Datasheet TEA6320T, TEA6320 Datasheet (Philips)

Page 1
INTEGRATED CIRCUITS
DATA SH EET
TEA6320
Sound fader control circuit
Preliminary specification Supersedes data of September 1992 File under Integrated Circuits, IC01
1995 Dec 19
Page 2
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
FEATURES
Source selector for four stereo and one mono inputs
Interface for noise reduction circuits
Interface for external equalizer
Volume, balance and fader control
Special loudness characteristic automatically controlled
in combination with volume setting
Bass and treble control
Mute control at audio signal zero crossing
Fast mute control via I2C-bus
Fast mute control via pin
I2C-bus control for all functions
Power supply with internal power-on reset.
GENERAL DESCRIPTION
The sound fader control circuit TEA6320 is an I2C-bus controlled stereo preamplifier for car radio hi-fi sound applications.
QUICK REFERENCE DATA
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
CC
I
CC
V
o(rms)
G
v
G
step(vol)
G
bass
G
treble
G
step(treble)
(S+N)/N signal-plus-noise to noise ratio V
supply voltage 7.5 8.5 9.5 V supply current VCC= 8.5 V 26 mA maximum output voltage level VCC= 8.5 V; THD 0.1% 2000 mV voltage gain 86 +20 dB step resolution (volume) 1 dB bass control 15 +15 dB treble control 12 +12 dB step resolution (bass, treble) 1.5 dB
= 2.0 V; Gv= 0 dB;
O
105 dB
unweighted
RR
100
ripple rejection V
< 200 mV; f = 100 Hz;
r(rms)
76 dB
Gv=0dB
α
cs
channel separation 250 Hz f 10 kHz; Gv= 0 dB 90 96 dB
ORDERING INFORMATION
TYPE
NUMBER
NAME DESCRIPTION VERSION
PACKAGE
TEA6320 SDIP32 plastic shrink dual in-line package; 32 leads (400 mil) SOT232-1 TEA6320T SO32 plastic small outline package; 32 leads; body width 7.5 mm SOT287-1
Page 3
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
BLOCK DIAGRAM
output
MUTE
output
left
SCL
SDA
right
2.2 k
m
C
33 nF
8.2 nF
5.6 nF 10 nF
150 nF
20 k
220 nF
KVL
C
3
VOLUME II
0 to 55 dB
MUTE
FUNCTION
512
6 7
9
10 8
BALANCE
FADER REAR
DETECTOR
ZERO CROSS
LEFT
TREBLE
LEFT
BASS
VOLUME I
+20 to 31 dB
4
BALANCE
VOLUME II
0 to 55 dB
FADER FRONT
±12 dB
±15 dB
LEFT
LOUDNESS
32
C-BUS
2
I
1
RECEIVER
LOGIC
29
VOLUME II
0 to 55 dB
SOURCE
SELECTOR
BALANCE
FADER FRONT
RIGHT
±12 dB
TREBLE
BASS
RIGHT
±15 dB
RIGHT
VOLUME I
LOUDNESS
+20 to 31 dB
30
BALANCE
VOLUME II
0 to 55 dB
FADER REAR
TEA6320
MED421
150 nF
220 nF
KVL
C
5.6 nF
33 nF
20 k
8.2 nF
handbook, full pagewidth
2.2 k
Fig.1 Block diagram.
28
26 27
24
23 25
POWER
SUPPLY
21
ref
V
100 µF
2
31
CC
V
GND
19
16
15
13
47 µF
9 x 220 nF
input
left
1995 Dec 19 3
source
11
14
22
20
18
17
KIN
C
input
right
input
mono
source
source
Page 4
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
PINNING
SYMBOL PIN DESCRIPTION
SDA 1 serial data input/output GND 2 ground OUTLR 3 output left rear OUTLF 4 output left front TL 5 treble control capacitor left channel or
input from an external equalizer
B2L 6 bass control capacitor left channel or
output to an external equalizer B1L 7 bass control capacitor, left channel IVL 8 input volume I, left control part ILL 9 input loudness, left control part QSL 10 output source selector, left channel IDL 11 input D left source MUTE 12 mute control ICL 13 input C left source IMO 14 input mono source IBL 15 input B left source IAL 16 input A left source IAR 17 input A right source IBR 18 input B right source CAP 19 electronic filtering for supply ICR 20 input C right source V
ref
21 reference voltage (0.5VCC) IDR 22 input D right source QSR 23 output source selector right channel ILR 24 input loudness right channel IVR 25 input volume I, right control part B1R 26 bass control capacitor right channel B2R 27 bass control capacitor right channel or
output to an external equalizer
TR 28 treble control capacitor right channel
or input from an external equalizer OUTRF 29 output right front OUTRR 30 output right rear V
CC
31 supply voltage
SCL 32 serial clock input
handbook, halfpage
1
SDA
2
GND
OUTLF
TL B2L B1L
IVL
ILL
QSL
IDL
MUTE
ICL
IMO
IBL IAL
3 4 5 6 7 8
9 10 11 12 13 14 15 16
TEA6320
MED422
OUTLR
Fig.2 Pin configuration.
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
SCL V
CC
OUTRR OUTRF TR B2R B1R IVR ILR QSR IDR
V
ref
ICR CAP IBR IAR
Page 5
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
FUNCTIONAL DESCRIPTION
The source selector selects one of 4 stereo inputs or the mono input. The maximum input signal voltage is V
= 2 V. The outputs of the source selector and the
i(rms)
inputs of the following volume control parts are available at pins 8 and 10 for the left channel and pins 23 and 25 for the right channel. This offers the possibility of interfacing a noise reduction system.
