Analog Devices OP290 b Datasheet

Precision, Low Power, Micropower
a
FEATURES Single-/Dual-Supply Operation, 1.6 V to 36 V, 0.8 V to 18 V True Single-Supply Operation; Input and Output Voltage Ranges Include Ground Low Supply Current (Per Amplifier), 20 A Max High Output Drive, 5 mA Min Low Input Offset Voltage, 200 V Max High Open-Loop Gain, 700 V/mV Min Outstanding PSRR, 5.6 V/V Max Industry Standard 8-Lead Dual Pinout Available in Die Form

GENERAL DESCRIPTION

The OP290 is a high performance micropower dual op amp that operates from a single supply of 1.6 V to 36 V or from dual supplies of ±0.8 V to ±18 V. Input voltage range includes the negative rail allowing the OP290 to accommodate input signals down to ground in single-supply operation. The OP290’s out­put swing also includes ground when operating from a single supply, enabling “zero-in, zero-out” operation.
The OP290 draws less than 20 µA of quiescent supply current per amplifier, while able to deliver over 5 mA of output current to a load. Input offset voltage is below 200 µV eliminating the need for external nulling. Gain exceeds 700,000 and common-mode rejection is better than 100 dB. The power supply rejection ratio of under 5.6 µV/V minimizes offset voltage changes experienced in battery-powered systems. The low offset voltage and high gain offered by the OP290 bring precision performance to micropower applications. The minimal voltage and current requirements of the OP290 suit it for battery- and solar-powered applications, such as portable instruments, remote sensors, and satellites. For a single op amp, see the OP90; for a quad, see the OP490.
Dual Operational Amplifier
OP290

PIN CONNECTIONS

PDIP
(P-Suffix)
OUT A
–IN A
+IN A
1
A
2
3
4
V–
OP290
V+
8
B
OUT B
7
–IN B
6
+IN B
5
+IN
–IN
NULL
ELECTRONICALLY ADJUSTED ON CHIP FOR MINIMUM OFFSET VOLTAGE
NULL
Figure 1. Simplified Schematic (one of two amplifiers is shown)
REV. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
V+
OUTPUT
V
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © 2003 Analog Devices, Inc. All rights reserved.
OP290–SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

