2.6 Sealants, Desiccant and Securing the Monitor 16
2.7 Installation Check List 17
Section 3 SYSTEM SETUP 19
3.1 System Configuration 19
3.2 6-Series Sonde Setup 20
3.3 6500 Monitor Setup 23
3.3.1 Calibration setup 24
3.3.2 Display setup 26
3.3.3 Relays 29
3.3.4 4-20 mA channel setup 31
3.3.5 Modbus Setup 32
3.3.6 Change Sonde Address 33
3.3.7 System Status 35
Section 4 CALIBRATION 37
4.1 General Calibration Tips 37
4.2 Field Calibration Using the 6500 Monitor 40
4.3 6500 calibration Warning and Error Messages 42
Section 5 PROPER USE AND CARE OF THE 6500 MONITOR SYSTEM 43
5.1 Deciding How to Use Your Monitoring System 43
5.2 Quality Assurance 47
5.2.1 Sonde Maintenance and Deployment Site 48
5.2.2 Calibration Checks 49
5.2.3 Recommended Quality Assurance Protocol 49
5.2.4 Recommended Monthly Maintenance of DO Probe 51
5.2.5 Recommended Cleaning of the 6500 Enclosure 52
i
Page 4
Section 6 TROUBLESHOOTING 53
6.1 Communication Problems 53
6.2 6500 Menu Choice Problems 55
6.3 Calibration Error Messages 56
6.4 Sensor Accuracy and Repeatability Problems 56
6.5 Alarm Function Problems 57
6.6 4-20 mA Loop Output Problems 58
Section 7 WARRANTY AND SERVICE INFORMATION 59
Appendix A SPECIFICATIONS 63
Appendix B HEALTH AND SAFETY 65
Appendix C REQUIRED NOTICE 73
Appendix D ACCESSORIES 75
Appendix E SOLUBILITY AND PRESSURE/ALTITUDE TABLES 99
Appendix F ADVANCED CALIBRATION SETUP 103
Appendix G INDEX 105
ii
Page 5
SECTION 1 INTRODUCTION
L
A
A
The 6500 Environmental Process Monitor is designed for configuration with YSI 6-Series
sonde(s) to measure up to fifteen water quality parameters. All sensors that perform the parameter
measurements are located on the 6-Series sonde, which is submersed and secured in the medium.
Conversion of the sensor signals from analog to digital is performed by microprocessor based
electronics located in the 6-Series sonde interior. The signals are transmitted via cabling to the
6500 Environmental Process Monitor using SDI-12 protocol.
The 6500 Environmental Process Monitor can be used for a wide variety of sampling and
monitoring applications, including, monitoring at either municipal or industrial wastewater
treatment plants, drinking water intake, source water, and a variety of other applications. Other
municipal and industrial process applications encompass a wide range of matrices (e.g., influent
and aeration basins) and the overall performance of the 6-Series sonde is typically site-specific,
particularly with regard to fouling of the sensors. In addition, the industrial end-user should be
aware of potential incompatibility of their process environment with the operating range and/or
the construction materials of the sonde body and the sensors.
1.1 6500 MONITOR FEATURES
Water quality parameter data can be viewed on the liquid crystal display (LCD) of the 6500
Monitor. Additionally, the 6500 Monitor contains 8 x 4-20 mA loop outputs that can be assigned
to the various parameters. The 4-20 mA loop outputs provide the means for logging parameter
data either (1) by direct recording of the loop outputs with a data logging device or (2) by
interfacing the loop outputs with a SCADA system. A set of 4 relays is also present that can be
activated by pre-set limit values. The relays are intended to drive alarm indicators, such as lamps,
horns or automatic phone dialer systems.
System set-up, including calibration of the 6-
21.2 Temp
6500
6500
ENVIRON MENTALENVIRON MENTA
7.35 DO
MONITORINGMONITORING
SYSTEM
SYSTEM
6.53 pH
Esc
SCADA
4-20 mA out
Relay output
C power in
larms
Cal
Enter
Sonde cable
w/ MS-8
Sonde
Effluent Stream
Monitor is accomplished with a watertight connector located on the bottom panel of the 6500
Monitor. There are two means to connect the 6-Series Sonde to the 6500 Monitor. The sonde
may be connected directly via the sonde cable, or if the sonde is not
6500 Monitor installation, an optional YSI #6508 Junction Box may be used with customersupplied cabling.
Series Sonde sensors, can be performed at the
site with the 6500 Monitor front panel keys
and LCD or in the laboratory with a personal
computer or a YSI 610 Display/Logger.
Ports for up to three non-metallic watertight
conduit fittings are located on the 6500
Monitor bottom panel and provide the means
for connecting the AC power input, the 4-20
mA loop outputs and the relay output
conductors via conduit to the I/O plate located
within the 6500 Monitor enclosure.
Connection of the 6-Series Sonde to the 6500
located in the vicinity of the
Page 6
Introduction Section 1
With the optional Breakout Box (YSI #6504), the 6500 Environmental Process Monitor can be
used with multiple sondes. The 6500 Monitor is designed for indoor or outdoor use, and features
a watertight enclosure. An optional weather shield (YSI # 6505) is also available. Other optional
accessories include several different mounting kits for the sondes and 6500 Monitor. See
Appendix D, Accessories, for more information.
1.2 HOW TO USE THIS MANUAL
The manual is organized to let you quickly understand how to install and operate the 6500 Monitor
system. However, it cannot be stressed too strongly that informed and safe operation is more than
just knowing which buttons to push. An understanding of the principles of operation, installation,
calibration techniques, system setup and maintenance is necessary to obtain accurate and meaningful
results. Before you begin to use the 6500 Environmental Process Monitor, it is strongly
recommended that you thoroughly read and understand the YSI 6-Series Sonde Manual. The sonde
manual will be referenced in several parts of the 6500 Manual. Before using the sonde with the 6500
Monitor, you must:
9 Install the dissolved oxygen membrane
9 Install the probes
9 Learn how to access sonde software
9 Calibrate the sensors
9 Learn how to take readings
If you are using multiple sondes, each sonde must have a different address (name) and each sonde
must be named separately. Assigning the names are done by accessing the sonde software and
entering System Setup from the Main Menu. From the System Setup, then enter SDI-12 Address. A
character (0-9 and A-F) may be assigned to each sonde that you are using, but each sonde
have a different name. For more information about the other functions of the System Setup, see the
6-Series Sonde Operations Manual, Section 2.
Included with this manual is a laminated Field Operation Guide that allows quick and convenient
reference to 6500 operation, maintenance and troubleshooting at the installation site. This guide
references sections of the basic manual when more detailed information is needed.
MUST
YSI Incorporated 6500 Environmental Process Monitor 2
Page 7
SECTION 2 INSTALLATION
2.1 UNPACKING AND INSPECTION
Inspect the outside of the shipping carton for damage. If damage is detected, contact the carrier
immediately. Remove the instrument from the shipping container. Be careful not to discard any
parts or supplies. Confirm that all items on the packing list are present. Inspect all assemblies
and components for damage. The basic 6500 Environmental Process Monitor is shipped with the
following major components.
If you ordered a 6-Series Sonde and/or reagents, these may be shipped separately. For optional
accessories information see Appendix D, Accessories.
If any parts are damaged or missing, contact your factory representative immediately. If you do
not know from which dealer your 6500 Environmental Process Monitor was purchased, refer to
Section 7, Warranty and Service Information. Check the monitor for any obvious external
damage.
Save the original packing cartons and materials. Carriers typically require proof of damage due
to mishandling. Also, if it is necessary to return the monitor, you should pack the equipment in
the same manner it was received. Once the system is installed and working, maintaining original
cartons and packing material is less critical.
If the monitor, sonde and associated components match the packing list and the components
appear to be in satisfactory condition, proceed to the installation sections below.
WARNING!
To avoid severe personal injury or damage to the equipment, installation, operation and service
should be performed by qualified personnel who are thoroughly familiar with the entire contents
of this manual.
2.2 SELECTING AN INSTALLATION LOCATION
The 6500 Monitoring System is an on-line continuous measurement tool that can provide
valuable insight into your facility’s operation and performance. As with any instrument of this
type, proper installation is the first important step to ensure you are provided with reliable
performance and accurate data. Installation of the monitor and sonde should be carefully planned
in advance to obtain the most effective and accurate utilization of the equipment.
Page 8
Installation Section 2
Two major components make up the 6500 Environmental Monitoring System: the 6500 Monitor
and the 6-Series Sonde that contains the sensors. The sonde is a multi-parameter sensor device
that must be placed in a representative sampling location to monitor desired water quality
parameters in the flow stream. Since the 6500 Monitor may be located considerable distance
from the sonde, a specialized Breakout box and/or Junction Box may be required for your
installation, see Appendix D for Accessories information. See Figures 2 and 3 for diagrams of
the two most common installation configurations.
CHOOSING A SONDE LOCATION
The sonde installation will be determined by the site necessary to obtain water quality readings
which are representative of the bulk flow stream. A suitable location should take a number of
physical and chemical factors into consideration:
9 The sonde must be located in the flow stream where level fluctuations will not expose the
sensing probes to the atmosphere. The sonde sensors must remain submersed at all times
during the monitoring.
9 The sonde must be placed in a well mixed, free flowing area of the process stream. The flow
stream should be representative of the process flow being monitored. For example, if effluent
flow is being analyzed,
extended detention time of the effluent desired for monitoring.
9 Ideally, the sonde should be placed at least three (3) feet away from the sidewall and at least
two (2) feet submersed. For most flow channels, midstream and mid-depth would be the
most representative area for the sonde location.
9 Ideally, the sonde should be placed at an angle within 45
flow direction (see Figure 1). This location will provide for the least stress on the support
arm holding the sonde while minimizing opportunity to collect debris. Placement against the
flow stream or perpendicular to the flow stream also provides accurate monitoring, but
inspection and cleaning may be required more frequently due to increased collection of
debris.
do not place the sonde ahead of a tank or an area that provides for
0
of vertical and directed with the
YSI Incorporated 6500 Environmental Process Monitor 4
Page 9
Installation Section 2
Not
Figure 1 Sonde orientation
to
scale.
drawn
Sonde
Stream
If the sonde is to be utilized in monitoring for results of chemical feeds and resulting chemical
reactions, sufficient downstream mixing and reaction time should be provided prior to insertion of
the sonde for monitoring. If pH adjustment is necessary, the sonde location should provide for
sufficient mixing and reaction time upstream of the location. Thus, if you question the ideal
location for monitoring, check your installation by manually testing upstream and downstream of
the sondes proposed location. It may prove that you can utilize “less-than-ideal” sonde location
in the flow stream, but take advantage of the location supports for mounting, proximity to the
monitor or other factors that may facilitate the installation.
The flow stream should be as free as possible of debris (e.g., algae) which could collect on the
sonde and cause erroneous readings.
Remember that this is an on-line device that is measuring actual conditions in real time.
Composite sampling for pH, for example, will not match on-line monitoring. Therefore, pH
values recorded by the chart recorder and/or plant control system connected to the 6500
Environmental Monitoring System cannot be averaged to equal the pH of the composite sample.
CHOOSING A MONITOR LOCATION
The sonde is a primary device that measures conditions in the flow stream and transmits a low
voltage signal to the 6500 Monitor. The sonde is attached to a cable that is equipped with a
“military grade” watertight connection to the monitor or optional breakout box.
Several optional accessories are available from YSI to make the 6500 Monitor extremely
versatile. The YSI #6502 Breakout Box is an enclosure for the connections interface between the
sonde cable(s) and customer supplied wiring and conduit which enables the sensor connection to
the monitor to be extended up to 250 feet. The YSI #6503 Breakout Box is the same as #6502,
but is also CE compliant for European users. The YSI #6504 Breakout Box is similar to the above
description, but can also handle two sondes. These Breakout Boxes makes it possible to install the
monitor in a location and environment different than the sonde(s). A YSI #6508 Junction Box is
also needed if the 6500 Monitor is installed with multiple sondes, or if a single sonde is farther
than 6 feet away.
YSI Incorporated 6500 Environmental Process Monitor 5
Page 10
Installation Section 2
SYSTEM
N
Note: The 6500 Monitor is provided with a weatherproof enclosure that will withstand most
environmental conditions with no compromise to system performance. An optional Weather
Shield (YSI #6505) is available for added protection from the elements.
Figure 2 Monitor installed using sonde cable
6500 Monitor
21.2 Temp
6500
6500
ENVIRONM ENTALENVIRONMENTAL
7.35 DO
MONITORING
MONITORING
SYSTEM
6.53 pH
Esc
Cal
Enter
AC
Sonde
ot drawn to scale.
Stream
Locating the monitor near the sonde will have advantages since in-situ (on-line) calibration can
be more easily facilitated under this arrangement. For example, a recently calibrated, hand-held
dissolved oxygen meter and probe can be placed next to the sonde and readings compared
between the monitor and the hand-held meter. In addition, operator checks to verify accuracy and
determine the frequency of calibration for water quality measurement in the flow stream can be
easily carried out with a variety of hand-held manual readings at the time of inspection by the
operator if the monitor is conveniently located.
Two sondes, #6920 and #600XLM, have logging capability. These two sondes are able to store
recorded data into their memory, which then can be downloaded into a PC or Display/Logger. If
the 6500 cannot be connected to a system such as a SCADA, data can still be recorded using one
of these two sondes. The 6500 itself does not record data; it only displays real-time monitoring.
YSI Incorporated 6500 Environmental Process Monitor 6
Page 11
Installation Section 2
SYSTEM
N
Figure 3 Remote location of monitor relative to sonde
6500 Monitor
21.2 Temp
6500
6500
ENVIRONMENTALENVIRONMENTAL
7.35 DO
MONITORING
MONITORING
SYSTEM
6.53 pH
Esc
Cal
Enter
6508
Junction Box
Breakout Box
AC
6507
6’ Patch cable
w/ MS-8
Conduit &
customer-supplied
3-conductor cable
250’ Maximu m
ot drawn to scale.
sonde cable
w/ MS-8
Sonde
Stream
YSI also provides a means for convenient and accurate bench calibration of the sonde. Refer to
the Sonde Manual for bench calibration procedures. Bench calibration allows the operator to
easily disconnect the sonde from the monitor and then reconnect the sonde to a laboratory
computer or terminal device (YSI 610 display/logger). Under this protocol, the sonde can be
fully checked in a user-friendly environment, recalibrated and then redeployed. If the sonde is
equipped with a bulkhead connector rather than an integral cable, bench calibration is used.
If locating the monitor near the sonde is not possible due to environmental conditions and/or
accessibility, bench calibration provides a very good alternative to on-line calibration.
Although the monitor is suitable for outdoor use, it should be located in an area where
temperature extremes, vibrations, electromagnetic and radio frequency interference are minimal.
Select an installation location that is at least two (2) feet from any high voltage conduit. Avoid
mounting on severely vibrating structures. Be sure the monitor can be fully opened and serviced
at its installed location by maintenance personnel. Be sure the site has easy access for operating
personnel.
2.3 INSTALLING THE SONDE
After you have chosen suitable sites for the monitor and sonde, proceed with the installation as
described below.
Avoid routing sonde cabling near wiring associated with rotating machinery and/or equipment
involving electrical switching or regulation. Consider placing sonde cabling in grounded metallic
conduit if unstable readings appear due to electromagnetic interference.
YSI Incorporated 6500 Environmental Process Monitor 7
Page 12
Installation Section 2
L
L
A
A
RAIL MOUNT OPTION
The sonde can be mounted in a number of different configurations, but a rail mount with a
fabricated bracket is recommended. A rail mount kit is also available from YSI, #6511 for 600
series sondes, and 6512 for 6820/6920 sondes. See Appendix D, Accessories for more
information.
Figures 4 and 5 show the two common connection layouts and short and long-range wiring of the
monitor to the sonde.
Figure 4 Direct connection
21.2 Temp
6500
6500
7.35 DO
ENVIRON MENTA
ENVIRON MENTA
MONITORING
MONITORING
SYSTEMSYSTEM
6.53 pH
Esc
SCADA
Cal
Enter
4-20 mA out
sonde cable
Relay output
C power in
Sonde
Stream
larms
w/ MS-8
YSI Incorporated 6500 Environmental Process Monitor 8
Page 13
Installation Section 2
L
L
A
A
Figure 5 Sonde installed distant from the 6500 Monitor
SCADA
6500
6500
ENVIRONMENTA
ENVIRON MENTA
MONITORING
MONITORING
SYSTEM
SYSTEM
21.2 Temp
7.35 DO
6.53 pH
Esc
Cal
Enter
6508
Junction
Box
4-20 mA out
Relay output
larms
C power in
6507
6’ Patch cable
w/ MS-8
customer-supplied
3-conductor cable
conduit
Breakout
up to 250 ‘
sonde cable
w/ MS-8
Sonde
Stream
2.4 INSTALLING THE 6500 MONITOR
The 6500 Monitor should be located within 250-ft (75 m) of the sonde. The distance limit is
based on noise tolerance of the SDI-12 communication protocol. If you choose to install the
monitor more than the length of the sonde cable away from the sonde, additional hardware and
wiring will be necessary. A rail mount kit #6509, and panel mount kit # 6510 are also available
for the 6500 Monitor. See Appendix D, Accessories, for more information.
