ST ST72324LJ6, ST72324LK6, ST72324LJ4, ST72324LK4, ST72324LS4 User Manual

...
3V range 8-bit MCU with 8 to 32K Flash/ROM,
10-bit ADC, 4 timers, SPI, SCI interface
Features
Memories
Flash) or ROM with read-out protection capa­bility. In-Application Programming and In-
Circuit Programming for HDFlash devices – 384 to 1K bytes RAM – HDFlash endurance: 100 cycles, data reten-
tion: 40 years at 85°C
Clock, Reset And Supply Management
cillators, internal RC oscillator, and bypass for
external clock – PLL for 2x frequency multiplication – Four power saving modes: Halt, Active-Halt,
Wait and Slow
Interrupt Management
– Nested interrupt controller – 10 interrupt vectors plus TRAP and RESET – 9/6 external interrupt lines (on 4 vectors)
Up to 32 I/O Ports
– 32/24 multifunctional bidirectional I/O lines – 22/17 alternate function lines – 12/10 high sink outputs
4 Timers
– Main Clock Controller with: Real time base,
Beep and Clock-out capabilities – Configurable watchdog timer – 16-bit Timer A with: 1 input capture, 1 output
compare, external clock input, PWM and
pulse generator modes – 16-bit Timer B with: 2 input captures, 2 output
compares, PWM and pulse generator modes
ST72324Lxx
LQFP32
LQFP44
10 x 10
LQFP48
7 x 7
2 Communication Interfaces
– SPI synchronous serial interface – SCI asynchronous serial interface
1 Analog Peripheral
– 10-bit ADC with up to 12 input ports
Instruction Set
– 8-bit Data Manipulation – 63 Basic Instructions – 17 main Addressing Modes – 8 x 8 Unsigned Multiply Instruction
Development Tools
– Full hardware/software development package – In-Circuit Testing capability
7 x 7
SDIP32 400 mil
Table 1. Device Summary
Features
Program memory ­bytes
RAM (stack) - bytes 1024 (256) 512 (256) 384 (256) Voltage Range 2.85 to 3.6V Temp. Range up to -40°C to +85°C Packages LQFP44 10x10 (J), LQFP48 7x7 (S), SDIP32, LQFP32 7x7 (K)
ST72324LJ6 ST72324LK6
Flash 32K Flash/ROM 16K Flash/ROM 8K
ST72324LJ4 ST72324LK4 ST72324LS4
ST72324LJ2 ST72324LK2 ST72324LS2
Rev. 5
September 2007 1/154
1
Table of Contents
1 DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 REGISTER & MEMORY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 FLASH PROGRAM MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Read-out Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 ICC INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 ICP (IN-CIRCUIT PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 IAP (IN-APPLICATION PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.7 RELATED DOCUMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.7.1 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 CENTRAL PROCESSING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 CPU REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 SUPPLY, RESET AND CLOCK MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1 PHASE LOCKED LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 MULTI-OSCILLATOR (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 RESET SEQUENCE MANAGER (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.2 Asynchronous External RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.3 External Power-On RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.4 Internal Watchdog RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 MASKING AND PROCESSING FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 INTERRUPTS AND LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.4 CONCURRENT & NESTED MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.5 INTERRUPT REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.6 EXTERNAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.6.1 I/O Port Interrupt Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.7 EXTERNAL INTERRUPT CONTROL REGISTER (EICR) . . . . . . . . . . . . . . . . . . . . . . . 33
8 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2 SLOW MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.3 WAIT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.4 ACTIVE-HALT AND HALT MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.4.1 ACTIVE-HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.4.2 HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
154
2/154
2
Table of Contents
9.2 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.2.1 Input Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.2.2 Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.2.3 Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.3 I/O PORT IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.4 LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.5 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.5.1 I/O Port Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10 ON-CHIP PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.1 WATCHDOG TIMER (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.1.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.1.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.1.4 How to Program the Watchdog Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.1.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.1.6 Hardware Watchdog Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.1.7 Using Halt Mode with the WDG (WDGHALT option) . . . . . . . . . . . . . . . . . . . . . . . 49
10.1.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.1.9 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC) . 50
10.2.1 Programmable CPU Clock Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.2.2 Clock-out Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.2.3 Real Time Clock Timer (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.2.4 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.2.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.2.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.2.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.3 16-BIT TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.3.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.3.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.3.6 Summary of Timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.3.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.4 SERIAL PERIPHERAL INTERFACE (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.4.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.4.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.4.4 Clock Phase and Clock Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
10.4.5 Error Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.4.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.4.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.4.8 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.5 SERIAL COMMUNICATIONS INTERFACE (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.5.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
154
3/154
1
Table of Contents
10.5.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.5.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
10.5.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.5.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.5.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.6 10-BIT A/D CONVERTER (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.6.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.6.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
10.6.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
10.6.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
10.6.6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
11.1 CPU ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
11.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11.1.4 Indexed (No Offset, Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11.1.5 Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11.1.6 Indirect Indexed (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
11.1.7 Relative mode (Direct, Indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
11.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
12 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
12.1 PARAMETER CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
12.1.1 Minimum and Maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
12.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
12.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
12.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
12.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
12.2 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
12.2.1 Voltage Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
12.2.2 Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
12.2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
12.3 OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
12.4 SUPPLY CURRENT CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.4.1 CURRENT CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.4.2 Supply and Clock Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
12.4.3 On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
12.5 CLOCK AND TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
12.5.1 General Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
12.5.2 External Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
12.5.3 Crystal and Ceramic Resonator Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.5.4 RC Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.5.5 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
12.6 MEMORY CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.6.1 RAM and Hardware Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.6.2 FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
154
4/154
1
Table of Contents
12.7 EMC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.7.1 Functional EMS (Electro Magnetic Susceptibility) . . . . . . . . . . . . . . . . . . . . . . . . 121
12.7.2 Electro Magnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12.7.3 Absolute Maximum Ratings (Electrical Sensitivity) . . . . . . . . . . . . . . . . . . . . . . . . 123
12.8 I/O PORT PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
12.8.1 General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
12.8.2 Output Driving Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
12.9 CONTROL PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
12.9.1 Asynchronous RESET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
12.9.2 ICCSEL/VPP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
12.10 TIMER PERIPHERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
12.10.116-Bit Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
12.11 COMMUNICATION INTERFACE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . 130
12.11.1SPI - Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
12.12 10-BIT ADC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
12.12.1Analog Power Supply and Reference Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
12.12.2General PCB Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
12.12.3ADC Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
13 PACKAGE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
13.1 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
13.2 THERMAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
13.3 SOLDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
14 DEVICE CONFIGURATION AND ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . 140
14.1 FLASH OPTION BYTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
14.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE . . . . 142
14.3 DEVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
14.3.1 Starter kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
14.3.2 Development and debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
14.3.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
14.3.4 Socket and Emulator Adapter Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
14.4 ST7 APPLICATION NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
15 KNOWN LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
15.1 ALL FLASH AND ROM DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
15.1.1 Safe Connection of OSC1/OSC2 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
15.1.2 Unexpected Reset Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
15.1.3 Clearing active interrupts outside interrupt routine . . . . . . . . . . . . . . . . . . . . . . . . 149
15.1.4 16-bit Timer PWM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
15.1.5 ADC Conversion Spurious Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
15.1.6 SCI Wrong Break duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
15.1.7 External interrupt missed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
15.2 ROM DEVICES ONLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
15.2.1 I/O Port A and F Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
15.3 FLASH DEVICES ONLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
15.3.1 Timer A Restrictions in Flash Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
15.3.2 External clock source with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
15.3.3 39-Pulse ICC Entry Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
16 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
154
5/154
1
ST72324Lxx