The volume control function is split into two sections: volume I control block and volume II control block.
The control range of volume I is between +20 dB and
31 dB in steps of 1 dB. The volume II control range is between 0 dB and 55 dB in steps of 1 dB. Although the theoretical possible control range is 106 dB (+20 to 86 dB), in practice a range of 86 dB (+20 to
66 dB) is recommended. The gain/attenuation setting of the volume I control block is common for both channels.
The volume I control block operates in combination with the loudness control. The filter is linear when the maximum gain for the volume I control (+20 dB) is selected. The filter characteristic increases automatically over a range of 32 dB down to a setting of 12 dB. That means the maximum filter characteristic is obtained at 12 dB setting of volume I. Further reduction of the volume does not further influence the filter characteristic (see Fig.5). The maximum selected filter characteristic is determined by external components. The proposed application gives a maximum boost of 17 dB for bass and 4.5 dB for treble. The loudness may be switched on or off via I2C-bus control (see Table 7).
The volume I control block is followed by the bass control block. A single external capacitor of 33 nF for each channel in combination with internal resistors, provides the frequency response of the bass control (see Fig.3). The adjustable range is between 15 and +15 dB at 40 Hz.
Both loudness and bass control result in a maximum bass boost of 32 dB for low volume settings.
The treble control block offers a control range between
12 and +12 dB in steps of 1.5 dB at 15 kHz. The filter characteristic is determined by a single capacitor of 5.6 nF for each channel in combination with internal resistors (see Fig.4).
The basic step width of bass and treble control is 3 dB. The intermediate steps are obtained by switching 1.5 dB boost and 1.5 dB attenuation steps.
The bass and treble control functions can be switched off via I2C-bus. In this event the internal signal flow is disconnected. The connections B2L and B2R are outputs
and TL and TR are inputs for inserting an external equalizer.
The last section of the circuit is the volume II block. The balance and fader functions are performed using the same control blocks. This is realized by 4 independently controllable attenuators, one for each output. The control range of these attenuators is 55 dB in steps of 1 dB with an additional mute step.
The circuit provides 3 mute modes:
1. Zero crossing mode mute via I 2 independent zero crossing detectors (ZCM, see Tables 2 and 9 and Fig.16).
2. Fast mute via MUTE pin (see Fig.10).
3. Fast mute via I2C-bus either by general mute (GMU, see Tables 2 and 9) or volume II block setting (see Table 4).
The mute function is performed immediately if ZCM is cleared (ZCM = 0). If the bit is set (ZCM = 1) the mute is activated after changing the GMU bit. The actual mute switching is delayed until the next zero crossing of the audio frequency signal. As the two audio channels (left and right) are independent, two comparators are built-in to control independent mute switches.
To avoid a large delay of mute switching when very low frequencies are processed, the maximum delay time is limited to typically 100 ms by an integrated timing circuit and an external capacitor (Cm= 10 nF, see Fig.10). This timing circuit is triggered by reception of a new data word for the switch function which includes the GMU bit. After a discharge and charge period of an external capacitor the muting switch follows the GMU bit if no zero crossing was detected during that time.
The mute function can also be controlled externally. If the mute pin is switched to ground all outputs are muted immediately (hardware mute). This mute request overwrites all mute controls via the I2C-bus for the time the pin is held LOW. The hardware mute position is not stored in the TEA6320.
For the turn on/off behaviour the following explanation is generally valid. To avoid AF output caused by the input signal coming from preceding stages, which produces output during drop of VCC, the mute has to be set, before the VCC will drop. This can be achieved by I2C-bus control or by grounding the MUTE pin.
For use where is no mute in the application before turn off, a supply voltage drop of more than 1 × VBE will result in a mute during the voltage drop.
2
C-bus using
Page 6
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
The power supply should include a VCC buffer capacitor, which provides a discharging time constant. If the input signal does not disappear after turn off the input will become audible after certain time. A 4.7 k resistor discharges the VCC buffer capacitor, because the internal
The hardware mute function is favourable for use in Radio Data System (RDS) applications. The zero crossing mute avoids modulation plops. This feature is an advantage for mute during changing presets and/or sources (e.g. traffic announcement during cassette playback).
current of the IC does not discharge it completely.
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
CC
V
n
supply voltage 0 10 V voltage at all pins except pin 2
0VCCV
referenced to GND (pin 2)
T
amb
T
stg
V
es
operating ambient temperature 40 +85 °C storage temperature 65 +150 °C electrostatic handling note 1
Note
1. Human body model: C = 100 pF; R = 1.5 k; V 2 kV. Charge device model: C = 200 pF; R = 0 ; V 500 V.
Page 7
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
CHARACTERISTICS
VCC= 8.5 V; RS= 600 ; RL=10kΩ; CL= 2.5 nF; AC coupled; f = 1 kHz; T linear; treble linear; fader off; balance in mid position; loudness off; unless otherwise specified.