WALL MOUNTING OPTION
Although the monitor is designed for outdoor deployment, some operators may prefer the
convenience of reading the monitor under shelter, for example, inside a nearby building. Figure 4
shows this indoor type of installation. Wall-mounting the 6500 Monitor is a simple process using
the enclosed mounting hardware.
YSI Incorporated 6500 Environmental Process Monitor 9
Page 14
Installation Section 2
Figure 6 Attaching the Mounting Brackets
The following steps should be followed when
wall mounting the 6500 Monitor.
1. Loosely fasten the mounting brackets
(included) to the back of the 6500
Monitor with the mounting screws
provided as shown in Figure 6.
2. Tighten the screws, securing the
brackets to the Monitor.
3. Loosely fasten the 6500 Monitor to
the mounting surface with the
mounting screws provided as shown
in Figure 7.
4. Tighten the screws, securing the Monitor to the surface.
Figure 7 Securing the screws to the mounting surface
Wall Mount
2.5 WIRING INSTRUCTIONS
YSI Incorporated 6500 Environmental Process Monitor 10
Page 15
Installation Section 2
WARNING!
A qualified electrician should perform wiring.
Do not make connections while power is applied. Disconnect power before proceeding.
This particular phase of the installation will vary considerably depending on the distance between
the sonde and monitor and on which outputs you use in your particular configuration. In the
simplest configuration in which the sonde is connected using the sonde cable and neither the relay
outputs nor the 4-20 mA current loop outputs are used, only AC power wiring is required. The
sonde connects to the monitor by the MS-8 sonde cable connector, which is pre-wired. The end
connection of the cable is a military-style 8-pin connector (MS-8). If, however, the monitor is
more than the length of the sonde cable away from the sonde and either of the outputs is wired to
alarms or a SCADA system, additional wiring is required. Below are wiring instructions for all
parts of the 6500 Environmental Process Monitoring system.
The 6500 Monitor has one MS-8 connector and three conduit openings in the bottom of the
monitor housing which will accommodate ¾ inch conduit fittings. From a front view, the 2
conduit openings on the left are for the four relay outputs and the eight 4-20 mA outputs. The
conduit opening on the right should be used for the AC power supply cable. The MS-8 connector
is used to interface with the sonde cable in the close range system layout, or in the long distance
wiring layout, the optionally-supplied 6 foot (1.8 m) patch cable (YSI #6507) to the #6508
Junction Box. Refer back to Figure 3 to review the configuration options.
IMPORTANT!
It is essential that all sensor wiring be run in a separate conduit from power wiring.
2.5.1 SONDE CABLE CONNECTIONS (SDI-12
COMMUNICATIONS LINK)
The sonde is equipped with a detachable or non-detachable cable. This connector plugs
into the 6500 Monitor when the 6500 Monitor is within range of the sonde cable. This
configuration is shown inFigure 2.
In remote sonde installations the 6500 Monitor uses a standard MS-8 connection to interface with
the 6-ft (1.8 m) Patch Cable (YSI #6507) that will run to the #6508 Junction Box. The customer
is advised to supply rigid conduit and 18 AWG or heavier shielded multi-conductor cable to
connect between the local junction box and the remote 6502 Breakout Box at the sonde
installation site. The cable from the Junction Box should be landed to TB-1 in the Breakout Box.
The MS-8 connector for sonde hookup is pre-wired to TB-2 and TB-3.
directly
YSI Incorporated 6500 Environmental Process Monitor 11
Page 16
Installation Section 2
L
3
2
2
SDI
The 6507 Patch Cable is pre-wired. The conductor color code is: Red +12 VDC
Black Common
Purple SDI-12
GND on TB-1 is for signal common only. Do not connect to earth ground.
YSI Incorporated 6500 Environmental Process Monitor 12
Page 17
Installation Section 2
A
2.5.2 AC POWER INPUT WIRING
The 6500 Monitor has a switching power supply and can operate on 100 to 240 VAC power.
When you remove the front panel of the 6500 Monitor, take care not to drop the cover since it is
not hinged to the Monitor. Refer to figure 8 for power installation.
Connect AC power to TB1-1, L1 and L2. Connect ground wire to one of the three 10-32
grounding screws using a lug (not provided). To meet compliance with UL3010, EN61010 and
CSA1010, install a power switch on the AC load line external to the 6500 Monitor (Note: AC
on/off power switch is not included with the 6500 Monitor package).
CAUTION!
The sensitivity and stability of the monitor will be impaired if the input wiring is not grounded.
Do not apply power to the Monitor until all electrical connections are verified and secure.
YSI Incorporated 6500 Environmental Process Monitor 13
Page 18
Installation Section 2
Use the following precautions from UL 508 as a guide to safety for personnel and property.
¾ AC connections and grounding must be in compliance with UL 508 and/or local electrical
codes.
¾ The metal stiffener provides support and proper electrical continuity between conduit fittings.
¾ This type 4/4X enclosure requires a conduit hub or equivalent that provides watertight
connection, REF UL 508-26.10.
¾ Watertight fittings/hubs that comply with the requirements of UL 514B are to be used.
¾ Conduit hubs are to be connected to the conduit before the hub is connected to the enclosure,
REF UL 508.26.10.
¾ If the metal support plate is not used, plastic fittings must be used to prevent structural
damage to the Monitor. Also, the appropriate grounding lug and AWG conductor must be
used with the plastic fittings. When using plastic connectors and non-metallic liquid-tight
conduit note that the maximum conduit run length is 6 feet, REF NEC351-23-b3.
2.5.3 RELAY OUTPUT WIRING
The four (4) output relay connections are made to terminals 1 through 12 of TB-2. Relays may be
wired normally open (N.O.) or normally closed (N.C.). Use appropriate wire in terms of gauge
and insulation to adequately handle the voltage and current being switched by the relays. See
Appendix A, Specifications, for relay specifications. Do not use power at TB-1 as a source for
any of the relays in the 6500 system. Remember that relays are intended to activate alarms,
phone dialers and similar devices. The relays are
4-20 MA CURRENT LOOP OUTPUT WIRING
The eight (8) 4-20 mA current output connections are made to TB3-1 through TB3-16. Use
Belden cable #8164 (4-conductor), #8168 (8-conductor) or equivalent between the 6500 Monitor
and the SCADA or recorder site.
RS232 AND RS485 TERMINALS
The RS232 port is used for 6500 Monitor software updates and optional Modbus interface. The
RS485 port can also be used for an optional Modbus interface. Neither of these connectors is
involved in the installation of the 6500 system.
not intended to switch heavy loads.
YSI Incorporated 6500 Environmental Process Monitor 14
Page 19
Installation Section 2
2.5.4 GROUNDING INFORMATION
This section contains important installation information regarding grounding of the 6500 Monitor
and 6-Series Sonde. The sonde is powered by the 6500 Monitor or by batteries (depending on
which sonde you have chosen) and will be operated with a “floating” ground reference. This
requires that the sonde
cause a “ground loop”; i.e. one conductor of the sonde output grounded common to both the
sonde and the meter. Grounding the sonde will cause significant performance problems with the
sensors and likely result in erroneous readings.
not be individually grounded. Grounding the sonde individually will
IMPORTANT!
Do not ground the sonde body.
2.5.5 SAFETY ISSUES
The electrical system must be grounded to avoid possible electrical shock or damage to the
equipment.
WARNING!
Turn off all power and assure power “lockout” before servicing to avoid contact with electrically
powered circuits.
To avoid possible electrical shock, do not touch other circuit components when making
adjustments to the 6500 Monitor circuit board. Disconnect external power to the unit before
connecting or disconnecting wiring.
2.5.6 LIGHTNING AND SURGE PROTECTION
Surge protectors are strongly recommended to protect from secondary surges and lightning on
outdoor installations.
Surge suppression devices should be located on the AC line supplying power to the 6500 Monitor
and any signal lines connecting the 6500 Monitor to alarms, a SCADA or other data collecting
device.
AC line voltage surge suppressors protect field equipment on any AC line to ground from damage
due to electrical transients induced in the interconnecting power lines from lightning discharges
and other high voltage surges. The unit should include noise filtering, common mode and normal
YSI Incorporated 6500 Environmental Process Monitor 15
Page 20
Installation Section 2
mode suppression and nanosecond reaction time. Surge suppressors should be internally fused to
remove the load if the unit is overloaded or the internal protection fails.
Signal line suppressors protect 4-20 mA DC current loops, low voltage signals and relay outputs
from damage due to electrical transients induced in the signal lines from lightning discharges or
nearby electrical devices. Signal line suppressors should be installed at each end of an analog
loop. Relay outputs should be protected at the receiver end. Signal line suppressors should
consist of a three-element gas tube followed by metal oxide varistors and suppressor diodes. The
protective elements should be matched such that high-energy surge voltages trigger the gas surge
arrester, while low energy or surge voltages affect the MOV’s and suppressor diodes.
Lightning protection devices should be located as close to the sonde and monitor as possible and
wired in accordance with the National Electric Code in approved watertight enclosures. If the
distance between the sonde and the 6500 Monitor is less than 100 feet, only one protector per line
is needed, otherwise lightning protection should be installed at both ends of the wiring runs.
IMPORTANT NOTICE
This or any other installation procedure can not protect against a direct lightning strike. YSI
Incorporated cannot accept liability for damage due to lightning or secondary surges.
2.6 SEALANTS, DESICCANTS AND SECURING THE MONITOR
Since the 6500 Monitor, Breakout Box(s) and/or Junctions Box will likely be subjected to
environmental conditions that promote formation of condensation, it is very important to follow
the instructions below before securing the cover to your unit(s). This will prevent damage to the
electronic components within the Monitor and extend the life of the monitoring system.
Enclosed with shipment of every 6500 Environmental Monitoring System is industrial
encapsulant (conduit sealer), in a cartridge for your convenience. After all wiring is complete
apply the sealant to the conduit openings from the inside of the 6500 Monitor, Breakout Box
and/or Junction Box if applicable. This will help prevent moisture from entering the inside of the
6500 Monitor from conduit that was used for AC power cable or signal cables.
Note: If any of the conduit fittings were not used in the installation, remove the fitting and
replace with a 3/4” knockout plug provided with the unit. Two knockout plugs are provided.
Also enclosed with the 6500 Monitor is a box of desiccant packs. After all wiring is completed
and sealant applied, place two desiccant packs inside, near the bottom right of the Monitor before
securing the cover. This desiccant will consume any moisture captured during the closure to
provide a low humidity environment within the Monitor.
To complete the installation secure the cover of the 6500 Monitor using the four mounting screws
that you removed while doing the wiring operations. Note that the cover contains a captured
rubber gasket that provides the weatherproofing. Make certain that the gasket is in place and not
damaged. Check to make certain that the large blue ribbon cable is not trapped in the gasket
YSI Incorporated 6500 Environmental Process Monitor 16
Page 21
Installation Section 2
channel before inserting the screws. When securing the screws, take care not to cross thread.
The screws are stainless steel, and the receiving threads are brass. Do not over-tighten!
IMPORTANT!
Anytime the 6500 cover is removed, replace the desiccant packs with new packs.
Anytime the 6500 front panel is removed, place it on top of the 6500 Monitor
or secure it so that the blue ribbon cable does not bear the weight of the cover.
2.7 INSTALLATION CHECK LIST
9 Inspect packaging for damage
9 Verify that all components are included
9 Determine optimum mounting location for 6-Series Sonde based on process parameters being
measured
9 Determine optimum mounting location for 6500 Monitor
9 Determine preferred sonde location and fabricate mounting plate if necessary
9 Mount the sonde
9 Determine preferred monitor mounting location
9 If monitor is not located near sonde, mount junction box for the patch cable near the monitor
9 If monitor is not located near sonde, mount breakout box near the sonde deployment site
9 Make wiring connections for sonde
9 Make wiring connections for relays
9 Make wiring connections for 4-20 mA loops
9 Make wiring connections for AC power, including an AC power switch external to the unit
9 Apply industrial capsulant to conduit fittings
9 Insert desiccant pack(s) into 6500 Monitor
9 Reinstall front cover to 6500 and, if necessary, the 6502, 6504 or 6508
9 Verify that all wiring connections are secure and that the sonde is properly located in the flow
stream
9 Recheck grounding and surge protection installations
9 Connect calibrated sonde to mounting fixture and place in stream
9 Connect sonde cable to 6500 or 6502 or 6504
9 Allow sonde circuitry and sensors to warm up for several minutes before checking readings
YSI Incorporated 6500 Environmental Process Monitor 17
Page 22
Installation Section 2
YSI Incorporated 6500 Environmental Process Monitor 18
Page 23
SECTION 3 SYSTEM SETUP
This section is designed to quickly familiarize you with the hardware and software components of
the 6500 Monitor, the 6-Series Sonde and the overall system. You will learn about cable
connections and basic communication between the 6-Series Sonde and the 6500 Monitor.
Diagrams, menu flow charts and basic written instructions will guide you through basic hardware
and software setup. For the first time user, we encourage the reading and understanding of the 6Series Sonde Operations Manual, with regard to the specific sonde that you own, before
proceeding with the 6500 Monitor setup.
Before you begin 6500 Monitor Setup, you must setup the sondes:
9 Install the dissolved oxygen membrane
9 Install the sonde’s probes
9 Learn how to access sonde software
9 Calibrate the sonde sensors
9 Learn how to take readings with the sonde
These instructions are in the 6-Series Sonde Operations Manual, which was provided with your
sonde, Section 2.
Successful completion of the above list is essential for you to continue on to Section 3 of the 6500
Environmental Process Monitor Operations Manual.
3.1 SYSTEM CONFIGURATION
The most common configuration for the system which you have purchased involves direct
interaction of the 6500 Monitor with the 6-Series Sonde, but there are also ways in which you
may configure the 6-Series Sonde with various computers or handheld data displays. The latter
configurations are primarily used when setting up and calibrating your sensors in the laboratory.
If you calibrate your sensors in the laboratory while the sonde is disconnected from the 6500
Monitor, you should make certain that you have all of the components you need to make your
system work. See your sonde manual for other possible configurations.
Page 24
System Setup Section 3
A
Sonde to 6500 Monitor
21.2 Temp
6500
6500
7.35 DO
ENVIRONMEN TAL
ENVIRONMENTAL
MONITORINGMONITORING
6.53 pH
SYSTEM
SYSTEM
Esc
Cal
Enter
C power in
4-20 mA out
Relay output
Sonde
MS-8
You will need...
T
Sonde and cable
T
60
0
6500 Monitor
T
AC Power
T
Mounting Hardware
3.2 6-SERIES SONDE SETUP
The 6-Series Sonde contains a powerful computer that allows the sonde to be configured for use
with the 6500 Monitor. It is important to remember that the sonde setup information and
calibration data are stored in the 6-Series Sonde and not in the 6500 Environmental Process
Monitor. With this in mind, the following sections are designed to assure proper setup of the 6Series Sonde software prior to deployment. This can be accomplished by two different methods:
1. Interface of the 6-Series Sonde with the 6500 Monitor via the matching MS-8
connectors on the sonde cable and the 6500 enclosure. To carry out this procedure,
the 6500 Environmental Process Monitor must be installed in its permanent location
with AC line power properly installed as described by local electrical codes.
2. Interface of the 6-Series Sonde with a laboratory computer or 610 display/logger. If
a computer is selected for setup, you must employ a YSI #6095B DB-9 to MS-8
adapter and a YSI #6038 external power supply with MS-4 connector that plugs into
any 110 VAC outlet. If your sonde does not have an integral cable, it will require a
#6067B calibration cable. All of these accessories are optional and must be ordered
separately. After using this method to calibrate the sonde, proceed to section 3.3,
6500 Monitor Setup, in this manual.
Method 2 (above) is recommended. However, either method will result in identical setup of the
6-Series software. Instructions for the sonde calibration in a laboratory set-up are found in the 6Series sonde manual. Choose only one of the two methods for calibration.
When installation of the 6500 Monitor is complete and power is supplied, connect the 6-Series
Sonde to the 6500 Monitor via the matching MS-8 connectors. When power is applied to the
YSI Incorporated 6500 Environmental Process Monitor 20
Page 25
System Setup Section 3
6500 Monitor, a “YSI” display will momentarily appear on the 6500 screen followed by display
of actual parameter readings.
6500
6500
ENVIRONMENT AL
ENVIRONMENTAL
MONITORING
MONITORING
SYSTEM
SYSTEM
7.35 DO
6.53 pH
Esc
Cal
Enter
Multiple sondes may be attached to the 6500 Monitor using the optional 6504 Breakout Box. See
Appendix D, Accessories, for more details.
Setup of both the sonde and monitor is achieved through use of the Main menu associated with
the 6500 software. The Main menu is accessed by simultaneously pressing the Esc and Enter
keys for 1 second after the parameter display is active. The Main menu contains the submenu
options as shown in the following display.
21.2 Temp
Use the ↑↓ arrow keys to highlight the submenu options. Press Enter to select a highlighted
option.
YSI Incorporated 6500 Environmental Process Monitor 21
Page 26
System Setup Section 3
SENSOR
The first step that should be taken in setting up the sonde is to enable the proper sensors. This is
accomplished by highlighting the Sensor selection and pressing Enter. The following display will
appear.
The Sensor Menu allows the user to enable or disable any of the available sensors. Selected
sensors have a check mark next to them. Using the ↑↓ arrows to highlight items, the Enter key
will toggle selections on and off. When an item is selected, it is enabled and will be functional
when the system is activated. When a sensor is activated, this parameter and some of the
calculated parameters associated with the sensor will also automatically appear in the Report
function described below.
