Analog Devices OP183 283 c Datasheet

5 MHz Single-Supply
a
FEATURES Single-Supply – 3 V to 36 V Wide Bandwidth – 5 MHz Low Offset Voltage – 1 mV High Slew Rate: 10 V/s Low Noise: 10 nV/ Hz Unity-Gain Stable Input and Output Range Includes GND No Phase Reversal
APPLICATIONS Multimedia Telecom ADC Buffers Wide Band Filters Microphone Preamplifiers
GENERAL DESCRIPTION
The OP183 is a single-supply, 5 MHz bandwidth amplifier with slew rates of 10 V/µs. The OP283 is a dual version. Both can operate from voltages as low as 3 V and up to 36 V. This combi­nation of slew rate and bandwidth yields excellent single- supply ac performance, making these amplifiers ideally suited for telecom and multimedia audio applications.
In addition to their ac characteristics, the OP183 family provides good dc performance with guaranteed 1 mV offset. Noise is a respectable 10 nV/Hz. Supply current is only 1.2 mA per amplifier.
These amplifiers are well suited for single-supply applications that require moderate bandwidths even when used in high gain configurations. This makes them useful in filters and instru­mentation. Their output drive capability and very wide full power bandwidth make them a good choice for multimedia headphone drivers or microphone input amplifiers.
The OP183 and OP283 are available in SO-8 surface mount packages. They are specified over the extended industrial (–40°C to +85°C) temperature range.
Operational Amplifiers
OP183/OP283
PIN CONNECTIONS
8-Lead Narrow-Body SO
(S Suffix)
1
OP183
2
TOP VIEW
3
(Not to Scale)
4
8-Lead Narrow-Body SO
(S Suffix)
1
OP283
2
TOP VIEW
3
(Not to Scale)
4
8
7
6
5
8
7
6
5
REV. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002
OP183/OP283–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
(@ VS = 5.0 V, TA = 25C unless otherwise noted)
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage V
Input Bias Current I
Input Offset Current I
OS
B
OS
VCM = 2.5 V, V –40°C TA +85°C 1.25 mV VCM = 2.5 V, V –40°C TA +85°C 430 750 nA VCM = 2.5 V, V –40°C TA +85°C11±50 nA
= 2.5 V, 0.025 1.0 mV
OUT
= 2.5 V, 350 600 nA
OUT
= 2.5 V, nA
OUT
Input Voltage Range 0 3.5 V Common-Mode Rejection Ratio CMRR VCM = 0 to 3.5 V
–40°C TA +85°C 70 104 dB
Large Signal Voltage Gain A Offset Voltage Drift ∆VOS/T4µV/°C
VO
RL = 2 k, 0.2 ≤ VO 3.8 V 100 V/mV
Bias Current Drift ∆IB/T –1.6 nA/°C
OUTPUT CHARACTERISTICS
Output Voltage High V Output Voltage Low V Short Circuit Limit I
OH
OL
SC
RL = 2 k to GND 4.0 4.22 V RL = 2 k to GND 50 75 mV Source 25 mA Sink 30 mA
POWER SUPPLY
Power Supply Rejection Ratio PSRR V
Supply Current/Amplifier I
Supply Voltage Range V
SY
S
= 4 V to 6 V,
S
–40°C TA +85°C 70 104 dB VO = 2.5 V, –40°C TA +85°C 1.2 1.5 mA
3 ±18 V
DYNAMIC PERFORMANCE
Slew Rate SR RL = 2 k 510 V/µs Full-Power Bandwidth BWp 1% Distortion >50 kHz Settling Time t Gain Bandwidth Product GBP 5 MHz
S
To 0.01% 1.5 µs
Phase Margin φm 46 Degrees
NOISE PERFORMANCE
Voltage Noise en p-p 0.1 Hz to 10 Hz 2 µV p-p Voltage Noise Density e Current Noise Density i
n
n
f = 1 kHz, VCM = 2.5 V 10 nV/Hz
0.4 pA/Hz
ELECTRICAL CHARACTERISTICS
(@ VS = 3.0 V, TA = 25C unless otherwise noted)
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage V
Input Bias Current I
Input Offset Current I
OS
B
OS
