CTs are properly installed.
Note
To correctly diagnose the meter, there must be loads on all three phases of the meter.
3.3.2Verifying Voltage
Z Press and hold the Display Scroll button until the following menu
heading is displayed:
Phase Diagnostic
Registers
Z Release the Display Scroll button.
• Scroll down by pressing and releasing the Display Scroll Button
until one of the following sub-menus are displayed (examples
shown for 120 V, 277 V, and 347 V, respectively):
Volts125.3 A
124.0 B124.7 C
Volts348.5 A
347.1 B347.7 C
Z Verify that phases A, B and C are displaying voltages; i.e., for a
120 V AC, the reading should be 117 V +10%/–15%.
Volts276.3 A
277.0 B277.7 C
3.3.3Verifying kWh Reading
Z Press and hold the Display Scroll button until the following menu
heading is displayed:
kW
Registers
Z Release the Display Scroll button. Scroll down by pressing and
releasing the Display Scroll button until the following sub-menu is
displayed:
AllHrskWH
1.046 M# 1
Z Verify that the kWh value increases as you view the LCD.
Z To view screens for Meters 2 to 8 (M#2 to M#8), repeat the above
steps.
EPM 4500 SUB METER – INSTRUCTION MANUAL3–5
VERIFYING METER FUNCTIONALITYCHAPTER 3: USING THE METER
3.3.4Verifying Current and Energy
Z Press and hold the Display Scroll button until the following menu
heading is displayed:
Phase Diagnostic
Registers
Z Release the Display Scroll button.
Scroll down by pressing and releasing the Display Scroll button
until the following submenu is displayed:
Phase 17.468 A
818.7 W100.5 R
The A(mperage) reading in the display above will always be a positive number, even if the
CT was incorrectly installed. Check the reading to see if it indicates the approximate
expected current. Remember that this applies to Phase 1 only. If all the numbers on the
multiplier screen were 1.00 and the current transformers are 100:0.1, your multiplier is 1
and the readings are the actual values. If the CTs are 200:0.1, multiply the current reading
by 2.
The W(att) reading will also count forward as your view the LCD. A negative power reading
is indicative of an incorrectly installed CT, or one that is cross-phased with the wrong
voltage (phase) leg. The R(eactive) reading can be negative, depending on the nature of the
load. Negative values indicate a capacitive load while positive values indicate an inductive
load.
Z Scroll down by pressing and releasing the Display Scroll Button
until the following submenu is displayed:
Ph 1935.4 VA
6.8°.875 PF
Under normal conditions the phase angle (x.x°) should be close to 0° and the power factor
should be a number close to 1. Resistive loads will have a power factor close to 1, while
inductive loads will typically reflect a power factor between 0.80 to 0.95, or even lower.
If the phase angle on the lower left is a number close to 180°, it indicates the CT was
installed backwards, or 180° out-of-phase. If the number is close to 120°, at least two CTs
have been cross-phased, and a similar number will appear in the phase angle data in
Phase 2.
Note
To view screens for Phases 2 to 24, repeat above steps.
3–6EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 3: USING THE METERRESETTING THE DEMAND VALUES
3.4Resetting the Demand Values
3.4.1Procedure
Use the following procedure to reset the Demand registers to zero:
Z Press and hold the Demand Reset button.
• The LCD will initially display the
• The LCD will then display the
Dmdreset1
20:0006/14/2003
Z Keep the Demand Reset button depressed until the screen updates
and displays the current date and time.
This signifies that the demand has been reset.
GE Copyright message.
Dmdreset event screen:
EPM 4500 SUB METER – INSTRUCTION MANUAL3–7
RESETTING THE DEMAND VALUESCHAPTER 3: USING THE METER
3–8EPM 4500 SUB METER – INSTRUCTION MANUAL
GE Energy
Industrial Solutions
EPM4500 Sub Meter
Chapter 4: Communications
709710A1.CDR
Communications
4.1Modbus Communications
4.1.1RS485 Wiring for Modbus
The wiring for Modbus communications for two-wire and four-wire RS485 is indicated
below.
For two-wire RS-485:
ColorFunctionDB-9 Pinout
YellowRX (+)2
BlackTX (–)8
For four-wire RS-485:
ColorFunctionDB-9 Pinout
Yellow (A)RX (+)2
Black (B)RX (–)3
Green (Y)TX (+)7
Red (Z)TX (–)8
EPM 4500 SUB METER – INSTRUCTION MANUAL4–1
MODBUS COMMUNICATIONSCHAPTER 4: COMMUNICATIONS
709725A1.CDR
FIGURE 4–1: RS-485 Serial Connections
Note
The EPM4500 optical port is disabled for units with 2-wire RS485 connections.
4.1.2RS232 Wiring for Modbus
The wiring for Modbus communications for RS232 is indicated below.
ColorFunctionDB-9 Pinout
BlackTX2
RedRX3
GreenGND5
4.1.3Modbus Commands
The EPM4500 is capable of acting as a remote slave unit to a Modbus master device via
modem, RS232, RS485, or PLC. Up to 32 EPM4500 meters (or other RS485 devices) can be
daisy-chained together on a single LAN.
The EPM4500 communicates at a default baud rate of 19200, with no parity and 1 stop bit.
The default Modbus address is 100. Changes to the default baud rate or address can be
accomplished through the configuration file upload.
The following Modbus commands are supported by the EPM4500:
• 03: Read R4 type register(s)
• 06: Write single register; address “0” is used as the broadcast address
• 16: Write multiple registers; address “0” is used as the broadcast address
4.1.4Fixed Modbus Values
The EPM4500 provides fixed register values indicating the meter's serial number, the
meter's version number, and the Modbus addresses.
4–2EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 4: COMMUNICATIONSMODBUS COMMUNICATIONS
4.1.5Modbus Data Register (R4 Type) Groups
The EPM4500 has divided the supported register map (see following pages) into the
following register groups for various fixed and dynamic data values:
•Setup Information
•Interval
• Average Interval Data
• Instantaneous Data
• Three-Phase Data
•Real Time Data
• Meter Configuration Data
The EPM4500 provides access to stored-interval data channels via Modbus command. The
data items as defined in the following register map are based on default data channels
that include the following 3-phase-totaled values (interval average) per meter:
• Real Power in kW
• Reactive Power in kvar
• Apparent Power in kVA
• Power Factor
Data is logged per the configurable time interval value. The default log interval is 15
minutes.
The Modbus master can request stored interval data by writing the interval date and time
to the appropriate registers and by setting the data status register to 1. Upon the data
ready flag (address 67) being written to 1, the interval data registers (addresses 100 to 107)
are simultaneously updated with the appropriate values for the requested interval. The
data ready flag returns a 0 for “data is ready”, or “2” for “invalid time interval requested.”
The EPM4500 also provides registers that constantly hold the oldest stored-interval
(addresses 58 to 60) and most recent stored-interval time a
to 63).