In the above example, the temperature, conductivity, dissolved oxygen, and pH sensors are
activated. ISE2, ISE3, and ISE4 are shown. ISE5, depth and turbidity can be found by scrolling
down the display.
REPORT
After the appropriate sensors are enabled, press Esc to return to the Main menu and then highlight
the Report selection and press Enter. The Report menu is used to select the displayed parameters
and units of measure. The following screen will be displayed.
The Report menu allows the user to configure the 6500 display readouts. A list of the possible
parameters and the currently selected units for each parameter will appear. The user can select a
displayed parameter using the ↑↓ arrows to highlight. When the desired parameter is highlighted,
the user can press Enter to display the Select Units menu for the specified parameter. The
following screen will be displayed.
YSI Incorporated 6500 Environmental Process Monitor 22
Page 27
System Setup Section 3
In the above example, the temperature parameter has been selected. The user can select a
displayed unit using the ↑↓ arrows to highlight. If the user selects NONE, the temperature
parameter will not appear in the report. When the desired selection has been made, press enter to
activate the change. In this example, temperature in degrees Celsius has been designated for
display and will appear on the display when the 6500 Monitor is in the Run mode. The main
report menu will then reappear and reflect the change just made. Although not shown, unit
changes to other parameters (conductivity, specific conductance, resistivity, TDS, depth, volume)
can be made by using the arrow keys to scroll downward to display these selections and the Enter
key to activate the Select Units menu. The appropriate unit selections can then be made.
After you have chosen the appropriate sensors and report parameters associated with your 6Series Sonde, it is now configured properly for display of the desired parameters in the Run mode
of the 6500 Monitor. To assure that everything is correct, press Esc until the Run display (similar
to that shown below) appears on the 6500 screen.
If you are connecting multiple sondes to your 6500 Monitor, please see section 3.3.6 for
instruction on multiple sonde configuration.
3.3 6500 MONITOR SETUP
After proper setup of your 6-Series Sonde, you must configure the options offered with the 6500
Monitor. It is not required that the sonde be attached to the monitor to implement this setup
procedure.
With ac line power applied to the 6500 Monitor, press the Esc and Enter keys simultaneously for
1 second to display the Main 6500 menu on the monitor display.
YSI Incorporated 6500 Environmental Process Monitor 23
Page 28
System Setup Section 3
3.3.1 CALIBRATION SETUP
Highlight the Calibration setup selection and press Enter. The following screen will be displayed.
The Calibration Setup submenu presents two items:
(1) Calibrations enabled is a list of all possible sensor calibrations that can either be enabled or
disabled with regard to calibration from the Run mode.
(2) Advanced setup is a selection that allows the user to choose whether calibration errors can be
overridden and defines the default calibration value that will appear on the display during the
calibration protocol.
Highlight the Calibration enabled selection, press Enter, and the following screen will be
displayed.
Once a calibration is selected as indicated by the check mark, that sensor may be calibrated using
the Cal key during the Run mode. The user can select and deselect items using the ↑↓ arrows to
highlight and press Enter to toggle selections on and off.
In the example shown above, the parameters specific conductance, DO % air saturation, DO mg/L
(dissolved oxygen in mg/L concentration units) can be calibrated during the Run mode of the
6500. This selection will NOT allow calibration of conductivity or salinity even if these readings
appear on the display.
Press Esc to return to the Calibrate setup menu.
YSI Incorporated 6500 Environmental Process Monitor 24
Page 29
System Setup Section 3
Next highlight the Advanced setup selection, press Enter, and a display similar to the following
for specific conductance will appear.
You need to consider
four options within this menu.
Is: Enabled. This determines whether or not the calibration of this parameter is enabled (allowed)
from the Run mode of the 6500 display. Highlight the selection “Is: Enabled”. Press Enter to
toggle back and forth between “Is: Enable” and “Is: Disabled”. Select the desired option.
Can override: Yes. This determines whether or not an error message can be overridden if it
occurs during the calibration procedure. Highlight the “Can override: Yes” selection. Press Enter
to toggle back and forth between “Can override: Yes” and “Can override: No”. Select the desired
option. Remember that a calibration error message usually implies a significant malfunction of
the 6-Series Sonde sensor that in turn indicates that service to that sensor is required if accurate
readings are to be obtained. Therefore, it is usually proper to select the “No” option with regard
to this selection. There are occasions when the user is aware that the error message is due to
special circumstances and thus the “Yes” option is appropriate, but these are rare.
Vari from Probe, Vari from Default or Fixed from Default. The software allows you to choose
only one of these three choices. During setup choose “Vari from Probe”. This is the default
parameter value that appears on the 6500 display when the calibration procedure is initiated.
With this selection, the current reading of the parameter will be displayed on calibration startup
and this value can be varied from the 6500 keyboard to reflect the true value. For more detailed
information on these choices, see Appendix F, Advanced Calibration Setup.
Default = 1000. The value of the default calibration value for this parameter is only needed if
you choose one of the default choices above. If you choose “Vari from Probe”, you need not set
a value here.
A calibration setup display for each activated parameter, except temperature that requires no
periodic calibration, is accessible after the Advanced setup selection is made from the Calibrate
setup menu. To view other parameters, use the right and left arrow keys to scroll horizontally
between parameters using the scroll bar at the bottom of the screen (see screen above). Use the
descriptions above to set each of the 4 options for these other parameters.
After configuring your sensor calibrations as described above, press Esc to return to the Main
menu.
YSI Incorporated 6500 Environmental Process Monitor 25
Page 30
System Setup Section 3
3.3.2 DISPLAY SETUP
Now highlight the Display selection from the Main menu and press Enter. The following screen
will appear.
The Display menu contains options concerning the visual display of the 6500 Monitor. Use the
↑↓ arrows to highlight the desired display feature. Press Enter to select the feature.
First, highlight the Adjust contrast selection. This option allows the user to select the optimal
screen contrast for the existing light conditions. Press Enter to access the Adjust contrast feature
and the following display will appear.
Using the ↑↓ arrows, select the desired screen contrast. Then press Esc to return to the Display
menu.
Tip: There is an alternate Adjust contrast feature. From the Run display screen, press and hold
the Cal key while using the ↑↓ arrow keys to change contrast. This may be especially useful if
bright sun or low light conditions make the display screen difficult or impossible to read.
Now highlight Relay status. This feature can be enabled and disabled by toggling the Enter key.
If enabled a check mark will appear in the box and the display in the Run mode will contain a bar
YSI Incorporated 6500 Environmental Process Monitor 26
Page 31
System Setup Section 3
at the bottom of the screen with symbols that indicate whether the relays are presently active as
defined by the current sensor value. An example is shown in the following Run screen.
If a relay is active, the symbol will be spinning as is simulated above for relays 2 and 4. If the
relay is inactive, the symbols will be stationary as shown above for relays 1 and 3.
If the overall feature is disabled in the Display mode (no checkmark in the box), then no relay
display will appear on the Run display screen. However, if relays are being controlled by the
6500 system, it is usually a good idea to activate this feature during setup. After making your
choice, press Esc to return to the Display menu.
Now highlight the Lines selection and press Enter. The following screen will be displayed.
Four selections are possible from the Display setup menu: Auto, 2, 3 and 4 lines per screen.
Highlight the desired item with the up and down arrow keys and press Enter to toggle it on. Only
one choice is allowed.
If you select one of the numbered options, then
only that number of parameters will appear
simultaneously on the screen during the Run mode. However, it is always possible to view the
non-displayed parameters by scrolling up or down with the arrow keys while viewing the Run
display screen. The lower the number, the larger the character size will be for the displayed
parameters; the larger the number, the smaller the size. If “Auto” is selected, all parameters will
be displayed simultaneously, but with a character size that is inversely proportional to the number
of items displayed. It is usually prudent to make a selection, then press Esc to return to the Run
mode and view the results of your choice. You can then re-enter the Display setup menu, vary
the choice, return to the Run mode and assess the new selection until your preference is
established.
YSI Incorporated 6500 Environmental Process Monitor 27
Page 32
System Setup Section 3
If you are using more than one sonde with your 6500 Monitor, you can choose how many sondes
you would like to view on the 6500 Monitor screen simultaneously by selecting the Multi-sonde
option as shown below.
Once selected, two additional options appear as shown.
You will now want to select the number of lines (displayed parameters) which will be shown
simultaneously on the 6500 Monitor during the run mode. Highlight Lines per Sonde and press
Enter. This selection is identical to that described above for use of the 6500 with a single sonde.
The chosen number of Lines per Sonde will be applied to the output of all of the displayed
sondes.
Highlight the desired setting, press Enter to select it, and then press Esc to return to the Display
menu.
Next, you will want to select the number of sondes per screen you wish to view. Highlight
Sondes per screen and press Enter.
If you have more than one sonde connected, you can choose to view 1,2, or 4 sondes per screen.
Highlight the desired setting and press Enter to select it. If you choose “1 sonde/screen”, you can
still view the data by scrolling right and left to view the other sondes connected. If you have
three sondes connected, you can choose “4 sondes/screen” to view all of the sondes on the screen.
One section will appear blank.
After your have configured your display as desired, press Esc to return to the Main menu.
YSI Incorporated 6500 Environmental Process Monitor 28
Page 33
System Setup Section 3
3.3.3 RELAYS
If you do not choose to use the 6500 Relay function, proceed to the next section, 3.3.4 4-20 mA
channel set-up.
Highlight the Relays option, press Enter and the following display will appear.
The Relays menu allows the user to set up the
relays on and off. If a relay is active, it might trigger an alarm indicating a problem in the
stream. For example, if a relay were configured as described below to activate when the pH falls
below 7.00, the alarm (flashing light, buzzer, etc.) attached to the relay would be enabled as long
as the pH was below 7. If the pH returned above the set value, the alarm would again be
disabled.
To set up the relays, highlight the Configure Relays selection and press Enter to activate the
following display in which no relay activation has taken place.
logic and levels for turning the four available
Now highlight the “1” selection and press Enter to display the setup options.
First highlight the “Para:” selection and then press Enter to choose the parameter with which the
first relay will be associated from the displayed list. Highlight the desired parameter, in the
example shown below temperature in degrees Celsius, and press Enter. Then press Esc to return
to the above menu.
YSI Incorporated 6500 Environmental Process Monitor 29
Page 34
System Setup Section 3
Now highlight the “Is:” selection and use the Enter key to toggle between “above” and “below”.
When the proper selection has been made, press Enter to confirm it (“above” in the example”).
Next highlight the “Set point=“ selection and press Enter. Use the up and down arrows on the
keyboard to adjust the parameter value to the point where the relay will be activated (18 C in the
example) and press Enter to confirm the selection. With the above setup, the first relay will be
enabled (and its associated alarm will be active) whenever the temperature is above 18 C.
The “Hysteresis” (dead band) serves to eliminate relay “chatter” around the set point.
To set up the remaining three available relays, scroll horizontally with the right and left arrows in
the screen shown directly above to access the Relay setup menu for the additional menus and then
configure them from this display as described above. Press Esc to return to the Configure Relays
menu as shown below. Conditions are now set for all four relays.
In the above example, Relay 1 will be enabled if the temperature is above 18 C, Relay 2 will be
enabled if DO is less than 5.00 mg/L, Relay 3 will be enabled if specific conductance is greater
than 2 mS/cm, and Relay 4 will be enabled if the pH is less than 7.00.
After the relays have been set as desired, press Esc to return to the Main menu.
3.3.4 4-20 MA CHANNEL SETUP
YSI Incorporated 6500 Environmental Process Monitor 30
Page 35
System Setup Section 3
If you do not choose to use the 6500 4-20 mA function, proceed to the next section. To enter the
4-20 menu press Enter after highlighting “4-20 mA”, then choose “Configure 4-20mA” and
press Enter again.
If you will be transmitting data from the sonde via your 6500 to a SCADA system or other analog
data collection device in the form of 4-20 mA signals, you will need to set the limits of this
output for any or all of the eight available channels. To do so, highlight the “4-20mA” selection
and press Enter. The following display will appear.
Now highlight the desired channel and press Enter to activate the display of the specific channel
of interest. Channel 1 is shown below.
First, choose the parameter which will be associated with the selected 4-20 mA channel by
highlighting the “Para:” selection and pressing Enter to display a list of available parameters.
Using the up and down arrow keys, select the desired parameter and then press Enter to confirm
the selection (temperature in degrees Celsius in the example).
Next, highlight the “4mA level=“ selection and press Enter. Using the arrow keys, enter the
desired value for the low limit of the range and press Enter to confirm the value (0 C in the
example). Press Esc to return to the above menu.
Finally, highlight the “20mA level=“ selection and enter the desired value for the high limit of the
range using the arrow keys. Press Enter to confirm the value (30 C in the example).
Other 4-20 mA channels can be activated (and then set up) by scrolling horizontally in the above
menu using the right and left arrow keys. Alternatively, you may return to the Channel menu,
highlight the desired channel number (see below), and set up the limits as described above.
Channel 1 Set Channels 1-4 Set
YSI Incorporated 6500 Environmental Process Monitor 31
Page 36
System Setup Section 3
After the 4-20 mA channels have been configured to your specifications, press Esc to return to
the Main menu.
3.3.5 MODBUS SETUP
Please see section 5.1 for a more complete description of the Modbus system implementation.
To begin setup of the Modbus, highlight the Modbus setup option on the Main menu and press
Enter.
The following screen will appear.
Use the arrow keys to highlight Base address and press Enter to select it. This will activate a
cursor which is used to change the 6500 Modbus base address. To increment the address, use the
↑↓ arrow keys. When the desired addressed is reached, press Enter to set it.
Now highlight Hardware and press Enter to select it. The following submenu will appear.
YSI Incorporated 6500 Environmental Process Monitor 32
Page 37
System Setup Section 3
Highlight the desired setting and press Enter to select it.
All of the listed Modbus parameters must be set to match those specified in your Modbus
configuration for successful system implementation. Most parameters have a submenu of
available settings. Change any other necessary Modbus settings in the same fashion.
After your have configured the Modbus setup as desired, check the “Enable Modbus” option to
activate the Modbus system by pressing Enter. Modbus will not work unless this option is
checked.
NOTE: This Enable Modbus function must be off in order to update the code on a 6500.
Press Esc to return to the Main menu.
3.3.6 CHANGE SONDE ADDRESS
Each sonde you connect to the 6500 Monitor has its own unique SDI-12 address. This address is
used by the sonde to identify itself to the 6500 Monitor. When multiple sondes are connected, it
is necessary that each sonde have its own unique address.
To change the SDI-12 address of a sonde, select the “Change sonde address” option in the Main
menu.
When selected, the SDI-12 addresses of any sondes connected will be shown.
YSI Incorporated 6500 Environmental Process Monitor 33
Page 38
System Setup Section 3
To change an SDI-12 addresses, highlight the current SDI-12 address of the sonde you wish to
change and press Enter to select it. A new screen showing available new addresses will be
displayed.
Choose the desired address and press Enter to select it. The 6500 Monitor will then display a
confirmation choice verify that your selection was correct.
The current active choice will flash. Verify your choice is correct and use the arrow keys to
highlight “yes” or “no”. Then press Enter when you have made your choice. If “yes” is selected,
the 6500 Monitor will update your sonde’s SDI-12 address and return to the main menu. If “no”
is selected, the 6500 Monitor will return to the main menu, but will not update your sonde’s SDI12 address.
3.3.7 SYSTEM STATUS
This item allows the user to determine the current version of the 6500 Monitor software and is
also intended for future feature enhancements for the 6500.
Highlight the System status selection and press Enter to produce the following display.
YSI Incorporated 6500 Environmental Process Monitor 34
Page 39
System Setup Section 3
Note that the current software version and date are shown in the first entry. This information will
be useful when contacting authorized service personnel for advice on the capabilities of your
system.
The second entry in the System status menu is “Wiper Interval”. If your sonde is equipped with a
YSI #6026 turbidity sensor, highlight the Wiper Interval, press enter, and use the arrow keys to
set the number of minutes between wiper activation cycles. The frequency of activation will be
dependent on the fouling present in your application. In most cases, a wiper interval of five
minutes will be appropriate.
YSI Incorporated 6500 Environmental Process Monitor 35
Page 40
SECTION 4 CALIBRATION
In this section, you will learn how to calibrate the 6-Series Sonde sensors using the 6500 Monitor
(field calibration) as the interface device. You will also learn how to view your data on a
computer display.
MULTIPLE SONDE CALIBRATION
If you are using multiple sondes with the 6500 Monitor, each sonde must be calibrated separately.
To calibrate each sonde, first make sure that the name of the sonde is highlighted, as in the figure
below. Follow the calibration procedures in this section, then highlight the name of the second
sonde, and proceed.
If you choose to calibrate using a laboratory computer, instructions can be found in your 6-series
sonde Operations Manual. Remember that the YSI-supplied PC6000 software should be installed
on your computer. PC6000 software is provided with the 6-Series sonde and is found on a disk in
the back of your Sonde Operations Manual. Information about how to calibrate your sonde using
a computer or YSI 610 Display/Logger, can also be found in the YSI 6-Series Operations
Manual.
