Texas Instruments SN65LVDS116DGG, SN65LVDS116DGGR Datasheet

SN65LVDS116
16-PORT LVDS REPEATER
SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
One Receiver and Sixteen Line Drivers Meet or Exceed the Requirements of ANSI EIA/TIA-644 Standard
D
Designed for Signaling Rates Up to 622 Mbps
D
Enabling Logic Allows Separate Control of Each Bank of Four Channels or 2-Bit Selection of Any One of the Four Banks
D
Low-Voltage Differential Signaling With Typical Output Voltage of 350 mV and a 100 Load
D
Electrically Compatible With L VDS, PECL, LVPECL, LVTTL, LVCMOS, GTL, BTL, CTT, SSTL, or HSTL Outputs With External T ermination Networks
D
Propagation Delay Times <4.7 ns
D
Output Skew is < 300 ps and Part-to-Part Skew <1.5 ns
D
Total Power Dissipation Typically 470 mW With All Ports Enabled and at 200 MHz
D
Driver Outputs or Receiver Input is High Impedance when Disabled or With V
CC
<1.5 V
D
Bus-Pin ESD Protection Exceeds 12 kV
D
Packaged in Thin Shrink Small-Outline Package With 20 Mil Terminal Pitch
description
The SN65L VDS116 is one differential line reciever connected to sixteen differential line drivers that implement the electrical characteristics of low-voltage differential signaling (LVDS). LVDS, as specified in EIA/TIA-644, is a data signaling technique that offers the low-power, low-noise coupling, and switching speeds to transmit data at speeds up to 622 Mbps and relatively long distances. (Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other system characteristics.)
The intended application of this device and signaling technique is for point-to-point or multidrop baseband data transmission over controlled impedance media of approximately 100 Ω. The transmission media may be printed circuit board traces, backplanes, or cables. The large number of drivers integrated into the same substrate along with the low pulse skew of balanced signaling, allows extremely precise timing alignment of the signals repeated from the input. This is particularly advantageous in system clock distribution.
The SN65LVDS116 is characterised for operation from –40°C to 85°C.
Copyright 1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
GND
V
CC
V
CC
GND
ENA ENA
NC NC
NC ENB ENB
NC
NC
NC
GND
V
CC
V
CC
GND
A B
NC ENC ENC
S0 S1
SM END END
GND
V
CC
V
CC
GND
A1Y A1Z A2Y A2Z A3Y A3Z A4Y A4Z B1Y B1Z B2Y B2Z B3Y B3Z B4Y B4Z C1Y C1Z C2Y C2Z C3Y C3Z C4Y C4Z D1Y D1Z D2Y D2Z D3Y D3Z D4Y D4Z
DGG PACKAGE
(TOP VIEW)
SN65LVDS116 16-PORT LVDS REPEATER
SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
logic diagram (positive logic)
A4Z
A4Y
A3Z
A3Y
A2Z
A2Y
A1Z
A1Y
S0
A B
B2Z
B2Y
B1Z
B1Y
B4Z
B4Y
B3Z
B3Y
C2Z
C2Y
C1Z
C1Y
C4Z
C3Z
C4Y
C3Y
D2Z
D2Y
D1Z
D1Y
D4Z
D4Y
D3Z
D3Y
SM
S1
ENA ENA
ENB ENB
ENC ENC
END END
SN65LVDS116
16-PORT LVDS REPEATER
SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
FUNCTION TABLE
INPUT
OUTPUT
VID = VA - V
B
SM EN EN S1 S0 AY AZ BY BZ CY CZ DY DZ
X H L X X X Z Z Z Z Z Z Z Z
VID 100 mV H H L X X H L H L H L H L
–100 mV < VID < 100 mV H H L X X ? ? ? ? ? ? ? ?
VID –100 mV H H L X X L H L H L H L H
X H X H X X Z Z Z Z Z Z Z Z
VID 100 mV L X X L L H L Z Z Z Z Z Z
–100 mV < VID < 100 mV L X X L L ? ? Z Z Z Z Z Z
VID –100 mV L X X L L L H Z Z Z Z Z Z
VID 100 mV L X X L H Z Z H L Z Z Z Z
–100 mV < VID < 100 mV L X X L H Z Z ? ? Z Z Z Z
VID –100 mV L X X L H Z Z L H Z Z Z Z
VID 100 mV L X X H L Z Z Z Z H L Z Z
–100 mV < VID < 100 mV L X X H L Z Z Z Z ? ? Z Z
VID –100 mV L X X H L Z Z Z Z L H Z Z
VID 100 mV L X X H H Z Z Z Z Z Z H L
–100 mV < VID < 100 mV L X X H H Z Z Z Z Z Z ? ?