1 DESCRIPTION

The ST72F324L and ST72324BL devices are members of the ST7 microcontroller family de signed for mid-range applications running at 3.3V. Different package options offer up to 32 I/O pins. All devices are based on a common industry­standard 8-bit core, featuring an enhanced instruc tion set and are available with Flash or ROM pro­gram memory. The ST7 family architecture offers both power and flexibility to software developers,
Figure 1. Device Block Diagram
8-BIT CORE
ALU
RESET
V
PP
V
SS
V
DD
OSC1 OSC2
PF7:6,4,2:0
(6 bits on J and S devices) (5 bits on K devices)
PE1:0
(2 bits)
(6 bits on J and S devices) (2 bits on K devices)
PD5:0
V
AREF
V
SSA
CONTROL
OSC
MCC/RTC/BEEP
PORT F
TIMER A
BEEP
PORT E
SCI
PORT D
10-BIT ADC
-
-
enabling the design of highly efficient and compact application code.
The on-chip peripherals include an A/D converter, 2 general purpose timers, an SPI interface and an SCI interface.
For power economy, microcontroller can switch dynamically into WAIT, SLOW, ACTIVE-HALT or HALT mode when the application is in idle or stand-by state.
Typical applications are consumer, home, office and industrial products.
PROGRAM
MEMORY
(8K - 32K Bytes)
RAM
(384 - 2048 Bytes)
WATCHDOG
ADDRESS AND DATA BUS
PORT A
PORT B
PORT C
TIMER B
SPI
PA7:3 (5 bits on J and S devices) (4 bits on K devices)
PB4:0
(5 bits on J and S devices) (3 bits on K devices)
PC7:0
(8 bits)
6/154
3