4.1 GENERAL CALIBRATION TIPS
Your YSI 6-Series sonde will provide accurate sensor readings to the 6500 Monitor only if it is
calibrated properly! Thus, a complete understanding of the procedures in this section of the
manual is extremely important. The calibration of the sensors, whether carried out with the
sonde interfaced to a computer or the 6500 Monitor, is not difficult, but does require proper
attention to detail. The key is to follow the recommended procedures in general and, more
specifically, to
several weeks between recoveries for maintenance and therefore a few extra minutes during
calibration is not significant in the overall timeframe of its use. After several deployments, you
should be able to complete calibration of all sensors within 30 minutes, but it might take
somewhat longer until you are familiar with the software prompts and the protocols. The extra
time expended during initial calibration to “get it right” will be well worth the effort.
HEALTH AND SAFETY
WARNING: Reagents that are used to calibrate and check this instrument may be hazardous to your
health. Take a moment to review health and safety information in Appendix A of this manual.
Some calibration standard solutions may require special handling.
take your time during calibrations. Remember that the sonde will be deployed for
Page 41
Laboratory and Field Calibration Section 4
CONTAINERS NEEDED TO CALIBRATE A SONDE
The calibration cup that comes with your sonde serves as a calibration chamber for all calibrations.
You need to visually observe the turbidity calibration to insure that no air bubbles are trapped near
the optics and that standards are homogeneous. If you are using the 6026 “wiping” turbidity probe,
you should visually verify proper movement of the wiper mechanism. Turbidity must be calibrated
with the probe guard on the sonde.
Instead of the calibration cup, you may use laboratory glassware to perform calibrations. If you do
not use a calibration cup that is designed for the sonde, you are cautioned to do the following:
T Perform all calibrations with the Probe Guard installed. This protects the probes from possible
physical damage.
T Use a ring stand and clamp to secure the sonde body to prevent the sonde from falling over.
Much laboratory glassware has convex bottoms.
T Insure that all sensors are immersed in calibration solutions. Many of the calibrations factor in
readings from other probes (e.g., temperature probe). The top vent hole of the conductivity
sensor must also be immersed during calibrations.
TIPS FOR GOOD CALIBRATIONS
1. If you use the Calibration Cup for dissolved oxygen (DO) calibration,
make certain to loosen the seal to allow pressure equilibration before
calibration. The DO calibration is a water-saturated air calibration.
2. The key to successful calibration is to insure that the sensors are
completely submersed when calibration values are entered. Use
recommended volumes when performing calibrations.
3. For maximum accuracy, use a small amount of previously used
calibration solution to pre-rinse the sonde. You may wish to save old
calibration standards for this purpose.
4. Fill a bucket with ambient temperature water to rinse the sonde between
calibration solutions.
5. Have several clean, absorbent paper towels or cotton cloths available to
dry the sonde between rinses and calibration solutions. Shake the excess
rinse water off of the sonde, especially when the probe guard is installed.
Dry off the outside of the sonde and probe guard. Making sure that the
sonde is dry reduces carry-over contamination of calibrator solutions and
increases the accuracy of the calibration.
YSI Incorporated 6500 Environmental Process Monitor 38
Page 42
Laboratory and Field Calibration Section 4
6.You do not need to remove the probe guard to rinse and dry the probes
between calibration solutions. The inaccuracy resulting from simply
rinsing the probe compartment and drying the outside of the sonde is
minimal.
7.For the 600R, 600XL and 600XLM, remove the stainless steel weight
from the bottom of the sonde by turning the weight counterclockwise.
When the weight is removed, the calibration solutions have access to the
sensors while displacing a minimal amount of fluid in the calibration
cup. This also reduces the amount of liquid that is carried between
calibrations.
8. Make certain that port plugs are installed in all ports where probes are
not installed. It is extremely important to keep these electrical
connectors dry.
RECOMMENDED VOLUMES FOR USE WITH THE CALIBRATION CUP
Follow these instructions to use the calibration cup for calibration procedures
Ensure that a gasket is installed in the gasket groove of the calibration cup bottom cap, and
that the bottom cap is securely tightened. Note: Do not over-tighten as this could cause
damage to the threaded portions of the bottom cap and tube.
Remove the probe guard, if it is installed.
Remove the o-ring, if installed, from the sonde.
Inspect the installed gasket on the sonde for obvious defects and if necessary, replace it with
the extra gasket, supplied.
Screw cup assembly into place on the threaded end of sonde and securely tighten. Note: Do
not over tighten as this could cause damage to the threaded portions of the bottom cap and
tube.
Sonde calibration can be accomplished with the sonde upright or upside down. A separate
clamp and stand, such as a ring stand, is required to support the sonde in the inverted
position.
To calibrate, follow the procedures in the next section, Calibration Procedures. The
approximate volumes of the reagents are specified below for both the upright and upside
down orientations.
When using the Transport/Calibration Cup for dissolved oxygen calibration, make certain that the
vessel is vented to the atmosphere by loosening the bottom cap or cup assembly, depending on
orientation, and that approximately 1/8” of water is present in the cup.
Table 1
YSI Incorporated 6500 Environmental Process Monitor 39
Table 2
600R, 600XL and 600XLM Upright Upside Down
Conductivity 50ml 50ml
pH/ORP 25ml 50ml
Upright Upside Down
4.2 FIELD CALIBRATION USING THE 6500 MONITOR
The 6-Series Sonde can be calibrated in the field using the 6500 Monitor display. Calibration is
performed from the 6500 Run mode (displayed readings mode) utilizing the Cal key on the face
of the 6500 Monitor front panel.
NOTE: Calibration for a specific sensor can
function has been turned on for that sensor. Refer to Section 3.3, 6500 Monitor Setup if you need
instructions for calibrate enable.
To calibrate 6-Series sensors using the 6500 Monitor, simply push the Cal button while in Run
mode. The Run display will be modified to mask out any parameters that have not been enabled
for user calibration. Select the appropriate enabled parameter for calibration using the ↑↓ to
highlight the selection and press Enter to confirm the selection. The display will prompt the user
through the calibration routine as described below.
Prior to beginning the calibration protocol described below for, attach the sonde to the 6500
Monitor via the matching MS-8 connectors and allow the unit to run for 10-15 minutes to allow
the sensors to stabilize.
The instructions for calibration of the conductivity sensors is detailed below as an example of
how to calibrate your 6-series sonde with using the 6500 Monitor. For all of the other calibration
instructions for the sonde, refer to the 6-Series Sonde Operations Manual, Section 2.
only be accomplished after the Calibrate Enable
CONDUCTIVITY
Place the correct amount of conductivity standard in a clean dry calibration cup (see Table 1
above) and carefully immerse the entire sonde in the solution making certain the vent hole on the
side of the sonde is covered with reagent. Rotate the sonde back and forth and move it up and
down to make certain that all bubbles have been displaced from the conductivity cell.
From the 6500 Run display, press the Cal key and the following Calibration display will appear.
YSI Incorporated 6500 Environmental Process Monitor 40
Page 44
Laboratory and Field Calibration Section 4
Use the arrow keys to highlight the output line for specific conductance as shown above. Press
Enter and the following display will be shown.
Using this display, you will now be required to input the ACTUAL value of your conductivity
standard. First use the right and left keyboard arrow keys to highlight the digits of the display
which your wish to vary. Then use the up and down keyboard arrows to increment this digit the
higher or lower values, respectively, until the desired value is shown. Proceed to additional digits
and make variations as required. When the displayed value is correct, press the Enter key and the
following screen will be shown.
This display allows you to view in REAL TIME the actual specific conductance values from your
probe. At this point you also have the option of aborting the calibration completely to return to
the Run display by highlighting the
entered the wrong value for your standard, highlight
Abort selection and pressing Enter. If you inadvertently
Redo and press Enter. You may reenter your
numerical calibration value at this point.
If you have made no mistakes in value entry, make certain that the
Cal selection is highlighted,
watch the readings in real time and when they are stable for approximately 30 seconds, press the
Enter key to confirm the calibration. The following screen will appear indicating that your
calibration was successful.
YSI Incorporated 6500 Environmental Process Monitor 41
Page 45
Laboratory and Field Calibration Section 4
Now simply press the Enter key to return to the Calibration display and proceed to calibration of
the other sensors using the same basic procedures as described above for specific conductance.
4.3 6500 CALIBRATION WARNING AND ERROR MESSAGES
When you calibrate the 6-Series Sonde sensors with the 6500 Monitor, you may occasionally
encounter an error message display similar to those shown below when attempting to confirm a
calibration value. The examples below show two “alert” categories, a warning and an error.
Warning messages can be overridden, while error messages can not be overridden. Examples are
shown below.
If any of these messages occur, it is usually due to one of three causes: (1) a contaminated standard,
(2) improper implementation of the recommended calibration procedure (e.g., not imme rsing the
sonde completely in the standard), or (3) a malfunctioning sensor. If you encounter a warning or
error message, first begin the calibration procedure again. Be certain that the value you enter for the
calibration standard is correct, that your calibration standard has not been contaminated (use a new
standard if necessary), and that you have followed the suggested calibration procedure for each
sensor as outlined below.
If you still encounter a calibration error message, contact YSI-authorized service for advice. You
can “override” a calibration warning, but you should not do this unless you have additional
knowledge regarding the cause of the message. Also see Section 7, of the sonde manual for more
information on error messages and general troubleshooting.
After following the above instructions for laboratory or field calibration, your sonde is ready for
attachment to the 6500 Monitor and deployment in your stream. After installation is complete,
proceed to Section 5, Proper Use and Care of the 6500 Monitor System, for tips on system usage
and quality assurance procedures.
YSI Incorporated 6500 Environmental Process Monitor 42
Page 46
SECTION 5 PROPER USE AND CARE OF THE 6500
SYSTEM
You are now ready to use your system to monitor the water quality of your stream by
simultaneously measuring key parameters such as temperature, dissolved oxygen, conductivity,
and pH. Within this section are tips, precautions and protocol for quality assurance.
5.1 DECIDING HOW TO USE YOUR MONITORING SYSTEM
VISUAL DISPLAY AND LOGGING CAPABILITY
In the simplest configuration, the 6500 environmental process monitoring system may be used as
a convenient, weatherproof visual display of parameters associated with your stream. Readings
can be taken at desired time intervals and manually recorded to a notebook. These readings can
be later transferred to a computer spreadsheet to help track process conditions, or use the data in
compliance reporting.
Two sondes, #6920 and #600XLM, have logging capability. These two sondes are able to store
recorded data into their memory, which then later can be downloaded into a PC or
Display/Logger. If the 6500 can not be connected to a system such as SCADA, data can still be
recorded using one of these two sondes. See the 6-Series Sonde Operations Manual for more
details.
ACTIVATING ALARMS
Alternatively, if you have the required equipment, you may choose to use one of the advanced
features of the 6500 system, relay activation. You can program set points for desired parameters
and use up to four relays to activate visual or audible warnings regarding parameters that have
fallen out of a specified range.
INTEGRATION WITH A SCADA
If you have a SCADA system or other data collection device, the 4-20 mA loop output feature
may be used to track real-time values of key parameters from the 6-Series Sonde even though the
monitor/sonde deployment site is hundreds of meters away. There are eight 4-20 channels,
allowing you to use more than one type of reporting unit for the four sensors available in the 6Series Sonde. For example, you may choose to monitor dissolved oxygen in % air saturation and
mg/L concentration along with temperature, conductivity, total dissolved solids, and pH.
Page 47
Proper Use and Care of the 6500 Section 5
IMPLEMENTATION OF MODBUS SYSTEM
The 6500 Modbus system can be implemented if your application requires digital data
management of one or many parameters on a single data channel. This system involves a simple
interface between the 6500 Monitor and a Programmable Logic Controller (PLC). Configuration
of the PLC should be done only by programmers and engineers with PLC experience. The
following section provides basic information for the programmer who is involved in
6500/Modbus set up. Additional advice on implementing the 6500 Modbus system can be
obtained by contacting YSI Customer Service.
The interaction between the PLC and the 6500 is simple. The PLC writes to and reads from the
6500 using just two of the dozens of Modbus commands. The 6500 makes use of the Modbus
register system to transfer data. It will respond to two Modbus commands, “Read Holding
Registers” and “Preset Multiple Registers”. All other Modbus commands are unsupported and
ignored if given.
The 6500 supports both RS-232 and RS-485 communications protocols. Labeling of RS-485
channels sometimes varies. When the 6500 transmits through the RS-485 port, it drives channel
A high and channel B low during the active state, and in the idle state drives channel A low and
channel B high.
There are 4 main register areas to deal with the parameters:
• Parameter type
• Parameter status
• IEEE floating point parameter data
• Scaled integer parameter data
First, the PLC writes to the parameter type registers to indicate which parameter measurements it
wants. Programmers can enable and disable these sonde parameters by writing to these registers
using the "Preset Multiple Register" command. Each parameter and unit is identified by a
specific code available from the YSI master sensor list.
The data must then be read from the 6500 by the PLC. The 6500 maintains a current set of data
in the holding registers. Use the "Read Holding Registers" command to obtain the most recent
set of data from sondes connected to the 6500. Each parameter from each sonde is stored in a
different register (or register pair). Programmers may choose from two sets of data registers: one
contains a set of IEEE floating point data, and the other contains a set of scaled integer data.
The 6500 also maintains parameter status information in another set of registers. These registers
contain information regarding the status of the parameters in each register. These can also be
read using the “Read Holding Registers” command.
Each of these areas is 15 registers long, except for the floating point data area which is 15 register
pairs long. The first register (or register pair for the floating point data) in each area corresponds
to the first parameter, the second corresponds to the second parameter, etc.
In general if you attempt to read from a reserved or unused area, the 6500 will return a value of
“0”.
YSI Incorporated 6500 Environmental Process Monitor 44
Page 48
Proper Use and Care of the 6500 Section 5
The following table shows the register areas defined in the 6500:
The PLC must write to this area to tell the 6500 what
parameters it wants. Up to 15 parameters can be written here.
After the last parameter the PLC must write a “0”. For
example to instruct the 6500 to provide depth in feet followed
by temp in C the following should be written:
129: 23 (code for depth in feet)
130: 1 (code for temp in C)
131: 0 (tells the 6500 that this is the end of the list)
144-256 Unused
257-271 Read only
Parameter status
The PLC can read back the values in these registers to check
the status of the parameters. The value in register 257
corresponds to the parameter type in register 129 and so on.
The meaning of the returned value is:
0 – The parameter is enabled in the sonde and actively
functioning.
1 – The parameter type is set to 0 (code for end of list).
2 – The parameter requested is not currently available in the
sonde.
272-384 Unused
385-414 Read only
IEEE floating point parameter data
This is the actual parameter data in floating point form. Two
registers are used for each value to make up the 32 bits
required for a 4 byte IEEE floating point number. The value
in register pair 385:386 corresponds to the parameter type in
register 129 and so on.
It is highly recommended that this be used rather than the
scaled integer format. There several reasons for this:
• It’s easier to use since the numbers aren’t scaled. For
example a temp C value of 22.34 would be transmitted as
is, rather than as a converted value such as 7234.
• There is no implied range of values for a parameter.
Using scaled values forces a limit to the range of possible
values that a given parameter can take on.
• The maximum resolution of the data can be transferred.
415-640 Unused
YSI Incorporated 6500 Environmental Process Monitor 45
Page 49
Proper Use and Care of the 6500 Section 5
641-655 Read only
656-and
Unused
up
Scaled integer parameter data
The PLC should only read data from the 6500 using this
method if it cannot handle floating point data. Most PLCs
can manipulate floating point values, so you should try to
avoid reading scaled integer values. The value in register 641
corresponds to the parameter type in register 129 and so on.
The values are scaled according to a fixed table in the 6500.
The scaled data is in an unsigned integer format. Each
parameter type has a specific range and resolution. Refer to
the scaled integer range table for values for each parameter.
For example temp C has the range of –50 to 605.35, with a
resolution of 0.01. Here’s some integer values that could be
returned and their engineering equivalents:
0: -50 C or less.
1: -49.99 C
2: -49.98 C
5000: 0 C
7234: 22.34 C
7500: 25 C
65534: 605.34 C
65535: 605.35 C or higher
MODBUS BASE ADDRESS
The 6500 is designed to allow multiple sondes to be connected at the same time. Each sonde has
its own address that must be different from each other. For example you could connect 4 sondes
at the same time with address 0, 1, 2, and 3. These addresses will be displayed on the 6500’s
screen during normal operation. In order for the PLC to access data from each of the sondes, the
6500 system consumes 1 Modbus address for each of the sondes. The effective address is
computed by adding the sonde address to the address that you assigned in the Modbus Setup
menu. Continuing with the previous example, if you set the 6500’s Modbus address to 10, then
the 4 sondes would be accessed at Modbus addresses 10, 11, 12, and 13. Note that if you have
only 1 sonde connected to the 6500, you will still need to know what the sonde’s address is in
order to access the data. To force the sonde address to be displayed on the screen, go to the
“Main” menu, then “Display” and enable the item “Multi sonde”. When you exit to the normal
display you will see the heading “Sonde:X” where “X” will be the sonde address.
Note that the 6500 “consumes” 10 contiguous Modbus address starting from what you defined for
the base address. This is true even if no sondes are on line. Therefore if you have more then one
6500 connected to the same Modbus port make sure the base address on each differ by at least 10.
For example, if the base address on one 6500 is 1 then you could set the base address on another
6500 to 11 and yet a third 6500 to 21. A good scheme would be to use bases addresses like 10,
20, 30, etc.
