ALTERA Cyclone II User Manual

4.5 (2)

CII51002-3.1

Functional

Description

Altera Corporation

February 2007

2. CycloneII Architecture

Cyclone® II devices contain a two-dimensional rowand column-based architecture to implement custom logic. Column and row interconnects of varying speeds provide signal interconnects between logic array blocks (LABs), embedded memory blocks, and embedded multipliers.

The logic array consists of LABs, with 16 logic elements (LEs) in each LAB. An LE is a small unit of logic providing efficient implementation of user logic functions. LABs are grouped into rows and columns across the device. Cyclone II devices range in density from 4,608 to 68,416 LEs.

Cyclone II devices provide a global clock network and up to four phase-locked loops (PLLs). The global clock network consists of up to 16 global clock lines that drive throughout the entire device. The global clock network can provide clocks for all resources within the device, such as input/output elements (IOEs), LEs, embedded multipliers, and embedded memory blocks. The global clock lines can also be used for other high fan-out signals. Cyclone II PLLs provide general-purpose clocking with clock synthesis and phase shifting as well as external outputs for high-speed differential I/O support.

M4K memory blocks are true dual-port memory blocks with 4K bits of memory plus parity (4,608 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 36-bits wide at up to 260 MHz. These blocks are arranged in columns across the device in between certain LABs. Cyclone II devices offer between 119 to

1,152 Kbits of embedded memory.

Each embedded multiplier block can implement up to either two 9 × 9-bit multipliers, or one 18 × 18-bit multiplier with up to 250-MHz performance. Embedded multipliers are arranged in columns across the device.

Each Cyclone II device I/O pin is fed by an IOE located at the ends of LAB rows and columns around the periphery of the device. I/O pins support various single-ended and differential I/O standards, such as the 66and 33-MHz, 64and 32-bit PCI standard, PCI-X, and the LVDS I/O standard at a maximum data rate of 805 megabits per second (Mbps) for inputs and 640 Mbps for outputs. Each IOE contains a bidirectional I/O buffer and three registers for registering input, output, and output-enable signals.

Dual-purpose DQS, DQ, and DM pins along with delay chains (used to

2–1

Logic Elements

phase-align double data rate (DDR) signals) provide interface support for external memory devices such as DDR, DDR2, and single data rate (SDR) SDRAM, and QDRII SRAM devices at up to 167 MHz.

Figure 2–1 shows a diagram of the Cyclone II EP2C20 device.

Figure 2–1. Cyclone II EP2C20 Device Block Diagram

 

 

 

PLL

 

IOEs

 

 

PLL

Embedded

 

 

 

 

 

Multipliers

 

 

 

 

 

IOEs

Logic

Logic

Logic

Logic

IOEs

Array

Array

Array

Array

 

 

M4K Blocks

 

 

 

 

M4K Blocks

PLL

 

IOEs

 

 

PLL

 

The number of M4K memory blocks, embedded multiplier blocks, PLLs,

 

rows, and columns vary per device.

Logic Elements

The smallest unit of logic in the Cyclone II architecture, the LE, is compact

 

and provides advanced features with efficient logic utilization. Each LE

 

features:

A four-input look-up table (LUT), which is a function generator that can implement any function of four variables

A programmable register

A carry chain connection

A register chain connection

The ability to drive all types of interconnects: local, row, column, register chain, and direct link interconnects

Support for register packing

Support for register feedback

2–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II Architecture

Figure 2–2 shows a Cyclone II LE.

Figure 2–2. Cyclone II LE

 

 

 

 

 

 

 

 

Register Chain

 

 

 

 

 

 

Routing From

 

 

 

 

 

 

Previous LE

 

 

 

 

 

 

LAB-Wide

Register Bypass

 

 

 

LAB Carry-In

 

Synchronous

 

 

 

 

 

Load

 

 

Programmable

 

 

 

Packed

 

 

 

 

LAB-Wide

 

Register

 

 

 

Synchronous

Register Select

 

 

 

 

 

 

 

Clear

 

 

 

data1

 

 

 

 

 

Row, Column,

data2

Look-Up

Carry

Synchronous

D

Q

And Direct Link

data3

Table

Load and

Routing

Chain

 

 

 

(LUT)

Clear Logic

 

 

 

data4

 

 

 

 

 

 

 

ENA

 

 

 

 

 

 

 

 

 

 

 

 

CLRN

 