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
CC
I
CC
V
DC
supply voltage 7.5 8.5 9.5 V supply current 26 33 mA internal DC voltage at inputs and
outputs
V
ref
G V
o(rms)
v(max)
internal reference voltage at pin 21 4.25 V maximum voltage gain RS=0Ω; RL= 19 20 21 dB output voltage level for
P
at the power output stage THD 0.5%; see Fig.11 2000 mV
max
start of clipping THD = 1% 2300 −−mV
R
=2kΩ; CL= 10 nF;
L
THD=1% V f
ro
i(rms)
input sensitivity Vo= 2000 mV; Gv=20dB 200 mV roll-off frequency C
= 220 nF;
KIN
C
= 220 nF; Zi=Z
KVL
low frequency (1 dB) 60 −−Hz low frequency (3 dB) 30 −−Hz high frequency (1 dB) 20000 −−Hz
C
= 470 nF;
KIN
C
= 100 nF; Zi=Z
KVL
low frequency (3 dB)
α
cs
channel separation Vi= 2 V; frequency range
250 Hz to 10 kHz THD total harmonic distortion frequency range
20 Hz to 12.5 kHz
V
= 100 mV; Gv=20dB 0.1 %
i
= 1 V; Gv=0dB 0.05 0.15 %
V
i
V
= 2 V; Gv=0dB 0.1 %
i
V
= 2 V; Gv= 10 dB 0.1 %
i
RR ripple rejection V
r(rms)
< 200 mV f = 100 Hz 70 76 dB f = 40 Hz to 12.5 kHz 66 dB
(S+N)/N signal-plus-noise to noise ratio unweighted;
20 Hz to 20 kHz (RMS); V
= 2.0 V; see Figs 6 and 7
o
CCIR468-2 weighted; quasi peak; V
= 2.0 V
o
=0dB 95 dB
G
v
=12dB 88 dB
G
v
G
=20dB 81 dB
v
=25°C; gain control Gv= 0 dB; bass
amb
3.83 4.25 4.68 V
2000 −−mV
i(min)
17 −−Hz
i(typ)
90 96 dB
105 dB
Page 8
Philips Semiconductors Preliminary specification

Sound fader control circuit TEA6320
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
P
no(rms)
α
ct
Source selector
Z
i
α
S
V
i(rms)
V
offset
Z
o
R
L
C
L
G
v
Control part (source selector disconnected; source resistance 600 )
Z
i
Z
o
R
L
C
L
R
DCL
V
i(rms)
V
no
CR
tot
G
step
noise output power (RMS value)
mute position; note 1 −−10 nW
only contribution of TEA6320; power amplifier for 6 W
crosstalk
V

20

bus p p–()
-------------------------- -log V
o rms()
between bus
note 2 110 dB
inputs and signal outputs
input impedance 25 35 45 k input isolation of one selected
source to any other input maximum input voltage
(RMS value) DC offset voltage at source
f = 1 kHz 105 dB f = 12.5 kHz 95 dB THD < 0.5%; VCC= 8.5 V 2.15 V THD < 0.5%; V
= 7.5 V 1.8 V
CC
−−10 mV selector output by selection of any inputs
output impedance 80 120 output load resistance 10 −−k output load capacity 0 2500 pF voltage gain, source selector 0 dB
input impedance volume input 100 150 200 k input impedance loudness input 25 33 40 k output impedance 80 120 output load resistance 2 −−k output load capacity 0 10 nF DC load resistance at output to
4.7 −−k ground
maximum input voltage
THD < 0.5% 2.15 V
(RMS value) noise output voltage CCIR468-2 weighted; quasi
peak
G
=20dB 110 220 µV
v
G
=0dB 33 50 µV
v
G
= 66 dB 13 22 µV
v
mute position 10 −µV total continuous control range 106 dB recommended control range 86 dB step resolution 1 dB step error between any adjoining
−−0.5 dB
step
Page 9
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
G
a
G
t
MUTE
att
V
offset
Volume I control and loudness
CR
vol
G
v
G
step
L
Bmax
attenuator set error Gv= +20 to 50 dB −−2dB
G
=51 to 66 dB −−3dB
v
gain tracking error Gv= +20 to 50 dB −−2dB mute attenuation see Fig.10 100 110 dB DC step offset between any
adjoining step DC step offset between any step to
Gv=0to−66 dB 0.2 10 mV
G
=20to0dB 215mV
v
=0to−66 dB −−10 mV
G
v
mute
continuous volume control range 51 dB voltage gain 31 +20 dB step resolution 1 dB maximum loudness boost loudness on; referred to
loudness off; boost is
determined by external
components
f = 40 Hz 17 dB f = 10 kHz 4.5 dB
Bass control
G
bass
bass control, maximum boost f = 40 Hz 14 15 16 dB maximum attenuation f = 40 Hz 14 15 16 dB
G
step
step resolution (toggle switching) f = 40 Hz 1.5 dB step error between any adjoining
step
V
offset
DC step offset in any bass position −−20 mV
Treble control
G
treble
treble control, maximum boost f = 15 kHz 11 12 13 dB maximum attenuation f = 15 kHz 11 12 13 dB maximum boost f > 15 kHz −−15 dB
G
step
step resolution (toggle switching) f = 15 kHz 1.5 dB step error between any adjoining
step
V
offset
DC step offset in any treble position
Volume II, balance and fader control
CR continuous attenuation fader and
volume control range
G
step
step resolution 12dB attenuation set error −−1.5 dB
f = 40 Hz −−0.5 dB
f = 15 kHz −−0.5 dB
−−10 mV
53.5 55 56.5 dB
Page 10
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Mute function (see Fig.10)
H
ARDWARE MUTE
V
sw
mute active
V
swLOW
I
i
mute passive: level internally defined
V
swHIGH
t
d(mute)
ZERO CROSSING MUTE I
d
I
ch
V
swDEL
t
d
V
wind
mute switch level (2 × VBE) 1.45 V
input level −−1.0 V input current V
=1V −300 −−µA
swLOW
saturation voltage −−VCCV delay until mute passive −−0.5 ms
discharge current 0.3 0.6 1.2 µA charge current 300 150 −µA delay switch level (3 × VBE) 2.2 V delay time Cm=10nF 100 ms window for audio signal zero
30 40 mV
crossing detection
Muting at power supply drop
V
CCdrop
supply drop for mute active V19−
V
0.7
2
Power-on reset (when reset is active the GMU-bit (general mute) is set and the I
C-bus receiver is in
reset position)
V
CC
increasing supply voltage start of
−−2.5 V
reset end of reset 5.2 6.5 7.2 V decreasing supply voltage start of
4.2 5.5 6.2 V
reset
Digital part (I
V
iH
V
iL
I
iH
I
iL
V
oL
2
C-bus pins); note 3
HIGH level input voltage 3 9.5 V LOW level input voltage 0.3 +1.5 V HIGH level input current 10 +10 µA LOW level input current 10 +10 µA LOW level output voltage IL=3mA −−0.4 V
Notes to the characteristics
1. The indicated values for output power assume a 6 W power amplifier at 4 with 20 dB gain and a fixed attenuator of 12 dB in front of it. Signal-to-noise ratios exclude noise contribution of the power amplifier.