YSI Incorporated 6500 Environmental Process Monitor 46
Page 50
Proper Use and Care of the 6500 Section 5
MODBUS SETUP MENU
This menu is accessed from the main menu under “Modbus setup”.
Menu item Item description
Enable Modbus This item must be “checked” to enable Modbus.
Note: this item must be off in order to update the code on a 6500.
Address The effective Modbus address is the value you set here plus the sonde
address.
Hardware Select from RS232 or RS485
Format Select from ASCII or RTU
Baud rate Select from 300, 600, 1200, 2400, 4800, 9600, and 19200
Data bits Select from 7 or 8. Note that in RTU mode you must select 8.
Stop bits Select from 1 or 2. This only affects the data transmitted from the 6500.
Data sent to the 6500 from the PLC can be 1 or 2 stop bits.
Parity Select from None, Odd or Even.
Valid Messages Displays the number of correctly formatted Modbus messages the 6500 has
received. This value increments to 65535 then rolls back to 0. This item
has been put here to help in troubleshooting problems. If the PLC and the
6500 are setup correctly you should see this number increment every time
the PLC talks to the 6500.
Param peek Brings you to a menu that shows the values set in the Parameter Type area.
The values shown are not the integer value written, but rather the 6500’s
translation into a real label. For example if the PLC wrote as above the
values 23,1, and 0 then this menu would show the 2 items feet and temp C.
This menu is provided to give you some feedback that you have correctly
set the values in the Parameter Type area. All possible sonde addresses are
shown, even if they are not on line. You can navigate to each by pressing
the left and right arrow keys.
Please note that setup and calibration of sondes cannot be done through a Modbus interface. This
sonde interaction must be performed through a direct ‘6500 to sonde’ interface.
5.2 QUALITY ASSURANCE
Whatever method you choose to use with the 6500 monitor system, it is important to remember
that the quality of data with regard to your stream will be heavily dependent on three factors
directly related to the 6-Series Sonde:
9 Proper attention to detail of and general maintenance at the physical deployment site of your
sonde.
9 A well-defined quality assurance program that is carried out on a regular basis to assure that the
6-Series Sonde sensors are performing properly.
9 Proper periodic calibration and maintenance of the specific sensors within the 6-Series Sonde.
YSI Incorporated 6500 Environmental Process Monitor 47
Page 51
Proper Use and Care of the 6500 Section 5
The following sections are designed to help you in these important areas by providing maintenance
tips for the overall sonde deployment, help in implementing a quality assurance protocol, and
suggested service methods and intervals for the sonde sensors.
5.2.1 SONDE MAINTENANCE AT THE DEPLOYMENT SITE
ALGAE AND DEBRIS AS THE MAJOR PROBLEM
The problem most likely to be encountered with regard to the overall sonde deployment in
municipal wastewater effluent is fouling from algae (and occasionally other debris) passed
through from the clarifier of your treatment system. These algae will inevitably collect on any
object immersed in the outfall stream, and, unless periodically removed, can seal off the probe
compartment of the sonde. Once algal build-up occurs, it isolates the sensor environment from
the bulk effluent. Thus, even though the sensors themselves may be relatively free of fouling and
may be performing correctly within the isolated probe compartment, the readings may be nonrepresentative with regard to the water that is exiting your treatment plant.
To avoid, or at least minimize, this problem, it will be necessary to periodically remove the algae
from the sonde. This may require the complete removal of the unit from the effluent stream and
“hands on” removal of the fouling. Removal of the sonde is easier if it has been installed using
an optional sonde mounting kit. See Appendix D, Accessories, for more information.
MINIMIZING THE EFFECT OF ALGAE AND DEBRIS
The collection of algae on your sonde and the frequency of cleaning can be minimized by the
overall deployment configuration and the way in which the sonde is attached to the strut. As
outlined in Section 2, Installation, it is preferable to angle the sonde with (rather than against) the
current of the stream. This configuration will maximize the chances that much of the algae will
be swept free of the sonde rather than collecting.
Remember that no matter what precautions you take, debris will still collect on the sonde and the
fouling will have to be removed by periodic cleaning. Cleaning will be easier if the method of
mounting allows for easy removal and replacement of the sonde. A little extra time spent on
implementing a good mounting arrangement using the optional sonde mounting kits will save a
lot of time in subsequent cleaning operations. See Appendix D, Accessories for more information.
The frequency with which you will have to remove fouling from your sonde varies with the water
being monitored and with the physical arrangement of the sonde, but the need for cleaning can
usually be ascertained by visual inspection. You can do no harm by excess cleaning, so it is best
to err on the side of caution, removing and cleaning the sonde if any significant fouling is even
suspected.
5.2.2 CALIBRATION CHECKS
YSI Incorporated 6500 Environmental Process Monitor 48
Page 52
Proper Use and Care of the 6500 Section 5
The sensors associated with the 6-Series Sonde are of high quality and should exhibit excellent
performance in your application in excess of the warranty period. However, the dissolved
oxygen, pH, and conductivity sensors will inevitably show some drift during deployment due to
natural chemical changes to the reagents in the probes, physical changes of the electrodes, minor
fouling of the sensor surfaces, or all of these factors. Noisy sensor readings (especially for the
conductivity and dissolved oxygen sensors) signal the need for specific maintenance procedures.
With these factors in mind, it will be imperative for you to establish and carry out regular checks
of the quality of your sensor readings in order to assure that they are performing within their
specifications, particularly if you are using the readings in compliance reporting.
We recommend that you carry out the following quality assurance program WEEKLY during the
initial use of your 6500 system. After several weeks of this program, you should be able to
ascertain if this frequency is appropriate for your application. If only minimal drift is observed,
then the frequency of implementing the protocol can be decreased. The procedure is relatively
simple and should take only about 20 minutes to complete.
Normally, the quality assurance measurements and recalibration can be carried out at the
deployment site using the 6500 Monitor to assess the drift and to recalibrate if necessary. This
method may not require the removal of the sonde from the water, greatly facilitating
redeployment and shortening the downtime of the instrument. However, there are some
circumstances in which the sonde should be removed to the laboratory and interfaced with a PC
or 610 data logger for quality assurance procedures. For example, the pH sensor should never be
exposed for more than a few minutes to subfreezing air temperatures, so under these conditions,
an evaluation of the sensors in the field would likely cause damage to a key sensor and should be
done in the laboratory instead.
5.2.3 RECOMMENDED QUALITY ASSURANCE PROTOCOL
1. Take the following items to the deployment site:
-bucket of clean water
-the small brush supplied with the 6-Series Sonde
-the calibration/storage vessel supplied with the 6-Series Sonde
-pH 7 buffer and another pH buffer (usually pH 4 or pH 10) of your choice
-latex gloves
2. Before going to the site, determine the current local barometric pressure reading.
3. Remove the sonde from the stream and the sonde guard from the probe compartment.
4. Manually remove any gross debris from the sensors and then rinse carefully in a bucket of
clean water, being very careful not to damage the sensors.
5. Using the small brush provided with the sonde, repeatedly scrub the two conductivity
channels. After brushing is complete, rinse the sensor with clean water by immersion in or
spraying with clean water.
6. While the sonde guard is removed, inspect the dissolved oxygen membrane for obvious holes
or tears and the silver anodes for excessive darkening. Do not remove the membrane at this
time.
YSI Incorporated 6500 Environmental Process Monitor 49
Page 53
Proper Use and Care of the 6500 Section 5
7. Replace the sonde guard.
8. Place the sonde in enough pH 7 buffer to immerse the pH probes. Wait about 3 minutes for
the sensor to stabilize in the new medium and record the reading shown on the 6500 Monitor
display. The deviation from pH 7 will reflect the sensor drift during the deployment period.
9. Activate the 2-point pH calibration protocol from the 6500 display and recalibrate the
instrument using the two buffers as described in Section 2, Sondes, of the 6-Series Sonde
Operations Manual.
10. Rinse the sonde with water and place in the vented storage bottle containing about 1/8 inch
(3 mm) of water. Make sure that the dissolved oxygen sensor is not immersed in the water.
11. Wait about 5 minutes for temperature equilibration and then record the dissolved oxygen
reading in percent air saturation as shown on the 6500 display. The deviation from the
current barometer reading will reflect the sensor drift during the deployment period.
12. If the dissolved oxygen readings show minimal drift (within about 5 % of the correct value)
and are stable, proceed with step #12. If excessive drift is noted or the readings are jumpy,
remove the membrane and resurface the sensor as described in Section 2, Sondes, of the 6Series Sonde Operations Manual. Then reinstall new electrolyte and a new membrane and
proceed, allowing a 10-15 minute break-in period before actually implementing a new
calibration.
13. Activate the DO % calibration protocol from the 6500 display and recalibrate the instrument
to the current local barometric pressure.
14. Replace the sonde in the stream and continue monitoring.
NOTE: The procedure does not include quantitative data taken with regard to either the
temperature or conductivity sensors. The temperature sensor only fails in very rare circumstances
and, when it does, the temperature readings will seem unreasonable for the current conditions. In
the unlikely event that the temperature sensor shows unusual and/or jumpy readings, the # 6560
conductivity/temperature (or the 600R sonde) will need to be checked by authorized service
personnel. No user service is possible. For the conductivity sensor, drift is usually minimal
except as caused by build-up of debris in the cell. Once this is cleaned out as described in Step 4
of the above protocol, the sensor almost always yields accurate readings again with no
recalibration needed. However, if you wish to check your conductivity calibration, place the
sonde in a known standard being sure that the top vent hole is completely covered. If significant
drift has occurred, recalibrate the sensor as described in Section 2, Sondes, of the 6-Series Sonde
Operations Manual.
ALTERNATIVE QUALITY ASSURANCE PROTOCOL (QUICK CHECK AND
ADJUSTMENT)
An alternative, complementary type of quality assurance program to that described above for the
6-Series sensors can be carried out by comparing the current dissolved oxygen and pH readings
YSI Incorporated 6500 Environmental Process Monitor 50
Page 54
Proper Use and Care of the 6500 Section 5
shown on the 6500 display with those taken by recently-calibrated single parameter instruments.
For dissolved oxygen, the probe of a handheld DO instrument similar to the YSI Model 55 can be
placed in the stream near the 6-Series Sonde and the reading recorded. If a comparison of the
readings from the recently-calibrated DO meter and the 6500 indicates a drift of the deployed
instrument, the 6500/6-Series system can be recalibrated to reflect the DO meter reading using the
6500 interface at the site. Note, however, that this comparison should only be used in a reset of
the calibration if the 6-Series Sonde has been cleaned of all algae and other debris prior to the
determination. If a gross variation is observed between the two instruments (> 1 mg/L), it is
usually a sign that maintenance is required on the 6-Series DO sensor.
For pH, a similar field calibration adjustment can be made using a YSI Model 60 or 63 field pH
meter. Alternatively, a sample of the stream can be taken to the laboratory for evaluation of the
true pH. After this value is determined, you should immediately return to the deployment site
and, leaving the 6-Series Sonde in the water, perform a single point pH calibration using the 6500
interface and inputting the laboratory pH as the calibration value. It is important to remember,
however, that this “adjustment” of DO and pH values to those determined by recently calibrated
single parameter instruments should only be used to compensate for minor drifts. It is
not a
substitute for the detailed quality assurance procedure outlined above which confirms proper
sensor function and which should always be performed on a regular basis.
5.2.4 RECOMMENDED MONTHLY MAINTENANCE OF THE DO
PROBE
The YSI polargraphic Rapid Pulse dissolved oxygen probe installed in the
6-Series Sonde is a Clark-type sensor in which the reduction of oxygen at
the gold cathode is accompanied by a corresponding oxidation of a silver
anode to silver chloride (AgCl). This natural deposition of AgCl will be
seen initially as a slight darkening of one of the silver surfaces on the probe
face with no compromise in sensor accuracy. Eventually, however, the
AgCl coating will become so thick that it will affect the function of the
sensor, usually resulting in erroneously low and noisy DO readings.
IMPORTANT!
Periodic resurfacing of the DO sensor is required in order to obtain accurate sensor output.
Our experience in water quality monitoring suggests that DO readings will begin to deteriorate
from this electrochemical action after about 30 days under the continuous operation associated
with the 6500 system. With this in mind, we recommend that users of the 6500/6-Series system
establish a
regular monthly schedule of sensor resurfacing as described in Section 5, Proper Use
and Care of the 6500 Monitor System, even if no problems are evident. The resurfacing
procedure is easy to carry out and takes only about 20 minutes, including the recommended
break-in prior to recalibration of the sensor.
Face of DO Probe
silver anodes
gold cathode
YSI Incorporated 6500 Environmental Process Monitor 51
Page 55
Proper Use and Care of the 6500 Section 5
5.2.5 RECOMMENDED CLEANING OF THE 6500 MONITOR AND
ACCESSORIES
Clean the 6500 Monitor and accessories as needed. Dampen a cloth with warm water and wipe the
outside of the unit. You may use mild detergent with water, if necessary. Do
alkali-based or organic solvent-based solvents (e.g., acetone, alcohol, etc.).
not use acid-based,
YSI Incorporated 6500 Environmental Process Monitor 52
Page 56
SECTION 6 TROUBLESHOOTING
The following section is designed to identify and correct the most common problems that you
might encounter when using your 6500/6-Series system in a stream. Included are symptoms that
involve:
♦ Communication between the 6500 Monitor and the 6-Series Sonde
♦ Enabling/disabling menu choices on the 6500 display screen
♦ Calibration Error Messages
♦ Sensor accuracy and repeatability problems related to either physical deployment or sensor
malfunction
♦ Alarm functionality
♦ 4-20 mA current loop functionality
For additional troubleshooting information with regard to the sonde and its sensors, consult Section 7
of the manual supplied with your 6-Series Sonde.
6.1 COMMUNICATION PROBLEMS
Symptom: The 6500 shows no display (with or without the sonde
connected).
Possible Cause and Suggested Action: The contrast of your display might have been altered
and/or is inappropriate for the present lighting conditions. Press and hold the Cal key while
using the up and down arrow keys to alter the contrast. If this does not result in the appearance of
a display, AC power may not be supplied to the 6500 from the main’s line. First, make sure that
the AC circuit is active. Check switch boxes and breakers. If not active, activate it.
If power is being supplied but no display is present, the power lead connection to the box may be
loose.
WARNING!
Turn off the power to the 6500 before proceeding with the check.
We recommend that the following tests should be carried out only by a qualified electrician or
electronic engineer due to the danger of electric shock.
Loosen the 4 screws that attach the front cover to the 6500 Monitor enclosure. Swing the front cover
to the left, leaving the ribbon cable attached. Examine the power connection on the top right of the
box and make sure that the AC input wires are securely attached to the connector and that the
connector is firmly plugged into the board. After proper connections have been assured, replace the
Page 57
Troubleshooting Section 6
front cover and reapply AC power to the unit. If a display still does not appear, turn off the power
and consult authorized service for advice.
Symptom: No sensor display appears when the 6-Series Sonde is
connected to the 6500 Monitor -- only the message “No sonde on line” is
present at the bottom of the screen.
Possible Cause and Suggested Action: The sonde communication software may not be configured
correctly. First, turn off the AC power to the 6500 monitor and then turn it on again. If the sensor
display is still not present, it is possible that your 6-Series Sonde will have to be reconfigured while
attached to a computer or 610 data logger. This reconfiguration can be easily done at the site if you
have a 610 data logger. If this item is not available, you will need to remove the sonde from the
deployment site and connect it to a computer with PC6000 software. This will require the following
interface hardware: 6095B adapter and 6038 power supply as described in Section 3, System Setup,
of this manual.
If you are using a 610 data logger, connect the sonde to the logger, turn on the 610 power, and
highlight the “Communications” selection. Press Enter and then highlight the “Smart Terminal”
selection to display the menus of the 6-Series Sonde. In the “System” selection, activate Comm Setup
and make certain that the “Auto baud” selection is activated (There will be a dot next to the choice if
it is active). If the selection is not active, press Enter to activate it. Then press Esc repeatedly to
return to the sonde menu selections. Next, activate the “Advanced” selection and then its submenu
“Setup” selection. Make certain that both “AutoSleepRS232” and “AutoSleepSDI12” are
If they are active (as indicated by a dot next to the selection), highlight the item and press Enter to
deactivate it. Now press Esc repeatedly to return to the 610 Main menu. Detach the sonde from the
610 and reconnect it to the 6500 Monitor.
If using a computer with PC6000 to check the configuration of the 6-Series Sonde, activate the Main
sonde menu according to the instructions in Section 3.2, 6-Series Sonde Setup, of this manual. Enter
the “System” submenu and then the “Comm setup” submenu by pressing the appropriate number
selections. Make certain that “Auto baud” is enabled. If it is not, press Enter to activate it and then
press Esc repeatedly to return to the sonde Main menu. Enter the “Advanced” submenu and then the
“Setup” submenu. Make certain that both “AutoSleepRS232” and “AutoSleepSDI12” are
If they are active (as indicated by a dot next to the selection), highlight the item and press Enter to
deactivate it. Now press Esc repeatedly to return to the sonde Main menu. Detach the sonde from the
computer and reconnect it to the 6500 Monitor.
If the sensor display is still not present on the 6500 Monitor screen after sonde reconfiguration,
consult authorized service for advice.
not active.
not active.