VCM = 1.5 V, V –40°C TA +85°C 1.25 mV VCM = 1.5 V, V –40°C TA +85°C 750 nA VCM = 1.5 V, V –40°C TA +85°C11±50 nA
= 1.5 V, 0.3 1.0 mV
OUT
= 1.5 V, 350 600 nA
OUT
= 1.5 V, nA
OUT
Input Voltage Range 0 1.5 V Common-Mode Rejection Ratio CMRR VCM = 0 V to 1.5 V,
–40°C TA +85°C 70 103 dB
Large Signal Voltage Gain A
VO
RL = 2 k, 0.2 ≤ VO 1.8 V 100 260 V/mV
OUTPUT CHARACTERISTICS
Output Voltage High V Output Voltage Low V Short Circuit Limit I
OH
OL
SC
RL = 2 k to GND 2.0 2.25 V RL = 2 k to GND 90 125 mV Source 25 mA Sink 30 mA
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 2.5 V to 3.5 V,
–40°C TA +85°C 60 113 dB
Supply Current/Amplifier I
SY
–40°C TA +85°C, VO = 1.5 V 1.2 1.5 mA
DYNAMIC PERFORMANCE
Gain Bandwidth Product GBP 5 MHz
NOISE PERFORMANCE
Voltage Noise Density e
n
f = 1 kHz, VCM = 1.5 V 10 nV/Hz
–2–
REV. C
OP183/OP283
ELECTRICAL CHARACTERISTICS
(@ VS = 15.0 V, TA = 25C unless otherwise noted)
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage V
Input Bias Current I
Input Offset Current I
B
OS
OS
–40°C T
–40°C T
+85°C 1.25 mV
A
+85°C 400 750 nA
A
–40 TA +85°C11±50 nA
0.01 1.0 mV
300 600 nA
Input Voltage Range –15 +13.5 V Common-Mode Rejection Ratio CMRR VCM = –15 V to +13.5 V,
+85°C7086dB
A
Large Signal Voltage Gain A Offset Voltage Drift ∆V Bias Current Drift ∆I Long Term Offset Voltage V
–40°C T
VO
/T3µV/°C
OS
/T –1.6 nA/°C
B
OS
RL = 2 k 100 1000 V/mV
Note 1 1.5 mV
OUTPUT CHARACTERISTICS
Output Voltage High V Output Voltage Low V Short-Circuit Limit I
OH
OL
SC
RL = 2 k to GND, –40°C ≤ TA +85°C 13.9 14.1 V RL = 2 k to GND, –40°C ≤ TA +85°C –14.05 –13.9 V Source 30 mA Sink 50 mA
Open -Loop Output Impedance Z
OUT
f = 1 MHz, AV = +1 15
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = ±2.5 V to ± 18 V,
Supply Current/Amplifier I
Supply Voltage Range V
–40°C T
SY
VS = ±18 V, VO = 0 V, –40°C T
S
+85°C 70 112 dB
A
+85°C 1.2 1.75 mA
A
3 ±18 V
DYNAMIC PERFORMANCE
Slew Rate SR RL = 2 k 10 15 V/µs Full-Power Bandwidth BW Settling Time t
S
p
1% Distortion 50 kHz To 0.01% 1.5 µs
Gain Bandwidth Product GBP 5 MHz Phase Margin φm 56 Degrees
NOISE PERFORMANCE
Voltage Noise en p-p 0.1 Hz to 10 Hz 2 µV p-p Voltage Noise Density e Current Noise Density i
NOTES
1
Long term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125 °C, with an LTPD of 1.3.
Specifications subject to change without notice.
n
n
REV. C
f = 1 kHz 10 nV/Hz
0.4 pA/Hz
–3–
OP183/OP283
ABSOLUTE MAXIMUM RATINGS
1
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 18 V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V
Differential Input Voltage
2
. . . . . . . . . . . . . . . . . . . . . . . . ± 7V
Output Short-Circuit Duration to GND . . . . . . . . . Indefinite
Storage Temperature Range
S Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C
Operating Temperature Range
OP183/OP283G . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C
Junction Temperature Range
S Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C
Lead Temperature Range (Soldering 60 sec) . . . . . . . . . 300°C
Package Type
3
JA
JC
Units
8-Lead SOIC (S) 158 43 °C/W
NOTES
1
Absolute maximum ratings apply to packaged parts, unless otherwise noted.
2
For supply voltages less than ± 7 V, the absolute maximum input voltage is equal
to the supply voltage. Maximum input current should not exceed 2 mA.