2 PIN DESCRIPTION

Figure 2. 48-Pin LQFP 7x7 Device Pinout
ST72324Lxx
AIN0 / PD0 AIN1 / PD1 AIN3 / PD2 AIN4 / PD3
Legend
NC = Not Connected (not bonded)
NC
NC PB0 PB1 PB2
PB3
(HS) PB4
NC
_2
DD
PE1/ RDI
PE0 / TDO
V
48 47 46 45
_2
/ICCSEL
SS
OSC2
OSC1
PP
V
RESET
V
44 43 42 41 40 39 38 37
1 2 3 4
ei2
5 6
ei3
7 8 9 10 11
12
ei1
13 14 15 16 17 18 19 20 21 22
SSA
AREF
V
V
AIN4 / PD4
AIN5 / PD5
(HS) PF2
BEEP / (HS) PF1
MCO / AIN8 / PF0
OCMP1_A / AIN10 / PF4
PA7 (HS)
ICAP1_A / (HS) PF6
PA6 (HS)
PA5 (HS)
PA4 (HS)
V
36
SS_1
V
35
DD_1
PA3 (HS)
34
NC
33
PC7 / SS / AIN15
32
ei0
23
DD_0
V
PC6 / SCK / ICCCLK
31 30
PC5 / MOSI / AIN14
29
PC4 / MISO / ICCDATA
28
PC3 (HS) / ICAP1_B
27
PC2 (HS) / ICAP2_B
26
PC1 / OCMP1_B / AIN13
25
PC0 / OCMP2_B / AIN12
24
SS_0
V
EXTCLK_A / (HS) PF7
(HS) 20mA high sink capability eix associated external interrupt vector
7/154
ST72324Lxx
Figure 3. 44-Pin LQFP Package Pinout
RDI / PE1
PB0 PB1
PB2 PB3
(HS) PB4 AIN0 / PD0 AIN1 / PD1 AIN2 / PD2 AIN3 / PD3 AIN4 / PD4
_2
DD
PE0 / TDO
V
OSC1
OSC2
44 43 42 41 40 39 38 37 36 35 34
1
_2 V
SS
/ ICCSEL
RESET
V
PP
PA7 (HS)
PA6 (HS)
2 3
ei2
4
ei0
5
ei3
6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22
AIN5 / PD5
ei1
SSA
AREF
V
V
(HS) PF2
BEEP / (HS) PF1
MCO / AIN8 / PF0
ICAP1_A / (HS) PF6
EXTCLK_A / (HS) PF7
OCMP1_A / AIN10 / PF4
PA5 (HS)
PA4 (HS)
V
33
SS_1
V
32
DD_1
PA3 (HS)
31
PC7 / SS / AIN15
30
PC6 / SCK / ICCCLK
29
PC5 / MOSI / AIN14
28
PC4 / MISO / ICCDATA
27
PC3 (HS) / ICAP1_B
26
PC2 (HS) / ICAP2_B
25
PC1 / OCMP1_B / AIN13
24
PC0 / OCMP2_B / AIN12
23
SS_0
DD_0
V
V
eix associated external interrupt vector
8/154
1
PIN DESCRIPTION (Cont’d)
Figure 4. 32-Pin SDIP Package Pinout
ST72324Lxx
(HS) PB4
AIN0 / PD0 AIN1 / PD1
V
AREF
V
SSA
MCO / AIN8 / PF0
BEEP / (HS) PF1
OCMP1_A / AIN10 / PF4
ICAP1_A / (HS) PF6
EXTCLK_A / (HS) PF7
AIN12 / OCMP2_B / PC0 AIN13 / OCMP1_B / PC1
ICAP2_B / (HS) PC2
ICAP1_B / (HS) PC3
ICCDATA/ MISO / PC4
AIN14 / MOSI / PC5
Figure 5. 32-Pin LQFP 7x7 Package Pinout
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ei3
ei1
ei0
ei2
PB3
32
PB0
31
PE1 / RDI
30
PE0 / TDO
29
VDD_2
28
OSC1
27
OSC2
26
V
25 24 23 22 21 20 19 18 17
SS
RESET
V
PP
PA7 (HS) PA6 (HS)
PA4 (HS) PA3 (HS) PC7 / SS / AIN15
PC6 / SCK / ICCCLK
_2
/ ICCSEL
(HS) 8mA high sink capability eix associated external interrupt vector
V
AREF
V
MCO / AIN8 / PF0
BEEP / (HS) PF1
OCMP1_A / AIN10 / PF4
ICAP1_A / (HS) PF6
EXTCLK_A / (HS) PF7
AIN12 / OCMP2_B / PC0
SSA
PB0
PD1 / AIN1
PD0 / AIN0
PB4 (HS)
32 31 30 29 28 27 26 25
1
ei3
2 3
ei1
4 5 6 7 8
9 10111213141516
ICAP2_B / (HS) PC2
ICAP1_B / (HS) PC3
AIN13 / OCMP1_B / PC1
PB3
ei2
ICCDATA / MISO / PC4
AIN14 / MOSI / PC5
PE1 / RDI
ICCCLK / SCK / PC6
PE0 / TDO
ei0
AIN15 / SS / PC7
_2
DD
V
24 23 22 21 20 19 18 17
(HS) PA3
OSC1 OSC2 VSS_2 RESET V
/ ICCSEL
PP
PA7 (HS) PA6 (HS) PA4 (HS)
(HS) 8mA high sink capability eix associated external interrupt vector
9/154
1
ST72324Lxx
PIN DESCRIPTION (Cont’d)
For more details, refer to “ELECTRICAL CHARACTERISTICS” on page 110
Legend / Abbreviations for Table 2:
Type: I = input, O = output, S = supply In/Output level: C = CMOS
CT= CMOS with input trigger
Output level: HS = high sink (on N-buffer only) Port and control configuration:
– Input: float = floating, wpu = weak pull-up, int = interrupt – Output: OD = open drain
2)
, PP = push-pull Refer to “I/O PORTS” on page 40 for more details on the software configuration of the I/O ports. The RESET configuration of each pin is shown in bold. This configuration is valid as long as the device is
in reset state.
Table 2. Device Pin Description
1)
, ana = analog ports
Pin n°
LQFP48
LQFP44
SDIP32
LQFP32
Pin Name
Level Port
Type
Input
Output
float
Input Output
wpu
int
ana
OD
function
(after
reset)
PP
Main
Alternate Function
7 6 30 1 PB4 (HS) I/O CTHS X ei3 X X Port B4
9 7 31 2 PD0/AIN0 I/O C 10 8 32 3 PD1/AIN1 I/O C 11 9 PD2/AIN2 I/O C 12 10 PD3/AIN3 I/O C 13 11 PD4/AIN4 I/O C 14 12 PD5/AIN5 I/O C 15 13 1 4 V 16 14 2 5 V
