Datasheet VNV35N07, VNP35N07FI, VNB35N07 Datasheet (SGS Thomson Microelectronics)

VNP35N07FI
FULLY AUTOPROTECTED POWER MOSFET
TYPE V
VNP35N07FI VNB35N07 VNV35N07
LINEAR CURRENT LIMITATION
THERMALSHUTDOWN
SHORT CIRCUIT PROTECTION
INTEGRATEDCLAMP
LOW CURRENT DRAWN FROM INPUT PIN
DIAGNOSTICFEEDBACKTHROUGH INPUT
clamp
70 V 70 V 70 V
PIN
ESD PROTECTION
DIRECT ACCESS TO THE GATE OF THE
POWERMOSFET(ANALOGDRIVING)
COMPATIBLEWITHSTANDARD POWER
MOSFET
DESCRIPTION
The VNP35N07FI, VNB35N07 and VNV35N07 are monolithic devices made using STMicroelectronics VIPower M0 Technology, intended for replacement of standard power MOSFETS in DC to 50 KHz applications. Built-in thermal shut-down, linear current limitation and overvoltage clamp protect the chip in harsh
DS(on)
0.028
0.028
0.028
I
lim
35 A 35 A 35 A
VNB35N07/VNV35N07
”OMNIFET”:
ISOWATT220
3
1
D2PAK TO-263
enviroments. Faultfeedback can be detected by monitoring the
voltageat the input pin.
3
2
1
10
1
PowerSO-10
BLOCK DIAGRAM ()
() PowerSO-10 PinConfiguration : INPUT = 6,7,8,9,10; SOURCE = 1,2,4,5; DRAIN = TAB
June 1998
1/13
VNP35N07FI-VNB35N07-VNV35N07
ABSOLUTEMAXIMUMRATING
Symbol Parameter Value Unit
V
V
V
P
T
Drain-source Voltage (Vin= 0 ) Int er nall y Clamped V
DS
Input Voltage 18 V
in
I
Drain Current Internally Limited A
D
I
Reverse DC Output Current -50 A
R
Elect r o st at ic Disc harge (C= 100 pF , R=1 . 5 K) 2000 V
esd
Tot al Dissipat ion at Tc=25oC 125 40 W
tot
T
Oper at i ng Junct ion Temper at ure Internally Limited
j
T
Case Operating Temperature Internally Limited
c
St orage Temperature -55 t o 150
stg
THERMAL DATA
R
thj-case
R
thj-amb
Ther mal Resist an ce Juncti on-c ase Max Ther mal Resist an ce Juncti on-am b ient Max
Po w erSO-10
D2PAK
IS O WATT220 PowerSO -10 D2PA K
3.12
62.5
ISOWATT220
1
50
1
62.5
o o
o
C
o
C
o
C
C/W C/W
ELECTRICAL CHARACTERISTICS (T
=25oC unlessotherwise specified)
case
OFF
Symbol Parameter Test Condition s Min. Typ. Max. Unit
V
CLAMP
Drain-source Clamp
ID= 200 mA Vin= 0 60 70 80 V
Volt age
V
CLTH
Drain-source Clamp
ID=2mA Vin=0 55 V
Thr eshold Vol ta ge
V
INCL
Input-Source Reverse
Iin=-1mA -1 -0.3 V
Clamp Voltage
I
I
DSS
ISS
Zer o I npu t V olt ag e Drain Current (V
in
Supply Current from
V
=13V Vin=0
=0)
DS
=25V Vin=0
V
DS
VDS=0V Vin= 10 V 250 5 00 µA
50
200
Input Pin
ON ()
Symbol Parameter Test Condition s Min. Typ. Max. Unit
V
IN(th)
Input Thres hold
VDS=VinID+Iin=1mA 0.8 3 V
Volt age
R
DS(on)
St at ic D r ain-source On Resistance
Vin=10V ID=18A
=5V ID=18A
V
in
0.028
0.035ΩΩ
DYNAMIC
µA µA
Symbol Parameter Test Condition s Min. Typ. Max. Unit
g
()Forward
fs
VDS=13V ID=18A 20 25 S
Tr ansc on ductance
C
Out put Capacit anc e VDS=13V f=1MHz Vin= 0 980 1400 pF
oss
2/13
VNP35N07FI-VNB35N07-VNV35N07
ELECTRICAL CHARACTERISTICS (continued) SWITCHING(∗∗)
Symbol Parameter Test Condition s Min. Typ. Max. Unit
t
d(on)
t
d(off)
t
d(on)
t
d(off)
(di/dt)
Q
Turn-on Delay Time
t
Rise Time
r
Turn-off Delay Time
t
Fall T ime
f
Turn-on Delay Time Rise Time
t
r
Turn-off Delay Time
t
Fall T ime
f
Tur n-on Current Slope VDD=28V ID=18A
on
Total Input Charge VDD=12V ID=18A Vin= 10 V 100 nC
i
VDD=28V Id=18A
=10V R
V
gen
gen
=10
