Detcon PI-600 User Manual

d
etcon inc.
Detcon Model Series
PI-600
Explosion Proof PID-Based Universal VOC Gas Sensors
(Also covers Model PI-601)
Operator’s Installation & Instruction Manual
phone 888-367-4286, 713-559-9200 • fax 281-292-2860 • www.detcon.com • sales@detcon.com
Table of Contents
3.0 Description
3.1 Principle of Operation
3.2 Application
3.3 Specifications
3.4 Installation
3.5 Start-up
3.6 Operating Software & Magnetic Interface
3.7 Software Flow Chart
3.8 Calibration and Plug-in Sensor Maintenance
3.9 Status of Programming: Software Version, Calibration Level, and Sensor Life
3.10 Programming Alarms
3.11 Program Features
3.12 Display Contrast Adjust
3.13 Universal Transmitter Feature (Re-Initialization)
3.14 RS-485 Protocol
3.15 Trouble Shooting Guide
3.16 Spare Parts List
3.17 Warranty
3.18 Service Policy
PI-600 Toxic Gas Sensors PG.2
3.0 DESCRIPTION
e-
Construction of
PID Sensor
Collection Plates
UV Filter Window @ 10.6eV
Electrodeless Lamp Illumination Contacts
Membrane Filter
Krypton
Gas
V
V
Target VOC Compounds
A
e-
o+
etcon MicroSafe™ Model PI-600 and PI-601 universal VOC sensors are non-intrusive “Smart” sensors designed to
D detect and monitor for VOC & toxic gas in the ppm range. One of the primary features of the sensor is its method of automatic calibration which guides the user through each step via instructions displayed on the backlit LCD. The sen­sor features LED indicators for 2 ALARMS, FAULT and CAL status; field adjustable, fully programmable alarms and provides relays for two alarms plus fault as standard. The sensor comes with two different outputs: analog 4-20 mA, and serial RS-485. These outputs allow for greater flexibility in system integration and installation. The microprocessor supervised electronics are packaged as a universal plug-in transmitter module that mates to a standard connector board. Both are housed in an explosion proof condulet that includes a glass lens. A 16 character alpha/numeric indicator is used to display sensor readings as well as the sensor’s menu driven features via a hand-held programming magnet.
Typical ranges of detection are 0-10ppm, 0-20ppm, 0-50ppm, (using the PI-600) and 0-100ppm, 0-500ppm, and 0­1,000ppm (using the PI-601). Other ranges are available and all ranges are covered by this manual. To determine sensor model number, reference the label located on the enclosure cover. To determine primary range, reference labeling on the sensor head.
3.0.1 Sensor Technology
The sensors are based on a plug-in replaceable miniature PID (Photo-Ionization Detector) sensor technology. The sen­sor is sensitive to all ambient gases that have ionization potentials of < 10.6 eV, making it highly sensitive but extremely non-specific. The sensor responds to most all toxic VOC compounds and many other toxic gases as well. The sensor is comprised of a UV emitting lamp that is covered by a specific optical filter which projects only radiation in the 10.6 eV range. Target gases that diffuse into the sensor chamber with ionization potentials of < 10.6 eV, are ionized by the radi­ation and give up free electrons. The free electrons are captured by the high voltage collection grid and provide a cur­rent signal that is directly proportional to the concentration of the target gas.
PI-600 Toxic Gas Sensors PG.3
3.0.2 Universal Microprocessor Control Transmitter Circuit
d
etcon inc.
Program Switch #2
FLT
ALM
1
CAL
M
icroSafe™ Gas Sensor
H
OUST ON, T EXA S
PGM 2
PGM 1
ALM
2
MODEL PI-600
C
ONTRAST
Alarm & Cal LEDs
Program Switch #1
Menu Driven Display
Plug-in Universal Microprocessor Control Circuit
Display Contrast Adjust
UNIVERSAL
T
RANSMITTER
PPM
0
VOC
NC
ALARM 1
WHT
BLK
YEL
BLU
MA
VDC Power In
NO
NC
NO
NC
NO
NO/NC
COM
NO/NC
COM
NO/NC
COM
FAULT ALM- 2 ALM -1
Alarm Dry Contacts
ALARM 2
FAULT
R1
A
B
A
B
4-20 mA Output
RS-485 In
RS-485 Out
Optional 4-20 mA Signal Developing Resistor Use 250 ohm 1/4w
JUMPERS
UN-USED
Jumper Programmable Alarm Outputs Normally Open or Normally Closed
Sensor
Place un-used alarm programming jumper tabs here
PID Sensor Head
Transmitter Electronics in Explosion-Proof housing
he control circuit is microprocessor based and is packaged as a universal plug-in field replaceable module, facilitating
T easy replacement and minimum down time. The universality includes the ability to set it for any range concentration and for any gas type. These gas and range settings must be consistent with the PID Sensor Head it is mated with. Circuit functions include a basic sensor pre-amplifier, on-board power supplies, microprocessor, back lit alpha numeric display, fault, alarm, and calibration status LED indicators, magnetic programming switches, an RS-485 communication port and a linear 4-20 mA DC output.