Row, Column,

 

 

 

 

 

 

And Direct Link

 

 

 

 

 

 

Routing

labclr1

 

 

 

 

 

 

labclr2

Asynchronous

 

 

 

 

Local Routing

Chip-Wide

Clear Logic

 

 

 

 

 

 

 

 

 

 

Reset

 

 

 

 

 

 

(DEV_CLRn)

 

 

 

 

 

Register Chain

 

Clock &

 

 

Register

 

 

 

Output

 

Clock Enable

 

 

Feedback

 

 

Select

 

 

 

 

 

 

 

 

 

labclk1

 

 

 

 

 

 

labclk2

 

 

 

 

 

 

labclkena1

 

 

 

 

 

 

labclkena2

 

 

 

 

 

 

 

 

 

LAB Carry-Out

 

 

 

Each LE’s programmable register can be configured for D, T, JK, or SR operation. Each register has data, clock, clock enable, and clear inputs. Signals that use the global clock network, general-purpose I/O pins, or any internal logic can drive the register’s clock and clear control signals. Either general-purpose I/O pins or internal logic can drive the clock enable. For combinational functions, the LUT output bypasses the register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing resources. The LUT or register output can drive these three outputs independently. Two LE outputs drive column or row and direct link routing connections and one drives local interconnect resources, allowing the LUT to drive one output while the register drives another output. This feature, register packing, improves device utilization because the device can use the register and the LUT for unrelated functions. When using register packing, the LAB-wide synchronous load control signal is not available. See “LAB Control Signals” on page 2–8 for more information.

Altera Corporation

2–3

February 2007

Cyclone II Device Handbook, Volume 1

Logic Elements

Another special packing mode allows the register output to feed back into the LUT of the same LE so that the register is packed with its own fan-out LUT, providing another mechanism for improved fitting. The LE can also drive out registered and unregistered versions of the LUT output.

In addition to the three general routing outputs, the LEs within an LAB have register chain outputs. Register chain outputs allow registers within the same LAB to cascade together. The register chain output allows an LAB to use LUTs for a single combinational function and the registers to be used for an unrelated shift register implementation. These resources speed up connections between LABs while saving local interconnect resources. See “MultiTrack Interconnect” on page 2–10 for more information on register chain connections.

LE Operating Modes

The Cyclone II LE operates in one of the following modes:

Normal mode

Arithmetic mode

Each mode uses LE resources differently. In each mode, six available inputs to the LE—the four data inputs from the LAB local interconnect, the LAB carry-in from the previous carry-chain LAB, and the register chain connection—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes.

The Quartus® II software, in conjunction with parameterized functions such as library of parameterized modules (LPM) functions, automatically chooses the appropriate mode for common functions such as counters, adders, subtractors, and arithmetic functions. If required, you can also create special-purpose functions that specify which LE operating mode to use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and combinational functions. In normal mode, four data inputs from the LAB local interconnect are inputs to a four-input LUT (see Figure 2–3). The Quartus II Compiler automatically selects the carry-in or the data3 signal as one of the inputs to the LUT. LEs in normal mode support packed registers and register feedback.

2–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II Architecture

Figure 2–3. LE in Normal Mode

sload

sclear

(LAB Wide)

(LAB Wide)

Packed Register Input

Register chain connection

 

 

Q

Row, Column, and

data1

 

D

Direct Link Routing

data2

 

ENA

Row, Column, and

data3

Four-Input

Direct Link Routing

CLRN

cin (from cout

LUT

 

 

 

 

 

of previous LE)

 

clock (LAB Wide)

Local routing

 

 

data4

 

 

 

ena (LAB Wide)

 

 

 

aclr (LAB Wide)

 

 

Register Feedback

 

Register

 

 

chain output

 

 

 

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, counters, accumulators, and comparators. An LE in arithmetic mode implements a 2-bit full adder and basic carry chain (see Figure 2–4). LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output. Register feedback and register packing are supported when LEs are used in arithmetic mode.