(@ VS = 1.5 V to 15 V, TA = 25C, unless otherwise noted.)
OP290G
Parameter Symbol Conditions Min Typ Max Unit
INPUT OFFSET VOLTAGE V
INPUT OFFSET CURRENT I
INPUT BIAS CURRENT I
LARGE-SIGNAL A
OS
OS
B
VO
VOLTAGE GAIN R
VCM = 0 V 0.1 5 nA
VCM = 0 V 4.0 25 nA
VS = ±15 V, VO = ±10 V
= 100 k 400 600 V/mV
L
= 10 k 200 400 V/mV
R
L
= 2 k 100 200 V/mV
R
L
125 500 µV
V+ = 5 V, V– = 0 V, 1 V < V R R
INPUT VOLTAGE RANGE1IVR V+ = 5 V, V– = 0 V 0/4 V
V
OUTPUT VOLTAGE SWING V
O
VS = ±5 V R R
V
OH, VOL
V+ = 5 V, V– = 0 V 4.0 4.2 V R
< 4 V
O
= 100 k 100 250 V/mV
L
= 10 k 70 140 V/mV
L
1
= ±5 V
S
= 10 kΩ±13.5 ±14.2 V
L
= 2 kΩ±10.5 ±11.5 V
L
= 10k 10 50 µV
L
–15/13.5 V
COMMON-MODE CMR V+ = 5 V, V– = 0 V 80 100 dB REJECTION 0 V < V
= ±15 V, 90 120 dB
V
S
–15 V < V
CM
CM
< 4 V
< +13.5 V
POWER SUPPLY PSRR 3.2 10 µV/V REJECTION RATIO
SUPPLY CURRENT I
SY
(All Amplifiers) V
VS = ±1.5 V 19 30 µA
= ±15 V 25 40 µA
S
CAPACITIVE LOAD AV = +1 650 pF STABILITY No Oscillations
INPUT NOISE VOLTAGE
INPUT RESISTANCE R
1
e
np-p
IN
fO = 0.1 Hz to 10 Hz 3 µV p-p
= ±15 V
V
S
VS = ±15 V 30 M
DIFFERENTIAL-MODE
INPUT RESISTANCE R
INCM
VS = ±15 V 20 G
COMMON-MODE
SLEW RATE SR AV = +1 5 12 V/ms
= ±15 V
V
S
GAIN BANDWIDTH GBWP Vs = +15 V 20 kHz PRODUCT V
CHANNEL CS fO = 10 Hz 120 150 dB SEPARATION
NOTES
1
Guaranteed by CMR test.
2
Guaranteed but not 100% tested.
Specifications subject to change without notice.
2
= ±15 V
S
VO = 20 V p-p VS = ±15 V
2
–2–
REV. B
OP290
ELECTRICAL CHARACTERISTICS
(@ VS = 1.5 V to 15 V, –40C TA +85C for OP290G, unless otherwise noted.)
OP290G
Parameter Symbol Conditions Min Typ Max Unit
INPUT OFFSET VOLTAGE V
OS
AVERAGE INPUT OFFSET TCV
OS
VS = ±15 V 1.2 µV/°C
200 750 µV
VOLTAGE DRIFT
INPUT OFFSET CURRENT I
INPUT BIAS CURRENT I
LARGE-SIGNAL A
OS
B
VO
VOLTAGE GAIN R
VCM = 0 V 0.1 7 nA
VCM = 0 V 4.2 25 nA
VS = ±5 V, VO = ±0 V
= 100 k 300 600 V/mV
L
RL = 10 k 150 250 V/mV R
= 2 k 75 125 V/mV
L
V+ = 5 V, V– = 0 V,
< 4 V
O
= 100 k 80 160 V/mV
L
= 10 k 40 90 V/mV
L
= +15 V
S
= 10 kΩ±13 ±14 V
L
= 2 kΩ±10 ±11 V
L
= 2 k 3.9 4.1 V
L
= 10 k 10 100 µV
L
*
–15/+13.5 V
INPUT VOLTAGE RANGE
*
OUTPUT VOLTAGE SWING V
1 V < V R R
IVR V+ = 5 V, V– = 0 V 0/3.5 V
V
O
VS = ±15 V R R
V
OH
V+ = 5 V, V– = 0 V R
V
OL
V+ = 5 V, V– = 0 V R
COMMON-MODE CMR V+ = 5 V, V– = 0 V, 80 100 dB REJECTION 0 V < V
= ±15 V
V
S
–15 V < V
< 3.5 V
CM
< 13.5 V 90 110 dB
CM
POWER SUPPLY PSRR 5.6 15 µV/V REJECTION RATIO
SUPPLY CURRENT I
SY
VS = ±1.5 V 24 50 µA
(All Amplifiers) VS = ±15 V 31 60 µA
*
Guaranteed by CMR test.
Specifications subject to change without notice.
REV. B
–3–
OP290