2. The transmission contains: total initialization with MAD and subaddress for volume and 8 data words, see also definition of characteristics, clock frequency = 50 kHz, repetition burst rate = 400 Hz, maximum bus signal amplitude = 5 V (p-p).
3. The AC characteristics are in accordance with the I2C-bus specification. This specification,
use it
”, can be ordered using the code 9398 393 40011.
“The I2C-bus and how to
1995 Dec 19 10
Page 11
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
I2C-BUS PROTOCOL
2
C-bus format
I
(1)
S
SLAVE ADDRESS
Notes
1. S = START condition.
2. SLAVE ADDRESS (MAD) = 1000 0000.
3. A = acknowledge, generated by the slave.
4. SUBADDRESS (SAD), see Table 1.
5. DATA, see Table 1; if more than 1 byte of DATA is transmitted, then auto-increment of the significant subaddress is performed.
6. P = STOP condition.
Table 1 Second byte after MAD
(2)
(3)
A
SUBADDRESS
(4)
(3)
A
DATA
(5)
(3)
A
(6)
P
FUNCTION BIT
765432
(1)
(1)
1
(1)
0
Volume/loudness V 00000000 Fader front right FFR 00000001 Fader front left FFL 00000010 Fader rear right FRR 00000011 Fader rear left FRL 00000100 Bass BA 00000101 Treble TR 00000110 Switch S 00000111
Note
1. Significant subaddress.
MSB LSB
1995 Dec 19 11
Page 12
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
Table 2 Definition of third byte after MAD and SAD
FUNCTION BIT
MSB LSB
76543210
Volume/loudness V ZCM Fader front right FFR X Fader front left FFL X Fader rear right FRR X Fader rear left FRL X Bass BA X Treble TR X
(4) (4) (4) (4) (4) (4)
Switch S GMU
Notes
1. Zero crossing mode.
2. Switch loudness on/off.
3. Volume control.
4. Don’t care bits (logic 1 during testing).
5. Fader control front right.
6. Fader control front left.
7. Fader control rear right.
8. Fader control rear left.
9. Bass control.
10. Treble control.
11. Mute control for all outputs (general mute).
12. Source selector control.
(1)
(11)
LOFF
(4)
X
(4)
X
(4)
X
(4)
X
(4)
X
(4)
X
(4)
X
(2)
V5
FFR5
FFL5 FRR5 FRL5
(4)
X
(4)
X
(4)
X
(3)
(6)
(8)
(5)
(7)
V4
FFR4
FFL4 FRR4 FRL4
BA4
TR4
(4)
X
(3)
(9)
(10)
(6)
(8)
(5)
(7)
V3
FFR3
FFL3 FRR3 FRL3
BA3
TR3
(4)
X
(3)
(9)
(10)
(6)
(5)
(8)
(7)
V2
FFR2
FFL2
FRR2
FRL2
BA2
TR2
SC2
(3)
(9) (10) (12)
(6)
(5)
(8)
(7)
V1
FFR1
FFL1
FRR1
FRL1
BA1
TR1
SC1
(3)
(10) (12)
(9)
(6)
(8)
(5)
(7)
V0
FFR0
FFL0 FRR0 FRL0
BA0
TR0 SC0
(3)
(5)
(6)
(7)
(8)
(9) (10) (12)
1995 Dec 19 12
Page 13
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
Table 3 Volume I setting
G
v
(dB)
Loudness on: the increment of the loudness characteristics is linear at every volume step in the range from +20 to 11 dB
+20 111111 +19 111110 +18 111101 +17 111100 +16 111011 +15 111010 +14 111001 +13 111000 +12 110111 +11 110110 +10 110101
+9 110100 +8 110011 +7 110010 +6 110001 +5 110000 +4 101111 +3 101110 +2 101101 +1 101100
0 101011
1 101010
2 101001
3 101000
4 100111
5 100110
6 100101
7 100100
8 100011
9 100010
10 100001
11 100000
V5 V4 V3 V2 V1 V0
DATA
1995 Dec 19 13
Page 14
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
G
v
(dB)
Loudness characteristic is constant in a range from 11 dB to 31 dB
12 011111
13 011110
14 011101
15 011100
16 011011
17 011010
18 011001
19 011000
20 010111
21 010110
22 010101
23 010100
24 010011
25 010010
26 010001
27 010000
28 001111
29 001110
30 001101
31 001100
V5 V4 V3 V2 V1 V0
DATA
Repetition of steps in a range from 28 dB to 31 dB
28 001011
29 001010
30 001001
31 001000
28 000111
29 000110
30 000101
31 000100
28 000011
29 000010
30 000001
31 000000
1995 Dec 19 14
Page 15
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
