16-bit Control Processor (H8/300H)
Parallel and Serial Display Interface
Keypad Interface
EEPROM Interface
SIM-Interface
Universal System Connector Interface
Interface to AD6425
Control of Radio Subsystem
Programmable backlight duty cycle
Real Time Clock with Alarm
Battery ID Chip Interface
DSP Subsystem including
16-bit DSP with ROM coded firmware for
Full rate Speech Encoding/Decoding (GSM 06.10)
Enhanced Full Rate Speech
Encoding/Decoding (GSM 06.60)
Equalization with 16-state Viterbi (Soft Decision)
DTMF and Call Progress Tone Generation
Power Management of Mobile Radio
Slow Clocking scheme for low Idle Mode current
Ultra Low Power Design
On-chip GSM Data Services up to 14.4 kbit/s
JTAG Test Interface
2.4V to 3.3V Operating Voltage
144-Lead LQFP and 144-Lead PBGA packages
APPLICATIONS
GSM 900 / DCS1800 / PCS1900 Mobile Stations (MS)
Compliant to Phase 1 and Phase 2 specifications
GENERAL DESCRIPTION
The AD6426 Enhanced GSM Processor (EGSMP) is the
central component of the highly integrated AD20msp425 GSM
Chipset. Offering a low total chip count, low bill of materials
cost and long talk and standby times, the chipset offers
designers a straightforward route to a highly competitive
product in the GSM/DCS1800 market.
The EGSMP performs all the baseband functions of the Layer
1 processing of the GSM air interface. This includes all data
encoding and decoding processes as well as timing and radio
sub-system control functions.
The EGSMP supports full rate and enhanced full rate speech
traffic as well as a full range of data services including F14.4.
In addition, the EGSMP supports both A5/1 and A5/2
encryption algorithms as well as operation in non-encrypted
mode.
The EGSMP integrates a high performance 16-bit
microprocessor (Hitachi H8/300H), that supports all the GSM
terminal software, including Layer 1, 2 and 3 of the GSM
protocol stack, the MMI and applications software such as
data services, test and maintenance.
The use of the standard H8 processor allows the use of HIOS,
the Hitachi real time kernel, as well as a full range of software
development tools including C compilers, debuggers and incircuit emulators. The EGSMP also integrates a high
performance 16-bit Digital Signal Processor (DSP), which
provides speech transcoding and supports all audio functions
in both transmit and receive. In receive it equalizes the
received signal using a 16-state (Viterbi) soft decision
equalizer.
The EGSMP interfaces with all the peripheral sub-systems of
the terminal, including the keypad, memories, display driver,
SIM, DTE and DTA data services interface and radio. It also
has a general purpose interface that can be used to support an
external connection to a car kit or battery charger.
The EGSMP interfaces with the AD6425 or the AD6421
Voiceband/Baseband Codec through a dedicated serial port.
ORDERING GUIDE
UNIVERSAL
SYSTEM CONN.
INTERFACE
TEST
INTERFACE
SIM
INTERFACE
EEPROM
INTERFACE
MEMORY
INTERFACE
Figure 1. Functional Block Diagram
ModelTemperature RangePackage
AD6426XST-25°C to +85°C144-Lead LQFP
AD6426XB-25°C to +85°C144-Lead PBGA
CHANNEL
CODEC
DSP
CHANNEL
EQUALIZER
SPEECH
CODEC
CONTROL
PROCESSOR
AD6426
VOICEBAND /
BASEBAND
CODEC
INTERFACE
DISPLAY
INTERFACE
RADIO
INTERFACE
ACCESSORY
INTERFACE
KEYPAD /
BACKLIGHT
INTERFACE
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 1 -Confidential Information
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 2 -Confidential Information
Preliminary Technical Information
Table of Contents
AD6426
GENERAL DESCRIPTION...................................................1
PIN FUNCTIONALITY ( Normal Mode)...............................4
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 3 -Confidential Information
Preliminary Technical Information
PIN FUNCTIONALITY ( Normal Mode)
GroupPin NamePinsI/ODefault / Alternative Function(s) *
GeneralCLKIN1I13 MHz Clock Input
RESET1IReset input
IRQ61I / IInterrupt Request # 6 / Non-Maskable Interrupt (NMI) *
OSC13MON1O13 MHz Oscillator Power Control Signal
BOOTCODE1IBoot Code Enable
VDD10Supply Voltage
* Note: Functionality of these pins can be changed under software control.