3.0.3 Base Connector Board The base connector board is mounted in the explosion proof enclosure and includes: the mating connector for the con­trol circuit, reverse input and secondary transient suppression, input filter and lugless terminals for all field wiring.
3.0.4 Explosion Proof Enclosure The transmitter electronics are packaged in a cast metal explosion proof enclosure. The enclosure is fitted with a thread­ed cover that has a glass lens window. Magnetic program switches located behind the transmitter module face plate are activated through the lens window via a hand-held magnetic programming tool allowing non-intrusive operator interface with the sensor. Calibration can be accomplished without removing the cover or declassifying the area. Electrical classi­fication is Class I; Groups B, C, D; Division 1 (explosion proof).
PI-600 Toxic Gas Sensors PG.4
3.1 PR
Functional
Block
Diagram
Functional
Block
Diagram
A
nalog 4-20 mA Out
P
ower In
R
elays Out
Pre-Amp Display
Tem per atu re
C
ompensation
Alarm & Fault
R
elays
RS-485 & 4-20mA
Micro-
p
rocessor
T
ransmitter
Power Supply
S
ensor
E
lement
I
/O Circuit
P
rotection
Serial RS-485 Out
INCIPLE OFOPERATION
Ionizable target gases diffuse into the PID sensor chamber through a sintered f lame arrestor. These target gases are exposed to UV radiation emitted by the PID lamp and this causes a fraction of the molecules to give up a free electron. The free electrons are captured by the high voltage collection grid and provide a current signal that is directly propor­tional to the concentration of the target gas. This change in current is completely reversible and results in the continu­ous monitoring of ambient air conditions.
3.2 APPLICATION
3.2.1 Sensor Placement/Mounting
Sensor location should be reviewed by facility engineering and safety personnel. Area leak sources and perimeter mounting are typically used to determine number and location of sensors. The sensors are generally located 2 - 4 feet above grade.
3.2.2 Interference Data
Detcon Model PI-600 series PID sensors are subject to interference from many gases. This interaction is shown in the table in Section 3.2.3. The table shows most all gases of interest and the level of signal response they have relative to a standard isobutylene reference gas. This measure is referred to as the Response Factor (RF). As a general rule, the lower the RF value, the stronger the signal from the PID sensor. When determining a cross-interference from one gas to another, find the RF of your target gas and then your interfering gas(es). The cross-interference will be calculated by dividing the RF of your interfering gas by the RF of your target gas.
For example, if your target gas is benzene and you are concerned about a cross-interference to H2S then you would cal­culate the cross interference to be 3.3/0.50 = 6.2. This shall be interpreted as: it will take 6.2 ppm of H2S to register as 1 ppm benzene on a PID sensor calibrated for benzene.
In many cases, the user will be interested in measuring a multiple of toxic VOC compounds. In this case the sensor will produce a signal that is a composite total of each gases’ individual response, when taking into account the corre­sponding response factors.
For example, if the target gases are benzene and isobutanol and your PID sensor was calibrated for benzene then the presence of 5 ppm benzene and 5 ppm of isobutanol would each add to the total reading. In this case, the 5 ppm ben­zene would register as 5 ppm, but the 5 ppm isobutanol would register as the amount of cross interference of isobu­tanol relative to a benzene calibration. This is calculated as discussed above where you divide the RF of isobutanol by the RF of benzene. Using the look up table this gives you 3.8/0.50 = 7.2. So it takes 7.2 ppm isobutanol to equal 1 part benzene. Since we have 5 ppm isobutanol, that will equal 0.7 ppm on the benzene scale. The total signal will be 5 + 0.7 = 5.7 ppm.