AREF
SSA
S Analog Reference Voltage for ADC S Analog Ground Voltage
17 15 3 6 PF0/MCO/AIN8 I/O C
T
T
T
T
T
T
T
X X X X X Port D0 ADC Analog Input 0 X X X X X Port D1 ADC Analog Input 1 X X X X X Port D2 ADC Analog Input 2 X X X X X Port D3 ADC Analog Input 3 X X X X X Port D4 ADC Analog Input 4 X X X X X Port D5 ADC Analog Input 5
5)
X ei1 X X X Port F0
Main clock out (f
OSC
ADC Analog
/2)
Input 8 18 16 4 7 PF1 (HS)/BEEP I/O CTHS X ei1 X X Port F1 Beep signal output 19 17 PF2 (HS) I/O CTHS X ei1 X X Port F2
Timer A Out­put Com­pare 1
ADC Analog
Input 10
20 18 5 8
PF4/OCMP1_A/ AIN10
I/O C
T
X X X X X Port F4
21 19 6 9 PF6 (HS)/ICAP1_A I/O CTHS X X X X Port F6 Timer A Input Capture 1
22 20 7 10
23 21 V 24 22 V
25 23 8 11
26 24 9 12
PF7 (HS)/ EXTCLK_A
DD_0
SS_0
PC0/OCMP2_B/ AIN12
PC1/OCMP1_B/ AIN13
I/O CTHS X X X X Port F7
S Digital Main Supply Voltage S Digital Ground Voltage
I/O C
I/O C
T
T
X X X X X Port C0
X X X X X Port C1
Timer A External Clock Source
5)
5)
Timer B Out­put Com­pare 2
Timer B Out­put Com­pare 1
ADC Analog
Input 12
ADC Analog
Input 13
5)
10/154
1
ST72324Lxx
Pin n°
LQFP48
LQFP44
SDIP32
LQFP32
Pin Name
Level Port
Type
Input
Output
float
Input Output
wpu
int
ana
OD
function
(after
reset)
PP
Main
Alternate Function
27 25 10 13 PC2 (HS)/ICAP2_B I/O CTHS X X X X Port C2 Timer B Input Capture 2 28 26 11 14 PC3 (HS)/ICAP1_B I/O CTHS X X X X Port C3 Timer B Input Capture 1
29 27 12 15
PC4/MISO/ICCDA­TA
I/O C
30 28 13 16 PC5/MOSI/AIN14 I/O C
31 29 14 17 PC6/SCK/ICCCLK I/O C
32 30 15 18 PC7/SS/AIN15 I/O C
T
T
T
T
X X X X Port C4
X X X X X Port C5
X X X X Port C6
X X X X X Port C7
SPI Master In / Slave Out Data
SPI Master Out / Slave In Data
SPI Serial Clock
SPI Slave Select (ac tive low)
ICC Data In-
put
ADC Analog
Input 14
ICC Clock
Output
ADC Analog
­Input 15
34 31 16 19 PA3 (HS) I/O CTHS X ei0 X X Port A3 35 32 V 36 33 V
DD_1
SS_1
S Digital Main Supply Voltage S Digital Ground Voltage
5)
5)
37 34 17 20 PA4 (HS) I/O CTHS X X X X Port A4 38 35 PA5 (HS) I/O CTHS X X X X Port A5 39 36 18 21 PA6 (HS) I/O CTHS X T Port A6 40 37 19 22 PA7 (HS) I/O CTHS X T Port A7
1)
1)
Must be tied low. In the flash pro­gramming mode, this pin acts as the
41 38 20 23 V
/ICCSEL I
PP
programming voltage input V
Section 12.9.2 for more details. High
PP
. See
voltage must not be applied to ROM
devices. 42 39 21 24 RESET I/O C 43 40 22 25 V
SS_2
S Digital Ground Voltage
T
Top priority non maskable interrupt.
5)
44 41 23 26 OSC2 O Resonator oscillator inverter output
45 42 24 27 OSC1 I
46 43 25 28 V
DD_2
S Digital Main Supply Voltage 47 44 26 29 PE0/TDO I/O C 48 1 27 30 PE1/RDI I/O C
3 2 28 31 PB0 I/O C 4 3 PB1 I/O C 5 4 PB2 I/O C 6 5 29 32 PB3 I/O C
T
T
T
T
T
T
X X X X Port E0 SCI Transmit Data Out X X X X Port E1 SCI Receive Data In X ei2 X X Port B0 X ei2 X X Port B1 X ei2 X X Port B2 X ei2 X X Port B3
External clock input or Resonator os­cillator inverter input
5)
Notes:
1. In the interrupt input column, “eiX” defines the associated external interrupt vector. If the weak pull-up column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input.
2. In the open drain output column, “T” defines a true open drain I/O (P-Buffer and protection diode to V
DD
11/154
1
ST72324Lxx
are not implemented). See See “I/O PORTS” on page 40. and Section 12.8 I/O PORT PIN CHARACTER-
ISTICS for more details.
3. OSC1 and OSC2 pins connect a crystal/ceramic resonator, or an external source to the on-chip oscil­lator; see Section 2 PIN DESCRIPTION and Section 12.5 CLOCK AND TIMING CHARACTERISTICS for more details.
4. On the chip, each I/O port has 8 pads. Pads that are not bonded to external pins are in input pull-up con­figuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption.
5. It is mandatory to connect all available VDD and VREF pins to the supply voltage and all VSS and VSSA pins to ground.
12/154
1