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 4 -Confidential Information
Preliminary Technical Information
Pin Functionality ( NORMAL MODE)
GroupPin NamePinsI/ODefault / Alternative Function(s) *
EVBC InterfaceCLKOUT1OClock Output to EVBC
EVBCRESET1OEVBC Reset Output (also for Display reset)
ASPORTASDO1OEVBC Auxiliary Serial Port Data Output
ASOFS1OEVBC Auxiliary Serial Port Output Framing Signal
ASCLK1OEVBC Auxiliary Serial Port Clock Output
ASDI1IEVBC Auxiliary Serial Port Data Input
BSPORTBSDO1OEVBC Baseband Serial Port Data Output
BSOFS1OEVBC Baseband Serial Port Output Framing Signal
BSCLK1IEVBC Baseband Serial Port Clock Input
BSDI1IEVBC Baseband Serial Port Data Input
BSIFS1IEVBC Baseband Serial Port Input Framing Signal
VSPORTVSDO1OEVBC Voiceband Serial Port Data Output
VSDI1IEVBC Voiceband Serial Port Data Input
VSCLK1IEVBC Voiceband Serial Port Clock Input
VSFS1IEVBC Voiceband Serial Port Framing Signal
Radio InterfaceRXON1OReceiver On
TXPHASE1OSwitches between Rx and Tx
TXENABLE1OTransmit Enable / General Purpose Output 14 *
TXPA1O / OPower Amplifier Enable / General Purpose Output 12 *
CALIBRATERADIO1O / ORadio Calibration / General Purpose Output 13 *
RADIOPWRCTL1ORadio Power-Down Control
SYNTHEN01OSynthesizer 1 Enable
SYNTHEN11OSynthesizer 2 Enable / General Purpose Output 17 *
SYNTHDATA1ORF Serial Port Data
SYNTHCLK1ORF Serial Port Clock
AGCA1OAGC Gain Select / General Purpose Output 18
AGCB1OAGC Gain Select / General Purpose Output 19
UniversalUSCRI11/OUSC Ring Indicator / Serial Clock / GPO20
SystemUSCRX1IUSC Receive Data
ConnectorUSCTX1OUSC Transmit Data / Baseband Serial Port Data Input
InterfaceUSCCTS1I/OUSC Clear to Send / Serial Frame Sync / GPI22
USCRTS1OUSC Ready to Send / GPO21
AD6426
* Note: Functionality of these pins can be changed under software control.
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 5 -Confidential Information
Preliminary Technical Information
Pin Functionality ( NORMAL MODE)
GroupPin NamePinsI/ODefault / Alternative Function(s) *
Transmit Data *
GPIO91I/OGeneral Purpose Inputs/Output 9 / DEBUG UART
Receive Data *
GPCS1OGeneral Purpose Chip Select
Real TimeOSCIN1I32.768 kHz Crystal Input
ClockOSCOUT1O32.768 kHz Oscillator Output and Feedback to Crystal
InterfaceVDDRTC1RTC Supply Voltage
PWRON1OPower ON/OFF Control
Test InterfaceJTAGEN1IJTAG Enable
TCK1IJTAG Test Clock / HSL Data 0
TMS1IJTAG Test Mode Select / HSL Data 1 / DAI Reset
TDI1IJTAG Test Data Input / HSL Data 3 / DAI Data 1
TDO1OJTAG Test Data Output / HSL Data 2 / DAI Data 0
AD6426
* Note: Functionality of these pins can be changed under software control.
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 6 -Confidential Information
Preliminary Technical Information
AD6426
OVERVIEW
The GSM air interface has been formulated to provide high
quality digital mobile communication. As well as supporting
the traffic channels (speech and/or data), the air interface
specifies a number of signaling channels that are used for call
set up and communications between the network infrastructure
and the mobile. These signaling channels provide the mobile
specific features such as handover, as well as a number of
other intelligent features.