3.2.3 Relative Response Gas Matrix (See next page)
The table shows you the response of the PID sensor to a long list of components. It includes the compound name, synonyms/abbreviations, and chemical formula. It also lists the 10.6 eV Response Factor (the measure of how strong the signal from the sensor is in reference to Isobutylene gas). Isobutylene gas is the standard reference used with PID sensors, the lower the Response Factor, the stronger the signal.
NR = not reccomended (does not register)
? = measureable but no data exist
Confirmed Value = “+” means actual gas has been used to verify RF, “blank” means it is an empirical estimate
IP = is the gases ionization potential (only gases < 10.6eV will respond to sensor)
TWA/Time Weighted Average = generally accepted limit for safe 8 hour exposure (in ppm)
PI-600 Toxic Gas Sensors PG.5
3.2.3 Relative Response Gas Matrix (page 1 of 8)
Compound Name Synonym/Abbreviation Formula Response Factor Confirmed Value IP (eV) TWA
Acetaldehyde C2H4O 5.5 + 10.23 C25
Acetic Acid Ethanoic Acid C2H4O2 22 + 10.66 10
Acetic Anhydride Ethanoic Acid Anhydride C4H6O3 6.1 + 10.14 5
Acetone 2-Propanone C3H6O 1.1 + 9.71 500
Acetonitrile Methyl cyanide, Cyanomethane C2H3N NR 12.19 40
Acetylene Ethyne C2H2 NR 11.40 ne
Acrolein Propenal C3H4O 3.9 + 10.10 0.1
Acrylic Acid Propenoic Acid C3H4O2 12 + 10.60 2
Acrylonitrile Propenenitrile C3H3N NR + 10.91 2
Allyl alcohol C3H6O 2.4 + 9.67 2
Allyl chloride 3-Chloropropene C3H5Cl 4.3 9.9 1
Ammonia H3N 9.7 + 10.16 25
Amyl alcohol mix of n-pentyl acetate & C5H12O 5 10.00 100
2-Methylbutyl acetate
Aniline Aminobenzene C7H7N 0.5 + 7.72 2
Anisole Methoxybenzene C7H8O 0.8 8.21 ne
Arsine Arsenic trihydride AsH3 1.9 + 9.89 0.05
Benzaldehyde C7H6O ? 9.49 ne
Benzene C6H6 0.5 + 9.25 0.5
Benzonitrile Cyanobenzene C7H5N 1.6 9.62 ne
Benzyl alcohol a-Hydroxytoluene, C7H8O 1.1 + 8.26 ne
Hydroxymethylbenzene, Benzenemethanol
Benzyl chloride a-Chlorotoluene, C7H7Cl 0.6 + 9.14 1
Chloromethylbenzene
Benzyl formate Formic acid benzyl ester C8H8O2 0.73 + ne
Boron trifluoride BF3 NR 15.5 C1
Bromine Br3 1.30 + 10.51 0.1
Bromobenzene C6H5Br 0.6 8.98 ne
2-Bromoethyl methyl ether C3H7OBr 0.84 + ~10 ne
Bromoform Tribromomethane CHBr3 2.5 + 10.48 0.5
Bromopropane, 1- n-Propyl bromide C3H7Br 1.5 + 10.18 ne
Butadiene 1,2-Butadiene, Vinyl ethylene C4H6 0.85 + 9.07 2
Butadiene diepoxide, 1, 3- 1,2,3,4-Diepoxybutane C4H6O2 3.5 + ~10 ne
Butane C4H10 67 10.53 ne
Butanol, 1- Butyl alcohol, n-Butanol C4H10O 4.7 + 9.99 C50
Butanol, t- tert-butanol, t-Buty alcohol C4H10O 2.9 + 9.90 100
Butene, 1- 1-Butylene C4H8 0.9 9.58 ne
Butoxyethanol, 2- Butyl Cellosolve, C6H14O2 1.2 + <10 25
Ethyleneglycol monobutyl ether