3 REGISTER & MEMORY MAP

ST72324Lxx
As shown in Figure 6, the MCU is capable of ad­dressing 64K bytes of memories and I/O registers.
The available memory locations consist of 128 bytes of register locations, up to 1024 bytes of RAM and up to 32 Kbytes of user program memo
­ry. The RAM space includes up to 256 bytes for the stack from 0100h to 01FFh.
Figure 6. Memory Map
0000h
007Fh 0080h
087Fh 0880h
7FFFh 8000h
FFDFh FFE0h
FFFFh
HW Registers
(see Table 3)
RAM
(1024,
512 or 384 Bytes)
Reserved
Program Memory (32K, 16K or 8K)
Interrupt & Reset Vectors
(see Table 9)
0080h
00FFh
0100h
01FFh
0200h
027Fh
or 047Fh
The highest address bytes contain the user reset and interrupt vectors.
IMPORTANT: Memory locations marked as “Re­served” must never be accessed. Accessing a re­served area can have unpredictable effects on the device.
Short Addressing RAM (zero page)
256 Bytes Stack
16-bit Addressing
RAM
8000h
C000h
E000h
FFFFh
32 KBytes
16 KBytes
8 Kbytes
13/154
1
ST72324Lxx
Table 3. Hardware Register Map
Address Block
0000h 0001h
Port A
0002h
0003h 0004h
Port B
0005h
0006h 0007h
Port C
0008h
0009h 000Ah
Port D
000Bh
000Ch 000Dh
Port E
000Eh
000Fh 0010h
Port F
0011h
0012h
to
0020h
Register
Label
2)
PADR PADDR PAOR
2)
PBDR PBDDR PBOR
PCDR PCDDR PCOR
2)
PDADR PDDDR PDOR
2)
PEDR PEDDR PEOR
2)
PFDR PFDDR PFOR
Port A Data Register Port A Data Direction Register Port A Option Register
Port B Data Register Port B Data Direction Register Port B Option Register
Port C Data Register Port C Data Direction Register Port C Option Register
Port D Data Register Port D Data Direction Register Port D Option Register
Port E Data Register Port E Data Direction Register Port E Option Register
Port F Data Register Port F Data Direction Register Port F Option Register
Register Name
Reset
Status
1)
00h
00h 00h
1)
00h
00h 00h
1)
00h
00h 00h
1)
00h
00h 00h
1)
00h
00h 00h
1)
00h
00h 00h
Remarks
R/W R/W R/W
R/W R/W R/W
R/W R/W R/W
R/W R/W R/W
R/W
2)
R/W
2)
R/W
R/W R/W R/W
Reserved Area (15 Bytes)
0021h 0022h 0023h
0024h 0025h 0026h 0027h
SPI
ITC
SPIDR SPICR SPICSR
ISPR0 ISPR1 ISPR2 ISPR3
SPI Data I/O Register SPI Control Register SPI Control/Status Register
Interrupt Software Priority Register 0 Interrupt Software Priority Register 1 Interrupt Software Priority Register 2 Interrupt Software Priority Register 3
xxh 0xh 00h
FFh FFh FFh FFh
0028h EICR External Interrupt Control Register 00h R/W
0029h FLASH FCSR Flash Control/Status Register 00h R/W
002Ah WATCHDOG WDGCR Watchdog Control Register 7Fh R/W
002Bh Reserved Area (1 Byte)
002Ch 002Dh
MCC
MCCSR MCCBCR
Main Clock Control / Status Register Main Clock Controller: Beep Control Register
00h 00h
002Eh
to
Reserved Area (3 Bytes)
0030h
14/154
R/W R/W R/W
R/W R/W R/W R/W
R/W R/W
1
ST72324Lxx
Address Block
0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h
TIMER A 0039h 003Ah 003Bh 003Ch 003Dh 003Eh 003Fh
Register
Label
TACR2 TACR1 TACSR TAIC1HR TAIC1LR TAOC1HR TAOC1LR TACHR TACLR TAACHR TAACLR TAIC2HR TAIC2LR TAOC2HR TAOC2LR
Register Name
Timer A Control Register 2 Timer A Control Register 1 Timer A Control/Status Register Timer A Input Capture 1 High Register Timer A Input Capture 1 Low Register Timer A Output Compare 1 High Register Timer A Output Compare 1 Low Register Timer A Counter High Register Timer A Counter Low Register Timer A Alternate Counter High Register Timer A Alternate Counter Low Register Timer A Input Capture 2 High Register Timer A Input Capture 2 Low Register Timer A Output Compare 2 High Register Timer A Output Compare 2 Low Register
0040h Reserved Area (1 Byte)
0041h 0042h 0043h 0044h 0045h 0046h 0047h 0048h 0049h 004Ah 004Bh 004Ch 004Dh 004Eh 004Fh
TIMER B
TBCR2 TBCR1 TBCSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBCHR TBCLR TBACHR TBACLR TBIC2HR TBIC2LR TBOC2HR TBOC2LR
Timer B Control Register 2 Timer B Control Register 1 Timer B Control/Status Register Timer B Input Capture 1 High Register Timer B Input Capture 1 Low Register Timer B Output Compare 1 High Register Timer B Output Compare 1 Low Register Timer B Counter High Register Timer B Counter Low Register Timer B Alternate Counter High Register Timer B Alternate Counter Low Register Timer B Input Capture 2 High Register Timer B Input Capture 2 Low Register Timer B Output Compare 2 High Register Timer B Output Compare 2 Low Register
3)4)
Reset
Status
00h 00h
xxxx x0xxb
xxh xxh 80h
00h FFh FCh FFh
3)
3)
4)
4)
FCh
xxh
xxh
80h
00h
00h
00h
xxxx x0xxb
xxh
xxh
80h
00h FFh FCh FFh FCh
xxh
xxh
80h
00h
Remarks
R/W R/W R/W Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W
R/W R/W R/W Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W
0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h
0058h
to
006Fh
0070h 0071h 0072h
0073h 007Fh
SCI
ADC
SCISR SCIDR SCIBRR SCICR1 SCICR2 SCIERPR
SCIETPR
ADCCSR ADCDRH ADCDRL
SCI Status Register SCI Data Register SCI Baud Rate Register SCI Control Register 1 SCI Control Register 2 SCI Extended Receive Prescaler Register Reserved area SCI Extended Transmit Prescaler Register
Reserved Area (24 Bytes)
Control/Status Register Data High Register Data Low Register
Reserved Area (13 Bytes)
C0h
xxh
00h
x000 0000h
00h
00h
---
00h
00h
00h
00h
Read Only R/W R/W R/W R/W R/W
R/W
R/W Read Only Read Only
15/154
1
ST72324Lxx
Legend: x=undefined, R/W=read/write Notes:
1. The contents of the I/O port DR registers are readable only in output configuration. In input configura­tion, the values of the I/O pins are returned instead of the DR register contents.
2. The bits associated with unavailable pins must always keep their reset value.
3. The Timer A Input Capture 2 pin is not available (not bonded). – In Flash devices:
The TAIC2HR and TAIC2LR registers are not present. Bit 4 of the TACSR register (ICF2) is forced by hardware to 0. Consequently, the corresponding interrupt cannot be used.
4. The Timer A Output Compare 2 pin is not available (not bonded). – In ROM devices:
The TAOC2HR and TAOC2LR Registers can be used in PWM mode or for timebase generation.
– In Flash devices:
The TAOC2HR and TAOC2LR Registers are write only, reading them will return undefined values. Bit 3 of the TACSR register (OCF2) is forced by hardware to 0. Consequently, the corresponding in­terrupt cannot be used.
Caution: The TAIC2HR and TAIC2LR registers and the ICF2 and OCF2 flags are not present in the ST72F324L but are present in the emulator. For compatibility with the emulator, it is recommended to per form a dummy access (read or write) to the TAIC2LR and TAOC2LR registers to clear the interrupt flags.
-
16/154
1

4 FLASH PROGRAM MEMORY

ST72324Lxx

4.1 Introduction

The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individu
­al sectors and programmed on a Byte-by-Byte ba­sis using an external VPP supply.
The HDFlash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (In-Circuit Programming) or IAP (In-Application Programming).
The array matrix organisation allows each sector to be erased and reprogrammed without affecting other sectors.