4.1.6Instantaneous Data Items
The EPM4500 provides registers for per-phase instantaneous values (see below).
Instantaneous register values are updated once per second.
•Frequency
• Total Harmonic Distortion (% for volts)
• Voltage
• Current
• Real Power in kW
• Reactive Power in kvar
• Apparent Power in kVA
nd date stamps (addr
esses 61
The EPM4500 provides one-second updated inputs, including the following 3-phasetotaled values per 3-phase-meter:
• Energy: kWh and kvarh
EPM 4500 SUB METER – INSTRUCTION MANUAL4–3
MODBUS COMMUNICATIONSCHAPTER 4: COMMUNICATIONS
• Power: kW, kvar, and kVA
• Power Factor
4.1.732-bit Long and Float Data Formats
The EPM4500 supports standard format for 32-bit Long (signed or unsigned). The first of
the two 16-bit Modbus register set contains the HIGH order 16 bits of the 32-bit Long data.
The second of the two 16-bit Modbus register set contains the LOW order 16 bits of the 32bit Long data.
The EPM4500 supports Intel 32 bit (IEEE) FLOAT format. That means, unlike the standard
Long format, the first of the two 16-bit Modbus register set contains the LOW order 16 bits
of the 32-bit Float data. The second of the two 16-bit Modbus register set contains the
HIGH order 16 bits of the 32-bit Float data.
4–4EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 4: COMMUNICATIONSMODBUS ACTIVATION
4.2Modbus Activation
4.2.1Overview
The EPM4500 is shipped with Modbus not activated. To activate the Modbus protocol, it is
necessary to use the Hilgraeve HyperTerminal Private Edition software. This software is
available from the following website:
http://www.hilgraeve.com/htpe
Once Modbus is activated, the meter will ignore the following ASCII commands unless the
login string is sent using the “Key Macros” function within HyperTerminal. Set up “Key
Macros” to send the login string (see Logging into the Meter on page 4–6) followed by
[ENTER].
Note
IMPORTANT: The log in string must be sent without breaking up packets. A direct
connection from a serial port to the EPM4500 RS485 port (via RS232/485 converter) is
highly recommended. GE's Ethernet Gateway will break up this login string into packets
and prevent login.
The EPM4500 only allows login at 9600, 19200 or 38400 baud when NOT in Modbus mode.
This is displayed as HUNT in the meter display under Serial # Registers. Once in Modbus,
the EPM4500 only responds at the programmed baud rate.
4.2.2Configuring a New HyperTerminal Session
Use the following procedure to configure a new HyperTerminal session.
Z Enter the New Connection Name.
Z Select the COM port to connect to the meter.
Z Select the COM port properties. The following window will appear.
Use the setting shown below.
EPM 4500 SUB METER – INSTRUCTION MANUAL4–5
MODBUS ACTIVATIONCHAPTER 4: COMMUNICATIONS
Z Select the File > Properties > Settings > ASCII Setup menu item.
Check the Echo typed characters locally option, as shown below.
4.2.3Confirming Connection to the EPM4500
To confirm a proper RS485 connection to the EPM4500, enter the following command:
attn -D (followed by the [ENTER] key)
If meter is properly connected, it will respond with a serial number and poll address. Once
in Modbus mode, this command will no longer work.
For example, entering the command
attn -D
followed by the [ENTER] key returns:
60005866 256
for a meter with serial number 60005866 and poll address 256.
4.2.4Logging into the Meter
Use the following procedure to login to the EPM4500.
Z Setup a ‘key macro’ in HyperTerminal by selecting the View > Key
Macros menu item.
Z Click New and select an appropriate macro key sequence (ALT-1 is
used the example below.
Z Enter the following command in the Action area:
attn -S[serialNumber] -5lEvElbAl<ENTER>
Z The password is -s5 followed by the LABLEVEL text spelled
backwards, with the vowels in upper case.
This login string must be followed by the ENTER command within
the key macro.
For example, for a unit with serial number 60005866, enter the following text:
4–6EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 4: COMMUNICATIONSMODBUS ACTIVATION
4.2.5Activating Modbus Communications
Use the following procedure to activate Modbus communications.
Z Enter the following command to activate Modbus:
stty -M1 (followed by [ENTER] twice)
Z Select the baud rate by entering the following command.
The baud rate options for Modbus communication are 9600, 19200,
and 38400.
stty 19200 (followed by [ENTER] twice)
Z Save Modbus activation by entering:
stty -W1234
Z Display Modbus activation by entering:
stty
Z This command displays meter port setting, baud rate, etc.
If Modbus is active, it returns “Modbus”; if Modbus is not active, it
returns “no Modbus”.
For example, consider the following set of commands sets the activates Modbus, sets the
baud rate to 19200, and saves the Modbus activation. The text returned by the meter is
also indicated.
CIP#stty
hunt 19200 baud 8 bits no parity no echo no modem no modbus
CIP#stty -M1
CIP#stty 19200
CIP#stty -W1234
CIP#stty
hold 19200 baud 8 bits no parity no echo no modem modbus
EPM 4500 SUB METER – INSTRUCTION MANUAL4–7
MODBUS ACTIVATIONCHAPTER 4: COMMUNICATIONS
4.2.6Changing Modbus Settings
Use the following procedure to change the Modbus address setting:
Z Enter the following command to set the Modbus address:
attn -p#
where
# is replaced by the actual address desired (for example,
attn -p100).
Z Save the Modbus address as follows
attn -W1234
Z Enter the following command to display and verify the Modbus
address:
attn -d
This command displays the meter serial number and the poll/Modbus
number.
4.2.7Logging Out
Z Use one of the following commands to logout of the meter:
attn or exit
Note
Once Modbus is set, it is best to type [HALT] followed by [ENTER] or cycle power to the
meter. Otherwise, Modbus will become active one minute after logout.
To log into meter once Modbus is active, use hot keys to program the login sequence. The
login sequence must include either the serial number or the Modbus address.
Example hot key sequences are shown below:
attn -S60005866 -3Super3
attn 256 -3Super3
4.2.8Disabling Modbus Communications
Use the following procedure to disable Modbus communications:
Z Turn off Modbus with the following command:
stty -M0
Z Save Modbus settings:
stty -W1234
4–8EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 4: COMMUNICATIONSMODBUS MEMORY MAP
4.3Modbus Memory Map
4.3.1Memory Map
The Modbus memory map is shown below.
Table 4–1: Modbus Memory Map (Sheet 1 of 15)
Hex
Addr
0000
0002
0004
0006
00080008Meter Modbus AddressR ---8-bit Modbus Address in LSB
00090009Baud RateR
000C0012Meter StatusR ---Always 1 for Modbus.
000D0013Meter ReadyR ---Always 1 for Modbus.