Butyl acetate, n- C6H12O2 2.6 + 10 150
Butyl acrylate, n- Butyl 2-propenoate, C7H12O2 1.6 + 10
Acrylic acid butyl ester
Butylamine C4H11N 7 8.71
Butylamine, n- C4H11N 1.1 + 8.71 C5
10.6 eV
PI-600 Toxic Gas Sensors PG.6
3.2.3 Relative Response Gas Matrix (page 2 of 8)
Compound Name Synonym/Abbreviation Formula Response Factor Confirmed Value IP (eV) TWA
Butyl cellosolve see 2-Butoxyethanol
Butyl hydroperoxide, t- C4H10O2 1.6 + <10 1
Butyl mercaptan 1-Butanethiol C4H10S 0.52 + 9.14 0.5
Carbon disulfide CS2 1.2 + 10.07 10
Carbon monoxide CO NR + 14.07 50
Carbon tetrachloride Tetrachloromethane CCl4 NR + 11.47 5
Carbonyl sulfide Carbon Oxysulfide COS NR 11.18
Cellosolve see 2-Ethoxyethanol
CFC-14 see Tetrafluoromethane
CFC-113 see 1,1,2-Trichloro-1,2,2-trifluoroethane
Chlorine Cl2 NR 11.48 0.5
Chlorine dioxide ClO2 NR + 10.57 0.1
Chloro-1,3-butadiene, 2- Chloroprene C4H5Cl 3 10
Chlorobenzene Monochlorobenzene C6H5Cl 0.40 + 9.06 10
Chloro-1, 1-difluoroethane, 1-(R-142B) C2H3ClF2 NR 12.0
Chlorodifluoromethane HCFC-22, R-22 CHClF2 NR 12.2 1000
Chloroethane Ethyl chloride C2H5Cl NR + 10.97 100
Chloroethanol Ethylene chlorhydrin C2H5ClO 10.52 C1
Chloroethyl ether, 2- bis(2-chloroethyle) ether C4H8Cl2O 3.0 +5
Chloroethyl methyl ether,2- Methyl 2-chloroethyl ether C3H7ClO 3 ne
Chloroform Trichloromethane CHCl3 NR + 11.37 10
Chloropicrin CCl3NO2 ~400 +?0.1
Chlorotoluene, o- o-Chloromethylbenzene C7H7Cl 0.5 8.83 50
Chlorotoluene, p- p-Chloromethylbenzene C7H7Cl 0.5 8.69 ne
Crotonaldehyde trans-2-Butenal C4H6O 1.1 + 9.73 2
Cumene Isopropylbenzene C9H12 0.54 + 8.73 50
Cyanogen bromide CNBr NR 11.84 ne
Cyanogen chloride CNCl NR 12.34 C0.3
Cyclohexane C6H12 1.4 + 9.86 300
Cyclohexanol Cyclohexyl alcohol C6H12O ? 9.75 50
Cyclohexanone C6H10O 0.9 + 9.14 25
Cyclohexene C6H10 0.8 + 8.95 300
Cyclohexylamine C6H13N 1.2 8.62 10
Cyclopentane C5H10 1.4 10.51 600
Decane C10H22 1.4 + 9.65 ne
Diacetone alcohol 4-Methyl-4-hydroxy-2- pentanone C6H12O2 0.7 50
Dibromoethane,1,2- EDB, Ethylene dibromide, C2H4Br2 1.7 + 10.37 ne
Ethylene bromide
Dichlorobenzene, o 1,2-Dichlorobenzene C6H4Cl2 0.47 + 9.08
Dichlorodifluoromethane CFC-12 CCl2F2 NR + 11.75 1000
Dichloroethane, 1,1- C2H4Cl2 NR 11.06
Dichloroethane, 1,2- EDC, 1,2-DCA, Ethylene dichloride C2H4Cl2 NR + 11.04 10
Dichloroethene, 1,1- 1,1-DCE, Vinylidene chloride C2H2Cl2 0.9 9.79 5
10.6 eV
PI-600 Toxic Gas Sensors PG.7
3.2.3 Relative Response Gas Matrix (page 3 of 8)
Compound Name Synonym/Abbreviation Formula Response Factor Confirmed Value IP (eV) TWA
Dichloroethene, c-1,2- c-1,2-DEC, cis-Dichloroethylene C2H2Cl2 0.8 9.66 200
Dichloroethene, t-1,2- t-1,2-DCE, trans-Dichloroethylene C2H2Cl2 0.45 + 9.65 200