3
is specified for the worst case conditions, i.e.,
JA
in circuit board for SOIC packages.
is specified for device soldered
JA
ORDERING GUIDE
Temperature Package Package
Model Range Description Option
OP183GS –40°C to +85°C 8-Lead SOIC SO-8 OP283GS* –40°C to +85°C 8-Lead SOIC SO-8
*Not for new design; obsolete April 2002.
–4–
REV. C
Typical Performance Characteristics–OP183/OP283
80
70
60
50
40
QUANTITY
30
20
10
0
–600 –400 –200 0 +200 +400 +600
INPUT OFFSET VOLTAGE – V
VS = 5V
300X OP AMPS
TPC 1. OP183 Input Offset Voltage| Distribution @ 5 V
160
140
120
100
80
QUANTITY
60
40
20
0
–600 –400 –200 0 +200 +400 +600
INPUT OFFSET VOLTAGE – V
VS = 5V
590X OP AMPS
TPC 4. OP283 Input Offset Voltage Distribution @
±
15 V
80
70
60
50
40
QUANTITY
30
20
10
0
–600 –400 –200 0 +200 +400 +600
INPUT OFFSET VOLTAGE – V
VS = 5V
300X OP AMPS
TPC 2. OP183 Input Offset Voltage
±
Distribution @
160
140
120
100
80
60
40
QUANTITY – Amplifiers
20
0
0
2 4 6 8 10 12
15 V
–40C TA +85C
300X OP AMPS PLASTIC PACKAGE
TCVOS – V/C
TPC 5. OP183 Input Offset Voltage Drift (TCV
) Distribution @ 5 V
OS
160
140
120
100
80
QUANTITY
60
40
20
0
–600 –400 –200 0 +200 +400 +600
INPUT OFFSET VOLTAGE – V
VS = 5V
590X OP AMPS
TPC 3. OP283 Input Offset Voltage Distribution @ 5 V
160
140
120
100
80
60
40
QUANTITY – Amplifiers
20
0
0
2 4 6 8 10 12
TCV
–40C TA +85C
300X OP AMPS PLASTIC PACKAGE
V/C
OS
TPC 6. OP183 Input Offset Voltage Drift (TCV
) Distribution @ ±15 V
OS
200
180
160
140
120
100
80
60
QUANTITY – Amplifiers
40
20
0
0
2 4 6 8 10 12 14 16
TCV
–40C TA +85C
590X OP AMPS PLASTIC PACKAGE
V/C
OS
TPC 7. OP283 Input Offset Voltage Drift (TCV
) Distribution @ 5 V
OS
REV. C
200
180
160
140
120
100
80
60
QUANTITY – Amplifiers
40
20
0
0
2 4 6 8 10 12 14 16
TCV
–40C TA +85C
590X OP AMPS PLASTIC PACKAGE
V/C
OS
TPC 8. OP283 Input Offset Voltage Drift (TCV
) Distribution @ ±15 V
OS
–5–
3
p-p
2
1
TA = 25C
R
= 2k
L
MAXIMUM OUTPUT SWING – Volts
V
= 3V
S
0
10k 100k 1M 10M
1k
FREQUENCY – Hz
TPC 9. OP183/OP283 Maximum Out­put Swing vs. Frequency @ 3 V
OP183/OP283
5
p-p
4
3
2
TA = +25C
1
R
= 2k
L
MAXIMUM OUTPUT SWING – Volts
V
= +5V
S
0
1k
10k 100k 1M 10M
FREQUENCY – Hz
TPC 10. OP183/OP283 Maximum Output Swing vs. Frequency @ 5 V
600
500
400
300
200
INPUT BIAS CURRENT – nA
100
0
15
10 5 0 5 10 13.5
COMMON-MODE VOLTAGE – Volts
TA = 25C
V
= 15V
S
TPC 13. Input Bias Current vs. Com­ mon-Mode Voltage
30
p-p
25
20
15
10
TA = +25C
5
R
= 2k
L
MAXIMUM OUTPUT SWING – Volts
V
= +15V
S
0
10k 100k 1M 10M
1k
FREQUENCY – Hz
TPC 11. OP183/OP283 Maximum Output Swing vs. Frequency @
500
400
300
200
100
INPUT BIAS CURRENT – nA
0
75
50 25 0 25 50 75 100 125
VS = 15V
&
V
= 5V
S
VS = +3V
TEMPERATURE – C
±
TPC 14. Input Bias Current vs. Temperature
15 V
1
SINK
100m
10m
OUTPUT VOLTAGE TO RAIL – Volts
1m
1
SOURCE
10 100 1m 10m
LOAD CURRENT – Amps
TPC 12. Output Voltage vs. Sink & Source Current
1.50
1.25
1.00
0.75
0.50
0.25
SUPPLY CURRENT\AMPLIFIER – mA
VS = 3V