Altera Corporation

2–5

February 2007

Cyclone II Device Handbook, Volume 1

Logic Elements

Figure 2–4. LE in Arithmetic Mode

sload

 

sclear

(LAB Wide)

(LAB Wide)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

data1

data2

cin (from cout of previous LE)

 

Register chain

 

 

connection

 

Three-Input

Q

Row, column, and

LUT

D

direct link routing

 

ENA

Row, column, and

 

direct link routing

 

CLRN

Three-Input

 

clock (LAB Wide)

 

LUT

 

ena (LAB Wide)

 

 

Local routing

 

aclr (LAB Wide)

 

 

 

cout

 

 

 

Register

 

 

chain output

Register Feedback

The Quartus II Compiler automatically creates carry chain logic during design processing, or you can create it manually during design entry. Parameterized functions such as LPM functions automatically take advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 16 LEs by automatically linking LABs in the same column. For enhanced fitting, a long carry chain runs vertically, which allows fast horizontal connections to M4K memory blocks or embedded multipliers through direct link interconnects. For example, if a design has a long carry chain in a LAB column next to a column of M4K memory blocks, any LE output can feed an adjacent M4K memory block through the direct link interconnect. Whereas if the carry chains ran horizontally, any LAB not next to the column of M4K memory blocks would use other row or column interconnects to drive a M4K memory block. A carry chain continues as far as a full column.

2–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II Architecture

Logic Array

Blocks

Each LAB consists of the following:

16 LEs

LAB control signals

LE carry chains

Register chains

Local interconnect

The local interconnect transfers signals between LEs in the same LAB. Register chain connections transfer the output of one LE’s register to the adjacent LE’s register within an LAB. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of local, and register chain connections for performance and area efficiency. Figure 2–5 shows the Cyclone II LAB.

Figure 2–5. Cyclone II LAB Structure

Row Interconnect

 

Column

 

Interconnect

 

Direct link

Direct link

interconnect

from adjacent

interconnect

block

from adjacent

 

block

 

Direct link

Direct link

interconnect

interconnect

to adjacent

to adjacent

block

block

LAB

Local Interconnect

Altera Corporation

2–7

February 2007

Cyclone II Device Handbook, Volume 1

Logic Array Blocks

LAB Interconnects

The LAB local interconnect can drive LEs within the same LAB. The LAB local interconnect is driven by column and row interconnects and LE outputs within the same LAB. Neighboring LABs, PLLs, M4K RAM blocks, and embedded multipliers from the left and right can also drive an LAB’s local interconnect through the direct link connection. The direct link connection feature minimizes the use of row and column interconnects, providing higher performance and flexibility. Each LE can drive 48 LEs through fast local and direct link interconnects. Figure 2–6 shows the direct link connection.

Figure 2–6. Direct Link Connection

Direct link interconnect from left LAB, M4K memory block, embedded multiplier, PLL, or IOE output

Direct link interconnect

to left

Local

Interconnect

Direct link interconnect from right LAB, M4K memory block, embedded multiplier, PLL, or IOE output

Direct link interconnect

to right

LAB

LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its LEs.

The control signals include:

Two clocks

Two clock enables

Two asynchronous clears

One synchronous clear

One synchronous load

2–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II Architecture

This gives a maximum of seven control signals at a time. When using the LAB-wide synchronous load, the clkena of labclk1 is not available. Additionally, register packing and synchronous load cannot be used simultaneously.

Each LAB can have up to four non-global control signals. Additional LAB control signals can be used as long as they are global signals.

Synchronous clear and load signals are useful for implementing counters and other functions. The synchronous clear and synchronous load signals are LAB-wide signals that affect all registers in the LAB.

Each LAB can use two clocks and two clock enable signals. Each LAB’s clock and clock enable signals are linked. For example, any LE in a particular LAB using the labclk1 signal also uses labclkena1. If the LAB uses both the rising and falling edges of a clock, it also uses both LAB-wide clock signals. De-asserting the clock enable signal turns off the LAB-wide clock.

The LAB row clocks [5..0] and LAB local interconnect generate the LABwide control signals. The MultiTrackinterconnect’s inherent low skew allows clock and control signal distribution in addition to data. Figure 2–7 shows the LAB control signal generation circuit.

Figure 2–7. LAB-Wide Control Signals

Dedicated

6

LAB Row

 

Clocks

 

Local

 

Interconnect

 

Local

 

Interconnect

 

Local

Interconnect

Local

Interconnect

labclkena1

labclkena2

labclr1

synclr

labclk1

labclk2

syncload

labclr2

 

 

 

 

LAB-wide signals control the logic for the register’s clear signal. The LE directly supports an asynchronous clear function. Each LAB supports up to two asynchronous clear signals (labclr1 and labclr2).