Dichloro-1-fluoroethane, 1,1- R-141B C2H3Cl2F NR + ne
Dichloromethane (see Methylene chloride)
Dichloropentafluoropropane AK-255, mix of ~45% 3,3- dichloro- C3HCl2F5 NR + ne
1,1,1,2,2-pentafluoro- propane (HCFC-225ca) & ~55% 1,3-Dichloro­1,1,2,2,3- pentafluoropropane (HCFC-225cb)
Dichloropropane, 1,2 C3H6Cl2 NR 10.87 75
Dichloro-1-propene, 1,3- C3H4C12 0.96 + <10 1
Dichloro-1-propene, 2,3- C3H4Cl2 1.3 + <10 ne
Dichloro-1,1,1-trifluoro R123 C2HCl2F3 NR + 11.5 ne
-ethane, 2,2-
Dichlorvos Vapona; O,O-dimethyl O- C4H7Cl2O4P 0.9 + <9.4 0.1
dichlorovinyl phospate
Dicyclopentadiene DCPD, Cyclopentadiene dimer C10H12 0.5 + 8.8 5
Diesel Fuel #1 m.w. 226 0.9 +
Diesel Fuel #2 m.w. 216 0.7 +
Diethylamine C4H11N 1+ 8.01 5
Diethylaminopropylamine, 3- C7H18N2 1.3
Diethylmaleate C8H12O4 4 ne
Diethyl sulfide see Ethyl sulfide
Diisopropylamine C6H15N 0.74 + 7.73 5
Diketene Ketene dimer C4H4O2 2.0 + 9.6 0.5
Dimethylacetamide, N,N- DMA C4H9NO 0.8 + 8.81 10
Dimethylamine C2H7N 1.5 8.23 5
Dimethyl disulfide C2H6S2 0.20 + 7.4
Dimethyl carbonate Carbonic acid dimethyl ester C3H6O3 ~70 + ~10.5 ne
Dimethyl disulfide DMDS C2H6S2 0.20 + 7.4 ne
Dimethylethylamine DMEA C4H11N 1.0 + 7.74 ~3
Dimethylformamide, N,N- DMF C3H7NO 0.8 9.13 10
Dimethylhydrazine, 1,1- UDMH C2H8N2 0.8 + 7.28 0.01
Dimethyl methylphosphonate DMMP, methyl phosphonic acid C3H9O3P 4.3 + 10.0 ne
dimethyl ester
Dimethyl sulfate C2H6O4S ~20 + 0.1
Dimethyl sulfide see Methyl sulfide
Dimethyl sulfoxide DMSO, Methyl sulfoxide C2H6OS 1.4 + 9.10 ne
Dioxane, 1,4- C4H8O2 1.3 9.19 25
Dowtherm A see Therminol
DS-108F Wipe Solvent Ethyl lactate/Isopar H/ m.w. 118 1.6 + ne
Propoxypropanol ~7:2:1
Epichlorohydrin ECH Chloromethyloxirane, 1- C2H5ClO 8.5 + 10.2 0.5
chloro2,3-epoxypropane
Ethane C2H6 NR + 11.52 ne
Ethanol Ethyl alcohol C2H6O 12 + 10.47 1000
10.6 eV
PI-600 Toxic Gas Sensors PG.8
3.2.3 Relative Response Gas Matrix (page 4 of 8)
Compound Name Synonym/Abbreviation Formula Response Factor Confirmed Value IP (eV) TWA
Ethanolamine
Ethene Ethylene C2H4 10 + 10.51 ne
Ethoxyethanol, 2- Ethyl cellosolve, Ethylene glycol C4H10O2 1.3 9.6 5
Ethyl acetate C4H8O2 4.6 + 10.01 400
Ethyl acrylate C5H8O2 2.4 + (<10.3) 5
Ethylamine C2H7N 0.8 8.86 5
Ethylbenzene C8H10 0.52 + 8.77 100
Ethylene glycol 1,2-Ethanediol C2H6O2 16 + 10.16 C100
Ethylene oxide Oxirane, Epoxyethane C2H4O 13 + 10.57 1
Ethyl ether Diethyl ether C4H10O 1.1 + 9.51 400
Ethyl 3-ethoxypropionate EEP C7H14O3 1.0.75 + ne
Ethyl formate C3H6O2 ? 10.61 100
Ethyl hexyl acrylate, 2- Acrylic acid 2-ethylhexyl ester C11H20O2 1.1 + ne
Ethyl (S)-(-)-lactate see also Ethyl lactate, Ethyl (S)-(-)- C5H10O3 3.2 + ~10 ne DS-108F hydroxypropionate
Ethyl mercaptan Ethanethiol C2H6S 0.56 + 9.29 0.5