ABSOLUTE MAXIMUM RATINGS

1

ORDERING GUIDE

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V
Differential Input Voltage . . . . [(V–) – 20 V] to [(V+) + 20 V]
Common-Mode Input Voltage . [(V–) – 20 V] to [(V+) + 20 V]
Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite
Storage Temperature Range
Model Range (mV)
OP290GP XIND 500 PDIP
Temperature V
P Package . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C
Operating Temperature Range
OP290G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C
Junction Temperature (T
) . . . . . . . . . . . . . –65°C to +150°C
J
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C
Package Type
2
JA
JC
Unit
8-Lead Plastic DIP (P) 96 37 °C/W
NOTES
1
Absolute Maximum Ratings applies to packaged part.
2
␪JA is specified for worst-case mounting conditions, i.e., ␪JA is specified for
device in socket for PDIP package.
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP290 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
TA = 25ⴗC
Max
OS
WARNING!
Package Description
ESD SENSITIVE DEVICE
–4–
REV. B
Typical Performance Characteristics–OP290
100
VS = 15V
80
60
40
20
INPUT OFFSET VOLTAGE – ␮V
0
–75
TEMPERATURE – C
TPC 1. Input Offset Voltage vs. Temperature
44
NO LOAD
40
36
32
28
24
20
16
SUPPLY CURRENT – ␮A
12
8
4
–75
VS = 15V
VS = 1.5V
TEMPERATURE – C
TPC 4. Supply Current vs. Temperature
VS = 15V
0.14
0.12
0.10
0.08
INPUT OFFSET CURRENT – nA
0.06
1251007550–50 –25 0 25
–75
TEMPERATURE – C
1251007550–50 –25 0 25
TPC 2. Input Offset Current vs. Temperature
600
R
= 10k
L
500
400
300
200
OPEN-LOOP GAIN – V/mV
100
0
1251007550–50 –25 0 25
0
TEMPERATURE – C
TA = 25 C
TA = 85 C
TA = 125 C
30252015510
TPC 5. Open-Loop Gain vs. Single-Supply Voltage
4.5 VS = 15V
4.4
4.3
4.2
4.1
4.0
3.9
3.8
INPUT BIAS CURRENT – nA
3.7
3.6
3.5
–75
TEMPERATURE – C
1251007550–50 –25 0 25
TPC 3. Input Bias Current vs. Temperature
140
120
100
80
60
40
OPEN-LOOP GAIN – dB
20
GAIN
0
0
FREQUENCY – Hz
PHASE
TA = 25 C
= 15V
V
S
= 100k
R
L
140
120
100
80
60
40
20
0
30252015510
TPC 6. Open-Loop Gain and Phase Shift vs. Frequency
PHASE SHIFT – Degrees
60
40
20
0
CLOSED-LOOP GAIN – dB
–20
10 100 100k
FREQUENCY – Hz
TA = 25 C V
1k 10k
TPC 7. Closed-Loop Gain vs. Frequency
REV. B
= 15V
S
6
TA = 25 C V+ = 5V, V– = 0V
5
4
3
2
1
OUTPUT VOLTAGE SWING – V
0
100 1k 10k
LOAD RESISTANCE –
TPC 8. Ouput Voltage Swing vs. Load Resistance
–5–
100k
16
14
12
10
8
6
4
OUTPUT VOLTAGE SWING – V
2
0
100 1k 10k
LOAD RESISTANCE –
= 25 C
T
A
V
= 15V
S
TPC 9. Output Voltage Swing vs. Load Resistance
100k
OP290
140
T
= 25 C
A
120
100
80
60
POWER SUPPLY REJECTION – dB
40
110100
NEGATIVE SUPPLY
POSITIVE SUPPLY
FREQUENCY – Hz
TPC 10. Power Supply Rejection vs. Frequency
10
TA = 25 C
= 15V
V
S
1
CURRENT NOISE DESTINY– nV/ Hz
0.1
0.1 1 1k
10 100
FREQUENCY – Hz
140
120
100
80
60
COMMON-MODE REJECTION – dB
40
1k
110100
FREQUENCY – Hz
TA = 25 C
= 15V
V
S
1k
TPC 11. Common-Mode Rejection vs. Frequency
100
90
TA = 25 C VS = 15V AV = +1 RL = 10k CL = 500pF
10
0%
20mV
100s
1,000
TA = 25 C
= 15V
V
S
100
NOISE VOLTAGE DESTINY– nV/ Hz
10
0.1 1 1k
10 100
FREQUENCY – Hz
TPC 12. Noise Voltage Density vs. Frequency
TA = 25 C VS = 15V AV = +1
100
RL = 10k
90
CL = 500pF
10
0%
5V
1ms
TPC 13. Current Noise Density vs. Frequency
TPC 14. Small-Signal Transient Response
TPC 15. Large-Signal Transient Response
–6–
REV. B
OP290
LITHIUM SULPHUR DIOXIDE
CELL VOLTAGE – V
100
80
0
0
60
40
20
350030002500500 1000 20001500
HOURS
+18V
100k
200
100k
2
3
6
5
8
1/2
OP290
1/2
OP290
4
–18V
1
7
Figure 2. Burn-In Circuit