Altera Corporation

2–9

February 2007

Cyclone II Device Handbook, Volume 1

MultiTrack Interconnect

MultiTrack

Interconnect

A LAB-wide asynchronous load signal to control the logic for the register’s preset signal is not available. The register preset is achieved by using a NOT gate push-back technique. Cyclone II devices can only support either a preset or asynchronous clear signal.

In addition to the clear port, Cyclone II devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. An option set before compilation in the Quartus II software controls this pin. This chip-wide reset overrides all other control signals.

In the Cyclone II architecture, connections between LEs, M4K memory blocks, embedded multipliers, and device I/O pins are provided by the MultiTrack interconnect structure with DirectDrive™ technology. The MultiTrack interconnect consists of continuous, performance-optimized routing lines of different speeds used for interand intra-design block connectivity. The Quartus II Compiler automatically places critical paths on faster interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures identical routing resource usage for any function regardless of placement within the device. The MultiTrack interconnect and DirectDrive technology simplify the integration stage of block-based designing by eliminating the re-optimization cycles that typically follow design changes and additions.

The MultiTrack interconnect consists of row (direct link, R4, and R24) and column (register chain, C4, and C16) interconnects that span fixed distances. A routing structure with fixed-length resources for all devices allows predictable and repeatable performance when migrating through different device densities.

Row Interconnects

Dedicated row interconnects route signals to and from LABs, PLLs, M4K memory blocks, and embedded multipliers within the same row. These row resources include:

Direct link interconnects between LABs and adjacent blocks

R4 interconnects traversing four blocks to the right or left

R24 interconnects for high-speed access across the length of the device

2–10

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II Architecture

The direct link interconnect allows an LAB, M4K memory block, or embedded multiplier block to drive into the local interconnect of its left and right neighbors. Only one side of a PLL block interfaces with direct link and row interconnects. The direct link interconnect provides fast communication between adjacent LABs and/or blocks without using row interconnect resources.

The R4 interconnects span four LABs, three LABs and one M4K memory block, or three LABs and one embedded multiplier to the right or left of a source LAB. These resources are used for fast row connections in a fourLAB region. Every LAB has its own set of R4 interconnects to drive either left or right. Figure 2–8 shows R4 interconnect connections from an LAB. R4 interconnects can drive and be driven by LABs, M4K memory blocks, embedded multipliers, PLLs, and row IOEs. For LAB interfacing, a primary LAB or LAB neighbor (see Figure 2–8) can drive a given R4 interconnect. For R4 interconnects that drive to the right, the primary LAB and right neighbor can drive on to the interconnect. For R4 interconnects that drive to the left, the primary LAB and its left neighbor can drive on to the interconnect. R4 interconnects can drive other R4 interconnects to extend the range of LABs they can drive. Additionally, R4 interconnects can drive R24 interconnects, C4, and C16 interconnects for connections from one row to another.

Figure 2–8. R4 Interconnect Connections

Adjacent LAB can

Drive onto Another

LAB's R4 Interconnect

R4 Interconnect

Driving Left

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R4 Interconnect

 

 

 

 

 

 

 

 

 

 

C4 Column Interconnects (1)

 

 

Driving Right

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LAB

 

 

 

Primary

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Neighbor

 

 

 

LAB (2)

 

LAB

Neighbor

Notes to Figure 2–8:

(1)C4 interconnects can drive R4 interconnects.

(2)This pattern is repeated for every LAB in the LAB row.

Altera Corporation

2–11

February 2007

Cyclone II Device Handbook, Volume 1

MultiTrack Interconnect

R24 row interconnects span 24 LABs and provide the fastest resource for long row connections between non-adjacent LABs, M4K memory blocks, dedicated multipliers, and row IOEs. R24 row interconnects drive to other row or column interconnects at every fourth LAB. R24 row interconnects drive LAB local interconnects via R4 and C4 interconnects and do not drive directly to LAB local interconnects. R24 interconnects can drive R24, R4, C16, and C4 interconnects.

Column Interconnects

The column interconnect operates similar to the row interconnect. Each column of LABs is served by a dedicated column interconnect, which vertically routes signals to and from LABs, M4K memory blocks, embedded multipliers, and row and column IOEs. These column resources include:

Register chain interconnects within an LAB

C4 interconnects traversing a distance of four blocks in an up and down direction

C16 interconnects for high-speed vertical routing through the device

Cyclone II devices include an enhanced interconnect structure within LABs for routing LE output to LE input connections faster using register chain connections. The register chain connection allows the register output of one LE to connect directly to the register input of the next LE in the LAB for fast shift registers. The Quartus II Compiler automatically takes advantage of these resources to improve utilization and performance. Figure 2–9 shows the register chain interconnects.