Ethyl sulfide Diethyl sulfide C4H10S 0.5 + 8.43 ne
Formaldehyde Formalin CH2O NR 10.87 C0.3
Formic acid CH2O2 NR + 11.33 5
Furfural 2-Furaldehyde C5H4O2 0.92 + 9.21 2
Furfuryl alcohol C5H6O2 0.80 + <9.5 10
Gasoline #1 m.w. 72 0.9 + 300
Gasoline #2, 92 octane m.w. 93 1.0 + 300
Glutaraldehyde 1,5-Pentanedial, Glutaric dialdehyde C5H8O2 0.8 + C0.0
Halothane 2-Bromo-2-chloro-1,1,1- trifluoroethane C2HBrClF3 NR 11.0 50
HCFC-22 (see Chlorodifluoromethane)
HCFC-123 (see 2,2-Dichloro-1,1,1-trifluoroethane, R-123)
HCFC-141B (see 1,1-Dichloro-1-fluorethane)
HCFC-142B (see 1-Chloro-1,1-difluoroethane)
HCFC-134A (see 1,1,1,2-Tetrafluoroethane)
HCFC-225 (see Dichloropentafluoropropane)
Heptane, n- C7H16 2.8 + 9.92 400
Hexamethyldisilazane,1,1,1,3,3,3- HMDS C6H19NSi2 0.2 + ~8.6
Hexane, n C6H14 4.3 + 10.13 50
Hexane, 1- C6H12 9.44
Hexanol, 1- Hexyl alcohol C6H14O 2.5 + 9.86 ne
Hexene, 1- C6H12 0.8 9.44 30
Hydrazine H4N2 2.6 + 8.1
Hydrogen Synthesis gas H2 NR + 15.43 ne
Hydrogen cyanide Hydrocyanic acid HCN NR + 13.60 C4.7
Hydrogen peroxide H2O2 NR + 10.54 1
Hydrogen sulfide H2S 3.3 + 10.45 10
(not recommended)
MEA, Monoethanolamine C2H7NO 1.6 + 8.96 3
monoethyl ether
10.6 eV
PI-600 Toxic Gas Sensors PG.9
3.2.3 Relative Response Gas Matrix (page 5 of 8)
Compound Name Synonym/Abbreviation Formula Response Factor Confirmed Value IP (eV) TWA
Iodine I2 0.1 + 9.40 C0.1
Iodomethane Methyl iodide CH3I 0.2 + 9.54 2
Isoamyl acetate Isopentyl acetate C7H14O2 2.1 <10 100
Isobutne 2-Methylpropane C4H10 100 + 10.57 ne
Isobutanol 2-Methyl-2-propanol C4H10O 3.8 + 10.02 50
Isobutylene Isobutxene, Methyl butene C4H8 1.00 + 9.24 ne
Isobutyl acetate C6H12O2 2.60 150
Isobutyl acrylate Isobutyl 2-propenoate, Acrylic acid C7H12O2 1.5 + ne
Isoflurane 1-Chloro-2,2,2-trifluoroethyl C3H2ClF5O NR ~11.7 ne
Isooctane 2,2,4-Trimethylpentane C8H18 1.2 9.86 ne
Isopar E Solvent Isoparaffinic hydrocarbons m.w. 121 0.8 + ne
Isopar G Solvent Photocopier diluent m.w. 148 0.8 + ne
Isopar K Solvent Isoparaffinic hydrocarbons m.w. 156 0.5 + ne
Isopar L Solvent Isoparaffinic hydrocarbons m.w. 163 0.5 +
Isopar M Solvent Isoparaffinic hydrocarbons m.w. 191 0.7 +
Isopentane 2-Methylbutane C5H12 8.2 ne
Isophorone C9H14O ? 9.07 C5
Isoprene 2-Methyl-1,3-butadiene C5H8 0.63 + 8.85 ne
Isopropanol Isopropyl alcohol, 2-propanol C3H8O 6.0 + 10.12 400
Isopropyl acetate C5H10O2 2.6 9.99 250
Isopropyl ether Diisopropyl ether C6H14O 0.8 9.20 250
Jet fuel JP-4
Jet fuel JP-5 Jet 5, Kerosene type aviaton fuel m.w. 167 0.6 + 15
Jet fuel JP-8 Jet A-1, Kerosene type aviation fuel m.w. 165 0.6 + 15
Limonene, D- (R)-(+)-Limonene C10H16 0.33 + ~8.2 ne
Kerosene (C10-C16 petro.distillate - see Jet Fuels)