(see figure 3)
VDD=28V Id=18A V
=10V R
gen
= 1000
gen
(see figure 3)
=10V R
V
in
gen
=10
SOURCE DRAIN DIODE
Symbol Parameter Test Condition s Min. Typ. Max. Unit
V
()ForwardOnVoltage ISD=18A Vin=0 1.6 V
SD
Q
I
RRM
t
(∗∗)
rr
Reverse Re covery Time Reverse Re covery
(∗∗)
rr
Charge
(∗∗)
Reverse Re covery Current
I
= 18 A di/ dt = 10 0 A/µs
SD
V
=30V Tj=25oC
DD
(see test cir cuit, figure 5)
100 350 650 200
500
2.7 10
4.3
200 600
1000
350 800
4.2 16
6.5
60 A/µs
250
1 8
ns ns ns ns
ns
µs µs µs
ns
µC
A
PROTECTION
Symbol Parameter Test Condition s Min. Typ. Max. Unit
t
T
I
dlim
jsh
Drain Current Limit Vin=10V VDS=13V
lim
(∗∗) S tep Respon se
Current Lim it
=5V VDS=13V
V
in
Vin=10V
=5V
V
in
(∗∗) Overtemperatu re
Shut dow n
(∗∗) Ov ert emperatu r e Reset 135
T
jrs
I
(∗∗) Fault Sink Current Vin=10V VDS=13V
gf
E
(∗∗) S i ngle Pulse
as
Avalanche Energy
() Pulsed: Pulse duration = 300 µs, duty cycle 1.5 % (∗∗) Parameters guaranteed by design/characterization
=5V VDS=13V
V
in
starting Tj=25oCVDD=20V
=10V R
V
in
=1KΩ L=10mH
gen
25 25
35 35
35 70
45 45
60
140
150
50 20
2.5 J
A A
µs µs
o
C
o
C
mA mA
3/13
VNP35N07FI-VNB35N07-VNV35N07
PROTECTION FEATURES
During normal operation, the Input pin is electrically connected to the gate of the internal power MOSFET. The device then behaves like a standard power MOSFET and can be used as a switch from DC to 50 KHz. The only difference from the user’s standpoint is that a small DC current (I
) flows into the Input pin in order to
iss
supplythe internalcircuitry. The device integrates:
- OVERVOLTAGE CLAMP PROTECTION:
internally set at 70V, along with the rugged avalanche characteristics of the Power MOSFET stage give this device unrivalled ruggedness and energy handling capability. This feature is mainly important when driving inductiveloads.
- LINEAR CURRENT LIMITER CIRCUIT: limits
the drain current Id to Ilim whatever the Input pin voltage. When the current limiter is active, the device operates in the linear region, so power dissipation may exceed the capabilityof the heatsink. Both case and junction temperatures increase, and if this phase lasts long enough, junction temperature may reach the overtemperaturethreshold T
jsh
.
- OVERTEMPERATURE AND SHORT CIRCUIT
PROTECTION: these are based on sensing the chip temperatureand are not dependent on the input voltage. The location of the sensing element on the chip in the power stage area ensures fast, accurate detection of the junction temperature. Overtemperaturecutout occurs at minimum 150 restarted when the chip temperature falls below135
o
C. The device is automatically
o
C.
- STATUS FEEDBACK: In the case of an
overtemperature fault condition, a Status Feedback is provided through the Input pin. The internal protection circuit disconnects the input from the gate and connects it instead to ground via an equivalent resistance of 100 . The failure can be detected by monitoring the voltage at the Input pin, which will be close to ground potential.
Additional features of this device are ESD protection according to the Human Body model and the ability to be driven from a TTL Logic circuit (witha small increasein R
DS(on)
).