APPLICATIONS INFORMATION BATTERY-POWERED APPLICATIONS

The OP290 can be operated on a minimum supply voltage of
1.6 V, or with dual supplies of 0.8 V, and draws only 19 pA of supply current. In many battery-powered circuits, the OP290 can be continuously operated for thousands of hours before requiring battery replacement, reducing equipment downtime and operating cost.
High-performance portable equipment and instruments fre­quently use lithium cells because of their long shelf-life, light weight, and high energy density relative to older primary cells. Most lithium cells have a nominal output voltage of 3 V and are noted for a flat discharge characteristic. The low supply voltage requirement of the OP290, combined with the flat discharge characteristic of the lithium cell, indicates that the OP290 can be operated over the entire useful life of the cell. Figure 1 shows the typical discharge characteristic of a 1 Ah lithium cell power­ing an OP290 with each amplifier, in turn, driving full output swing into a 100 kΩ load.
+15V
+15V
1/2
OP290
1k
V
IN
A
–15V
1/2
OP290
B
9k
OP37A
100
CHANNEL SEPARATION = 20 LOG
10k
–15V
V1 20Vp-p @ 10Hz
V2
V1
V2/1000
Figure 3. Channel Separation Test Circuit

APPLICATIONS TEMPERATURE TO 4–20 mA TRANSMITTER

A simple temperature to 4–20 mA transmitter is shown in Figure 5. After calibration, the transmitter is accurate to +0.5°C over the –50°C to +150°C temperature range. The transmitter operates from 8 V to 40 V with supply rejection better than 3 ppm/V. One half of the OP290 is used to buffer the V
pins while
TEMP
the other half regulates the output current to satisfy the current summation at its noninverting input.
VRR
I
OUT
TEMP
=
+
67
()
RR
210
267
RRR
V
SET
RR
210
 

INPUT VOLTAGE PROTECTION

The OP290 uses a PNP input stage with protection resistors in series with the inverting and noninverting inputs. The high breakdown of the PNP transistors coupled with the protection resistors provide a large amount of input protection, allowing the inputs to be taken 20 V beyond either supply without dam­aging the amplifier.

SINGLE-SUPPLY OUTPUT VOLTAGE RANGE

In single-supply operation the OP290’s input and output ranges include ground. This allows true “zero-in, zero-out” operation. The output stage provides an active pull-down to around 0.8 V above ground. Below this level, a load resistance of up to 1 M to ground is required to pull the output down to zero.
In the region from ground to 0.8 V, the OP290 has voltage gain equal to the data sheet specification. Output current source capa­bility is maintained over the entire voltage range including ground.
REV. B
Figure 4. Lithium Sulphur Dioxide Cell Discharge Characteristic with OP290 and 100 k⍀ Loads
The change in output current with temperature is the derivative of the transfer function:
V
TEMP
RR
67
+
I
OUT
=
T
()
T
RR
210
–7–
OP290
From the formulas, it can be seen that if the span trim is adjusted before the zero trim, the two trims are not interactive, which greatly simplifies the calibration procedure.
Calibration of the transmitter is simple. First, the slope of the output current versus temperature is calibrated by adjusting the span trim, R7. A couple of iterations may be required to be sure the slope is correct.
Once the span trim has been completed, the zero trim can be made. Remember that adjusting the offset trim will not affect the gain.
The offset trim can be set at any known temperature by adjusting R
until the output current equals:
5
I
OUT
=
 
T
OPERATING
I
FS
TTmA
()
AMBIENT MIN
–4
+
Table I shows the values of R6 required for various tempera­ture ranges.
Table I.
Temperature Range R6 (k⍀)
0°C to +70°C10 –40°C to +85°C 6.2 –55°C to +150°C3