The GSM system closely follows the OSI 7-layer model for
communications. Specifically, GSM defines Layers 1, 2 and 3
of the protocols. The lowest level being Layer 1, or the
Physical Layer. It is this part of the network processing for
which the EGSMP is responsible, performing some of the
Layer 1 functions in dedicated hardware for minimum power
consumption and some in software for increased flexibility.
Layer 1 covers those signal processing functions required to
format the speech/data for transmission on the physical
medium. Data must be structured to allow for identification,
recovery and error correction so that the information can be
supplied error free to the layer 2 sub-systems and to the traffic
sources. In addition, the physical layer processing includes the
timing of both transmit and receive data, the encryption of
data for security purposes and the control of the Radio subsystem to provide timing and to optimize the radio frequency
characteristics. An object code license to Layer 1 software is
supplied with the AD20msp425 chipset.
FUNCTIONAL PARTITIONING
This datasheet gives only an overview about the functionality
of the EGSMP. The EGSMP consists of three main elements;
the Channel Codec and the Control Processor Sub-System
including several interfaces and the DSP as shown in Figure
1. The Channel Codec is responsible for the Layer 1 channel
coding and decoding of traffic and control information. The
Processor Sub-system supports the software functions of the
protocol stack and interfaces with the bus peripheral subsystems of the terminal. The DSP performs the channel
equalization and speech transcoding.
Channel Codec Sub-System
The Channel Codec processes data from two principal sources;
traffic and signaling. The former is normally continuous and
the latter determined on demand. Traffic comes in two forms;
speech and user data. The various traffic sources and the
signaling sources are all processed differently at the physical
layer. Speech traffic data is supplied by the speech transcoder
and the remaining data types are sourced from the Control
Processor and interfaced via a dedicated data interface. The
Channel Codec subsystem functional block diagram is shown
in Figure 3.
DSP
INTERFACE
REGISTERS
DECODE
H8
INTERFACE
INTERLEAVEENCODE
DEINTERLEAVE
RADIO / SYNTHESIZER
TIMING AND CONTROL
ENCRYPT
DECRYPT
VBC
INTERFACE
TEST
INTERFACE
Figure 3. Channel Codec Subsystem
The transmit and receive functions of the Channel Codec are
timed by an internal timebase that maintains accurate timing
of all sub-systems. This timebase is aligned with the on-air
receive signal and all system control signals, both internal and
external, are derived from it.
The physical layer processing can be divided into 4 phases,
two each for up- and downlink. The data in the transmit path
undergoes an ENCODE phase and then a TRANSMIT phase.
Similarly, data in the downlink path is termed the receive data
and it undergoes a RECEIVE phase followed by a DECODE
phase. The buffer between the ENCODE and TRANSMIT
functions is the INTERLEAVE module that holds the data and
permits the building of the transmit burst structure. Similarly
the DEINTERLEAVE module forms the buffer between the
RECEIVE and the DECODE processes.
Each of these four phases is controlled explicitly by the
Control Processor via control registers that define the mode of
operation of each sub-module and the data source they should
process. Typically these control values are updated every
TDMA frame in response to interrupts from the internal
timebase.
The ENCODE process involves the incorporation of error
protection codes. All data is sourced in packets and two forms
of error coding applied; block coding (parity or Fire code) and
convolution coding. The resultant data block is then written to
the INTERLEAVE module where it is buffered in a RAM.
Data is read from the interleave buffer memories contiguously
but written in non-contiguous manner, thereby implementing
the interleaving function. The TRANSMIT process uses a
different time structure now associated with the on-air TDMA
structure. The data is read from the INTERLEAVE module
and formatted into bursts with the requisite timing. This
involves adding fixed patterns such as the tail bits and training
sequence code. The resultant burst is written to the external
Baseband Converter where the modulation is performed and
the output timed to the system timebase before transmission.
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 7 -Confidential Information
Preliminary Technical Information
AD6426
A feature of the GSM system is the application, as part of the
TRANSMIT process, of data encryption for the purpose of link
security. After the INTERLEAVE module the data may be
encrypted using the prescribed A5/1 or A5/2 encryption
algorithm.
The RECEIVE function requires unmodulated baseband data
from the equalizer. As necessary the data is decrypted and
written to the DEINTERLEAVE module. This is conducted at
TDMA frame rate, although precise timing is not necessary at
this stage.