000E0014Number of Meters Conf iguredR ---Always 1 for EPM4500
000F0015Number of Real-Time Points ConfiguredR
00100016Number of Interval Points ConfiguredRReturns 0 if intervals are disabled
00110017Number of Max/Min Points ConfiguredRAlways returns 0
00120018Maximum Number of Intervals That Can Be Recorded R
00130019Number of slots configured for Scan TransponderR
00140020Current slot being read in Scan TransponderW
AddrDescriptionR/WUnitsNotes
Fixed Value Registers (Read Only)
+
0000Meter Serial NumberRhex digits
+
0002Meter Serial Number ExtensionR hex digitsReturns same value as address 0000
+
0004Meter Version NumberR hex digits
+
0006Meter Version Number ExtensionR hex digitsReturns same value as address 0000
Setup Information
Dependent upon the number of parameters optioned
and the number of meters returned in address 0015
Interval Setup
00310049Store Interval LengthR minutes
Read Clock
00320050Internal Time - Hours/MinutesRhours/minutes
00330051Internal Time - SecondsRseconds
00340052Internal Date - Month/DayR month/day
00350053Interval Date - YearR year
00360054Internal Time - Hours/MinutesW hours/minutes
00370055Internal Time - SecondsW month/day
00380056Internal Date - Month/DayW Year16-bit Unsigned Integer
00390057Interval Date - YearW16-bit Unsigned Integer
Interval length in minutes must be evenly divisible into 60
(1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60)
16-bit
Month: 1=Jan., 12=Dec. (bitmask = FF00)
Day: 1-31 (bitmask = 00FF)
DDE Data is COM Compatible,
Date/Time Numeric
16 Bits: Mask out/ignore Bit 15.
0=Data is ready for read
1=Populate registers with timestamp data
2=Invalid Timestamp Requested
Stored Dynamic Data Ready for Read
00630099Interval Data Qualifying RegisterR16-bit Unsigned Integer, 8 = Invalid Interval
*
0064
0066*0102Meter #1 Three-Phase Total kvarRkvarStored Interval 2 for Meter #1
0068*0104Meter #1 Three-Phase Total kVARkVAStored Interval 3 for Meter #1
006A*0106Meter #1 Three-Phase Total Power FactorR %Stored Interval 4 for Meter #1
006C*0108Meter #2 Three-Phase Total kWR kWStored Interval 1 for Meter #2
006E*0110Meter #2 Three-Phase Total kvarRkvarStored Interval 2 for Meter #2
0070*0112Meter #2 Three-Phase Total kVARkVAStored Interval 3 for Meter #2
0072*0114Meter #2 Three-Phase Total Power FactorR %Stored Interval 4 for Meter #2
0074*0116Meter #3 Three-Phase Total kWRkWStored Interval 1 for Meter #3
0076*0118Meter #3 Three-Phase Total kvarRkvarStored Interval 2 for Meter #3
0078*0120Meter #3 Three-Phase Total kVARkVAStored Interval 3 for Meter #3
007A*0122Meter #3 Three-Phase Total Power FactorR %Stored Interval 4 for Meter #3
007C*0124Meter #4 Three-Phase Total kWR kWStored Interval 1 for Meter #4
007E*0126Meter #4 Three-Phase Total kvarRkvarStored Interval 2 for Meter #4
0080*0128Meter #4 Three-Phase Total kVARkVAStored Interval 3 for Meter #4
0100Meter #1 Three-Phase Total kWRkWStored Interval 1 for Meter #1
4–10EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 4: COMMUNICATIONSMODBUS MEMORY MAP
Table 4–1: Modbus Memory Map (Sheet 3 of 15)
Hex
Addr
0082*0130Meter #4 Three-Phase Total Power FactorR %Stored Interval 4 for Meter #4
0084*0132Meter #5 Three-Phase Total kWRkWStored Interval 1 for Meter #5
0086*0134Meter #5 Three-Phase Total kvarRkvarStored Interval 2 for Meter #5
0088*0136Meter #5 Three-Phase Total kVARkVAStored Interval 3 for Meter #5
008A*0138Meter #5 Three-Phase Total Power FactorR %Stored Interval 4 for Meter #5
008C*0140Meter #6 Three-Phase Total kWR kWStored Interval 1 for Meter #6
008E*0142Meter #6 Three-Phase Total kvarRkvarStored Interval 2 for Meter #6
0090*0144Meter #6 Three-Phase Total kVARkVAStored Interval 3 for Meter #6
0092*0146Meter #6 Three-Phase Total Power FactorR %Stored Interval 4 for Meter #6
0094*0148Meter #7 Three-Phase Total kWRkWStored Interval 1 for Meter #7
0096*0150Meter #7 Three-Phase Total kvarRkvarStored Interval 2 for Meter #7
0098*0152Meter #7 Three-Phase Total kVARkVAStored Interval 3 for Meter #7
009A*0154Meter #7 Three-Phase Total Power FactorR %Stored Interval 4 for Meter #7
009C*0156Meter #8 Three-Phase Total kWR kWStored Interval 1 for Meter #8
009E*0158Meter #8 Three-Phase Total kvarRkvarStored Interval 2 for Meter #8
00A0*0160Meter #8 Three-Phase Total kVAR kVAStored Interval 3 for Meter #8
00A2*0162Meter #8 Three-Phase Total Power FactorR %Stored Interval 4 for Meter #8
AddrDescriptionR/WUnitsNotes
00A4*0164Meter #9 Two-Phase Total kWRkWStored Interval 1 for Meter #9
00A6*0166Meter #9 Two-Phase Total kvarR kvarStored Interval 2 for Meter #9
00A8*0168Meter #9 Two-Phase Total kVAR kVAStored Interval 3 for Meter #9
00AA*0170Meter #9 Two-Phase Total Power FactorR %Stored Interval 4 for Meter #9
00AC*0172Meter #10 Two-Phase Total kWR kWStored Interval 1 for Meter #10
00AE*0174Meter #10 Two-Phase Total kvarRkvarStored Interval 2 for Meter #10
00B0*0176Meter #10 Two-Phase Total kVAR kVAStored Interval 3 for Meter #10
00B2*0178Meter #10 Two-Phase Total Power FactorR%Stored Interval 4 for Meter #10
00B4*0180Meter #11 Two-Phase Total kWRkWStored Interval 1 for Meter #11
00B6*0182Meter #11 Two-Phase Total kvarR kvarStored Interval 2 for Meter #11
00B8*0184Meter #11 Two-Phase Total kVAR kVAStored Interval 3 for Meter #11
00BA*0186Meter #11 Two-Phase Total Power FactorR%Stored Interval 4 for Meter #11
00BC*0188Meter #12 Two-Phase Total kWRkWStored Interval 1 for Meter #12