MDI (see 4,4'-Methylenebis(phenylisocynate))
Mesitylene 1,3,5-Trimethylbenzene C9H12 0.35 + 8.41 ne
Methane Natural gas CH4 NR + 12.51 ne
Methanol Methyl alcohol, carbinol CH4O NR + 10.85 200
Methoxyethanol, 2- Mehtyl cellosolve, Ethylene glycol C3H8O2 2.4 + 10.1 5
Methoxyethoxyethanol, 2- 2-(2-Methoxyethoxy)ethanol C7H16O3 1.2 + <10 ne
Methyl acetate C3H6O2 6.6 + 10.27 200
Methyl acrylate Methyl 2-propenoate, acrylic acid C4H6O2 3.7 + (9.9) 2
Methylamine Aminomethane CH5N 1.2 8.97
Methyl bromide Bromomethane CH3Br 1.7 + 10.54 1
Methyl t-butyl ether MTBE, tert-Butyl methyl ether C5H12O 0.9 + 9.24 40
Methyl cellosolve (see 2-Methoxyethanol)
Methyl chloride Chloromethane CH3Cl NR + 11.22 50
Methylcyclohexane C7H14 0.97 + 9.64 400
Isobutyl ester
difluoromethyl ether, forane
Jet B, Turbo B, Wide cut type aviation fuel
monomethy ether
Diethylene glycol monomethyl ether
methyl ester
m.w. 115 1.0 + ne
10.6 eV
PI-600 Toxic Gas Sensors PG.10
3.2.3 Relative Response Gas Matrix (page 6 of 8)
Compound Name Synonym/Abbreviation Formula Response Factor Confirmed Value IP (eV) TWA
Methylene bis(phenyl- MDI, Mondur M C15H10N2O2 Very slow ppb level response 0.005 isocyanate), 4,4'-Methylene chloride Dichloromethane CH2Cl2 NR + 11.32 25
Methyl ether Dimethyl ether C2H6O 3.1 + 10.03 ne
Methyl ethyl ketone MEK, 2-Butanone C4H8O2 0.9 + 9.51 200
Methylhydrazine Monomethylhydrazine, C2H6N2 1.2 + 7.7 0.01
Methyl isobutyl ketone MIBK, 4-Methyl-2-pentanone C6H12O 0.8 + 9.30 50
Methyl Isocyanate CH3NCO C2H3NO 4.6 + 10.67 0.02
Methyl isothiocyanate CH3NCS C2H3NS 0.45 + 9.25 ne
Methyl mercaptan Methanethiol CH4S 0.54 9.44 0.5
Methyl methacrylate C5H8O2 1.5 + 9.7 100
Methyl nonafluorobutyl ether HFE-7100DL C5H3F9O NR + ne
Methyl-1,5-pentane- diamine, Dytek-A amine, 2-Methyl C6H16N2 ~0.6 + <9.0 ne 2- (coats lamp) pentamethylenediamine
Methyl propyl ketone MPK, 2-Pentanone C5H12O 0.93 + 9.38 200
Methyl-2-pyrrolidinone, N- NMP, N-Methylpyrrolidone, 1-Methyl- C5H9NO 0.8 + 9.17 ne
Methyl salicylate Methyl 2-hydroxybenzoate C8H8O3 1 ~9 ne
Methylstyrene, a- 2-Propenylbenzene C9H10 0.5 8.18 50
Methyl sulfide DMS, Dimethyl sulfide C2H6S 0.44 + 8.69 ne
Mineral spirits (Stoddard m.w. 144 0.7 + 100 Solvent, see also Viscor 120B)
Mineral spirits Viscor 120B m.w. 142 0.7 + 100 Calibration Fluid, b.p. 156-207°C
Mustard HD, Bis (2-chloroethyl) sulfide C4H8Cl2S 0.6 0.0005
Naphthalene Mothballs C10H8 0.42 + 8.13 10
Nitric oxide NO 5.2 + 9.26 25
Nitrobenzene C6H5NO2 1.9 + 9.81 1
Nitroethane C2H5NO2 NR 10.88 100
Nitrogen dioxide NO2 16.0 + 9.75 3
Nitromethane CH3NO2 NR 11.02 20
Nitropropane, 2- C3H7NO2 NR 10.71 10
Nonane C9H20 1.4 9.72 200
Octane, n- C8H18 1.8 + 9.82 300
Pentane C5H12 8.4 + 10.35 600