The DECODING process reads data from the
DEINTERLEAVE module, inverting the interleave algorithm
and decodes the error control codes, correcting and flagging
errors as appropriate. The data also includes a measure of
confidence expressed as two additional bits per received
symbol. These are used in the convolution decoder to improve
the error decoding performance. The resultant data is then
presented to the original sources as determined by the control
programming. The Channel Codec interfaces with the speech
transcoder for speech traffic data and with an equalizer for
recovered receive data. In the AD6426 the equalizer and
speech transcoder are implemented in the DSP.
Processor Sub-System
The Processor Sub-System consists of a high performance 16bit microcontroller together with a selection of peripheral
elements. The processor is a version of the Hitachi H8/300H
that has been developed to support GSM applications and
which is well suited to support the Protocol Stack and
Application Layer software.
DSP Sub-System
The DSP Sub-System consists of a high performance 16-bit
digital signal processor (DSP) with integrated RAM and ROM
memories. The DSP performs two major tasks: speech
transcoding and channel equalization. Additionally several
support functions are performed by the DSP. The instruction
code, which advises the DSP to perform these tasks, is stored
in the internal ROM. The DSP sub-system is completely selfcontained, no external memory or user-programming is
necessary.
Speech Transcoding
In Full Rate mode the DSP receives the speech data stream
from the EVBC and encodes the data from 104 kbit/s to 13
kbit/s. The algorithm used is Regular Pulse Excitation, with
Long Term Prediction (RPE-LTP) as specified in the 06-series
GSM Recommendations.
In Enhanced Full Rate mode, the DSP encodes the 104 kbit/s
speech data into 12.2 kbit/s (speech) +0.8 kbit/s (CRC and
repetition bits) as additionally specified in the Phase 2 version
of the 06-series GSM Recommendations. In both modes, the
DSP also performs the appropriate voice activity detection and
discontinuous transmission (VAD/DTX) functions.
Alternatively the DSP receives encoded speech data from the
channel codec sub-system including the Bad Frame Indicator
(BFI). The Speech decoder supports a Comfort Noise Insertion
(CNI) function that inserts a predefined silence descriptor into
the decoding process. The resulting data, at 104 kbit/s, is
transferred to the EVBC.
Equalization
The Equalizer recovers and demodulates the received signal
and establishes local timing and frequency references for the
mobile terminal as well as RSSI calculation. The equalization
algorithm is a version of the Maximum Likelihood Sequence
Estimation (MLSE) using the Viterbi algorithm. Two
confidence bits per symbol provide additional information
about the accuracy of each decision to the channel codec’s
convolutional decoder. The equalizer outputs a sequence of
bits including the confidence bits to the channel codec subsystem.
Audio Control
The DSP subsystem is also responsible for the control of the
audio path. The EVBC provides two audio inputs and two
audio outputs, as well as a separate buzzer output, which are
switched and controlled by the DSP. Furthermore the EVBC
provides for variable gain and sensitivity which is also
controlled by the DSP under command of the Layer 1
software.
Tone Generation
All alert signals are generated by the DSP and output to the
EVBC. These alerts can be used for the buzzer or for the
earpiece. The tones used for alert signals can be fully defined
by the user by means of a description which provides all the
parameters required such as frequency content and duration of
components of the tone. The tone descriptions are provided by
the Layer 1 software.
Automatic Frequency Control (AFC)
The detection of the frequency correction burst provides the
frequency offset between the mobile terminal and the received
signal. This measure is supplied to the Layer 1 software which
then requests a correction of the master clock oscillator
frequency via the AFC-DAC in the EVBC. In order to do so
the Layer 1 software includes a transfer function for the
oscillator frequency against the voltage applied. The DSP
provides the measurements for the AFC.
Automatic Gain Control (AGC)
The DSP is also responsible for making measurements of the
power in the received signal. This is used for a number of
functions including RSSI measurement, adjacent channel
monitoring and AGC. The Layer 1 software passes the
requested gain level to the DSP, which then analyzes the
received signal and generates an AGC control signal.
Depending on the radio architecture, this control signal will be
used in digital form or, converted by the AD6425 in analog
form.