4.2 Main Features

Three Flash programming modes:
– Insertion in a programming tool. In this mode,
all sectors including option bytes can be pro
-
grammed or erased.
– ICP (In-Circuit Programming). In this mode, all
sectors including option bytes can be pro
-
grammed or erased without removing the de­vice from the application board.
– IAP (In-Application Programming) In this
mode, all sectors except Sector 0, can be pro
-
grammed or erased without removing the de­vice from the application board and while the application is running.
ICT (In-Circuit Testing) for downloading and
executing user application test patterns in RAM
Read-out protection
Register Access Security System (RASS) to
prevent accidental programming or erasing

4.3 Structure

The Flash memory is organised in sectors and can be used for both code and data storage.
Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see
Table 4). Each of these sectors can
be erased independently to avoid unnecessary erasing of the whole Flash memory when only a partial erasing is required.
The first two sectors have a fixed size of 4 Kbytes
Figure 7). They are mapped in the upper part
(see of the ST7 addressing space so the reset and in­terrupt vectors are located in Sector 0 (F000h­FFFFh).
Table 4. Sectors available in Flash devices
Flash Size (bytes) Available Sectors
4K Sector 0 8K Sectors 0,1
> 8K Sectors 0,1, 2

4.3.1 Read-out Protection

Read-out protection, when selected, provides a protection against Program Memory content ex
­traction and against write access to Flash memo­ry. Even if no protection can be considered as to­tally unbreakable, the feature provides a very high level of protection for a general purpose microcon
­troller.
In flash devices, this protection is removed by re­programming the option. In this case, the entire program memory is first automatically erased.
Read-out protection selection depends on the de­vice type:
– In Flash devices it is enabled and removed
through the FMP_R bit in the option byte.
– In ROM devices it is enabled by mask option
specified in the Option List.
Figure 7. Memory Map and Sector Address
4K 10K 24K 48K
1000h 3FFFh
7FFFh
9FFFh
BFFFh
D7FFh
DFFFh
EFFFh
FFFFh
8K 16K 32K 60K
2Kbytes
8Kbytes 40 Kbytes
16 Kbytes 4 Kbytes 4 Kbytes
24 Kbytes
FLASH MEMORY SIZE
SECTOR 2
52 Kbytes
SECTOR 1 SECTOR 0
17/154
1
ST72324Lxx
FLASH PROGRAM MEMORY (Cont’d)

4.4 ICC Interface

ICC needs a minimum of 5 and up to 6 pins to be connected to the programming tool (see
Figure 8).
These pins are:
– RESET: device reset –VSS: device power supply ground
Figure 8. Typical ICC Interface
PROGRAMMING TOOL
APPLICATION POWER SUPPLY
(See Note 3)
DD
V
OSC2
(See Note 4)
OSC1
ST7
SS
V
Notes:
1. If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the Programming Tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to implemented in case another de vice forces the signal. Refer to the Programming Tool documentation for recommended resistor val ues.
2. During the ICC session, the programming tool must control the flicts between the programming tool and the appli­cation reset circuit if it drives more than 5mA at high level (push pull output or pull-up resistor<1K). A schottky diode can be used to isolate the appli cation RESET circuit in this case. When using a classical RC network with R>1K or a reset man
RESET pin. This can lead to con-
– ICCCLK: ICC output serial clock pin – ICCDATA: ICC input/output serial data pin – ICCSEL/VPP: programming voltage – OSC1(or OSCIN): main clock input for exter-
nal source
–VDD: application board power supply (option-
al, see Figure 8, Note 3)
ICC CONNECTOR
975 3
10k
ICCSEL/VPP
ICC Cable
RESET
ICCCLK
HE10 CONNECTOR TYPE
1
246810
ICCDATA
APPLICATION BOARD
ICC CONNECTOR
APPLICATION RESET SOURCE
See Note 2
See Note 1
APPLICATION
I/O
agement IC with open drain output and pull-up re­sistor>1K, no additional components are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session.
3. The use of Pin 7 of the ICC connector depends on the Programming Tool architecture. This pin
-
must be connected when using most ST Program ming Tools (it is used to monitor the application
-
power supply). Please refer to the Programming Tool manual.
4. External clock ICC entry mode is mandatory in this device. Pin 9 must be connected to the OSC1 or OSCIN pin of the ST7 and OSC2 must be grounded.
-
-
-
18/154
1
FLASH PROGRAM MEMORY (Cont’d)
ST72324Lxx

4.5 ICP (In-Circuit Programming)

To perform ICP the microcontroller must be switched to ICC (In-Circuit Communication) mode by an external controller or programming tool us
-
ing 36-pulse mode. Depending on the ICP code downloaded in RAM,
Flash memory programming can be fully custom
­ized (number of bytes to program, program loca­tions, or selection serial communication interface for downloading).
When using an STMicroelectronics or third-party programming tool that supports ICP and the spe
­cific microcontroller device, the user needs only to implement the ICP hardware interface on the ap
­plication board (see Figure 8). For more details on the pin locations, refer to the device pinout de­scription.

4.6 IAP (In-Application Programming)

This mode uses a BootLoader program previously stored in Sector 0 by the user (in ICP mode or by plugging the device in a programming tool).
This mode is fully controlled by user software. This allows it to be adapted to the user application, (us
­er-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored, etc.). For example, it is
possible to download code from the SPI, SCI, USB or CAN interface and program it in the Flash. IAP mode can be used to program any of the Flash sectors except Sector 0, which is write/erase pro tected to allow recovery in case errors occur dur­ing the programming operation.

4.7 Related Documentation

For details on Flash programming and ICC proto­col, refer to the ST7 Flash Programming Refer­ence Manual and to the ST7 ICC Protocol Refer-
ence Manual.

4.7.1 Register Description FLASH CONTROL/STATUS REGISTER (FCSR)

Read / Write Reset Value: 0000 0000 (00h)
7 0
0 0 0 0 0 0 0 0
This register is reserved for use by Programming Tool software. It controls the Flash programming and erasing operations.
-
Table 5. Flash Control/Status Register Address and Reset Value
Address
(Hex.)
0029h
Register
Label
FCSR
Reset Value 0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
19/154
1
ST72324Lxx

5 CENTRAL PROCESSING UNIT

5.1 INTRODUCTION

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.