2–12

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II Architecture

Figure 2–9. Register Chain Interconnects

Local Interconnect

Routing Among LEs

in the LAB

Carry Chain LE 1

Routing to

Adjacent LE

LE 2

Local

 

 

 

 

LE 3

 

Interconnect

LE 4

LE 5

LE 6

LE 7

LE 8

LE 9

LE 10

LE 11

LE 12

LE13

LE 14

LE 15

LE 16

Register Chain Routing to Adjacent LE's Register Input

The C4 interconnects span four LABs, M4K blocks, or embedded multipliers up or down from a source LAB. Every LAB has its own set of C4 interconnects to drive either up or down. Figure 2–10 shows the C4 interconnect connections from an LAB in a column. The C4 interconnects can drive and be driven by all types of architecture blocks, including PLLs, M4K memory blocks, embedded multiplier blocks, and column and row IOEs. For LAB interconnection, a primary LAB or its LAB neighbor (see Figure 2–10) can drive a given C4 interconnect. C4 interconnects can drive each other to extend their range as well as drive row interconnects for column-to-column connections.

Altera Corporation

2–13

February 2007

Cyclone II Device Handbook, Volume 1

ALTERA Cyclone II User Manual

MultiTrack Interconnect

Figure 2–10. C4 Interconnect Connections

 

Note (1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Row

Interconnect

Adjacent LAB can drive onto neighboring LAB's C4 interconnect

Local Primary

Interconnect LAB

Note to Figure 2–10:

(1)Each C4 interconnect can drive either up or down four rows.

C4 Interconnect

Drives Local and R4

Interconnects

Up to Four Rows

C4 Interconnect

Driving Up

LAB

LAB

Neighbor

C4 Interconnect

Driving Down

2–14

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II Architecture

C16 column interconnects span a length of 16 LABs and provide the fastest resource for long column connections between LABs, M4K memory blocks, embedded multipliers, and IOEs. C16 column interconnects drive to other row and column interconnects at every fourth LAB. C16 column interconnects drive LAB local interconnects via C4 and R4 interconnects and do not drive LAB local interconnects directly. C16 interconnects can drive R24, R4, C16, and C4 interconnects.

Device Routing

All embedded blocks communicate with the logic array similar to LAB-to-LAB interfaces. Each block (for example, M4K memory, embedded multiplier, or PLL) connects to row and column interconnects and has local interconnect regions driven by row and column interconnects. These blocks also have direct link interconnects for fast connections to and from a neighboring LAB.

Table 2–1 shows the Cyclone II device’s routing scheme.

Table 2–1. Cyclone II Device Routing Scheme (Part 1 of 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Destination

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source

RegisterChain

InterconnectLocal

InterconnectLinkDirect

InterconnectR4

InterconnectR24

InterconnectC4

 

InterconnectC16

 

LE

RAMM4KBlock

MultiplierEmbedded

PLL

ColumnIOE

IOERow

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Register

 

 

 

 

 

 

 

 

 

v

 

 

 

 

 

Chain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Local

 

 

 

 

 

 

 

 

 

v

v

v

v

v

v

Interconnect

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Direct Link

 

v

 

 

 

 

 

 

 

 

 

 

 

 

 

Interconnect

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R4

 

v

 

v

v

v

 

v

 

 

 

 

 

 

 

Interconnect

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R24

 

 

 

v

v

v

 

v

 

 

 

 

 

 

 

Interconnect

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C4

 

v

 

v

v

v

 

v

 

 

 

 

 

 

 

Interconnect

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C16

 

 

 

v

v

v

 

v

 

 

 

 

 

 

 

Interconnect

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Altera Corporation

 

 

 

 

 

 

 

 

 

 

 

 

 

2–15

February 2007

 

 

 

 

 

 

 

 

Cyclone II Device Handbook, Volume 1

Global Clock Network & Phase-Locked Loops

Table 2–1. Cyclone II Device Routing Scheme (Part 2 of 2)

 

 

 

 

 

 

 

Destination

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source

RegisterChain

InterconnectLocal

InterconnectLinkDirect

InterconnectR4

InterconnectR24

InterconnectC4

 