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 8 -Confidential Information
Preliminary Technical Information
AD6426
REGISTERS
The AD6426 contains 88 Channel Codec Control Registers, 69
H8 Peripheral Registers mapped into the Channel Codec
address space starting at 8000h. All registers are normally
accessed by the Layer 1 software provided with the
AD20msp425 chipset. The user is not expected to read or
write to any registers other than through the Layer 1 software.
Therefore only a limited description of these registers is given
here to ease the understanding of the functional behavior of
the AD6426. Only registers which can be modified or
monitored by the user under control of the Layer 1 software
are shown. The Channel Codec Control Registers are listed in
Table 1, and the H8 Peripheral Control Registers in Table 3
A description of the Channel Codec Control Register contents
is shown in Table 2, and of the H8 Peripheral Registers in
Table 4.
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 9 -Confidential Information
Preliminary Technical Information
AD6426
Table 2. CC Control Register Contents
#76543210
0
AutocalibrateBacklight 1Test Data Enable Calibrate RadioEncryption Type Encrypt Key Load
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 10 -Confidential Information
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 11 -Confidential Information
SWITCH
49SDORIESDIROE IESDIRIESDOR EMTSDIR OESDIR FULL
50Receive[15:8]
51Receive[7:0]
52Transmit[15:8]
53Transmit[7:0]
64/65Data[7:0]
UCONN
SWITCH
R/W
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 12 -Confidential Information
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 13 -Confidential Information
Preliminary Technical Information
AD6426
GENERAL CONTROL
Clocks
Clock Input
The AD6426 requires a single 13 MHz, low level clock signal,
which has to be provided at the pin CLKIN. For proper
operation a signal level of 250 mVPP minimum is required.
This feature eases system design and reduces the need for
external clock buffering. Only minimal external components
are required as shown in Figure 4.
The internal clock buffer can accept any regular waveform as
long as it can find voltage points in the signal, for which a
50% duty cycle can be determined. This condition is met for
sinewaves, triangles, or slew-limited square waves. Dedicated
circuitry searches for these points and generates the respective
bias voltage internally.
The external capacitor (1nF) decouples the bias voltage of the
clock signal generated by the oscillator from the internally
generated bias voltage of the clock buffer circuitry.
The LC-filter shown is optional. It ensures, that the input
signal is “well behaved” and sinusoidal. Additionally it filters
out harmonics and noise, that may be on top of the pure 13
MHz signal.
Optional
13 MHz Filter
13 MHz
VCTCXO
OUT
2.2 µH
68 pF
1nF
CLKIN
AD6422
Figure 4. Clock Input Circuitry
Clock Output
The input clock drives both the H8 and the Channel Codec
directly. A gated version, controlled by the Output ClockEnable flag in CC Control Register 45, drives the CLKOUT
pin of the EVBC interface. The stand-by state of CLKOUT is
logic zero. The CLKOUT output will be active on reset.
Slow Clocking
To reduce power consumption of AD20msp425 solutions, a
new slow clocking scheme has been designed into the
AD6426. This scheme allows the VCTCXO to be powered
down between paging blocks during Idle Mode and for a
32.768kHz oscillator to keep the time reference during this
period. Only a common 32.768kHz watch crystal is required to
take advantage of this scheme. As in previous generations,
power consumption is also kept to a minimum using
asynchronous design techniques and by stopping all
unnecessary clocks.
Layer 1 software and logic built into the AD6426 are
responsible for maintaining synchronization and calibration of
the slow clock and ensure the validity of the time reference
under all circumstances. The active-high OSC13MON output
is prevented from becoming inactive if the 32.768kHz signal is
not present. The following table describes the functionality of
the relevant pins.
The AD6426 provides a simple Real Time Clock (RTC) using
the 32.768kHz clock input. A 40 bit counter allows for more
than one year of resolution. The RTC module contains a
32.768kHz on chip oscillator buffer designed for very low
power consumption and a set of registers for a timer, alarm,
control and status functions.
The RTC circuit is supplied by two sources; a VDDRTC
supply pin and the main system VDD. It is the handset
designer’s responsibility to provide suitable switching
between the main system VDD and a backup supply to ensure
the RTC module is permanently powered.
The VDDRTC pin is intended to interface to a backup battery
circuit or charge holding network in order for the RTC to
maintain timing accuracy when the main battery is removed
and the handset is powered down.