Peracetic acid Peroxyacetic acid, Acetyl C2H4O3 NR + ne
Peracetic/Acetic acid mix Peroxyacetic acid, Acetyl
Perchloroethene PCE, Perchloroethylene, C2Cl4 0.57 + 9.32 25
PGME Propylene glycol methyl ether, 107- C6H12O3 1.5 + 100
PGMEA Propylene glycol methyl ether 108 C6H12O3 1.0 + ne
Hydrazomethane
2-pyrrolidinone, 1-Methyl-2-pyrrolidone
Hydroperoxide
C2H4O3/C2H4O2
Hydroperoxide
Tetrachloroethylene
98-2 1-Methoxy-2-propanol
-65-6 acetate, 1-Methoxy-2­acetoxypropane, 1-Methoxy-2­propanol acetate
10.6 eV
50 + ne
PI-600 Toxic Gas Sensors PG.11
3.2.3 Relative Response Gas Matrix (page 7 of 8)
Compound Name Synonym/Abbreviation Formula Response Factor Confirmed Value IP (eV) TWA
Phenol Hydroxybenzene C6H6O 1.0 + 8.51 5
Phosgene Dichlorocarbonyl CCl2O NR 11.2 0.1
Phosphine in N2 PH3 3.9 + 9.87 0.3
Photocopier Toner Isoparaffin mix 0.5 +
Picoline, 3- 3-Methylpyridine C6H7N 0.9 9.04
Pinene, a- C10H16 0.31 + 8.07 ne
Pinene, b C10H16 0.37 + ~8 100
Piperylene, isomer mix 1,3-Pentadiene C5H8 0.69 + 8.6 100
Propane C3H8 NR + 10.95 2500
Propanol, n- Propyl alcohol C3H8O 5 10.22 200
Propene Propylene C3H6 1.4 + 9.73 ne
Propionaldehyde Propanal C3H6O 1.9 9.95 ne
Propyl acetate, n- C5H10O2 3.5 10.04 200
Propylene carbonate C4H6O3 62 + 10.5 ne
Propylene glycol 1,2-Propanediol C3H8O2 5.5 + <10.2 ne
Propylene oxide Methyloxirane C3H6O 6.6 + 10.22 20
Propyleneimine 2-Methylaziridine C3H7N 1.3 + 9.0 2
Propyl mercaptan, 2- 2-Propanethiol, Isopropyl mercaptan C3H7N 0.66 + 9.2 ne
Pyridine C5H5N 0.7 + 9.25 5
Pyrrolidine (coats lamp) Azacyclohexane C4H9N 1.3 + ~8.0 ne
RR7300 (PGME/PGMEA) 70:30 PGME:PGMEA (1- Methoxy-2-
propanol:1- Methoxy-2-acetoxypropane)
Sarin GB, Isopropyl C4H10FO2P ~3
methylphosphonofluoridate
Stoddard Solvent - see Mineral Spirits
Styrene C8H8 0.40 + 8.43 20
Sulfur dioxide SO2 NR + 12.32
Sulfur hexafluoride SF6 NR 15.3 1000
Sulfuryl fluoride Vikane SO2F2 NR 13.0 6
Tabun Ethyl N, N- C5H11N2O2P 0.8 15ppt
dimethylphosphoramidocyanidate
Tetrachloroethane, 1,1,1,2- C2H2Cl4 NR ~11.1 ne
Tetrachloroethane, 1,1,2,2- C2H2Cl4 NR + ~11.1 1
Tetraethyllead TEL C8H20Pb 0.3 ~11.1 0.008
Tetraethyl orthosilicate Ethyl silicate, TEOS C8H20O4Si 0.7 + ~9.8 10
Tetrafluoroethane, 1,1,1,2- HFC-134A C2H2F4 NR ne
Tetrafluoroethene TFE, Tetrafluoroethylene, C2F4 ~15 10.12 ne
Perfluoroethylene
Tetrafluoromethane CFC-14, Carbon tetrafluoride CF4 NR + >15.3 ne
Tetrahydrofuran THF C4H8O 1.7 + 9.41 200
Tetramethyl orthosilicate Methyl silicate, TMOS C4H12O4Si 1.9 + ~10 1
Therminol VP-1 Dowthern,3:1 Diphenyl oxide:
Biphenyl
Toluene Methylbenzene C7H8 0.50 + 8.82 50
C4H10O2 / C6H12O3
C12H10O C12H10
10.6 eV
1.4 + ne
0.7 + ne
PI-600 Toxic Gas Sensors PG.12
Loading...
+ 25 hidden pages