00BE*0190Meter #12 Two-Phase Total kvarRkvarStored Interval 2 for Meter #12
00C0*0192Meter #12 Two-Phase Total kVARkVAStored Interval 3 for Meter #12
00C2*0194Meter #12 Two-Phase Total Power FactorR%Stored Interval 4 for Meter #12
00C4*0196Meter #13 Single-Phase Total kWR kWStored Interval 1 for Meter #13
00C6*0198Meter #13 Single-Phase Total kvarR kvarStored Interval 2 for Meter #13
EPM 4500 SUB METER – INSTRUCTION MANUAL4–11
MODBUS MEMORY MAPCHAPTER 4: COMMUNICATIONS
Table 4–1: Modbus Memory Map (Sheet 4 of 15)
Hex
Addr
00C8*0200Meter #13 Single-Phase Total kVAR kVAStored Interval 3 for Meter #13
00CA*0202Meter #13 Single-Phase Total Power FactorR%Stored Interval 4 for Meter #13
00CC*0204Meter #14 Single-Phase Total kWR kWStored Interval 1 for Meter #14
00CE*0206Meter #14 Single-Phase Total kvarRkvarStored Interval 2 for Meter #14
00D0*0208Meter #14 Single-Phase Total kVAR kVAStored Interval 3 for Meter #14
00D2*0210Meter #14 Single-Phase Total Power FactorR%Stored Interval 4 for Meter #14
00D4*0212Meter #15 Single-Phase Total kWR kWStored Interval 1 for Meter #15
00D6*0214Meter #15 Single-Phase Total kvarR kvarStored Interval 2 for Meter #15
00D8*0216Meter #15 Single-Phase Total kVAR kVAStored Interval 3 for Meter #15
00DA*0218Meter #15 Single-Phase Total Power FactorR%Stored Interval 4 for Meter #15
00DC*0220Meter #16 Single-Phase Total kWR kWStored Interval 1 for Meter #16
00DE*0222Meter #16 Single-Phase Total kvarR kvarStored Interval 2 for Meter #16
00E0*0224Meter #16 Single-Phase Total kVAR kVAStored Interval 3 for Meter #16
00E2*0226Meter #16 Single-Phase Total Power FactorR%Stored Interval 4 for Meter #16
00E4*0228Meter #17 Single-Phase Total kWR kWStored Interval 1 for Meter #17
00E6*0230Meter #17 Single-Phase Total kvarR kvarStored Interval 2 for Meter #17
00E8*0232Meter #17 Single-Phase Total kVAR kVAStored Interval 3 for Meter #17
AddrDescriptionR/WUnitsNotes
00EA*0234Meter #17 Single-Phase Total Power FactorR%Stored Interval 4 for Meter #17
00EC*0236Meter #18 Single-Phase Total kWR kWStored Interval 1 for Meter #18
00EE*0238Meter #18 Single-Phase Total kvarR kvarStored Interval 2 for Meter #18
00F0*0240Meter #18 Single-Phase Total kVARkVAStored Interval 3 for Meter #18
00F2*0242Meter #18 Single-Phase Total Power FactorR%Stored Interval 4 for Meter #18
00F4*0244Meter #19 Single-Phase Total kWR kWStored Interval 1 for Meter #19
00F6*0246Meter #19 Single-Phase Total kvarR kvarStored Interval 2 for Meter #19
00F8*0248Meter #19 Single-Phase Total kVARkVAStored Interval 3 for Meter #19
00FA*0250Meter #19 Single-Phase Total Power FactorR%Stored Interval 4 for Meter #19
00FC*0252Meter #20 Single-Phase Total kWRkWStored Interval 1 for Meter #20
00FE*0254Meter #20 Single-Phase Total kvarRkvarStored Interval 2 for Meter #20
0100*0256Meter #20 Single-Phase Total kVARkVAStored Interval 3 for Meter #20
0102*0258Meter #20 Single-Phase Total Power FactorR%Stored Interval 4 for Meter #20
0104*0260Meter #21 Single-Phase Total kWRkWStored Interval 1 for Meter #21
0106*0262Meter #21 Single-Phase Total kvarRkvarStored Interval 2 for Meter #21
0108*0264Meter #21 Single-Phase Total kVARkVAStored Interval 3 for Meter #21
010A*0266Meter #21 Single-Phase Total Power FactorR%Stored Interval 4 for Meter #21
010C*0268Meter #22 Single-Phase Total kWR kWStored Interval 1 for Meter #22
4–12EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 4: COMMUNICATIONSMODBUS MEMORY MAP
Table 4–1: Modbus Memory Map (Sheet 5 of 15)
Hex
Addr
010E*0270Meter #22 Single-Phase Total kvarR kvarStored Interval 2 for Meter #22
0110*0272Meter #22 Single-Phase Total kVARkVAStored Interval 3 for Meter #22
0112*0274Meter #22 Single-Phase Total Power FactorR%Stored Interval 4 for Meter #22
0114*0276Meter #23 Single-Phase Total kWRkWStored Interval 1 for Meter #23
0116*0278Meter #23 Single-Phase Total kvarR kvarStored Interval 2 for Meter #23
0118*0280Meter #23 Single-Phase Total kVARkVAStored Interval 3 for Meter #23
011A*0282Meter #23 Single-Phase Total Power FactorR%Stored Interval 4 for Meter #23
011C*0284Meter #24 Single-Phase Total kWR kWStored Interval 1 for Meter #24
011E*0286Meter #24 Single-Phase Total kvarR kvarStored Interval 2 for Meter #24
0120*0288Meter #24 Single-Phase Total kVARkVAStored Interval 3 for Meter #24
0122*0290Meter #24 Single-Phase Total Power FactorR%Stored Interval 4 for Meter #24
0162*0354Frequency (Phase A)R HzPhase-to-Ground Instantaneous Frequency
016A*0362Voltage (A-N)R VPhase-to-Ground Instantaneous Voltage
016C*0364Voltage (B-N)RVPhase-to-Ground Instantaneous Voltage
016E*0366Voltage (C-N)R VPhase-to-Ground Instantaneous Voltage
0170*0368Voltage (CT01)R VCT #1 Instantaneous Voltage
AddrDescriptionR/WUnitsNotes
Metered Values (Instantaneous Data)
0172*0370Amps (CT01)R ACT #1 Instantaneous Current
0174*0372kW (CT01)R kWCT #1 Instantaneous Power
0176*0374kvar (CT01)R kvarCT #1 Instantaneous Reactive Power
0178*0376kVA (CT01)RkVACT #1 Instantaneous Apparent Power
017A*0378Voltage (CT02)R VCT #2 Instantaneous Voltage
017C*0380Amps (CT02)R ACT #2 Instantaneous Current
017E*0382kW (CT02)R kWCT #2 Instantaneous Power
0180*0384kvar (CT02)R kvarCT #2 Instantaneous Reactive Power
0182*0386kVA (CT02)RkVACT #2 Instantaneous Apparent Power
0184*0388Voltage (CT03)R VCT #3 Instantaneous Voltage
0186*0390Amps (CT03)R ACT #3 Instantaneous Current