R
=
L
0
50 25 0 25 50 75 100 125
75
TEMPERATURE – C
VS = 18V
R
=
L
VS = 5V
R
=
L
TPC 15. Supply Current per Amplifier vs. Temperature
1.50 TA = 25C
1.25
1.00
0.75
0.50
0.25
SUPPLY CURRENT\AMPLIFIER – mA
0
2.5
0
5 7.5 10 12.5 15 17.5 20
SUPPLY VOLTAGE – Volts
TPC 16. Supply Current per Amplifier vs. Supply Voltage
60
50
40
30
20
10
SHORT CIRCUIT CURRENT – mA
0
50 25 0 25 50 75 100 125
75
1
SC
+1
SC
TEMPERATURE – C
TPC 17. Short-Circuit Current vs. Temperature @ 5 V
–6–
60
50
40
30
20
10
SHORT CIRCUIT CURRENT – mA
0
50 25 0 25 50 75 100 125
75
1
SC
+1
SC
TEMPERATURE – C
TPC 18. Short-Circuit Current vs. Temperature @
±
15 V
REV. C
OP183/OP283
140
120
100
80
60
40
20
COMMON-MODE REJECTION – dB
0
100
1k 10k 100k 1M
FREQUENCY – Hz
TA = 25C
V
= 15V
S
TPC 19. Common-Mode Rejection vs. Frequency
GAIN dB
10
90
80
70
60
50
40
30
20
10
0
1k
GAIN
PHASE
10k 100k 1M 10M
FREQUENCY – Hz
TA = 25C
V
= 5V
S
R
= 10k
L
PHASE MARGIN = 46
135
90
45
0
–45
140
120
100
80
60
40
20
COMMON-MODE REJECTION – dB
0
100
–PSRR
1k 10k 100k 1M
FREQUENCY – Hz
+PSRR
TA = 25C
V
= 15V
S
TPC 20. Power Supply Rejection vs. Frequency
PHASE – Degrees
GAIN – dB
–10
90
80
70
60
50
40
30
20
10
0
1k
GAIN
PHASE
10k 100k 1M 10M
FREQUENCY – Hz
TA = 25C
V
= 15V
S
R
= 10k
L
PHASE MARGIN = 56
135
90
45
0
–45
90
80
70
GAIN – dB
–10
60
50
40
30
20
10
0
1k
GAIN
PHASE
10k 100k 1M 10M
FREQUENCY – Hz
TPC 21. Open-Loop Gain and Phase vs. Frequency @ 3 V
1000
900
OPEN-LOOP GAIN – V/mV
PHASE – Degrees
800
700
600
500
400
300
VS = 15V
200
100
R
0
75
50 25 0 25 50 75 100 125
VS = 5V
R
= 2k
L
OR
V
= 3V
S
= 2k
L
TEMPERATURE – C
TA = 25C
V
= 3V
S
R
= 10k
L
PHASE MARGIN = 43
135
90
45
0
–45
PHASE – Degrees
TPC 22. Open-Loop Gain and Phase vs. Frequency @ 5 V
50
40
AV = +100
30
20
AV = +10
10
0
CLOSED-LOOP GAIN – dB
10
20
AV = +1
10k 100k 1M 10M
1k
FREQUENCY – Hz
TA = 25C
V
= 15V
S
TPC 25. Closed-Loop Gain vs. Frequency
TPC 23. Open-Loop Gain and Phase vs. Frequency @
25
20
15
10
SLEW RATE – V/s
5
0
50 25 0 25 50 75 100 125
75
VS = 15V
R
= 2k
L
SLEW RATE
VS = 15V
= 2k
R
L
SLEW RATE
TEMPERATURE – C
TPC 26. Slew Rate vs. Temperature
±
15 V
TPC 24. Open-Loop Gain vs. Temperature
40
35
30
25
10
5
VOLTAGE NOISE DENSITY – nA/ Hz
0
10
100 1k 10k FREQUENCY – Hz
TA = 25C
V
= 15V
S
OR
= 3V, 15V
V
S
TPC 27. Voltage Noise Density vs. Frequency
REV. C
–7–
OP183/OP283
6.0
5.0
4.0
3.0
2.0
1.0
CURRENT NOISE DENSITY – pA/ Hz
0
10
100 1k 10k FREQUENCY – Hz
TA = 25C
V
= 15V
S
OR
= 3V/5V
V
S
TPC 28. Current Noise Density vs. Frequency
100
90
80
70
60
50
40
IMPEDANCE –
30
20
10
0
100
1k 10k 100k 1M
FREQUENCY – Hz
AV = +10
AV = +1
TA = 25C
V
= 15V
S
TPC 29. Closed-Loop Output Impedance vs. Frequency
80
TA = 25C
V
= 15V
70
S
= 2k
R
L
60
50
40
30
20
10
SMALL SIGNAL OVERSHOOT – %
0
0
100 200 300
CAPACITANCE – pF
NEGATIVE EDGE
POSITIVE EDGE
TPC 30. Small Signal Overshoot vs. Load Capacitance
TPC 31. Large Signal Performance @
±
15 V
TPC 34. 0.1 Hz to 10 Hz Noise
±
15 V