Table 4 Volume II setting (fader and balance); note 1
DATA
FRR5 FRR4 FRR3 FRR2 FRR1 FRR0
G
v
(dB)
0 111111
1 111110
2 111101
3 111100
4 111011
5 111010
6 111001
7 111000
8 110111
9 110110
10 110101
11 110100
12 110011
13 110010
14 110001
15 110000
16 101111
17 101110
18 101101
19 101100
20 101011
21 101010
22 101001
23 101000
24 100111
25 100110
26 100101
27 100100
28 100011
29 100010
30 100001
31 100000
32 011111
33 011110
34 011101
FRL5 FRL4 FRL3 FRL2 FRL1 FRL0
FFL5 FFL4 FFL3 FFL2 FFL1 FFL0
FFR5 FFR4 FFR3 FFR2 FFR1 FFR0
1995 Dec 19 15
Page 16
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
DATA
FRR5 FRR4 FRR3 FRR2 FRR1 FRR0
G
v
(dB)
35 011100
36 011011
37 011010
38 011001
39 011000
40 010111
41 010110
42 010101
43 010100
44 010011
45 010010
46 010001
47 010000
48 001111
49 001110
50 001101
51 001100
52 001011
53 001010
54 001001
55 001000
mute 0 0 0 1 1 1 mute 0 0 0 1 1 0 mute 0 0 0 1 0 1 mute 0 0 0 1 0 0 mute 0 0 0 0 1 1 mute 0 0 0 0 1 0 mute 0 0 0 0 0 1 mute 0 0 0 0 0 0
FRL5 FRL4 FRL3 FRL2 FRL1 FRL0
FFL5 FFL4 FFL3 FFL2 FFL1 FFL0
FFR5 FFR4 FFR3 FFR2 FFR1 FFR0
Note
1. For a particular range the data is always the same, only the subaddress changes.
1995 Dec 19 16
Page 17
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
Table 5 Bass setting
G
bass
(dB)
BA4 BA3 BA2 BA1 BA0
DATA
+15.0 11111 +13.5 11110 +15.0 11101 +13.5 11100 +15.0 11011 +13.5 11010 +12.0 11001 +10.5 11000 +9.0 10111 +7.5 10110 +6.0 10101 +4.5 10100 +3.0 10011 +1.5 10010
(1)
0
(2)
0
10001 10000
1.5 01111
3.0 01110
4.5 01101
6.0 01100
7.5 01011
9.0 01010
10.5 01001
12.0 01000
13.5 00111
15.0 00110
13.5 00101
15.0 00100
note 3 00011 note 3 00010 note 3 00001
notes 3 and 4 00000
Notes
1. Recommended data word for step 0 dB.
2. Result of 1.5 dB boost and 1.5 dB attenuation.
3. The last four bass control data words mute the bass response.
4. The last bass control and treble control data words (00000) enable the external equalizer connection.
1995 Dec 19 17
Page 18
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
Table 6 Treble setting
G
(dB)
treble
TR4 TR3 TR2 TR1 TR0
DATA
+12.0 11111 +10.5 11110 +12.0 11101 +10.5 11100 +12.0 11011 +10.5 11010 +12.0 11001 +10.5 11000 +9.0 10111 +7.5 10110 +6.0 10101 +4.5 10100 +3.0 10011 +1.5 10010
(1)
0
(2)
0
10001 10000
1.5 01111
3.0 01110
4.5 01101
6.0 01100
7.5 01011
9.0 01010
10.5 01001
12.0 01000
note 3 00111 note 3 00110 note 3 00101 note 3 00100 note 3 00011 note 3 00010 note 3 00001
notes 3 and 4 00000
Notes
1. Recommended data word for step 0 dB.
2. Result of 1.5 dB boost and 1.5 dB attenuation.
3. The last eight treble control data words select treble output.
4. The last treble control and bass control data words (00000) enable the external equalizer connection.
1995 Dec 19 18
Page 19
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
Table 7 Loudness setting
CHARACTERISTIC DATA LOFF
With loudness 0 Linear 1
Table 8 Selected input
FUNCTION
SC2 SC1 SC0
Stereo inputs IAL and IAR 1 1 1 Stereo inputs IBL and IBR 1 1 0 Stereo inputs ICL and ICR 1 0 1 Stereo inputs IDL and IDR 1 0 0 Mono input IMO 0 X
Note
1. X = don’t care bits (logic 1 during testing).
DATA
(1)
Table 9 Mute mode
FUNCTION
Direct mute off 0 0 Mute off delayed until the next zero
crossing Direct mute 1 0 Mute delayed until the next zero
crossing
(1)
X
DATA
GMU ZCM
01
11
1995 Dec 19 19
Page 20
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
18
handbook, full pagewidth
G
bass
(dB)
12
6
0
6
12
18
10
MED423
2
10
3
10
f (Hz)
4
10
Fig.3 Bass control.
15
handbook, full pagewidth
G
treble (dB)
10
5
0
5
10
15
10
32
10
Fig.4 Treble control.