Symptom: When multiple sondes are connected, a series of alarm beeps
sound and a loss of system functionality occurs.
Possible Cause and Suggested Action: This problem is most likely caused by a communication
problem between your sondes and the 6500 Monitor. Each sonde you connect to the 6500 Monitor
has its own unique SDI-12 address. This address is used by the sonde to identify itself to the
6500 Monitor. When multiple sondes are connected, it is necessary that each sonde have its own
YSI Incorporated 6500 Environmental Process Monitor 54
Page 58
Troubleshooting Section 6
unique address. A conflicting address will cause the described communication errors between the
6500 monitor and the conflicting sondes. This problem is characterized by repeated alarm sounds
and loss of 6500 Monitor functionality. If this error condition occurs, disconnect all sondes from
the 6500 Monitor and proceed as outlined below.
It is possible to remedy this problem by changing a conflicting SDI-12 addresss. Connect a
single sonde to the 6500 Monitor and change the SDI-12 address by using the “Change sonde
address” option in the Main menu (please refer to section 3.3.6).
It is recommended that you begin SDI-12 addressing at address 0 and increment for each
additional sonde that is connected. This will ensure that no conflicting addresses exist. Once the
desired address is chosen, press Enter to select it. The sonde has now been given a new SDI-12
address. Disconnect the re-addressed sonde and connect the second sonde. Repeat the address
change process, ensuring that a unique address is assigned each time. Once all your sondes are
re-addressed, you can reconnect them all and proceed with your setup.
Also, be sure that any future sondes connected to the 6500 monitor are assigned a unique SDI-12
address before including them in a multi-sonde configuration.
6.2 6500 MENU CHOICE PROBLEMS
Symptom: After plugging in the 6-Series sonde, sensor values appear on
the 6500 display, but the default selections are not those desired.
Possible Cause and Suggested Action: The proper sensors and parameters have not been configured
properly in the sonde software. Press the Esc and Enter keys simultaneously for 1 second to enter the
6500 Main menu. Use the “Sensor” and “Report” selections to configure your displayed parameters
as described in Section 3, System Setup, of this manual. Use the “Display” selection to configure the
character size of your display as described in Section 3. When the desired selections have been
completed, press Esc from the Main menu to return to the Run display.
Symptom: After pressing the Cal key from the Run display, the
parameter you desire to calibrate is “shaded out” and cannot be
highlighted with the up and down arrow keys.
Possible Cause and Suggested Action: User-calibration of this parameter has not been activated.
With supervisory permission, the calibration can be enabled from the Main menu. Press the Esc
and Enter keys simultaneously for 1 second to enter the 6500 Main menu. Highlight the
“Calibrate setup” selection and then the “Calibrations enabled” selection. Finally, highlight the
parameter you desire to calibrate and use the Enter key to toggle on the ability to calibrate. If the
calibration is activated, a check mark will appear in the box next to the parameter. Press Esc
repeatedly to return to the Run display and proceed with the calibration.
NOTE: Temperature can not be calibrated and will remain shaded on the 6500 display screen.
YSI Incorporated 6500 Environmental Process Monitor 55
Page 59
Troubleshooting Section 6
6.3 CALIBRATION ERROR MESSAGES
Symptom: When attempting to confirm a dissolved oxygen sensor
calibration, an error message appears which indicates “High DO Charge”.
Possible Cause and Suggested Action: This message indicates a malfunction in the DO sensor that is
generally due to the roughness of the electrodes on the surface of the probe face. The charge
associated with the DO sensor must be in the range 25 to 100 or the error message will appear when
calibration is attempted. If this error message is encountered, remove the probe guard from the sonde
and resurface the DO probe according to the instructions in Section 2, Sondes, of the 6-Series Sonde
Operations Menu.. After resurfacing the probe, activate the DO charge parameter and confirm that
the value is within the acceptable range. After resurfacing, allow the sensor to run for at least 5
minutes before making a final evaluation of the charge value. If the charge value is in the acceptable
range after resurfacing, proceed with the calibration protocol. If resurfacing according to the
instructions does not result in a lowering of the charge, contact YSI authorized service for advice.
Symptom: When attempting to confirm a dissolved oxygen, pH, or
conductivity sensor calibration, an error message appears which indicates
“Out of Range”.
Possible Cause and Suggested Action: This message indicates that the output of the sensor being
calibrated does not conform to the normal range for this parameter. This problem could be due to
either a malfunctioning sensor or to a calibration solution that is out of specification. If this error
message is encountered, first assure that your pH buffers and conductivity standards have not been
contaminated and that your DO sensor is in air (DO % Cal) or in a solution of known dissolved
oxygen concentration (DO mg/L). Also be certain that you have entered the correct value for the
calibration solution. If the calibration error message continues to occur, contact authorized service to
determine whether the sensor in question needs to be replaced.
6.4 SENSOR ACCURACY AND REPEATABILITY PROBLEMS
Symptom: After extended deployment, any or all of the activated sensor
readings seem unreasonable or noisy.
Possible Cause and Suggested Action: The sonde probe compartment may have been fouled with
algae or other debris creating an isolated environment which is not representative of the bulk stream.
Remove the sonde from the stream completely and manually clean the sonde and sensors. Replace in
the stream and note if the readings return to reasonable values.
Symptom: Even after removal of debris from the sonde (see above), the
readings of some or all of the sensors are unusual and/or noisy.
YSI Incorporated 6500 Environmental Process Monitor 56
Page 60
Troubleshooting Section 6
Possible Cause and Suggested Action: The individual pH and conductivity sensors (not just the sonde
guard) may have been extensively fouled with debris. Remove the sonde from the stream. Clean the
pH glass and reference electrodes by carefully wiping with moist lens cleaning tissue and then rinse
with clean water. Clean out the conductivity sensor ports with the brush supplied with the 6-Series
Sonde and then rinse with clean water. Inspect the dissolved oxygen probe face. If the membrane is
torn or shows any indications of punctures, replace the membrane. If either or both of the silver
electrodes shows heavy darkening, resurface the probe prior to installing the new membrane.
Detailed maintenance instructions for the sensors are found in Section 2, Sondes, of the 6-Series
Sonde Operation Manual. After cleaning, recalibrate the sensors and redeploy the sonde. If readings
still appear to be unusual, contact authorized service for advice.
6.5 ALARM FUNCTION PROBLEMS
Symptom: The alarm device wired to your 6500 does not appear to
trigger under the conditions that you have set up.
Possible Cause and Suggested Action: The problem may be due to a failure of your alarm device,
(e.g., a burnt out light bulb), or could be associated with a malfunction of the 6500 Monitor circuitry.
First, detach your alarm indicator from the 6500 and apply direct power to it. If it does not function
properly, repair or replace it.
If the device shows no malfunction, reattach it to the 6500 alarm circuit. Next activate the Main
menu of the 6500 by pressing the Esc and Enter keys simultaneously for 1 second. Highlight the
“Relays” selection and then the “Test Relays” selection. Highlight the relay in question and toggle
the relay “on” using the Enter key. When the relay is artificially activated, a check mark will appear
in the box and the relay indicator will spin, as shown in the display below for Relay 1.
If the above test is positive, the alarm (light, siren, etc.) should activate if the 6500 Monitor is
functioning properly. If no activation occurs, contact customer service for advice. If the alarm does
activate, press Esc to return to the “Relays” menu, then highlight the “Configure” relays selection and
press Enter.
Make certain that your relay is configured to activate under your desired condition. For example, you
may have selected > rather than < by mistake. If the condition for activation appears to be correct,
you may wish to induce an actual sensor condition under which the alarm should activate. For
example, if your relay is set to activate when the pH is less than 6.5, you can remove the sonde from
the stream and place the probes in pH 4 buffer. Return to the Run display for this test by pressing Esc
until the actual sensor readings appears on the screen. View the readings on the display to make
certain that the pH is close to the correct value (pH 4) and is indeed less than 7. If the alarm does not
activate under the induced condition, contact authorized service for advice.
YSI Incorporated 6500 Environmental Process Monitor 57
Page 61
Troubleshooting Section 6
6.6 4-20 MA CURRENT LOOP OUTPUT PROBLEMS
Symptom: 4-20 mA output values at the SCADA or recorder are
suspicious or inconsistent with the scale you have set in the 6500 setup
menu.
Possible Cause and Suggested Action: The problem may be related to the 6500 circuitry, the wiring
and/or the SCADA controller. Use the diagnostics menu in the 6500 Monitor to check the outputs of
the 4-20 mA outputs. Start checking at the SCADA and work back to the 6500 Monitor. By starting
with the SCADA input you may avoid the need to remove the front cover of the 6500 Monitor, which
is often installed outside.
Activate the Main menu of the 6500 by pressing the Esc and Enter keys simultaneously for 1 second.
Highlight the “4-20 mA” selection and then the “Test 4-20” selection. An example display is shown
below. The values shown should be the current 4-20 values for each of the active current loops.
Using an ammeter verify that these readings are the same as those at the input of the SCADA
controller. If they do not agree, the problem may be in the wiring or wiring connections.
Alternatively, you may highlight particular loops, one at a time, (e.g., loop 4 shown above), then
enter a value of your choice. One approach is to test each loop output using 4, 12, and 20 mA signals
to simulate the 0%, 50% and 100% scale of the specific parameter assigned to that loop. Then follow
the procedure above to test the mA values at the input of the SCADA.
WARNING!
To proceed you need to remove the cover of the 6500 Monitor, which exposes AC power
connections. A qualified electrician should perform the test below.
If the wiring and input connections check okay, focus on the output connector of the 6500 Monitor.
To do this use the “Test 4-20” menu to observe or assign values, then carefully remove the 6500 front
cover using the 4 screws that secure it. Take care not to drop the cover and be sure to leave the blue
ribbon cable connected if you want to refer back to the display. Next unplug the 4-20 mA output
connector (see Figure 2.14 to locate this connector if necessary). Using an ammeter, verify that the 420 mA values agree with the values you read or assign. If these do not agree, the problem may be in
the 6500 circuitry. Contact YSI authorized service for advice. See Section 7, Warranty and Service,
for specific contact information.
YSI Incorporated 6500 Environmental Process Monitor 58
Page 62
SECTION 7 WARRANTY AND SERVICE
INFORMATION
The YSI 6500 Environmental Process Monitor and 6502/6503 Breakout Boxes are warranted for two
years from date of purchase by the end user against defects in materials and workmanship. All cables
are warranted for one year from date of purchase by the end user against defects in material and
workmanship. The warranty period for chemicals and reagents is determined by the expiration date
printed on their labels. Within the warranty period, YSI will repair or replace, at its sole discretion,
free of charge, any product that YSI determines to be covered by this warranty.
To exercise this warranty, write or call your local YSI representative, or contact YSI Customer
Service in Yellow Springs, Ohio. Send the product and proof of purchase, transportation prepaid,
to the Authorized Service Center selected by YSI. Repair or replacement will be made and the
product returned, transportation prepaid. Repaired or replaced products are warranted for the
balance of the original warranty period, or at least 90 days from date of repair or replacement.
LIMITATION OF WARRANTY
This Warranty does not apply to any YSI product damage or failure caused by (i) failure to
install, operate or use the product in accordance with YSI’s written instructions, (ii) abuse or
misuse of the product, (iii) failure to maintain the product in accordance with YSI’s written
instructions or standard industry procedure, (iv) any improper repairs to the product, (v) use by
you of defective or improper components or parts in servicing or repairing the product, or (vi)
modification of the product in any way not expressly authorized by YSI.
THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR
IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. YSI’s LIABILITY UNDER THIS WARRANTY IS LIMITED TO
REPAIR OR REPLACEMENT OF THE PRODUCT, AND THIS SHALL BE YOUR SOLE
AND EXCLUSIVE REMEDY FOR ANY DEFECTIVE PRODUCT COVERED BY THIS
WARRANTY. IN NO EVENT SHALL YSI BE LIABLE FOR ANY SPECIAL, INDIRECT,
INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECTIVE
PRODUCT COVERED BY THIS WARRANTY.
Page 63
Warranty and Service Information Section 7
AUTHORIZED SERVICE CENTERS
Please visit www.ysi.com or contact YSI Technical Support for the nearest authorized service center.
YSI Incorporated Environmental Monitoring Systems Operations Manual 60
Page 64
Warranty and Service Information Section 7
YSI Incorporated Environmental Monitoring Systems Operations Manual 61
Page 65
Warranty and Service Information Section 7
YSI Incorporated Environmental Monitoring Systems Operations Manual 62
Page 66
APPENDIX A SPECIFICATIONS
6500 Environmental Process Monitor
Operating Temperature -20 to 60
Enclosure Rating* NEMA 4X enclosure
Line Power (nominal) 100 (-10%) to 240 (+10%) VAC, 50-60 Hz
Maximum Power Draw 45 watts
Control relay outputs Rated 5 Amps @ 240 VAC
4 - 20 mA loops Class L, 0 to 300 ohms (250 ohm typical)
4 - 20 mA output accuracy +/- 0.08 mA (electrically isolated from sensors.)
Electrical Safety UL, CUL and CE (approvals pending)
Pollution Degree II per UL3101
Installation Category III per UL3101
Sonde Compatibility 600R, 600XL, 600XLM, 6820, 6920
o
C or -4 to 140 oF
Page 67
Specifications Appendix A
YSI Incorporated 6500 Environmental Process Monitor 64
CAUTION: AVOID INHALATION, SKIN CONTACT, EYE CONTACT OR INGESTION.
MAY EVOLVE TOXIC FUMES IN FIRE.
Harmful if ingested or inhaled. Skin or eye contact may cause irritation. Has a corrosive effect on the
gastro-intestinal tract, causing abdominal pain, vomiting, and diarrhea. Hyper-sensitivity may cause
conjunctivitis, bronchitis, skin rashes etc. Evidence of reproductive effects.
FIRST AID:
INHALATION: Remove victim from exposure area. Keep victim warm and at rest. In severe cases
seek medical attention.
SKIN CONTACT: Remove contaminated clothing immediately. Wash affected area thoroughly with
large amounts of water. In severe cases seek medical attention.
EYE CONTACT: Wash eyes immediately with large amounts of water, (approx. 10 minutes). Seek
medical attention immediately.
INGESTION: Wash out mouth thoroughly with large amounts of water and give plenty of water to
drink. Seek medical attention immediately.
T Potassium Hydrogen Phthalate
T Formaldehyde
T Water
pH 7 INGREDIENTS:
T Sodium Phosphate, Dibasic
T Potassium Phosphate, Monobasic
T Water
pH 10 INGREDIENTS:
T Potassium Borate, Tetra
T Potassium Carbonate
T Potassium Hydroxide
T Sodium (di) Ethylenediamine Tetraacetate
T Water
CAUTION - AVOID INHALATION, SKIN CONTACT, EYE CONTACT OR INGESTION.
MAY AFFECT MUCOUS MEMBRANES.
Inhalation may cause severe irritation and be harmful. Skin contact may cause irritation; prolonged or
repeated exposure may cause Dermatitis. Eye contact may cause irritation or conjunctivitis. Ingestion
may cause nausea, vomiting and diarrhea.
FIRST AID:
INHALATION - Remove victim from exposure area to fresh air immediately. If breathing has
stopped, give artificial respiration. Keep victim warm and at rest. Seek medical attention
immediately.
SKIN CONTACT - Remove contaminated clothing immediately. Wash affected area with soap or
mild detergent and large amounts of water (approx. 15-20 minutes). Seek medical attention
immediately.
EYE CONTACT - Wash eyes immediately with large amounts of water (approx. 15-20 minutes),
occasionally lifting upper and lower lids. Seek medical attention immediately.
INGESTION - If victim is conscious, immediately give 2 to 4 glasses of water and induce vomiting
by touching finger to back of throat. Seek medical attention immediately.
YSI Incorporated 6500 Environmental Process Monitor 66
Page 70
Health and Safety Appendix B
YSI Zobell Solution: 3682
INGREDIENTS:
T Potassium Chloride
T Potassium Ferrocyanide Trihydrate
T Potassium Ferricyanide
CAUTION - AVOID INHALATION, SKIN CONTACT, EYE CONTACT OR INGESTION.
MAY AFFECT MUCOUS MEMBRANES.
May be harmful by inhalation, ingestion, or skin absorption. Causes eye and skin irritation. Material
is irritating to mucous membranes and upper respiratory tract. The chemical, physical, and
toxicological properties have not been thoroughly investigated.
Ingestion of large quantities can cause weakness, gastrointestinal irritation and circulatory
disturbances.
FIRST AID:
INHALATION - Remove victim from exposure area to fresh air immediately. If breathing has
stopped, give artificial respiration. Keep victim warm and at rest. Seek medical attention
immediately.
SKIN CONTACT - Remove contaminated clothing immediately. Wash affected area with soap or
mild detergent and large amounts of water (approx. 15-20 minutes). Seek medical attention
immediately.
EYE CONTACT - Wash eyes immediately with large amounts of water (approx. 15-20 minutes),
occasionally lifting upper and lower lids. Seek medical attention immediately.
INGESTION - If victim is conscious, immediately give 2 to 4 glasses of water and induce vomiting
by touching finger to back of throat. Seek medical attention immediately.