0188*0392kW (CT03)R kWCT #3 Instantaneous Power
018A*0394kvar (CT03)R kvarCT #3 Instantaneous Reactive Power
018C*0396kVA (CT03)R kVACT #3 Instantaneous Apparent Power
018E*0398Voltage (CT04)R VCT #4 Instantaneous Voltage
0190*0400Amps (CT04)R ACT #4 Instantaneous Current
0192*0402kW (CT04)R kWCT #4 Instantaneous Power
0194*0404kvar (CT04)R kvarCT #4 Instantaneous Reactive Power
EPM 4500 SUB METER – INSTRUCTION MANUAL4–13
MODBUS MEMORY MAPCHAPTER 4: COMMUNICATIONS
Table 4–1: Modbus Memory Map (Sheet 6 of 15)
Hex
Addr
0196*0406kVA (CT04)RkVACT #4 Instantaneous Apparent Power
0198*0408Voltage (CT05)R VCT #5 Instantaneous Voltage
019A*0410Amps (CT05)R ACT #5 Instantaneous Current
019C*0412kW (CT05)R kWCT #5 Instantaneous Power
019E*0414kvar (CT05)R kvarCT #5 Instantaneous Reactive Power
01A0*0416kVA (CT05)R kVACT #5 Instantaneous Apparent Power
01A2*0418Voltage (CT06)R VCT #6 Instantaneous Voltage
01A4*0420Amps (CT06)R ACT #6 Instantaneous Current
01A6*0422kW (CT06)R kWCT #6 Instantaneous Power
01A8*0424kvar (CT06)R kvarCT #6 Instantaneous Reactive Power
01AA*0426kVA (CT06)R kVACT #6 Instantaneous Apparent Power
01AC*0428Voltage (CT07)R VCT #7 Instantaneous Voltage
01AE*0430Amps (CT07)RACT #7 Instantaneous Current
01B0*0432kW (CT07)R kWCT #7 Instantaneous Power
01B2*0434kvar (CT07)R kvarCT #7 Instantaneous Reactive Power
01B4*0436kVA (CT07)R kVACT #7 Instantaneous Apparent Power
01B6*0438Voltage (CT08)R VCT #8 Instantaneous Voltage
AddrDescriptionR/WUnitsNotes
01B8*0440Amps (CT08)R ACT #8 Instantaneous Current
01BA*0442kW (CT08)R kWCT #8 Instantaneous Power
01BC*0444kvar (CT08)RkvarCT #8 Instantaneous Reactive Power
01BE*0446kVA (CT08)R kVACT #8 Instantaneous Apparent Power
01C0*0448Voltage (CT09)R VCT #9 Instantaneous Voltage
01C2*0450Amps (CT09)R ACT #9 Instantaneous Current
01C4*0452kW (CT09)RkWCT #9 Instantaneous Power
01C6*0454kvar (CT09)R kvarCT #9 Instantaneous Reactive Power
01C8*0456kVA (CT09)R kVACT #9 Instantaneous Apparent Power
01CA*0458Voltage (CT10)R VCT #10 Instantaneous Voltage
01CC*0460Amps (CT10)R ACT #10 Instantaneous Current
01CE*0462kW (CT10)R kWCT #10 Instantaneous Power
01D0*0464kvar (CT10)RkvarCT #10 Instantaneous Reactive Power
01D2*0466kVA (CT10)RkVACT #10 Instantaneous Apparent Power
01D4*0468Voltage (CT11)RVCT #11 Instantaneous Voltage
01D6*0470Amps (CT11)RACT #11 Instantaneous Current
01D8*0472kW (CT11)RkWCT #11 Instantaneous Power
01DA*0474kvar (CT11)R kvarCT #11 Instantaneous Reactive Power
4–14EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 4: COMMUNICATIONSMODBUS MEMORY MAP
Table 4–1: Modbus Memory Map (Sheet 7 of 15)
Hex
Addr
01DC*0476kVA (CT11)R kVACT #11 Instantaneous Apparent Power
01DE*0478Voltage (CT12)R VCT #12 Instantaneous Voltage
01E0*0480Amps (CT12)R ACT #12 Instantaneous Current
01E2*0482kW (CT12)RkWCT #12 Instantaneous Power
01E4*0484kvar (CT12)R kvarCT #12 Instantaneous Reactive Power
01E6*0486kVA (CT12)R kVACT #12 Instantaneous Apparent Power
01E8*0488Voltage (CT13)R VCT #13 Instantaneous Voltage
01EA*0490Amps (CT13)RACT #13 Instantaneous Current
01EC*0492kW (CT13)R kWCT #13 Instantaneous Power
01EE*0494kvar (CT13)R kvarCT #13 Instantaneous Reactive Power
01F0*0496kVA (CT13)R kVACT #13 Instantaneous Apparent Power
01F2*0498Voltage (CT14)R VCT #14 Instantaneous Voltage
01F4*0500Amps (CT14)R ACT #14 Instantaneous Current
01F6*0502kW (CT14)R kWCT #14 Instantaneous Power
01F8*0504kvar (CT14)R kvarCT #14 Instantaneous Reactive Power
01FA*0506kVA (CT14)RkVACT #14 Instantaneous Apparent Power
01FC*0508Voltage (CT15)R VCT #15 Instantaneous Voltage
AddrDescriptionR/WUnitsNotes
01FE*0510Amps (CT15)R ACT #15 Instantaneous Current
200*0512kW (CT15)RkWCT #15 Instantaneous Power
0202*0514kvar (CT15)R kvarCT #15 Instantaneous Reactive Power
0204*0516kVA (CT15)RkVACT #15 Instantaneous Apparent Power
0206*0518Voltage (CT16)R VCT #16 Instantaneous Voltage
0208*0520Amps (CT16)R ACT #16 Instantaneous Current
020A*0522kW (CT16)R kWCT #16 Instantaneous Power
020C*0524kvar (CT16)RkvarCT #16 Instantaneous Reactive Power
020E*0526kVA (CT16)R kVACT #16 Instantaneous Apparent Power
0210*0528Voltage (CT17)R VCT #17 Instantaneous Voltage
0212*0530Amps (CT17)R ACT #17 Instantaneous Current
0214*0532kW (CT17)R kWCT #17 Instantaneous Power
0216*0534kvar (CT17)R kvarCT #17 Instantaneous Reactive Power
0218*0536kVA (CT17)RkVACT #17 Instantaneous Apparent Power
021A*0538Voltage (CT18)R VCT #18 Instantaneous Voltage
021C*0540Amps (CT18)R ACT #18 Instantaneous Current
021E*0542kW (CT18)RkWCT #18 Instantaneous Power
0220*0544kvar (CT18)R kvarCT #18 Instantaneous Reactive Power
EPM 4500 SUB METER – INSTRUCTION MANUAL4–15
MODBUS MEMORY MAPCHAPTER 4: COMMUNICATIONS
Table 4–1: Modbus Memory Map (Sheet 8 of 15)
Hex
Addr
0222*0546kVA (CT18)RkVACT #18 Instantaneous Apparent Power
0224*0548Voltage (CT19)R VCT #19 Instantaneous Voltage
0226*0550Amps (CT19)R ACT #19 Instantaneous Current
0228*0552kW (CT19)R kWCT #19 Instantaneous Power
022A*0554kvar (CT19)R kvarCT #19 Instantaneous Reactive Power
022C*0556kVA (CT19)R kVACT #19 Instantaneous Apparent Power
022E*0558Voltage (CT20)R VCT #20 Instantaneous Voltage
0230*0560Amps (CT20)R ACT #20 Instantaneous Current
0232*0562kW (CT20)R kWCT #20 Instantaneous Power
0234*0564kvar (CT20)R kvarCT #20 Instantaneous Reactive Power
0236*0566kVA (CT20)RkVACT #20 Instantaneous Apparent Power
0238*0568Voltage (CT21)R VCT #21 Instantaneous Voltage