1995 Dec 19 20
MED424
4
10
f (Hz)
5
10
Page 21
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
20
handbook, full pagewidth
G
v
(dB)
10
0
10
20
30
40
10
2
10
3
10
4
10
Fig.5 Volume control with loudness (including low roll-off frequency).
f (Hz)
MED425
5
10
100
handbook, full pagewidth
S/N
(dB)
90
80
70
60
50
4
10
(1) Vi= 2.0 V. (2) Vi= 0.5 V. (3) Vi= 0.2 V.
3
10
2
10
1
10
1
Fig.6 Signal-to-noise ratio; noise weighted: CCIR468-2, quasi peak.
MED426
(1)
(2) (3)
Po (W)
10
1995 Dec 19 21
Page 22
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
110
handbook, full pagewidth
S/N
(dB)
100
90
80
70
60
4
10
(1) Unweighted RMS. (2) CCIR468-2 RMS. (3) CCIR468-2 quasi peak.
3
10
2
10
Fig.7 Signal-to-noise ratio; Vi= 2 V; P
MED427
(1)
(2)
(3)
1
10
=6W.
max
1
Po (W)
10
200
handbook, full pagewidth
noise
(µV)
150
100
50
0
70 50 30 10 10
Stereo/mono inputs. (1) Loudness on. (2) Loudness off.
(1)
(2)
Fig.8 Noise output voltage; CCIR468-2, quasi peak.
gain (dB)
MED428
30
1995 Dec 19 22
Page 23
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
60
handbook, full pagewidth
(dB)
80
100
120
140
MED429
2
10
3
10
2 x 10
3
5 x 10
3
4
10
f (Hz)
2 x 10
45020 500200
Fig.9 Muting.
1995 Dec 19 23
Page 24
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
handbook, full pagewidth
delay switch
mute switch
level
level
V
(1)
1.45
(V)
CC
8.5
U
2.2
TEA6320
zero crossing
mute start
hardware mute switchmute pin 12
ICH = 150 µA
ID = 0.6 µA
0.5 ms delay until mute passive
100 ms
end of delay hard muteonhard mute
Cm = 10 nF
I
(µA)
0
150
MED430
t (ms)
off
(1) Typically 2.2 V; referenced to 3 × VBE.
Fig.10 Mute function diagram.
1995 Dec 19 24
Page 25
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
If the 20 dB gain is not required for the maximum volume position, it will be an advantage to use the maximum boost gain and then increased attenuation in the last section, Volume II.
handbook, halfpage
TEA6320
= 200 mV
I(min)
Vo = 2 V for P
Therefore the loudness will be at the correct place and a lower noise and offset voltage will be achieved.
POWER STAGE
G = 20 dB
P
= 100 W at 4 V
(max)
(max)
MBE899
a.
a. Gain volume I = 20 dB (G b. Gain volume I = 20 dB (G
handbook, halfpage
= 200 mV
I(min)
TEA6320
Vo = 1 V for P
POWER STAGE
G = 26 dB
P
= 100 W at 4 V
(max)
(max)
MED431
b.
); gain volume II = 0 dB; fader and balance range = 55 dB.
v(max)
); gain volume II = 6 dB global setting; fader and balance range now 49 dB, previously 55 dB.
v(max)
Fig.11 Level diagram.
1995 Dec 19 25
Page 26
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
handbook, full pagewidth
+
V
8.5 V
9 × 220 nF
9 × 600
V
P
CC
4.7 k
inputs
470 µF
16 15 13 11 14 17 18 20 22
31
TEA6320
21921
47
3 4
29 30
100
µFµF
+8.5 V to oscilloscope
outputs to oscilloscope
4 × 4.7 µF
4 × 10 k
MED432
Fig.12 Turn-on/off power supply circuit diagram.
10
handbook, full pagewidth
(V)
8
6
4
2
0
01234
(1) VCC. (2) VO.
(1)
(2)
Fig.13 Turn-on/off behaviour.
t (s)
MED433
5
1995 Dec 19 26
Page 27
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
handbook, full pagewidth
220 nF 33 nF
100 µF
VCC = 8.5 V
10 k
1000 µF
V
P
0.2 V (RMS)
0.1 µF
47 µF
10 8 7 6 5 12
21 31
2
19
5.6 nF
TEA6320
10 nF
32
1
SCL
SDA
handbook, full pagewidth
V
p
470 µF
600
input A to D left and right and input mono
220 nF
23 25 26 27 28
33 nF220 nF
5.6 nF
Fig.14 Test circuit for power supply ripple rejection (RR).
V
V
i
= 8.5 V
CC
0.1 µF
600
100 µF
47 µF
220 nF
220 nF
220 nF 33 nF
10 8 7 6 5 12
21 31
2
19
input A to D right and left
input A to D left and right and input mono
5.6 nF
TEA6320
output right
output left
front and rear
10 nF
output left
output right
front and rear
MED434
32
1
4.7 µF
4.7 µF
SCL
SDA
V
V
O
O
23 25 26 27 28
Fig.15 Test circuit for channel separation (αcs).
1995 Dec 19 27
33 nF220 nF
5.6 nF
MED435
Page 28
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
Selection of input signals by using the zero crossing mute mode
A selection from input A (IAL) to input B (IBL) left sources produces a modulation click depending on the difference of the signal values at the time of switching.
the maximum possible difference between signals is
At t
1
7 V(p-p) (see Fig. 16) and gives a large click. Using the cross detector no modulation click is audible.
For example: The selection is enabled at t1, the microcontroller sets the zero cross bit (ZCM = 1) and then the mute bit (GMU = 1) via the I2C-bus. The output signal
handbook, full pagewidth
V
4 3
2 1 0
1
2
3
t
1
follows the input A signal, until the next zero crossing occurs and then activates mute.