YSI Incorporated 6500 Environmental Process Monitor 67
Page 71
Health and Safety Appendix B
YSI Ammonium Standard Solutions: 3841, 3842, and 3843
INGREDIENTS:
T Ammonium Chloride
T Lithium Acetate Dihydrate
T Sodium Azide (trace)
T Hydrochloric acid
CAUTION - AVOID INHALATION, SKIN CONTACT, EYE CONTACT OR INGESTION.
MAY AFFECT MUCOUS MEMBRANES.
May be harmful by ingestion or skin absorption. May cause eye and skin irritation. The chemical,
physical, and toxicological properties have not been thoroughly investigated.
Ingestion of large quantities of lithium salts can affect the central nervous system producing
symptoms ranging from dizziness to collapse. It may also cause kidney damage, nausea, and
anorexia. Note that the ingestion of harmful quantitites form the solutions is considered unlikely
given the low concentration of lithium and the volumes likely to be handled.
FIRST AID:
INHALATION - Remove to fresh air. If not breathing, give artificial respiration. If breathing is
difficult, give oxygen. Call a physician.
SKIN CONTACT - Remove contaminated clothing immediately. Wash affected area with soap or
mild detergent and large amounts of water (approx. 15-20 minutes).
EYE CONTACT - Wash eyes immediately with large amounts of water (approx. 15-20 minutes),
occasionally lifting upper and lower lids. Seek medical attention immediately.
INGESTION - Immediately rinse out mouth with large quantities of water. If reagent was
swallowed, give 2 glasses of water and seek medical attention immediately.
YSI Incorporated 6500 Environmental Process Monitor 68
Page 72
Health and Safety Appendix B
YSI Nitrate Standard Solutions: 3885, 3886, and 3887
INGREDIENTS
T Potassium Nitrate
T Magnesium Sulfate
T Gentamycin Sulfate (Trace)
CAUTION - AVOID INHALATION, SKIN CONTACT, EYE CONTACT OR INGESTION.
May be harmful by ingestion or skin absorption. May cause eye and skin irritation. The chemical,
physical, and toxicological properties have not been thoroughly investigated.
FIRST AID:
INHALATION - Remove to fresh air. If not breathing, give artificial respiration. If breathing is
difficult, give oxygen. Call a physician.
SKIN CONTACT - Remove contaminated clothing immediately. Wash affected area with soap or
mild detergent and large amounts of water (approx. 15-20 minutes).
EYE CONTACT - Wash eyes immediately with large amounts of water (approx. 15-20 minutes),
occasionally lifting upper and lower lids. Seek medical attention immediately.
INGESTION - Immediately rinse out mouth with large quantities of water. If irritation occurs or
reagent was swallowed, seek medical attention immediately.
YSI Incorporated 6500 Environmental Process Monitor 69
Page 73
Health and Safety Appendix B
YSI Turbidity Standards: 3845, 3846, 3487, 6072, and 6073
INGREDIENTS
T Styrene divinylbenzene copolymer spheres
The material is not volatile and has no known ill effects on skin, eyes, or on ingestion. Therefore, no
special precautions are required when using the standards. General precautions should be adopted as
required with all materials to minimize unnecessary contact. Note, however, that the chemical,
physical, and toxicological properties have not been thoroughly investigated.
FIRST AID:
SKIN CONTACT - Remove contaminated clothing. Wash affected area with soap or mild detergent
and water.
EYE CONTACT - Wash eyes immediately with large amounts of water (approx. 15-20 minutes),
occasionally lifting upper and lower lids. If irritation occurs, seek medical attention immediately.
INGESTION - Rinse out mouth with large quantities of water. If irritation occurs or reagent was
swallowed, seek medical attention as a precaution.
YSI Incorporated 6500 Environmental Process Monitor 70
Page 74
Health and Safety Appendix B
YSI Replacement Desiccant 065802
INGREDIENTS
T Calcium Sulfate and Calcium Chloride
CAUTION - AVOID INHALATION, SKIN CONTACT, EYE CONTACT OR INGESTION.
MAY AFFECT MUCOUS MEMBRANES.
FIRST AID:
SKIN CONTACT - Flush with water.
EYE CONTACT - . Flush with water. If irritation continues, obtain medical attention.
INGESTION - If patient is conscious, induce vomiting. Obtain medical attention.
YSI Incorporated 6500 Environmental Process Monitor 71
Page 75
Health and Safety Appendix B
YSI Incorporated 6500 Environmental Process Monitor 72
Page 76
APPENDIX C REQUIRED NOTICE
The Federal Communications Commission defines this product as a computing device and
requires the following notice.
This equipment generates and uses radio frequency energy and if not installed and used properly, may
cause interference to radio and television reception. It has been type tested and found to comply with
the limits for a Class A or Class B computing device in accordance with the specification in Subpart J
of Part 15 of FCC Rules, which are designed to provide reasonable protection against such
interference in a residential installation. However, there is no guarantee that interference will not
occur in a particular installation. If this equipment does cause interference to radio or television
reception, which can be determined by turning the equipment off and on, the user is encouraged to try
to correct the interference by one or more of the following measures:
T Reorient the receiving antenna
T Relocate the computer with respect to the receiver
T Move the computer away from the receiver
T Plug the computer into a different outlet so that the computer and receiver are on different branch
circuits.
If necessary, the user should consult the dealer or an experienced radio/television technician for
additional suggestions. The user may find the following booklet, prepared by the Federal
Communications Commission, helpful: "How to Identify and Resolve Radio-TV Interference
Problems". This booklet is available from the U.S. Government Printing Office, Washington, D.C.
20402, Stock No.0004-000-00345-4.
Page 77
Required Notice Appendix C
YSI Incorporated 6500 Environmental Process Monitor 74
Page 78
APPENDIX D ACCESSORIES
The following components come standard with the purchase of the YSI 6500 Environmental Monitoring
System:
♦ 6502 Breakout Box – for one sonde up to 250 feet away from the 6500 Monitor
♦ 6503 CE Breakout Box – for one sonde up to 250 feet away from the 6500
Monitor- CE approved
♦ 6504 Breakout Box – For multiple sondes up to 250 feet away from the 6500 Monitor
♦ 6505 Weather Shield – Additional protection from the elements
♦ 6507 Patch Cable, 6 feet (1.9 meters)
♦ 6508 Junction Box – Required when the distance between the Breakout Box and 6500 Monitor
is greater than 6 feet
♦ 6509 Rail Mount Kit – Mounting the 6500 Monitor, 6502, 6503, 6504 Breakout Box, and 6508
Junction Box to a railing
♦ 6510 Panel Mount Kit – Mounting the 6500 Monitor to a panel
♦ 6511 Sonde Mount Kit – Mounting the 600 series sondes
♦ 6512 Sonde Mount Kit – Mounting the 6820/6920
OPTIONAL ACCESSORIES FOR 6-SERIES SONDES
See the YSI 6-Series Operations Manual for list of reagents and optional accessories associated
with the sonde.
Page 79
Accessories Appendix D
6502 – BREAKOUT BOX
Figure 1
The 6502 Breakout Box is required when
deploying the sonde longer than the field cable
length from the monitor. The Breakout Box has
one MS-8 connector for connection to the sonde
cable and one conduit fitting for connection with
the YSI #6508 Junction Box. For direct
connection to the 6500 Monitor, a #6507 Patch
Cable and Gland Fitting (YSI 064007) are
required.
The Breakout Box may be mounted on a wall or to a vertical pipe or handrail that is 1 to 1½
inches in diameter. Rail mounting the 6502 Breakout Box requires the optional the 6509 Rail
Mounting Kit. The location of the 6502 Breakout Box should be elevated and in a dry place
above potential flood level. The Breakout Box should be easily accessible for an operator or
technician.
The 6502 Breakout Box should
heat source, near an AC motor or transformer, radio transmitter or antenna.
Do not mount on electrical conduit.
not be mounted on hot or vibrating pipe or structure, near a high
WALL MOUNTING
Although the Breakout Box is designed for outdoor deployment, some operators may prefer the
convenience of reading the monitor under shelter, for example, inside a nearby building. Figure 4
shows this indoor type of installation. Wall-mounting the Breakout Box is a simple process using
the enclosed mounting hardware.
The following steps should be followed when wall mounting the Breakout Box.
1. Loosely fasten the mounting brackets (included) to the back of the Breakout Box with the
mounting screws provided.
2. Tighten the screws, securing the brackets to the Breakout Box.
3. Loosely fasten the Breakout Box to the mounting surface with the mounting screws
provided.
4. Tighten the screws, securing the Monitor to the surface.
6502 Breakout Box, 6” x 4” x 4”
YSI Incorporated 6500 Environmental Process Monitor 76
Page 80
Accessories Appendix D
RAIL MOUNTING
1. Securely fasten both mounting brackets (included with the 6502) to the back of the 6502
Breakout Box, with the mounting screws provided.
2. Fasten the top and bottom of the 6502, with installed brackets, to the rail using the u-bolts,
plates, lock-washers, and nuts.
3. Ensure that all hardware is tightened.
WIRING INSTRUCTIONS
A qualified electrician should perform all Wiring.
Do not make connections while power is applied.
Disconnect power before proceeding.
IMPORTANT! It is essential that all sensor wiring be run in a separate conduit from power
wiring.
The simplest configuration is where the sonde is within 250-feet (75 m) of the 6500 Monitor, the
Breakout Box is within 6-ft (1.8 m) of the 6500, neither the relay outputs nor the 4-20 mA current
loop outputs are used, and only AC power wiring is required. The sonde is connected to the
Breakout Box by the MS-8 connectors, which are pre-wired. The Breakout Box is connected to
the 6500 with the optional 6-foot (1.8 m) Patch Cable (YSI #6507). If, however, the 6500
Environmental Process Monitor is more than 6-ft (1.8 m) from the Breakout Box and any of the
outputs are wired to alarms or a SCADA system, additional wiring and the 6508 Junction Box
may be required. Below are wiring instructions for connection of the 6502 Breakout Box, and
sondes to the 6500 Environmental Process Monitor.
Following the installation and wiring of the YSI #6502 Breakout Box, the conduit
fitting if used, must be sealed using the Industrial Encapsulant and instructions
supplied with the 6500 Environmental Monitoring System.
WARNING!
IMPORTANT!
YSI Incorporated 6500 Environmental Process Monitor 77
The sonde can be equipped with a detachable or non-detachable cable or a bulkhead connector
that allows the use of various YSI field cables. The end connection of the cable is a military-style
8-pin connector (MS-8) that plugs
In close range Breakout Box installations, Figure 2, the 6500 Monitor uses a standard MS-8
connection to interface with the 6 foot (1.8 m) 6507 Patch Cable, through a Gland Fitting (YSI
064007), to the 6502 Breakout Box. This configuration allows a maximum cable length of 250’
between the 6500 Monitor and the sonde. The Patch Cable should be landed to TB-1 in the
breakout box. The MS-8 connector for Sonde hookup is pre-wired to TB-2 or TB-3. See Figure
4 for further information.
21.2 Temp
6500
6500
ENVIRON MENTALEN VIRONM ENTAL
7.35 DO
MONITORING
MONITORING
SYSTEM
6.53 pH
Esc
Cal
Enter
6507
Gland Fitting
directly into the 6502 Breakout Box.
21.2 Temp
6500
6500
ENVIRONM ENTALENVIRONMENTAL
7.35 DO
MONITORING
MONITORING
SYSTEM
6.53 pH
Esc
Junction Box
6502
Breakout Box
Cal
Enter
6508
6502
Breakout Box
6507
6’ Patch cable
w/ MS-8
Figure 2
Sonde cables
w/ MS-8
sondes
Stream
Figure 3
6507
6’ Patch cable
w/ MS-8
Conduit &
customer-supplied
3-conductor cable
Sonde cables
w/ MS-8
Sonde
Stream
In remote Breakout Box installations, Figure 3, the 6500 Monitor uses a standard MS-8
connection to interface with the 6 foot (1.8 m) 6507 Patch Cable that is connected in the 6508
Junction Box. The Junction Box is then connected by conduit and three- conductor cable to the
Breakout Box(s). The customer is advised to supply rigid conduit and 18 AWG or heavier
shielded multi-conductor cable to connect between the Junction Box and the Breakout Box at the
Sonde installation site. This configuration allows a maximum cable length of 250’ between the
6500 Monitor and the Sonde. The cable from the Junction Box should be landed to TB-1 in the
breakout box. The MS-8 connector for sonde hookup is pre-wired to TB-2 or TB-3. See Figure 4
for further information.
YSI Incorporated 6500 Environmental Process Monitor 78
Page 82
Accessories Appendix D
(2)
IMPORTANT!
GND on TB-1 is for signal common only.
Do not connect to earth ground.
The TB-1, Figure 4, conductor color
code is:
(1) Red +12 VDC
(2) Black Common
(3) Blue SDI-12
The TB-2 & TB-3, Figure 4, conductor color code is:
(1) Red +12 VDC
(2) Black Common
(3) Purple SDI-12
132
6502, Front Cover Removed
TB-1
3/4”conduit to Jct. Box
MS-8 to Sonde
Figure 4
YSI Incorporated 6500 Environmental Process Monitor 79
Page 83
Accessories Appendix D
6503 – CE BREAKOUT BOX
Figure 5
The 6503 CE Breakout Box is required when
deploying the sonde longer than the field cable
length from the monitor. If you are using your
YSI 6500 with a Breakout Box in a CE
applications, you must use the #6503 Breakout
Box. This will allow you to comply with the
Residential, Commercial and Light Industrial
Class B Limits for radio-frequency emissions
specified in EN55011 (CISPR11) for Industrial,
Scientific and Medical laboratory equipment. The
Breakout Box has one MS-8 connector for connection to the sonde cable and one conduit fitting
for connection with the YSI #6508 Junction Box. For direct connection to the 6500 Monitor, a
#6507 Patch Cable and Gland Fitting (YSI 064007) are required.
The Breakout Box may be mounted on a wall or to a vertical pipe or handrail that is 1 to 1½
inches in diameter. Rail mounting the 6503 Breakout Box requires the optional the 6509 Rail
Mounting Kit. The location of the 6503 Breakout Box should be elevated and in a dry place
above potential flood level. The Breakout Box should be easily accessible for an operator or
technician to have convenient access to the unit.
The 6503 Breakout Box should
heat source, near an AC motor or transformer, radio transmitter or antenna.
Do not mount on electrical conduit.
not be mounted on hot or vibrating pipe or structure, near a high
WALL MOUNTING
Although the Breakout Box is designed for outdoor deployment, some operators may prefer the
convenience of reading the monitor under shelter, for example, inside a nearby building. Wallmounting the Breakout Box is a simple process using the enclosed mounting hardware.
1. Loosely fasten the mounting brackets (included) to the back of the Breakout Box with the
mounting screws provided.
2. Tighten the screws, securing the brackets to the Breakout Box.
3. Loosely fasten the Breakout Box to the mounting surface with the mounting screws
provided.
4. Tighten the screws, securing the Monitor to the surface.
6503 Breakout Box, 6” x 4” x 4”
YSI Incorporated 6500 Environmental Process Monitor 80
Page 84
Accessories Appendix D
RAIL MOUNTING
1. Securely fasten both mounting brackets
(included with the 6502) to the back of the 6502
Breakout Box as shown in Figure 6, with the
mounting screws provided.
2. Fasten the top and bottom of the 6502, with
installed brackets, to the rail using the u-bolts,
plates, lock-washers, and nuts as shown in
Figure 7.
Ensure that all hardware is tightened.
Figure 6
Figure 7
YSI Incorporated 6500 Environmental Process Monitor 81
Page 85
Accessories Appendix D
6504 – BREAKOUT BOX
The 6504 Breakout Box is required when deploying
more than one sonde from the 6500 Monitor (see
Figures 8 & 9). The Breakout Box has two MS-8
connectors for connection to the sonde cables and one
conduit fitting for connection with the YSI #6508
Junction Box. For direct connection to the 6500
Monitor, a #6507 Patch Cable and Gland Fitting (YSI
064007) are required.
The Breakout Box may be mounted on a wall or to a
vertical pipe or handrail that is 1 to 1½ inches in
diameter. Rail mounting the 6504 Breakout Box
requires the optional 6509 Rail Mounting Kit. The
location of the 6504 Breakout Box should be elevated
and in a dry place above potential flood level. The
Breakout Box should be easily accessible for an
operator or technician to have convenient access to
the unit.
The 6504 Breakout Box should
hot or vibrating pipe or structure, near a high heat
source, near an AC motor or transformer, radio
transmitter or antenna.
Do not mount on electrical conduit.
not be mounted on
WALL MOUNTING
1. Loosely fasten the mounting brackets (included) to the back of the Breakout Box with the
mounting screws provided.
2. Tighten the screws, securing the brackets to the Breakout Box.
3. Loosely fasten the Breakout Box to the mounting surface with the mounting screws
provided.
4. Tighten the screws, securing the Monitor to the surface.
RAIL MOUNTING
1. Securely fasten both mounting brackets (included with the 6504) to the back of the 6504
Breakout Box as shown in Figure 8, with the mounting screws provided.
2. Fasten the top and bottom of the 6504, with installed brackets, to the rail using the u-
bolts, plates, lock-washers, and nuts as shown in Figure 9.
3. Ensure that all hardware is tightened.
Figure 8
Figure 9
YSI Incorporated 6500 Environmental Process Monitor 82
Page 86
Accessories Appendix D
WIRING INSTRUCTIONS
Wiring should be performed by a qualified electrician.
Do not make connections while power is applied.