023A*0570Amps (CT21)R ACT #21 Instantaneous Current
023C*0572kW (CT21)RkWCT #21 Instantaneous Power
023E*0574kvar (CT21)RkvarCT #21 Instantaneous Reactive Power
0240*0576kVA (CT21)RkVACT #21 Instantaneous Apparent Power
0242*0578Voltage (CT22)R VCT #22 Instantaneous Voltage
AddrDescriptionR/WUnitsNotes
0244*0580Amps (CT22)R ACT #22 Instantaneous Current
0246*0582kW (CT22)R kWCT #22 Instantaneous Power
0248*0584kvar (CT22)R kvarCT #22 Instantaneous Reactive Power
024A*0586kVA (CT22)R kVACT #22 Instantaneous Apparent Power
024C*0588Voltage (CT23)R VCT #23 Instantaneous Voltage
024E*0590Amps (CT23)R ACT #23 Instantaneous Current
0250*0592kW (CT23)R kWCT #23 Instantaneous Power
0252*0594kvar (CT23)R kvarCT #23 Instantaneous Reactive Power
0254*0596kVA (CT23)RkVACT #23 Instantaneous Apparent Power
0256*0598Voltage (CT24)R VCT #24 Instantaneous Voltage
0258*0600Amps (CT24)R ACT #24 Instantaneous Current
025A*0602kW (CT24)R kWCT #24 Instantaneous Power
025C*0604kvar (CT24)RkvarCT #24 Instantaneous Reactive Power
025E*0606kVA (CT24)R kVACT #24 Instantaneous Apparent Power
4–16EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 4: COMMUNICATIONSMODBUS MEMORY MAP
Table 4–1: Modbus Memory Map (Sheet 9 of 15)
Hex
Addr
0288*0648Meter #1 Three-Phase kWhR kWhMeter #1 Real Time Input 1
028A*0650Meter #1 Three-Phase kvarhR kvarhMeter #1 Real Time Input 2
028C*0652Meter #1 Three-Phase kWR kWMeter #1 Real Time Input 3
028E*0654Meter #1 Three-Phase kvarRkvarMeter #1 Real Time Input 4
0290*0656Meter #1 Three-Phase kVAR kVAMeter #1 Real T ime Input 5
0292*0658Meter #1 Three-Phase Power FactorR%Meter #1 Real T ime Input 6
0294*0660Meter #2 Three-Phase kWhR kWhMeter #2 Real Time Input 1
0296*0662Meter #2 Three-Phase kvarhRkvarhMeter #2 Real Time Input 2
0298*0664Meter #2 Three-Phase kWR kWMeter #2 Real Time Input 3
029A*0666Meter #2 Three-Phase kvarRkvarMeter #2 Real Time Input 4
029C*0668Meter #2 Three-Phase kVAR kVAMeter #2 Real Time Input 5
029E*0670Meter #2 Three-Phase Power FactorR %Meter #2 Real T ime Input 6
02A0*0672Meter #3 Three-Phase kWhR kWhMeter #3 Real T ime Input 1
02A2*0674Meter #3 Three-Phase kvarhRkvarhMeter #3 Real Time Input 2
02A40676Meter #3 Three-Phase kWRkWMeter #3 Real T ime Input 3
02A6*0678Meter #3 Three-Phase kvarRkvarMeter #3 Real Time Input 4
AddrDescriptionR/WUnitsNotes
Three-Phase Metered Values (Fast Poll)
02A8*0680Meter #3 Three-Phase kVARkVAMeter #3 Real Time Input 5
02AA*0682Meter #3 Three-Phase Power FactorR%Meter #3 Real Time Input 6
02AC*0684Meter #4 Three-Phase kWhRkWhMeter #4 Real T ime Input 1
02AE*0686Meter #4 Three-Phase kvarhRkvarhMeter #4 Real T ime Input 2
02B0*0688Meter #4 Three-Phase kWR kWMeter #4 Real Time Input 3
02B2*0690Meter #4 Three-Phase kvarRkvarMeter #4 Real Time Input 4
02B4*0692Meter #4 Three-Phase kVARkVAMeter #4 Real Time Input 5
02B6*0694Meter #4 Three-Phase Power FactorR %Meter #4 Real Time Input 6
02B8*0696Meter #5 Three-Phase kWhR kWhMeter #5 Real T ime Input 1
02BA*0698Meter #5 Three-Phase kvarhR kvarhMeter #5 Real Time Input 2
02BC*0700Meter #5 Three-Phase kWR kWMeter #5 Real Time Input 3
02BE*0702Meter #5 Three-Phase kvarR kvarMeter #5 Real T ime Input 4
02C0*0704Meter #5 Three-Phase kVAR kVAMeter #5 Real Time Input 5
02C2*0706Meter #5 Three-Phase Power FactorR %Meter #5 Real Time Input 6
02C40708Meter #6 Three-Phase kWhR kWhMeter #6 Real Time Input 1
02C6*0710Meter #6 Three-Phase kvarhR kvarhMeter #6 Real Time Input 2
02C8*0712Meter #6 Three-Phase kWRkWMeter #6 Real Time Input 3
02CA*0714Meter #6 Three-Phase kvarRkvarMeter #6 Real T ime Input 4
EPM 4500 SUB METER – INSTRUCTION MANUAL4–17
MODBUS MEMORY MAPCHAPTER 4: COMMUNICATIONS
Table 4–1: Modbus Memory Map (Sheet 10 of 15)
Hex
Addr
02CC*0716Meter #6 Three-Phase kVARkVAMeter #6 Real Time Input 5
02CE*0718Meter #6 Three-Phase Power FactorR %Meter #6 Real Time Input 6
02D0*0720Meter #7 Three-Phase kWhRkWhMeter #7 Real Time Input 1
02D2*0722Meter #7 Three-Phase kvarhRkvarhMeter #7 Real Time Input 2
02D4*0724Meter #7 Three-Phase kWR kWMeter #7 Real T ime Input 3
02D6*0726Meter #7 Three-Phase kvarR kvarMeter #7 Real Time Input 4
02D80728Meter #7 Three-Phase kVARkVAMeter #7 Real Time Input 5
02DA*0730Meter #7 Three-Phase Power FactorR %Meter #7 Real Time Input 6
02DC*0732Meter #8 Three-Phase kWhRkWhMeter #8 Real Time Input 1
02DE*0734Meter #8 Three-Phase kvarhRkvarhMeter #8 Real Time Input 2
02E0*0736Meter #8 Three-Phase kWRkWMeter #8 Real Time Input 3
02E2*0738Meter #8 Three-Phase kvarRkvarMeter #8 Real Time Input 4
02E4*0740Meter #8 Three-Phase kVARkVAMeter #8 Real Time Input 5
02E6*0742Meter #8 Three-Phase Power FactorR %Meter #8 Real T ime Input 6
02E8*0744Meter #9 Phase kWhR kWhMeter #9 Real Time Input 1
02EA*0746Meter #9 Phase kvarhR kvarhMeter #9 Real Time Input 2
02EC*0748Meter #9 Phase kWRkWMeter #9 Real T ime Input 3
AddrDescriptionR/WUnitsNotes
02EE*0750Meter #9 Phase kvarR kvarMeter #9 Real T ime Input 4
02F0*0752Meter #9 Phase kVARkVAMeter #9 Real Time Input 5
02F2*0754Meter #9 Phase Power FactorR %Meter #9 Real Time Input 6
02F4*0756Meter #10 Phase kWhR kWhMeter #10 Real Time Input 1
02F6*0758Meter #10 Phase kvarhR kvarhMeter #10 Real Time Input 2
02F8*0760Meter #10 Phase kWR kWMeter #10 Real Time Input 3
02FA*0762Meter #10 Phase kvarR kvarMeter #10 Real T ime Input 4
02FC*0764Meter #10 Phase kVAR kVAMeter #10 Real Time Input 5