5.2 MAIN FEATURES

Enable executing 63 basic instructions
Fast 8-bit by 8-bit multiply
17 main addressing modes (with indirect
addressing mode)
Two 8-bit index registers
16-bit stack pointer
Low power HALT and WAIT modes
Priority maskable hardware interrupts
Non-maskable software/hardware interrupts
Figure 9. CPU Registers

5.3 CPU REGISTERS

The six CPU registers shown in Figure 9 are not present in the memory mapping and are accessed by specific instructions.
Accumulator (A)
The Accumulator is an 8-bit general purpose reg­ister used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.
Index Registers (X and Y)
These 8-bit registers are used to create effective addresses or as temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the fol lowing instruction refers to the Y register.)
The Y register is not affected by the interrupt auto­matic procedures.
Program Counter (PC)
The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).
-
70
RESET VALUE = XXh
70
RESET VALUE = XXh
70
RESET VALUE = XXh
15 8
RESET VALUE = RESET VECTOR @ FFFEh-FFFFh
15
RESET VALUE = STACK HIGHER ADDRESS
PCH
RESET VALUE =
7
70
1C1I1HI0NZ
1X11X1XX
70
8
PCL
0
ACCUMULATOR
X INDEX REGISTER
Y INDEX REGISTER
PROGRAM COUNTER
CONDITION CODE REGISTER
STACK POINTER
X = Undefined Value
20/154
1
CENTRAL PROCESSING UNIT (Cont’d)
Condition Code Register (CC)
Read/Write Reset Value: 111x1xxx
7 0
1 1 I1 H I0 N Z
C
The 8-bit Condition Code register contains the in­terrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP in structions.
These bits can be individually tested and/or con­trolled by specific instructions.
Arithmetic Management Bits
Bit 4 = H Half carry. This bit is set by hardware when a carry occurs be-
tween bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions.
0: No half carry has occurred. 1: A half carry has occurred.
This bit is tested using the JRH or JRNH instruc­tion. The H bit is useful in BCD arithmetic subrou­tines.
Bit 2 = N Negative. This bit is set and cleared by hardware. It is repre-
sentative of the result sign of the last arithmetic, logical or data manipulation. It’s a copy of the re sult 7th bit. 0: The result of the last operation is positive or null. 1: The result of the last operation is negative
(that is, the most significant bit is a logic 1).
This bit is accessed by the JRMI and JRPL instruc­tions.
ST72324Lxx
Bit 1 = Z Zero. This bit is set and cleared by hardware. This bit in-
dicates that the result of the last arithmetic, logical or data manipulation is zero. 0: The result of the last operation is different from
zero.
1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test
instructions. Bit 0 = C Carry/borrow.
This bit is set and cleared by hardware and soft-
-
ware. It indicates an overflow or an underflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred. 1: An overflow or underflow has occurred.
This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the “bit test and branch”, shift and rotate instructions.
Interrupt Management Bits
Bit 5,3 = I1, I0 Interrupt The combination of the I1 and I0 bits gives the cur-
rent interrupt software priority.
Interrupt Software Priority I1 I0
Level 0 (main) 1 0 Level 1 0 1 Level 2 0 0 Level 3 (= interrupt disable) 1 1
-
These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software pri ority registers (IxSPR). They can be also set/ cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.
See the interrupt management chapter for more details.
-
21/154
1
ST72324Lxx
CENTRAL PROCESSING UNIT (Cont’d)
Stack Pointer (SP)
Read/Write Reset Value: 01 FFh
15 8
0 0 0 0 0 0 0 1
7 0
SP7 SP6 SP5 SP4 SP3 SP2 SP1
SP0
The Stack Pointer is a 16-bit register which is al­ways pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see
Figure 10).
Since the stack is 256 bytes deep, the 8 most sig­nificant bits are forced by hardware. Following an MCU Reset, or after a Reset Stack Pointer instruc
­tion (RSP), the Stack Pointer contains its reset val­ue (the SP7 to SP0 bits are set) which is the stack higher address.
Figure 10. Stack Manipulation Example
CALL
Subroutine
Interrupt
Event
PUSH Y POP Y IRET
The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD in
-
struction. Note: When the lower limit is exceeded, the Stack
Pointer wraps around to the stack upper limit, with
­out indicating the stack overflow. The previously stored information is then overwritten and there
­fore lost. The stack also wraps in case of an under­flow.
The stack is used to save the return address dur­ing a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instruc
­tions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in
Figure 10.
– When an interrupt is received, the SP is decre-
mented and the context is pushed on the stack.
– On return from interrupt, the SP is incremented
and the context is popped from the stack.
A subroutine call occupies two locations and an in­terrupt five locations in the stack area.
RET
or RSP
@ 0100h
SP
@ 01FFh
SP
CC
A
X PCH PCL
PCH PCL
Stack Higher Address = 01FFh Stack Lower Address =
PCH PCL
0100h
SP
Y
CC
A X
PCH
PCL
PCH
PCL
SP
CC
A X
PCH
PCL
PCH
PCL
SP
PCH PCL
SP
22/154
1

6 SUPPLY, RESET AND CLOCK MANAGEMENT

ST72324Lxx
The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and re
­ducing the number of external components. An overview is shown in
Figure 11.
For more details, refer to dedicated parametric section.
Main features
Optional PLL for multiplying the frequency by 2
(not to be used with internal RC oscillator)
Reset Sequence Manager (RSM)
Multi-Oscillator Clock Management (MO)
– 5 Crystal/Ceramic resonator oscillators – 1 Internal RC oscillator
Figure 11. Clock, Reset and Supply Block Diagram
PLL Block
OSC2
OSC1
MULTI-
OSCILLATOR
(MO)
f
OSC
PLL x 2
/ 2