4/13
VNP35N07FI-VNB35N07-VNV35N07
Thermal ImpedanceFor ISOWATT220
Derating Curve
ThermalImpedanceFor D2PAK / PowerSO-10
OutputCharacteristics
Transconductance
StaticDrain-SourceOnResistancevs Input Voltage
5/13
VNP35N07FI-VNB35N07-VNV35N07
StaticDrain-Source On Resistance
Input Charge vs Input Voltage
StaticDrain-SourceOnResistance
CapacitanceVariations
Normalized Input Threshold Voltage vs Temperature
6/13
Normalized On Resistance vs Temperature
VNP35N07FI-VNB35N07-VNV35N07
Normalized On Resistance vs Temperature
Turn-onCurrent Slope
Turn-onCurrent Slope
Turn-off Drain-SourceVoltageSlope
Turn-offDrain-Source Voltage Slope
SwitchingTime ResistiveLoad
7/13
VNP35N07FI-VNB35N07-VNV35N07
SwitchingTime ResistiveLoad
CurrentLimit vs JunctionTemperature
SwitchingTime ResistiveLoad
Step ResponseCurrent Limit
SourceDrain Diode Forward Characteristics
8/13
VNP35N07FI-VNB35N07-VNV35N07
Fig. 1: UnclampedInductive Load Test Circuits
Fig. 3: Switching Times Test Circuits For
ResistiveLoad
Fig. 2: UnclampedInductive Waveforms
Fig. 4: Input Charge TestCircuit
Fig. 5: Test Circuit For Inductive Load Switching
And Diode RecoveryTimes
Fig. 6: Waveforms
9/13
VNP35N07FI-VNB35N07-VNV35N07
ISOWATT220MECHANICAL DATA
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.4 4.6 0.173 0.181 B 2.5 2.7 0.098 0.106 D 2.5 2.75 0.098 0.108 E 0.4 0.7 0.015 0.027
F 0.75 1 0.030 0.039 F1 1.15 1.7 0.045 0.067 F2 1.15 1.7 0.045 0.067
G 4.95 5.2 0.195 0.204
G1 2.4 2.7 0.094 0.106
H 10 10.4 0.393 0.409 L2 16 0.630 L3 28.6 30.6 1.126 1.204 L4 9.8 10.6 0.385 0.417 L6 15.9 16.4 0.626 0.645 L7 9 9.3 0.354 0.366
Ø 3 3.2 0.118 0.126
mm inch
E
A
D
B
L3
L6
L7
¯
F1
F
G1
H
G
F2
123
L2
L4
P011G
10/13
VNP35N07FI-VNB35N07-VNV35N07
TO-263 (D2PAK) MECHANICAL DATA
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.3 4.6 0.169 0.181 A1 2.49 2.69 0.098 0.106
B 0.7 0.93 0.027 0.036 B2 1.25 1.4 0.049 0.055
C 0.45 0.6 0.017 0.023 C2 1.21 1.36 0.047 0.053
D 8.95 9.35 0.352 0.368
E 10 10.28 0.393 0.404
G 4.88 5.28 0.192 0.208
L 15 15.85 0.590 0.624 L2 1.27 1.4 0.050 0.055 L3 1.4 1.75 0.055 0.068
mm inch
E
A
C2
L2
D
L
L3
B2
B
A1
C
G
P011P6/C
11/13
VNP35N07FI-VNB35N07-VNV35N07
PowerSO-10MECHANICAL DATA
DIM.
mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 3.35 3.65 0.132 0.144 A1 0.00 0.10 0.000 0.004
B 0.40 0.60 0.016 0.024
c 0.35 0.55 0.013 0.022
D 9.40 9.60 0.370 0.378 D1 7.40 7.60 0.291 0.300
E 9.30 9.50 0.366 0.374 E1 7.20 7.40 0.283 0.291 E2 7.20 7.60 0.283 0.300 E3 6.10 6.35 0.240 0.250 E4 5.90 6.10 0.232 0.240
e 1.27 0.050
F 1.25 1.35 0.049 0.053
H 13.80 14.40 0.543 0.567
h 0.50 0.002
L 1.20 1.80 0.047 0.071
q 1.70 0.067
α 0
o
o
8
==
==
HE
h
A
F
A1
610
51
eB
M
0.25
D
==
D1
==
DETAIL”A”
E2
==
DETAIL”A”
Q
B
0.10 A
E1E3
==
SEATING PLANE
A
C
α
B
E4
==
SEATING
PLANE
A1
L
==
0068039-C
12/13
VNP35N07FI-VNB35N07-VNV35N07
Information furnished is believed tobe accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication orotherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject tochange without notice. This publication supersedes and replaces allinformation previouslysupplied. STMicroelectronics products are not authorized for use as critical componentsin life support devices orsystems withoutexpresswritten approval of STMicroelectronics.
Australia - Brazil - Canada - China - France- Germany- Italy - Japan - Korea- Malaysia - Malta - Mexico- Morocco- The Netherlands -
Singapore- Spain- Sweden- Switzerland- Taiwan - Thailand - United Kingdom- U.S.A.
The ST logo isa trademarkof STMicroelectronics
1998 STMicroelectronics– Printed in Italy – All Rights Reserved
STMicroelectronicsGROUP OFCOMPANIES
.
13/13
Loading...