@
TPC 32. Small Signal Performance @
±
15 V
TPC 35. THD + Noise vs. Frequency for Various Loads
TPC 33. 0.1 Hz to 10 Hz Noise @
2.5 V
±
–8–
REV. C
OP183/OP283
APPLICATIONS OP183 Offset Adjust
Figure 1 shows how the offset voltage of the OP183 can be adjusted by connecting a potentiometer between Pins 1 and 5, and connecting the wiper to V
. The recommended value for
EE
the potentiometer is 10 k. This will give an adjustment range of approximately ±1 mV. If larger adjustment span is desired, a 50 k potentiometer will yield a range of ±2.5 mV.
V
CC
OP183
V
EE
V
OS
Figure 1. OP183 Offset Adjust
Phase Reversal
The OP183 family is protected against phase reversal as long as both of the inputs are within the range of the positive supply and the negative supply minus 0.6 volts. If there is a possibility of either input going beyond these limits, however, the inputs should be protected with a series resistor to limit input current to 2 mA.
Direct Access Arrangement
The OP183/OP283 can be used in a single supply Direct Access Arrangement (DAA) as shown in Figure 2. This figure shows a portion of a typical DAA capable of operating from a single 5 V supply; with minor modifications it should also work on 3 V supplies. Amplifiers A2 and A3 are configured so that the trans­mit signal TXA is inverted by A2 and not inverted by A3. This
arrangement drives the transformer differentially so that the drive to the transformer is effectively doubled over a single am­plifier arrangement. This application takes advantage of the OP183/283’s ability to drive capacitive loads and to save power in single-supply applications.
300pF
37.4k
RXA
TXA
2.5V
0.1F
0.1F
REF
0.0047F
20k
A1
OP283
3.3k
OP283
22.1k
20k
OP283
750pF
20k
20k
20k
A2
475
0.33F
A3
Figure 2. Direct Access Arrangement
5 V Only Stereo DAC for Multimedia
The low noise and single supply capability of the OP283 are ideally suited for stereo DAC audio reproduction or sound synthesis applications such as multimedia systems. Figure 3 shows an 18-bit stereo DAC output setup that is powered from a single 5 V supply. The low noise preserves the 18-bit dynamic range of the AD1868. For DACs that operate on dual supplies, the OP283 can also be powered from the same supplies.
REV. C
1
2
3
4
5
6
7
8
V
L
LL
DL
CK
DR
LR
DGND
VBR
18-BIT
DAC
18-BIT
SERIAL
REG.
18-BIT
SERIAL
REG.
18-BIT
DAC
5V SUPPLY
AD1868
VBL
16
15
7.68k
14
VOL
V
REF
AGND
V
REF
VOR
330pF
13
12
11
10
7.68k
9
V
S
330pF
9.76k
9.76k
Figure 3. 5 Volt Only 18-Bit Stereo DAC
–9–
8
1/2 OP283
7.68k
7.68k
1/2 OP283
100pF
100pF
220F
220F
47k
47k
LEFT CHANNEL OUTPUT
RIGHT CHANNEL OUTPUT
OP183/OP283
Low Voltage Headphone Amplifiers
Figure 4 shows a stereo headphone output amplifier for the AD1849 16-bit SoundPort
®
Stereo Codec device. The pseudo­reference voltage is derived from the common-mode voltage generated internally by the AD1849, thus providing a convenient bias for the headphone output amplifiers.