InterconnectC16

 

LE

RAMM4KBlock

MultiplierEmbedded

PLL

ColumnIOE

IOERow

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LE

v

v

v

v

 

v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M4K memory

 

v

v

v

 

v

 

 

 

 

 

 

 

 

 

Block

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Embedded

 

v

v

v

 

v

 

 

 

 

 

 

 

 

 

Multipliers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PLL

 

 

v

v

 

v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Column IOE

 

 

 

 

 

v

 

v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Row IOE

 

 

v

v

v

v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Global Clock

Network &

Phase-Locked

Loops

Cyclone II devices provide global clock networks and up to four PLLs for a complete clock management solution. Cyclone II clock network features include:

Up to 16 global clock networks

Up to four PLLs

Global clock network dynamic clock source selection

Global clock network dynamic enable and disable

2–16

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II Architecture

Each global clock network has a clock control block to select from a number of input clock sources (PLL clock outputs, CLK[] pins, DPCLK[] pins, and internal logic) to drive onto the global clock network. Table 2–2 lists how many PLLs, CLK[] pins, DPCLK[] pins, and global clock networks are available in each Cyclone II device. CLK[] pins are dedicated clock pins and DPCLK[] pins are dual-purpose clock pins.

Table 2–2. Cyclone II Device Clock Resources

Device

Number of

Number of

Number of

Number of

Global Clock

PLLs

CLK Pins

DPCLK Pins

 

Networks

 

 

 

 

 

 

 

 

 

EP2C5

2

8

8

8

 

 

 

 

 

EP2C8

2

8

8

8

 

 

 

 

 

EP2C15

4

16

20

16

 

 

 

 

 

EP2C20

4

16

20

16

 

 

 

 

 

EP2C35

4

16

20

16

 

 

 

 

 

EP2C50

4

16

20

16

 

 

 

 

 

EP2C70

4

16

20

16

 

 

 

 

 

Figures 2–11 and 2–12 show the location of the Cyclone II PLLs, CLK[] inputs, DPCLK[] pins, and clock control blocks.

Altera Corporation

2–17

February 2007

Cyclone II Device Handbook, Volume 1

Global Clock Network & Phase-Locked Loops

Figure 2–11. EP2C5 & EP2C8 PLL, CLK[], DPCLK[] & Clock Control Block Locations

DPCLK10

DPCLK8

 

PLL 2

Clock Control

 

Block (1)

 

GCLK[7..0]

4

DPCLK0

DPCLK7

8

 

8

8

CLK[3..0]

CLK[7..4]

4

4

8

 

DPCLK1

DPCLK6

4

GCLK[7..0]

 

 

Clock Control

 

Block (1)

PLL 1

 

DPCLK2

DPCLK4

Note to Figure 2–11:

(1)There are four clock control blocks on each side.

2–18

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II Architecture

Figure 2–12. EP2C15 & Larger PLL, CLK[], DPCLK[] & Clock Control Block Locations

 

DPCLK[11..10]

DPCLK[9..8]

 

CDPCLK7

CLK[11..8]

CDPCLK6

 

2

2

 

 

4

 

 

PLL 3

4

 

PLL 2

 

 

 

3

 

 

CDPCLK0

 

 

CDPCLK5

(2)

 

 

(2)

 

GCLK[15..0]

Clock Control

4

 

Block (1)

3

DPCLK0

 

 

 

DPCLK7

 

16

 

 

 

16

16

 

CLK[3..0]

 

 

CLK[7..4]

4

 

 

4

 

16

 

 

DPCLK1

Clock Control

 

DPCLK6

4

GCLK[15..0]

 

Block (1)

 

3

 

 

(2)

 

 

(2)

CDPCLK1

 

 

CDPCLK4

 

 

 

 

 

3

 

PLL 1

 

4

PLL 4

 

 

 

 

 

4

 

 

2

2

 

CDPCLK2

CLK[15..12]

CDPCLK3

 

DPCLK[3..2]

DPCLK[5..4]

 

Notes to Figure 2–12:

(1)There are four clock control blocks on each side.

(2)Only one of the corner CDPCLK pins in each corner can feed the clock control block at a time. The other CDPCLK pins can be used as general-purpose I/O pins.

Altera Corporation

2–19

February 2007

Cyclone II Device Handbook, Volume 1

Loading...
+ 43 hidden pages