After a fixed delay time at t2, the microcontroller sends the bits for input switching and mute inactive.
The output signal remains muted until the next signal zero crossing of input B (IBL) occurs, and then follows that signal.
The delay time t2− t1 is e.g. 40 ms. Therefore the capacity Cm= 3.3 nF. The zero cross function is working at the lowest frequency of 40 Hz determined by the Cm capacitor.
MED436
(1)
(2)
t
2
(3)
t
4
(1) Input A (IAL). (2) Output. (3) Input B (IBL).
Fig.16 Zero cross function; only one channel shown.
1995 Dec 19 28
Page 29
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
Loudness filter calculation example
Figure 17 shows the basic loudness circuit with an external low-pass filter application. R1 allows an attenuation range of 21 dB while the boost is determined by the gain stage V2. Both result in a loudness control range of +20 to 12 dB.
Defining f
as the frequency where the level does not
ref
change while switching loudness on/off. The external resistor R3 for f
=
R3 R1
--------------------­110
→∞ can be calculated as:
ref
G
v
------ ­20
10
. With G
G
v
------ ­20
= 21 dB and R1 = 33 k,
v
R3 = 3.2 k is generated. For the low-pass filter characteristic the value of the
external capacitor C1 can be determined by setting a specific boost for a defined frequency and referring the
at f
gain to G
1
--------------------­j ω C1()
as indicated above.
v
ref
R1 R3+()10
=
-------------------------------------------------------------­110
G
------ ­20
G
v
------ ­20
R3×
v
andbook, halfpage
C
KVL
C1
R3
0 dB
8
V
1
R1
33 k
9
V
2
Fig.17 Basic loudness circuit.
R2
MED437
For example: 3 dB boost at f = 1 kHz G
v=Gv(ref)
+ 3 dB = 18 dB; f = 1 kHz and C1 = 100 nF.
If a loudness characteristic with additional high frequency boost is desired, an additional high-pass section has to be included in the external filter circuit as indicated in the block diagram. A filter configuration that provides AC coupling avoids offset voltage problems.
1995 Dec 19 29
Page 30
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
INTERNAL PIN CONFIGURATIONS
Values shown in Figs 18 to 30 are typical DC values; VCC= 8.5 V.
3
+
1
5 V
1.8 k
80
MBE900
4.25 V
Fig.18 Pin 1: SDA (I2C-bus data).
5
4.25 V +
2.4 k
MBE902
+
MBE901
Fig.19 Pins 3, 4, 29, 30: output signals.
+
6
80
4.25 V
MBE903
Fig.20 Pins 5 and 28: treble control capacitors.
1995 Dec 19 30
Fig.21 Pins 6 and 27: bass control capacitor outputs.
Page 31
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
7
4.16 k
4.25 V +
8
4.25 V +
9.4 k
4.25 V
MBE904
Fig.22 Pins 7 and 26: bass control capacitor inputs.
9
4.25 V +
150 k
4.25 V
MED438
Fig.23 Pins 8 and 25: input volume 1, control part.
+
10
4.25 V
80
1.12 k
MBE905
Fig.24 Pins 9 and 24: input loudness, control part.
1995 Dec 19 31
MBE906
Fig.25 Pins 10 and 23: output source selector.
Page 32
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
12
8.5 V
MBE908
constant
2.2 V
35 k
4.25 V
11
4.25 V
+
1.3 k
+
maximum 200µA
0.6 µA constant
MBE907
4.5 k
Fig.26 Pins 11, 13 to 18, 20, 22: inputs.
8.4 V
19
5 k
Fig.28 Pin 19: filtering for supply; pin 21: reference voltage.
31
apply +8.5 V to this pin
4.25 V 21
4.7 k 300
+
Fig.27 Pin 12: mute control.
+
3.4 k
3.4 k
MHA063
32
5 V
1.8 k
MBE909
Fig.29 Pin 31: supply voltage.
1995 Dec 19 32
MED440
Fig.30 Pin 32: SCL (I2C-bus clock).
Page 33
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
PACKAGE OUTLINES
SDIP32: plastic shrink dual in-line package; 32 leads (400 mil)
D
seating plane
L
Z
32
pin 1 index
e
b
SOT232-1
M
E
A
2
A
A
1
w M
b
1
17
E
c
(e )
M
1
H
1
0 5 10 mm
scale
DIMENSIONS (mm are the original dimensions)
A
A
A
UNIT b
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
mm
OUTLINE VERSION
SOT232-1
max.
4.7 0.51 3.8
12
min.
max.
IEC JEDEC EIAJ
1.3
0.8
b
1
0.53
0.40
REFERENCES
0.32
0.23
cEe M
(1) (1)
D
29.4
28.5
1995 Dec 19 33
9.1
8.7
16
(1)
Z
L
3.2
2.8
EUROPEAN
PROJECTION
M
10.7
10.2
E
12.2
10.5
e
1
w
H
0.181.778 10.16
ISSUE DATE
92-11-17 95-02-04
max.
1.6
Page 34
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
SO32: plastic small outline package; 32 leads; body width 7.5 mm
D
y
Z
32
pin 1 index
1
e
17
16
w M
b
p
SOT287-1
E
c
H
E
A
2
A
1
L
detail X
A
X
v M
A
Q
(A )
L
p
A
3
θ
0 5 10 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
mm
OUTLINE
VERSION
SOT287-1
A
max.