The user can set an alarm time at which the handset powers
up. If an alarm time is set, the current time matches the alarm
time, and the power on alarm feature is enabled, the handset is
powered up by asserting the PWRON pin for a period of
approximately 2 seconds.
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 14 -Confidential Information
Preliminary Technical Information
AD6426
The VDDRTC was designed to interface with either a:
• Lithium Battery or
• Capacitor in the range of 0.4F (maximum for ~24 hours
standby) to 8mF (~30 minutes standby)
Reset
The AD6426 is reset by setting the RESET pin to GND. This
will reset the H8-processor, the Channel Codec, the internal
DSP as well as the LCD controller interface and Boot ROM
logic. Both the DSP and the Channel Codec will be held in
reset until the RESET register is written to by the H8. At least
50 CLKIN cycles must elapse before deasserting the RESET
pin and at least a further 100 cycles before writing to the
RESET register.
For reset at power up, the DSP must be held in reset for at
least 2000 clock cycles to enable the internal PLL to lock.
The RESET CC Control Register 35 contains the following
flags:
BitFunction
3
EVBC Reset
2
DSP Reset
0
Channel Codec Reset
The H8 fetches its program start vector from location 0x0000
in segment zero. This can either be from external ROM or
internal Boot ROM, depending on the status of the
BOOTCODE pin.
Interrupts
The interrupts are controlled by the two CC Control Registers
77 and 78. These registers only apply to Emulation Mode, in
that they define which of the interrupts are able to assert
CCIRQ2.
BitIRQ ENABLE CC Control Register 77
5
IRQ 5 Enable
4
IRQ 4 Enable
3
IRQ 3 Enable
2
IRQ 2 Enable
BitIRQ LATCH CC Control Register 78
5
IRQ 5 active
4
IRQ 4 active
3
IRQ 3 active
2
IRQ 2 active
Additionally 8 functional modules can be reset under control
of the two SWRESET registers:
BitSWRESET 1 CC Control Register 46
3
Encryption Software Reset
2
EVBC Interface Software Reset
1
DSP Interface Software Reset
0
Synthesizer Interface Software Reset
BitSWRESET 2 CC Control Register 47
3
Decode Software Reset
2
Deinterleave Software Reset
1
Interleave Software Reset
0
Encode Software Reset
The JTAG circuitry is reset by a power-on reset mechanism.
Further resets must be done by asserting the TMS input high
for at least five TCK clock cycles. When JTAG compliance is
re-enabled, the JTAG is reset forcing the AD6426 into its
normal mode of operation, selecting the BYPASS register by
default.
NMI
The non-maskable interrupt NMI input of the H8 processor is
multiplexed with the IRQ6 pin. IRQ6 is the default function,
though asserting the NMI Select flag in CC Control Register 7
will select the NMI function. When not selected, NMI will be
tied off high internally, though it remains driven by the JTAG
port for test purposes. The signal is programmable to be edge
or level sensitive. It defaults to falling edge. The edge polarity
can be changed by programming the H8. However, if
FLASHPWD is used then the same setting must be applied to
CC Control Register 77. The default of zero implies falling
edge sensitive. This way NMI going active can correctly deassert FLASHPWD. The NMI can be used for test purposes or
user defined features. NMI is capable of bringing the control
processor out of software standby mode and therefore suitable
for functions such as alarm inputs, power management etc.
During manufacture the NMI can be used to trigger special
test code.
In addition NMI can be generated internally thus freeing up
the IRQ6 PIN. In this mode the TXENABLE NMI will occur
on the rising edge of the TXENABLE as seen at the pin. The
H8 should be set up for a negative edge NMI in this case.
Setting bit 5 in the SERDISPLAY/NMI H8 Peripheral Control
Register 106 to a ONE enables the TXENABLE NMI.
However, the Layer 1 Software must program the external INT
pin to INT6 before the register bit is set.
This Information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no
obligation regarding future manufacture unless otherwise agreed to in writing. No responsibility is assumed by Analog Devices for its use; nor for any
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent
rights of Analog Devices.
Revision Preliminary 2.3 (June 9, ´98)- 15 -Confidential Information
Loading...
+ 35 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.