OPTIONAL
LOUT1L
AD1849
CMOUT
LOUT1R
V
10F
10k
REF
10k
10F
V
REF
L VOLUME CONTROL
R VOLUME CONTROL
GAIN
1k
1k
V
REF
5k
+5V
1/2 OP283
+5V
1/2 OP283
1/2 OP283
5k
OPTIONAL GAIN
16220F
47k
16220F
47k
HEADPHONE LEFT
HEADPHONE RIGHT
A 3 V 50 Hz/60 Hz Active Notch Filter with False Ground
To process ac signals, it may be easier to use a false-ground bias rather than the negative supply as a reference ground. This would reject the power-line frequency interference which can oftentimes obscure low frequency physiological signals, such as heart rates, blood pressures, EEGs, and ECGs.
R2
2.67k
3V
R1
V
IN
10k
C4
1F
A1
R6
1/2 OP283
3V
R9
75k
R10 25k
A1, A2, AND A3 = 1/2 OP283
2.67k
C5
0.015F
A3
R3
2.67k
2F
(1F 2)
R11
10k
C1
C3
C2
1F1F
R4
2.67k
R5
1.33k (2.67k 2)
R12
70
0.75V C6
1F
1/2 OP283
A2
R7R8
1k 1k
Q = 0.75
NOTE: FOR 50Hz APPLICATIONS
CHANGE R1-R4 TO 3.1 AND R5 TO 1.58 (3.16  2).
V
O
Figure 4. Headphone Output Amplifier for Multimedia Sound Codec
SoundPort is a registered trademark of Analog Devices, Inc.
Low Noise Microphone Amplifier for Multimedia
The OP183 family is ideally suited as a low noise microphone preamp for low voltage audio applications. Figure 5 shows a gain of 100 stereo preamp for the AD1849 16-bit SoundPort Stereo Codec chip. The common-mode output buffer serves as a “phantom power” driver for the microphones.
10k
+5V
LEFT
ELECTRET
CONDENSER
MIC
INPUT
RIGHT
ELECTRET
CONDENSER
MIC
INPUT
20
20
10F
+5V
1/2 OP213
10F
50
10k 100
10k
50
1/2 OP283
100
1/2 OP283
10k
MINL
AD1849
CMOUT
MINR
Figure 5. Low Noise Stereo Microphone Amplifier for Multimedia Sound CODEC
Figure 6. 3 V Supply 50 Hz/60 Hz Notch Filter with Pseudo Ground
Figure 6 shows a 50 Hz/60 Hz active notch filter for eliminating line noise in patient monitoring equipment. It has several kilohertz bandwidth and is not sensitive to false-ground pertur­bations. The simple false-ground circuit shown achieves good rejection of low frequency interference using standard off-the­shelf components.
Amplifier A3 biases A1 and A2 to the middle of their input common-mode range. When operating on a 3 V supply, the center of the OP283’s common-mode range is 0.75 V. This notch filter effectively squelches 60 Hz pickup at a filter Q of
0.75. To reject 50 Hz interference, change the resistors in the twin-T section (R1 through R5) from 2.67 k to 3.16 kΩ.
The filter section uses an OP283 dual op amp in a twin-T configuration whose frequency selectivity is very sensitive to the relative matching of the capacitors and resistors in the twin-T section. Mylar is the material of choice for the capacitors, and the relative matching of the capacitors and resistors determines the filter’s pass band symmetry. Using 1% resistors and 5% capacitors produces satisfactory results.
A Low Voltage Frequency Synthesizer for Wireless Transceiver
The OP183’s low noise and the low voltage operation capability serves well for the loop filter of a frequency synthesizer. Figure 7 shows a typical application in a radio transceiver. The phase noise performance of the synthesizer depends on low noise contribution from each component in the loop as the noise is amplified by the frequency division factor of the prescaler.
–10–
REV. C
OP183/OP283
CRYSTAL
REFERENCE
OSCILLATOR
PHASE
DETECTOR
PRESCALER
RF OUT
V
CONTROL
VCO
3V
OP183
900MHz
VARACTER DIODE
Figure 7. A Low Voltage Frequency Synthesizer for a Wireless Transceiver
QB9
RB3
R1
R10
Q1
R3A
R3AT
R3B
JB1
QB5A
CB1
QB4
A
B
QB2
RB1
RB2
QB3
QB1
R3LT
CC1
Z1
QB10
R4A
R4B
R2
Q2
R4AT
R4LT
R11
The resistors used in the low-pass filter should be of low to moderate values to reduce noise contribution due to the input bias current as well as the resistors themselves. The filter cutoff frequency should be chosen to optimize the loop constant.