VARIABLE SLEW RATE FILTER

The circuit shown in Figure 6 can be used to remove pulse noise from an input signal without limiting the response rate to a genu­ine signal. The nonlinear filter has use in applications where the input signal of interest is known to have physical limitations. An example of this is a transducer output where a change of temperature or pressure cannot exceed a certain rate due to physical limitations of the environment. The filter consists of a comparator which drives an integrator. The comparator com­pares the input voltage to the output voltage and forces the integrator output to equal the input voltage. A1 acts as a com­parator with its output high or low. Diodes D1 and D2 clamp the voltage across R3 forcing a constant current to flow in or out of C2. R3, C2, and A2 form an integrator with A2’s output slewing at a maximum rate of:
Maximum slew rate
V
=≈
RCVRC
320632
.
D
For an input voltage slewing at a rate under this maximum slew rate, the output simply follows the input with A1 operating in its linear region.
REF-43BZ
V
V
OUT
TEMP
GND
1N4002
SPAN TRIM
V
SET
R6
3k
6
1/2
OP290GP
5
R7
5k
7
R8
1k
R9 100k
1%, 1/2W
R10
100
2
V
IN
6
R1
3
10k
4
2
1/2
OP290GP
8
4
V
TEMP
1
R3 100k
1k
R4 20k
R2
R5
5k
ZERO TRIM
2N1711
I
OUT
R
LOAD
V+ 8V TO 40V
Figure 5. Temperature to 4-20 mA Transmitter
–8–
REV. B
OP290
+15V
R1
250k
C1
0.1F
D1
DIODES ARE 1N4148
D2
2
1/2
OP290GP
3
R3 1M
6
1/2
OP290GP
5
–15V
8
R4
25k
4
1
C1
4700pF
7
R2 100k
V
OUT
Figure 6. Variable Slew Rate Filter

LOW OVERHEAD VOLTAGE REFERENCE

Figure 7 shows a voltage reference that requires only 0.1 V of overhead voltage. As shown, the reference provides a stable
4.5 V output with a 4.6 V to 36 V supply. Output voltage drift is only 12 ppm/°C. Line regulation of the reference is under 5 µV/V with load regulation better than 10 µV/mA with up to 50 mA of output current.
The REF-43 provides a stable 2.5 V which is multiplied by the OP290. The PNP output transistor enables the output voltage to approach the supply voltage.
Resistors R1 and R2 determine the output voltage.
The 200 Ω variable resistor is used to trim the output voltage. For the lowest temperature drift, parallel resistors can be used in place of the variable resistor and taken out of the circuit as required to adjust the output voltage.
V+
2
V
IN
REF-43FZ
GND
4
6
V
OUT
BOURNS 3006P-1-201
R1B
200
20-TURN
R1A
2.37 1%
2
1/2
OP290GP
3
8
1
4
R2
2k
1%
C1 10F
2N2907A
V
OUT
C2
0.1F
Figure 7. Low Overhead Voltage Reference
VV
OUT
=+
25 1
.
 
R
2
 
R
1
REV. B
–9–
OP290

OUTLINE DIMENSIONS

8-Lead Plastic Dual In-Line Package [PDIP]
[P-Suffix]
(N-8)
Dimensions shown in inches and (millimeters)
0.375 (9.53)
0.365 (9.27)
0.355 (9.02)
8
1
0.100 (2.54)
0.180
(4.57)
MAX
0.150 (3.81)
0.130 (3.30)
0.110 (2.79)
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
COMPLIANT TO JEDEC STANDARDS MO-095AA
BSC
5
4
0.295 (7.49)
0.285 (7.24)
0.275 (6.98)
0.015 (0.38) MIN
SEATING PLANE
0.060 (1.52)
0.050 (1.27)
0.045 (1.14)
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.150 (3.81)
0.135 (3.43)
0.120 (3.05)
0.015 (0.38)
0.010 (0.25)
0.008 (0.20)
–10–
REV. B
OP290

Revision History

Location Page
12/03—Data Sheet changed from REV. A to REV. B.
Deleted OP290E and OP290F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal
Replaced PIN CONNECTIONS with PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Deleted ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Changes to TPC 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Change to SINGLE SUPPLY OUTPUT VOLTAGE RANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Changes to Figure 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Changes to Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Change to LOW OVERHEAD VOLTAGE REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1/02—Data Sheet changed from REV. 0 to REV. A.
Edits to ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Edits to WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Edits to DICE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
REV. B
–11–
C00327–0–12/03(B)
–12–
Loading...