2.65
0.10
A1A2A
0.3
2.45
0.1
2.25
0.012
0.096
0.004
0.086
IEC JEDEC EIAJ
0.25
0.01
b
p
3
0.49
0.27
0.36
0.18
0.02
0.011
0.01
0.007
UNIT
inches
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
(1)E(1)
cD
20.7
20.3
0.81
0.80
REFERENCES
7.6
7.4
0.30
0.29
1.27
0.050
1995 Dec 19 34
eHELLpQZywv θ
10.65
10.00
0.419
0.394
1.4
0.055
1.1
0.4
0.043
0.016
1.2
1.0
0.047
0.039
0.25 0.1
0.25
0.010.01
EUROPEAN
PROJECTION
0.004
(1)
0.95
0.55
0.037
0.022
ISSUE DATE
95-01-25 97-05-22
o
8
o
0
Page 35
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
SOLDERING Introduction
There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in
“IC Package Databook”
our
(order code 9398 652 90011).
SDIP
SOLDERING BY DIPPING OR BY WA VE The maximum permissible temperature of the solder is
260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (T
stg max
). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.
R
EPAIRING SOLDERED JOINTS
Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.
SO
REFLOW SOLDERING Reflow soldering techniques are suitable for all SO
packages.
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.
Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.
AVE SOLDERING
W Wave soldering techniques can be used for all SO
packages if the following conditions are observed:
A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
The longitudinal axis of the package footprint must be parallel to the solder flow.
The package footprint must incorporate solder thieves at the downstream end.
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.
EPAIRING SOLDERED JOINTS
R Fix the component by first soldering two diagonally-
opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
1995 Dec 19 35
Page 36
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
DEFINITIONS
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
2
PURCHASE OF PHILIPS I
C COMPONENTS
2
Purchase of Philips I components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
C components conveys a license under the Philips’ I2C patent to use the
1995 Dec 19 36
Page 37
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
NOTES
1995 Dec 19 37
Page 38
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
NOTES
1995 Dec 19 38
Page 39
Philips Semiconductors Preliminary specification
Sound fader control circuit TEA6320
NOTES
1995 Dec 19 39
Page 40
Philips Semiconductors – a worldwide company
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,
Tel. (01)60 101-1236, Fax. (01)60 101-1211
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,
Tel. (31)40-2783749, Fax. (31)40-2788399
Brazil: Rua do Rocio 220 - 5
CEP: 04552-903-SÃO PAULO-SP, Brazil, P.O. Box 7383 (01064-970), Tel. (011)821-2333, Fax. (011)829-1849
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:
Tel. (800) 234-7381, Fax. (708) 296-8556
Chile: Av. Santa Maria 0760, SANTIAGO,
Tel. (02)773 816, Fax. (02)777 6730
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. (852)2319 7888, Fax. (852)2319 7700
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300
COPENHAGEN S, Tel. (45)32 88 26 36, Fax. (45)31 57 19 49
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (358)0-615 800, Fax. (358)0-61580 920
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: P.O. Box 10 51 40, 20035 HAMBURG,
Tel. (040)23 53 60, Fax. (040)23 53 63 00
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (01)4894 339/4894 911, Fax. (01)4814 240
India: Philips INDIA Ltd, Shivsagar Estate, A Block,
Dr. Annie Besant Rd. Worli, Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,
P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (01)7640 000, Fax. (01)7640 200
Italy: PHILIPS SEMICONDUCTORS S.r.l.,
Piazza IV Novembre 3, 20124 MILANO, Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557
Japan: Philips Bldg13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. (03)3740 5130, Fax. (03)3740 5077
Korea: Philips House, 260-199 Itaewon-dong,
Yongsan-ku, SEOUL, Tel. (02)709-1412, Fax. (02)709-1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905,
Tel. 9-5(800)234-7381, Fax. (708)296-8556
th
floor, Suite 51,
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. (040)2783749, Fax. (040)2788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09)849-4160, Fax. (09)849-7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. (022)74 8000, Fax. (022)74 8341
Pakistan: Philips Electrical Industries of Pakistan Ltd.,
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (63) 2 816 6380, Fax. (63) 2 817 3474
Portugal: PHILIPS PORTUGUESA, S.A.,
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)4163160/4163333, Fax. (01)4163174/4163366
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (65)350 2000, Fax. (65)251 6500
South Africa: S.A. PHILIPS Pty Ltd.,
195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430, Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03)301 6312, Fax. (03)301 42 43
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,
Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. (01)488 2211, Fax. (01)481 77 30
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978, TAIPEI 100, Tel. (886) 2 382 4443, Fax. (886) 2 382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, Bangkok 10260, THAILAND, Tel. (66) 2 745-4090, Fax. (66) 2 398-0793
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. (0212)279 27 70, Fax. (0212)282 67 07
Ukraine: Philips UKRAINE, 2A Akademika Koroleva str., Office 165,
252148 KIEV, Tel.380-44-4760297, Fax. 380-44-4766991
United Kingdom: Philips Semiconductors LTD.,
276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. (0181)730-5000, Fax. (0181)754-8421
United States:811 East Arques Avenue, SUNNYVALE,
CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556
Uruguay: Coronel Mora 433, MONTEVIDEO,
Tel. (02)70-4044, Fax. (02)92 0601
Internet: http://www.semiconductors.philips.com/ps/ For all other countries apply to: Philips Semiconductors,
International Marketing and Sales, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-2724825
SCDS47 © Philips Electronics N.V. 1995
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
513061/1100/02/pp40 Date of release: 1995 Dec 19 Document order number: 9397 750 00533
Loading...