Disconnect power before proceeding.
WARNING!
IMPORTANT! It is essential that all sensor wiring be run in a separate conduit from power
wiring.
The simplest configuration is where the sondes are within 250-feet (75 m) of the 6500 Monitor,
the Breakout Box is within 6-ft (1.8 m) of the 6500, neither the relay outputs nor the 4-20 mA
current loop outputs are used, and only AC power wiring is required. The sondes are connected
to the Breakout Box by the MS-8 connectors, which are pre-wired. The Breakout Box is
connected to the 6500 with the optional 6-foot (1.8 m) Patch Cable (YSI #6507). If, however, the
6500 Environmental Process Monitor is more than 6-ft (1.8 m) from the Breakout Box and any of
the outputs are wired to alarms or a SCADA system, additional wiring and the 6508 Junction Box
may be required. Below are wiring instructions for connection of the 6504 Breakout Box, and
sondes to the 6500 Environmental Process Monitor.
Following the installation and wiring of the YSI #6504 Breakout Box, the conduit
fitting if used, must be sealed using the Industrial Encapsulant and instructions
supplied with the 6500 Environmental Monitoring System.
The Sonde can be equipped with a detachable or non-detachable cable or a bulkhead connector
that allows the use of various YSI field cables. The end connection of the cable is a military-style
8-pin connector (MS-8) that plugs
In close range Breakout Box installations, Figure 10, the 6500 Monitor uses a standard MS-8
connection to interface with the 6 foot (1.8 m) 6507 Patch Cable, through a Gland Fitting (YSI
064007), to the 6504 Breakout Box. This configuration allows a maximum cable length of 250’
between the 6500 Monitor and the Sonde(s). The Patch Cable should be landed to TB-1 in the
breakout box. The MS-8 connectors for Sonde hookups are pre-wired to TB-2 and TB-3. See
Figure 12 for further information.
directly into the 6504 Breakout Box.
YSI Incorporated 6500 Environmental Process Monitor 83
Page 87
Accessories Appendix D
SYSTEM
SYSTEM
(2)
6500
6500
ENVIRON MENTALEN VIRONM ENTAL
MONITORING
MONITORING
SYSTEM
21.2 Temp
7.35 DO
6.53 pH
Esc
Cal
Enter
6504
Breakout Box
6500
6500
ENVIRONM ENTALENVIRONMENTAL
MONITORING
MONITORING
SYSTEM
21.2 Temp
7.35 DO
6.53 pH
Esc
Cal
Enter
6508
Junction Box
6507
Gland Fitting
Breakout Box
6507
6’ Patch cable
w/ MS-8
Figure 10
Sonde cables
w/ MS-8
Sondes
Stream
Figure 11
6507
6’ Patch cable
w/ MS-8
Conduit &
customer-supplied
3-conductor cable
Sonde cables
w/ MS-8
Sondes
Stream
In remote Breakout Box installations, Figure 4, the 6500 Monitor uses a standard MS-8
connection to interface with the 6 foot (1.8 m) 6507 Patch Cable that is connected in the 6508
Junction Box. The Junction Box is then connected by conduit and three- conductor cable to the
Breakout Box(s). The customer is advised to supply rigid conduit and 18 AWG or heavier
shielded multi-conductor cable to connect between the Junction Box and the Breakout Box at the
Sonde installation site. This configuration allows a maximum cable length of 250’ between the
6500 Monitor and the Sonde(s). The cable from the junction box should be landed to TB-1 in the
breakout box. The MS-8 connectors for Sonde hookups are pre-wired to TB-2 and TB-3. See
Figure 12 for further information.
IMPORTANT!
6504, Front Cover Removed
GND on TB-1 is for signal common only.
Do not connect to earth ground.
The TB-1, Figure 12, conductor color
code is:
(1) Red +12 VDC
(2) Black Common
132
(3) Blue SDI-12
The TB-2 & TB-3, Figure 12, conductor color code is:
(1) Red +12 VDC
(2) Black Common
TB-1
MS-8 to Sonde
3/4”conduit to Jct. Box
Figure12
(3) Purple SDI-12
YSI Incorporated 6500 Environmental Process Monitor 84
Page 88
Accessories Appendix D
6505 – WEATHER SHIELD
The Weather Shield provides wall or optional rail mounting capability for the 6500 Monitor using
the holes as indicated in Figure 13.
Do not mount on electrical conduit.
The location of the 6500 Monitor should be elevated and in a dry place above potential flood
level. The unit should be easily accessible for an operator or technician.
The electronics unit should
source, an AC motor, transformer, radio transmitter, or antenna.
WALL MOUNTING
1. Discard the plastic mounting brackets that are provided with the 6500 Monitor.
2. Securely fasten the Weather Shield to the back of the 6500 with the mounting screws
provided.
3. Securely fasten both sides of the 6500 Monitor, with installed Weather Shield, to a
wall using common screws/bolts and washers.
RAIL MOUNTING
When rail mounting the 6500 Monitor, an optional accessory, #6509, Rail Mounting Kit, is
needed. The rail mount option is for pipe or handrail 1 to 1½ inches in diameter.
1. Discard the plastic mounting brackets that are provided with the 6500 Monitor.
2. Securely fasten the Weather Shield to the pipe or rail with the u-bolts, plates, lock-
washers, and nuts.
3. Securely fasten the 6500 Monitor with the mounting screws, provided, to the
Weather Shield, as shown in Figure 14.
not be mounted on hot or vibrating pipe or structure, near a high heat
U-Bolts Holes
YSI Incorporated 6500 Environmental Process Monitor 85
6500 Mount
Holes
Figure 13
Wall Mount
Page 89
Accessories Appendix D
Figure 14
YSI Incorporated 6500 Environmental Process Monitor 86
Page 90
Accessories Appendix D
6508 – JUNCTION BOX
The 6508 Junction Box is required when the distance
between the 6500 Monitor and the Breakout Box(s) is more
than 6-feet (1.8 m). The Breakout Box has two conduit
fittings, one for the conduit connection with the Breakout
Box and one for the Gland Fitting for the 6507 Patch Cable.
The 6508 may be mounted on a wall or mounted to vertical
pipe or handrail (1 to 1½ inches in diameter). Rail mounting
the 6508 Junction Box requires using the enclosed mounting
hardware and the optional 6509 Rail Mounting Kit. The
location of the 6508 Junction Box should be elevated and in
a dry place above potential flood level. The unit should be
easily accessible for an operator or technician.
The 6508 Junction Box should
vibrating pipe or structure, near a high heat source, near an
AC motor or transformer, radio transmitter or antenna.
Do not mount on electrical conduit.
not be mounted on hot or
WALL MOUNTING
1. Loosely fasten the mounting brackets (included) to
the back of the Breakout Box with the mounting
screws provided.
2. Tighten the screws, securing the brackets to the
Breakout Box.
3. Loosely fasten the Breakout Box to the mounting surface with the mounting screws
provided.
4. Tighten the screws, securing the Monitor to the surface.
RAIL MOUNTING
1. Securely fasten both mounting brackets (included with the 6508) to the back of the 6508
Junction Box with the mounting screws (included) as shown in Figure 15.
2. Fasten the top and bottom of the 6508, with installed brackets, to the rail with the u-bolts,
plates, lock-washers, and nuts as shown in Figure 16.
3. Ensure that all hardware is tightened.
WIRING INSTRUCTIONS
Figure 15
Figure 16
YSI Incorporated 6500 Environmental Process Monitor 87
Page 91
6500
SYSTEM
6500
ENVIRONM ENTALENVIRONMENTAL
MONITORING
MONITORING
SYSTEM
Accessories Appendix D
WARNING!
Wiring should be performed by a qualified electrician.
Do not make connections while power is applied.
Disconnect power before proceeding.
IMPORTANT! It is essential that all sensor wiring be run in a separate conduit from power
wiring.
In remote Breakout Box installations, Figure 17, the 6500 Monitor uses a standard MS-8
connection to interface with the 6 ft (1.8 m) 6507 Patch Cable that is connected in the 6508
Junction Box. The Junction Box is then connected by conduit and three- conductor cable to the
Breakout Box(s). The customer is advised to supply rigid conduit and 18 AWG or heavier
shielded multi-conductor cable to connect between the Junction Box and the Breakout Box at the
Sonde installation site. This configuration allows a maximum cable length of 250’ between the
6500 Monitor and the sonde(s). The cable from the Junction Box should be landed to TB-1 in the
breakout box. The MS-8 connector for sonde hookup is pre-wired to TB-2 or TB-3.
21.2 Temp
7.35 DO
6.53 pH
Esc
Cal
Enter
6508
Junction Box
Breakout Box
6507
6’ Patch cable
w/ MS-8
Sonde cables
Conduit &
customer-supplied
3-conductor cable
w/ MS-8
Figure 17
Sondes
Stream
The Junction Box, Figure 17, conductor color code is:
(1) Red +12 VDC
(2) Black Common
(3) Blue SDI-12
YSI Incorporated 6500 Environmental Process Monitor 88
Page 92
Accessories Appendix D
6509 – RAIL MOUNT KIT
Rail mounting the 6500 Monitor, any of the Breakout Boxes or the Junction Box is a simple
process using the enclosed mounting hardware in addition to u-bolts. They may be mounted to
pipe or handrail (1 to 1½ inch diameter) with two additional 1½ inch U-bolts. Do not mount on
electrical conduit.
The location of the 6500 Monitor, Breakout Boxes and Junction Box should be elevated and in a
dry place above potential flood level. The units should be easily accessible for an operator or
technician.
The electronics unit should
source, near an AC motor or transformer, radio transmitter or antenna.
The following steps should be followed when using the rail mounting the kit:
1. Securely fasten both mounting brackets (included with the 6500 Monitor, 6502, 6503,
6504 Breakout Boxes or 6508 Junction Box) to the back of the 6500 Monitor or Boxes
with the mounting screws provided. Figure 18 shows the 6500 Monitor, and figure 19
shows the position of the mounting brackets for the Breakout and Junction boxes.
2. Fasten both sides with installed brackets to the railing with the u-bolts, plates, lock-
washers, and nuts as shown in Figure 20.
3. Ensure that all hardware is tightened.
not be mounted on hot or vibrating pipe or structure, near a high heat
Figure 18
YSI Incorporated 6500 Environmental Process Monitor 89
Figure 19
Page 93
Accessories Appendix D
Figure 20
YSI Incorporated 6500 Environmental Process Monitor 90
Page 94
Accessories Appendix D
6510 – PANEL MOUNT KIT
Panel mounting the 6500 Monitor is a simple process using the enclosed mounting hardware and
the following tools; 5/32” Allen wrench, Philips screwdriver, and the necessary tools for cutting
the mounting hole in the control panel. The 6500 Monitor may be mounted in any panel with
9.5”L x 7.5”W space available, and behind the panel depth of 5.5”.
The location of the 6500 Monitor should be elevated and in a dry place above potential flood
level. The Monitor should be easily accessible for an operator or technician to have convenient
access.
The 6500 should
near an AC motor or transformer, radio transmitter or antenna.
The following steps should be followed when panel mounting the 6500 Monitor.
1. Cut the mounting hole in the panel where the 6500 will be mounted using dimensions from
Figure 21.
2. Remove the 6500 lid by loosening the four corner screws, and remove the conduit fittings
from the bottom of the 6500 during installation.
3. Securely fasten both mounting brackets (included the ones included with the 6500) to the
back of the 6500 enclosure with the countersink screws provided as shown in Figure 22.
4. Attach the mounting flange using the, 4” standoffs, Nylon spacers, Allen head screws, and
lock-washers as shown in Figure 23.
Note: Insure the Nylon spacers are positioned with the small end inserted into the front of
the brackets to correctly position the standoffs and prevent the mounting flange from
warping, as indicated in Figure 23.
5. Attach the mounting plate to the panel using the sheet metal screws in the four corner holes.
6. Ensure that all hardware is tightened.
not be mounted on hot or vibrating pipe or structure, near a high heat source,
YSI Incorporated 6500 Environmental Process Monitor 91
Page 95
Accessories Appendix D
Figure 21
Figure 22
YSI Incorporated 6500 Environmental Process Monitor 92
Countersink Screws
Page 96
Accessories Appendix D
Allen Head Screws(8each)
and Lock Washers (8each)
4” Standoffs (4each)
and
Nylon Spacers
Figure 23
YSI Incorporated 6500 Environmental Process Monitor 93
Page 97
Accessories Appendix D
6511 – SONDE MOUNT KIT FOR 6OO SERIES SONDES
The 6511 Sonde Mount Kit enables a 600 Series Sonde to be deployed in a permanently mounted
two-inch schedule 40 PVC tube, which is
included in kit, approximately 10 feet in
length. The tube is mounted to 1-1½”
diameter railing by included brackets and ubolts. The sonde will be deployed by
sliding it down the tube, where it will rest on
a stop cap at the end of the tube. The probes
and probe guard will protrude through a hole
in the stop cap at the end of the tube.
The 6511 Kit should
or vibrating pipes or structures, or near high
heat sources, AC motors or transformers,
radio transmitters or antennas.
Do not mount on electrical conduit.
Avoid routing Sonde cabling near wiring
associated with rotating machinery and/or equipment involving electrical switching or regulation.
Consider placing Sonde cables in grounded metallic conduit if unstable readings appear due to
electromagnetic interference.
The following steps should be followed when rail mounting the 6511 Sonde Mount Kit.
1. Using the Stop Cap as a guide, see Figure 24, position the adapter on the sonde so that the
probes, ports, and guard will protrude through stop cap when deployed, and securely tighten
set screws.
Note: Do not over-tighten the set
screws or damage to the sonde
body or adapter may occur.
2. Attach the stop cap to the end of
the PVC pipe using PVC cement,
as per instructions on cement can
label, ensuring that the stop cap
is positioned straight and the pipe
is fully inserted.
3. Loosely fasten two 1½” u-bolts
on each mounting plate to the railing, orientated as shown in Figure 25.
4. Loosely attach the 2” u-bolts to the mounting plates, orientated as shown in Figure 25.
5. Slide the uncapped end of the PVC pipe up through the 2” u-bolts until there is
approximately 1” of the PVC pipe above the upper mounting plate, and tighten 2” u-bolts.
Note: Do not over tighten u-bolts or deformation of the PVC pipe may occur.
not be mounted on hot
not
gently
Figure 23
Adapter
Stop Cap
Schedule
Stop
Guard
&
Set Screw
Port & Guard
Figure 24
YSI Incorporated 6500 Environmental Process Monitor 94
Page 98
Accessories Appendix D
6. Tighten all remaining u-
bolts to secure pipe.
7. Connect cable to the Sonde
and slowly slide the Sonde
down the pipe until it rests
on the Stop Cap.
Mounting
Plates
”
-
1.5” U-Bolts
8. Connect the cable to the
6500 Environmental
Process Monitor or
Breakout box.
Figure 25
YSI Incorporated 6500 Environmental Process Monitor 95
Page 99
Accessories Appendix D
d
p
6512 – SONDE MOUNT KIT FOR 6820/6920 SONDES
The 6512 Sonde Mount Kit enables a 6820/6920 sonde to be deployed in a permanently mounted
three-inch schedule 40 PVC tube,
is mounted to 1-1½” diameter railing by included brackets and u-bolts. The sonde will be
deployed by
gently sliding it down the tube
where it will rest on a Stop Cap at the end
of the tube. The probes and probe guard
will protrude through a hole in the stop cap
at the end of the tube.
The 6512 Kit should
not be mounted on hot
or vibrating pipes or structures, or near a
high heat sources, AC motors or
transformers, radio transmitters or antennas.
Do not mount on electrical conduit.
Avoid routing the sonde cabling near wiring
associated with rotating machinery and/or
equipment involving electrical switching or
regulation. Consider placing sonde cables
in grounded metallic conduit if unstable
readings appear due to electromagnetic interference.
The following steps should be followed when rail mounting the 6512 Sonde Mount Kit.
1. Attach the Stop
Cap to the end of
the PVC pipe
using PVC
cement, as per
instructions on
cement can label,
3” U-Bolts
ensuring the Stop
Cap is positioned
straight and the
pipe is fully
inserted.
2. Loosely fasten
two 1½” u-bolts
on each
mounting plate to the railing, orientated as shown in Figure 27.
3. Loosely attach the 3” u-bolts to the mounting plates, orientated as shown in Figure 27.
4. Slide the uncapped end of the PVC pipe up through the 3” u-bolts until there is
approximately 1” of the PVC pipe above the upper mounting plate, and tighten 3” u-bolts.
Note: Do not over tighten u-bolts or deformation of the PVC pipe may occur.
not included in kit, approximately 10 feet in length. The tube
Schedule 40
PVC Pipe
Figure 26
Son
e
1.5” U-Bolts
Mounting
Plates
Figure 27
Stop Ca
YSI Incorporated 6500 Environmental Process Monitor 96
Page 100
Accessories Appendix D
5. Tighten all remaining u-bolts to secure the pipe.
6. Remove the probe guard and install the sonde adapter, with the groove toward the sonde body
as shown in Figure 28, and reinstall the probe guard.
7. Connect the cable to the sonde and slowly slide the sonde down the pipe until it rests on the
Stop Cap.
8. Connect the cable to the 6500 Environmental Process Monitor or Breakout box.
Adapter
Figure 28
Stop Cap
YSI Incorporated 6500 Environmental Process Monitor 97
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.