QB6
QB12
RB5RB4
QB7
Q7
QD1
Q3
Q5
QB13
Q4
RB6
QB8
CF1
Q8
Q6
R5
QB14
CC3
QB11
R9
QD2
CC2
QD3
Q10
Q12
R8
CO
R7
Q11
REV. C
Figure 8. OP183 Simplified Schematic
–11–
OP183/OP283
* OP283 SPICE Macro-model Rev. A, 9/93 * JCB/ADI * * Copyright 1993 by Analog Devices * * Refer to “README.DOC” file for License Statement. * Use of this model indicates your acceptance of the terms and * provisions in the License Statement. * * Node assignments
* noninverting input * | inverting input * | | positive supply * | | | negative supply * | | | | output * || | | |
.SUBCKT OP283 2 1 99 50 45
* * INPUT STAGE AND POLE AT 600 kHz *
D1 9 10 DX D2 11 9 DX E1 10 98 POLY(1) 99 98 -1.35 1.03 V2 50 11 –0.63
* * COMMON MODE STAGE WITH ZERO AT 353 Hz *
ECM 14 98 POLY(2) (1,98) (2,98) 0 3.5 3.5 R7 14 15 1E6 C4 14 15 3.75E-11 R8 15 98 1
* *POLE AT 20 MHz *
GP2 98 31 (9,98) 1E-6 RP2 31 98 1E6 CP2 31 98 7.96E-15
* *ZERO AT 1.5 MHz *
EZ1 32 98 (31,98) 1E6 RZ1 32 33 1E6 RZ2 33 98 1 CZ1 32 33 106E-15
* *POLE AT 10 MHz *
I1 99 8 1E-4 Q1 416 QP Q2 537 QP CIN 1 2 1.5PF R1 50 4 1591 R2 50 5 1591 C1 4 5 83.4E-12 R3 6 8 1075 R4 7 8 1075 IOS 1 2 12.5E-9 EOS 3 2 POLY(1) (15,98) 25E-6 1 DC1 2 36 DZ DC2 1 36 DZ
* * GAIN STAGE AND DOMINANT POLE AT 10 Hz *
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5 G1 98 9 (4,5) 6.28E-4 R5 9 98 1.59E9 C2 9 98 10E-12 GP10 98 40 (33,98) 1E-6 RP10 40 98 1E6 CP10 40 98 15.9E-15
* * OUTPUT STAGE *
RO1 99 45 140 RO2 45 50 140 G7 45 99 (99,40) 7.14E-3 G8 50 45 (40,50) 7.14E-3 G9 98 60 (45,40) 7.14E-3 D7 60 61 DX D8 62 60 DX V7 61 98 DC 0 V8 98 62 DC 0 GSY 99 50 (99,50)5E-6 FSY 99 50 POLY(2) V7 V8 1.075E-3 1 1 D9 40 41 DX D10 42 40 DX V5 41 45 1.2 V6 45 42 1.5
* * MODELS USED *
.MODEL DX D .MODEL DZ D(IS=1E-15 BV=7.0) .MODEL QP PNP(BF=143) .ENDS
–12–
REV. C
0.1574 (4.00)
0.1497 (3.80)
PIN 1
0.0098 (0.25)
0.0040 (0.10)
SEATING
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
8-Lead Narrow-Body SO
(SO-8)
0.1968 (5.00)
0.1890 (4.80)
85
0.0500 (1.27)
PLANE
0.2440 (6.20)
41
0.2284 (5.80)
BSC
0.0192 (0.49)
0.0138 (0.35)
0.0688 (1.75)
0.0532 (1.35)
0.0098 (0.25)
0.0075 (0.19)
0.0196 (0.50)
0.0099 (0.25)
8
0.0500 (1.27)
0
0.0160 (0.41)
OP183/OP283
45
REV. C
–13–
Revision History
Location Page
Data Sheet changed from REV. B to REV. C.
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
Edits to Package Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Edits to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
–14–
REV. C
REV. C
–15–
C00292–0–2/02(C)
–16–
PRINTED IN U.S.A.
Loading...