02FE*0766Meter #10 Phase Power FactorR %Meter #10 Real Time Input 6
0300*0768Meter #11 Phase kWhR kWhMeter #11 Real Time Input 1
0302*0770Meter #11 Phase kvarhR kvarhMeter #11 Real Time Input 2
0304*0772Meter #11 Phase kWR kWMeter #11 Real Time Input 3
0306*0774Meter #11 Phase kvarRkvarMeter #11 Real Time Input 4
0308*0776Meter #11 Phase kVAR kVAMeter #11 Real Time Input 5
030A*0778Meter #11 Phase Power FactorR %Meter #11 Real T ime Input 6
030C*0780Meter #12 Phase kWhRkWhMeter #12 Real T ime Input 1
030E*0782Meter #12 Phase kvarhR kvarhMeter #12 Real Time Input 2
0310*0784Meter #12 Phase kWR kWMeter #12 Real Time Input 3
4–18EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 4: COMMUNICATIONSMODBUS MEMORY MAP
Table 4–1: Modbus Memory Map (Sheet 11 of 15)
Hex
Addr
0312*0786Meter #12 Phase kvarRkvarMeter #12 Real Time Input 4
0314*0788Meter #12 Phase kVAR kVAMeter #12 Real Time Input 5
0316*0790Meter #12 Phase Power FactorR %Meter #12 Real Time Input 6
0318*0792Meter #13 Phase kWhR kWhMeter #13 Real Time Input 1
031A*0794Meter #13 Phase kvarhRkvarhMeter #13 Real Time Input 2
031C*0796Meter #13 Phase kWR kWMeter #13 Real T ime Input 3
031E*0798Meter #13 Phase kvarR kvarMeter #13 Real T ime Input 4
0320*0800Meter #13 Phase kVAR kVAMeter #13 Real Time Input 5
0322*0802Meter #13 Phase Power FactorR %Meter #13 Real Time Input 6
0324*0804Meter #14 Phase kWhR kWhMeter #14 Real Time Input 1
0326*0806Meter #14 Phase kvarhR kvarhMeter #14 Real Time Input 2
0328*0808Meter #14 Phase kWR kWMeter #14 Real Time Input 3
032A*0810Meter #14 Phase kvarRkvarMeter #14 Real Time Input 4
032C*0812Meter #14 Phase kVARkVAMeter #14 Real T ime Input 5
032E*0814Meter #14 Phase Power FactorR %Meter #14 Real Time Input 6
0330*0816Meter #15 Phase kWhR kWhMeter #15 Real Time Input 1
0332*0818Meter #15 Phase kvarhR kvarhMeter #15 Real Time Input 2
AddrDescriptionR/WUnitsNotes
0334*0820Meter #15 Phase kWR kWMeter #15 Real Time Input 3
0336*0822Meter #15 Phase kvarRkvarMeter #15 Real Time Input 4
0338*0824Meter #15 Phase kVAR kVAMeter #15 Real Time Input 5
033A*0826Meter #15 Phase Power FactorR %Meter #15 Real T ime Input 6
033C*0828Meter #16 Phase kWhRkWhMeter #16 Real Time Input 1
033E*0830Meter #16 Phase kvarhR kvarhMeter #16 Real Time Input 2
0340*0832Meter #16 Phase kWR kWMeter #16 Real Time Input 3
0342*0834Meter #16 Phase kvarRkvarMeter #16 Real Time Input 4
0344*0836Meter #16 Phase kVAR kVAMeter #16 Real Time Input 5
0346*0838Meter #16 Phase Power FactorR %Meter #16 Real Time Input 6
0348*0840Meter #17 Phase kWhR kWhMeter #17 Real Time Input 1
034A*0842Meter #17 Phase kvarhRkvarhMeter #17 Real Time Input 2
034C*0844Meter #17 Phase kWR kWMeter #17 Real T ime Input 3
034E*0846Meter #17 Phase kvarR kvarMeter #17 Real T ime Input 4
0350*0848Meter #17 Phase kVAR kVAMeter #17 Real Time Input 5
0352*0850Meter #17 Phase Power FactorR %Meter #17 Real Time Input 6
0354*0852Meter #18 Phase kWhR kWhMeter #18 Real Time Input 1
0356*0854Meter #18 Phase kvarhR kvarhMeter #18 Real Time Input 2
EPM 4500 SUB METER – INSTRUCTION MANUAL4–19
MODBUS MEMORY MAPCHAPTER 4: COMMUNICATIONS
Table 4–1: Modbus Memory Map (Sheet 12 of 15)
Hex
Addr
0358*0856Meter #18 Phase kWR kWMeter #18 Real Time Input 3
035A*0858Meter #18 Phase kvarR kvarMeter #18 Real Time Input 4
035C*0860Meter #18 Phase kVARkVAMeter #18 Real T ime Input 5
035E*0862Meter #18 Phase Power FactorR %Meter #18 Real Time Input 6
0360*0864Meter #19 Phase kWhR kWhMeter #19 Real Time Input 1
0362*0866Meter #19 Phase kvarhR kvarhMeter #19 Real Time Input 2
0364*0868Meter #19 Phase kWR kWMeter #19 Real Time Input 3
0366*0870Meter #19 Phase kvarRkvarMeter #19 Real Time Input 4
0368*0872Meter #19 Phase kVAR kVAMeter #19 Real Time Input 5
036A*0874Meter #19 Phase Power FactorR %Meter #19 Real T ime Input 6
036C*0876Meter #20 Phase kWhRkWhMeter #20 Real T ime Input 1
036E*0878Meter #20 Phase kvarhR kvarhMeter #20 Real Time Input 2
0370*0880Meter #20 Phase kWR kWMeter #20 Real Time Input 3
0372*0882Meter #20 Phase kvarRkvarMeter #20 Real Time Input 4
0374*0884Meter #20 Phase kVAR kVAMeter #20 Real Time Input 5
0376*0886Meter #20 Phase Power FactorR %Meter #20 Real Time Input 6
0378*0888Meter #21 Phase kWhR kWhMeter #21 Real Time Input 1
AddrDescriptionR/WUnitsNotes
037A*0890Meter #21 Phase kvarhR kvarhMeter #21 Real Time Input 2
037C*0892Meter #21 Phase kWR kWMeter #21 Real T ime Input 3
037E*0894Meter #21 Phase kvarR kvarMeter #21 Real T ime Input 4
0380*0896Meter #21 Phase kVAR kVAMeter #21 Real Time Input 5
0382*0898Meter #21 Phase Power FactorR %Meter #21 Real Time Input 6
0384*0900Meter #22 Phase kWhR kWhMeter #22 Real Time Input 1
0386*0902Meter #22 Phase kvarhR kvarhMeter #22 Real Time Input 2
0388*0904Meter #22 Phase kWR kWMeter #22 Real Time Input 3
038A*0906Meter #22 Phase kvarR kvarMeter #22 Real Time Input 4
038C*0908Meter #22 Phase kVARkVAMeter #22 Real T ime Input 5
038E*0910Meter #22 Phase Power FactorR %Meter #22 Real Time Input 6
0390*0912Meter #23 Phase kWhR kWhMeter #23 Real Time Input 1
0392*0914Meter #23 Phase kvarhR kvarhMeter #23 Real Time Input 2
0394*0916Meter #23 Phase kWR kWMeter #23 Real Time Input 3
0396*0918Meter #23 Phase kvarRkvarMeter #23 Real Time Input 4
0398*0920Meter #23 Phase kVAR kVAMeter #23 Real Time Input 5
039A*0922Meter #23 Phase Power FactorR %Meter #23 Real T ime Input 6
039C*0924Meter #24 Phase kWhRkWhMeter #24 Real T ime Input 1