VID –100 mV L X X H H Z Z Z Z Z Z L H
H = high level, L = low level, Z = high impedance, ? = indeterminate
equivalent input and output schematic diagrams
300 k300 k
V
CC
7 V 7 V
A Input B Input
7 V
300 k
50
V
CC
Enable
Inputs
V
CC
5
7 V
Y or Z Output
10 k
300 k
(EN
and SM Only)
(EN, S0, and S1 Only)
SN65LVDS116 16-PORT LVDS REPEATER
SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature (unless otherwise noted)
Supply voltage range, VCC (see Note 1) –0.5 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, Enable inputs –0.5 V to 6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A, B, Y or Z –0.5 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrostatic discharge, Y, Z, and GND (see Note 2) Class 3, A:12 kV, B: 500 V. . . . . . . . . . . . . . . . . . . . . . . . .
All pins Class 3, A: 4 kV, B: 400 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range –65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
2. Tested in accordance with MIL-STD-883C Method 3015.7.
DISSIPATION RATING TABLE
PACKAGE
TA 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 85°C
POWER RATING
DGG 2094 mW 16.7 mW/°C 1089 mW
This is the inverse of the junction-to-ambient thermal resistance when board-mounted (low-k) with no air flow.
recommended operating conditions
MIN NOM MAX UNIT
Supply voltage, V
CC
3 3.3 3.6 V
High-level input voltage, V
IH
2 V
Low-level input voltage, V
IL
0.8 V
Magnitude of differential input voltage, VID 0.1 3.6 V
Common–mode input voltage, V
IC
Ť
V
ID
Ť
2
2.4 –
Ť
V
ID
Ť
2
V
VCC – 0.8 V
Operating free-air temperature, T
A
–40 85 °C
SN65LVDS116
16-PORT LVDS REPEATER
SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP†MAX UNIT
V
ITH+
Positive-going differential input voltage threshold
100
V
ITH–
Negative-going differential input voltage threshold
See Figure 1 and Table 1
–100
mV
VOD Differential output voltage magnitude
247 340 454
VOD
Change in differential output voltage magnitude between logic states
R
L
=
100
,
V
ID
=
±100 mV
,
See Figure 1 and Figure 2
–50 50
mV
V
OC(SS)
Steady-state common-mode output voltage 1.125 1.375 V
V
OC(SS)
Change in steady-state common-mode output voltage between logic states
See Figure 3
–50 50
mV
V
OC(PP)
Peak-to-peak common-mode output voltage 50 150
pp
Enabled, RL = 100 84 115
ICCSupply current
Disabled 3.2 6
mA
p
p
VI = 0 V –2 –20
IIInput current (A or B inputs)
VI = 2.4 V –1.2
µ
A
I
I(OFF)
Power-off Input current (A or B inputs) VCC= 1.5 V , VI= 2.4 V 20 µA
p
ENx, S0, S1
20
IIHHigh-level input current
ENx, SM
V
IH
= 2
V
–20
µ
A
p
ENx, S0, S1
10
IILLow-level input current
ENx, SM
V
IL
=
0.8 V
–10
µ
A
p
VOY or VOZ = 0 V ±24
IOSShort-circuit output current
VOD = 0 V ±12
mA
I
OZ
High-impedance output current VO = 0 V or V
CC
±1 µA
I
O(OFF)
Power-off output current VCC = 1.5 V, VO = 3.6 V ±1 µA
C
IN
Input capacitance (A or B inputs) VI = 0.4 sin (4E6πt) + 0.5 V 5
p
C
O
Output capacitance (Y or Z outputs) VI = 0.4 sin (4E6πt) + 0.5 V 9.4
pF
All typical values are at 25°C and with a 3.3 V supply.
The non-algebraic convention, where the more positive (least negative) limit is designated minimum, is used in this data sheet for the input current (II) only.
switching characteristics over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP†MAX UNIT
t
PLH
Propagation delay time, low-to-high-level output 2.2 3.1 4.7
t
PHL
Propagation delay time, high-to-low-level output 2.2 3.1 4.7
ns
t
r
Differential output signal rise time
=
0.3 0.8 1.2
t
f
Differential output signal fall time
R
L
=
100 Ω
,
CL = 10 pF,
0.3 0.8 1.2
ns
t
sk(p)
Pulse skew (|t
PHL
- t
PLH
|)
See Figure 4
140 500
p
t
sk(o)
Output skew, channel-to-channel
§
100 300
ps
t
sk(pp)
Part-to-part skew
1.5 ns
t
PZH
Propagation delay time, high-impedance-to-high-level output 5.7 15
t
PZL
Propagation delay time, high-impedance-to-low-level output
7.7 15
ns
t
PHZ
Propagation delay time, high-level-to-high-impedance output
See Figure 5
3.2 15
t
PLZ
Propagation delay time, low-level-to-high-impedance output 3.2 15 ns
All typical values are at 25°C and with a 3.3 V supply.
t
sk(p)
is the magnitude of the time difference between the t
PLH
and t
PHL
of any output of a single device.
§
t
sk(o)
is the magnitude of the time difference between the t
PLH
or t
PHL
measured at any two outputs.
t
sk(pp)
is the magnitude of the time difference in propagation delay times between any specified terminals of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
Loading...
+ 11 hidden pages