4–20EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 4: COMMUNICATIONSMODBUS MEMORY MAP
Table 4–1: Modbus Memory Map (Sheet 13 of 15)
Hex
Addr
039E*0926Meter #24 Phase kvarhR kvarhMeter #24 Real Time Input 2
03A0*0928Meter #24 Phase kWRkWMeter #24 Real Time Input 3
03A2*0930Meter #24 Phase kvarR kvarMeter #24 Real Time Input 4
03A4*0932Meter #24 Phase kVARkVAMeter #24 Real Time Input 5
03A6*0934Meter #24 Phase Power FactorR %Meter #24 Real Time Input 6
03E8*1000Meter #1 THD Phase AR %Meter #1 Total Harmonic Distortion
TitleTitleUpdateManual part number to 1601-0157-A6
4-34-3UpdateUpdated MODBUS ACTIVATION section
Table 5–6: Major Updates for 1601-0157-A5
PAGE
(A4)
PAGE
(A5)
CHANGEDESCRIPTION
TitleTitleUpdateManual part number to 1601-0157-A5
---4-1AddAdded RS485 WIRING FOR MODBUS section
5–2EPM 4500 SUB METER – INSTRUCTION MANUAL
CHAPTER 5: MISCELLANEOUSREVISION HISTORY
Table 5–7: Major Updates for 1601-0157-A4
PAGE
(A3)
PAGE
(A4)
CHANGEDESCRIPTION
TitleTitleUpdateManual part number to 1601-0157-A4
4-64-6Update
Updated MODBUS MEMORY MAP to include
additional registers
Table 5–8: Major Updates for 1601-0157-A3
PAGE
(A2)
PAGE
(A3)
CHANGEDESCRIPTION
TitleTitleUpdateManual part number to 1601-0157-A3
4-34-3UpdateUpdated MODBUS ACTIVATION section
Table 5–9: Major Updates for 1601-0157-A2
PAGE
(A1)
PAGE
(A2)
CHANGEDESCRIPTION
TitleTitleUpdateManual part number to 1601-0157-A2
---2-2Replace
updated PHASE ASSOCIATION section. Phase rotation
information is now included with the wiring types.
Replaced PHASE ROTATION section and example with
---2-4Replace
Updated the WIRING section to include new wiring
diagrams and wiring procedures
---4-1AddAdded MODBUS COMMUNICATIONS chapter
EPM 4500 SUB METER – INSTRUCTION MANUAL5–3
WARRANTYCHAPTER 5: MISCELLANEOUS
5.2Warranty
5.2.1GE Energy Warranty
General Electric Energy (GE Energy) warrants each device it manufactures to be free from
defects in material and workmanship under normal use and service for a period of 24
months from date of shipment from factory.
In the event of a failure covered by warranty, GE Energy will undertake to repair or replace
the device providing the warrantor determined that it is defective and it is returned with all
transportation charges prepaid to an authorized service centre or the factory. Repairs or
replacement under warranty will be made without charge.
Warranty shall not apply to any device which has been subject to misuse, negligence,
accident, incorrect installation or use not in accordance with instructions nor any unit that
has been altered outside a GE Energy authorized factory outlet.
GE Energy is not liable for special, indirect or consequential damages or for loss of profit or
for expenses sustained as a result of a device malfunction, incorrect application or
adjustment.
For complete text of Warranty (including limitations and disclaimers), refer to GE Energy
Standard Conditions of Sale.
CHANGES TO MANUAL..............................................................................................................................5–2, 5–3
CT ORDER CODES ..................................................................................................................................................1–9
CURRENT TRANSFORMER INSTALLATION................................................................................................2–15
DATA LOGGER.........................................................................................................................................................1–5
MENU NAVIGATION ..............................................................................................................................................3–1
MENU STRUCTURE................................................................................................................................................3–3
data register groups..................................................................................................................................4–3
ORDER CODES.........................................................................................................................................................1–8
POWER SUPPLY ......................................................................................................................................................1–5
STAND-ALONE METER .........................................................................................................................................1–2
TYPE TESTS................................................................................................................................................................1–6
U
UL APPROVAL..........................................................................................................................................................1–7
USER INTERFACE....................................................................................................................................................3–1
VERIFYING METER FUNCTIONALITY...............................................................................................................3–5
INDEX–2EPM 4500 SUB METER – INSTRUCTION MANUAL
VERIFYING VOLTAGE ............................................................................................................................................3–5