6.1 PHASE LOCKED LOOP

If the clock frequency input to the PLL is in the range 2 to 4 MHz, the PLL can be used to multiply the frequency by two to obtain an f
OSC2
of 4 to 8 MHz. The PLL is enabled by option byte. If the PLL is disabled, then f
OSC2 = fOSC
/2.
Caution: The PLL is not recommended for appli­cations where timing accuracy is required. See
Section 6.1 on page 23.
Caution: The PLL must not be used with the inter­nal RC oscillator.
0
f
OSC2
1
PLL OPTION BIT
MAIN CLOCK
CONTROLLER
WITH REALTIME
CLOCK (MCC/RTC)
f
CPU
RESET
RESET SEQUENCE
MANAGER
(RSM)
WATCHDOG
TIMER (WDG)
23/154
1
ST72324Lxx

6.2 MULTI-OSCILLATOR (MO)

The main clock of the ST7 can be generated by three different source types coming from the multi­oscillator block:
an external source
4 crystal or ceramic resonator oscillators
an internal high frequency RC oscillator
Each oscillator is optimized for a given frequency range in terms of consumption and is selectable through the option byte. The associated hardware configurations are shown in
Table 6. Refer to the
electrical characteristics section for more details. Caution: The OSC1 and/or OSC2 pins must not
be left unconnected. For the purposes of Failure Mode and Effect Analysis, it should be noted that if the OSC1 and/or OSC2 pins are left unconnected, the ST7 main oscillator may start and, in this con figuration, could generate an f
clock frequency
OSC
-
in excess of the allowed maximum (>16MHz.), putting the ST7 in an unsafe/undefined state. The product behaviour must therefore be considered undefined when the OSC pins are left unconnect
-
ed.
External Clock Source
In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin while the OSC2 pin is tied to ground.
Crystal/Ceramic Oscillators
This family of oscillators has the advantage of pro­ducing a very accurate rate on the main clock of the ST7. The selection within a list of 4 oscillators with different frequency ranges has to be done by option byte in order to reduce consumption (refer
Section 14.1 on page 140 for more details on
to the frequency ranges). In this mode of the multi­oscillator, the resonator and the load capacitors have to be placed as close as possible to the oscil
­lator pins in order to minimize output distortion and start-up stabilization time. The loading capaci­tance values must be adjusted according to the selected oscillator.
These oscillators are not stopped during the RESET phase to avoid losing time in the oscillator start-up phase.
Internal RC Oscillator
This oscillator allows a low cost solution for the main clock of the ST7 using only an internal resis tor and capacitor. Internal RC oscillator mode has the drawback of a lower frequency accuracy and should not be used in applications that require ac curate timing.
In this mode, the two oscillator pins have to be tied to ground.
Table 6. ST7 Clock Sources
Hardware Configuration
ST7
OSC1 OSC2
External ClockCrystal/Ceramic ResonatorsInternal RC Oscillator
EXTERNAL
SOURCE
OSC1 OSC2
C
L1
CAPACITORS
OSC1 OSC2
ST7
LOAD
ST7
C
L2
-
-
24/154
1

6.3 RESET SEQUENCE MANAGER (RSM)

ST72324Lxx

6.3.1 Introduction

The reset sequence manager includes two RE­SET sources as shown in Figure 13:
External RESET source pulse
Internal WATCHDOG RESET
These sources act on the RESET pin and it is al­ways kept low during the delay phase.
The RESET service routine vector is fixed at ad­dresses FFFEh-FFFFh in the ST7 memory map.
The basic RESET sequence consists of 3 phases as shown in
Active Phase depending on the RESET source
256 or 4096 CPU clock cycle delay (selected by
Figure 12:
option byte)
RESET vector fetch
The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilise and ensures that recovery has taken place from the Reset state. The shorter or longer clock cycle delay should be selected by option byte to correspond to the stabilization time of the external oscillator used in the application.
The RESET vector fetch phase duration is 2 clock cycles.
Figure 12. RESET Sequence Phases
RESET
Active Phase
INTERNAL RESET
256 or 4096 CLOCK CYCLES
FETCH
VECTOR

6.3.2 Asynchronous External RESET pin

The RESET pin is both an input and an open-drain output with integrated R This pull-up has no fixed value but varies in ac
weak pull-up resistor.
ON
­cordance with the input voltage. It can be pulled low by external circuitry to reset the device. See Electrical Characteristic section for more details.
A RESET signal originating from an external source must have a duration of at least t
h(RSTL)in
order to be recognized. This detection is asynchro
in
­nous and therefore the MCU can enter reset state even in HALT mode.
The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteris
­tics section.

6.3.3 External Power-On RESET

To start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until V the minimum level specified for the selected f
is over
DD
OSC
frequency. A proper reset signal for a slow rising VDD supply
can generally be provided by an external RC net
­work connected to the RESET pin.

6.3.4 Internal Watchdog RESET

Starting from the Watchdog counter underflow, the device low during at least t
RESET pin acts as an output that is pulled
w(RSTL)out
.
Figure 13. Reset Block Diagram
V
DD
R
ON
RESET
Filter
PULSE
GENERATOR
INTERNAL RESET
WATCHDOG RESET
25/154
1
ST72324Lxx

7 INTERRUPTS

7.1 INTRODUCTION

The ST7 enhanced interrupt management pro­vides the following features:
Hardware interrupts
Software interrupt (TRAP)
Nested or concurrent interrupt management
with flexible interrupt priority and level management:
– Up to 4 software programmable nesting levels – Up to 16 interrupt vectors fixed by hardware – 2 non maskable events: RESET, TRAP
This interrupt management is based on: – Bit 5 and bit 3 of the CPU CC register (I1:0), – Interrupt software priority registers (ISPRx), – Fixed interrupt vector addresses located at the
high addresses of the memory map (FFE0h to FFFFh) sorted by hardware priority order.
This enhanced interrupt controller guarantees full upward compatibility with the standard (not nest
-
ed) ST7 interrupt controller.

7.2 MASKING AND PROCESSING FLOW

The interrupt masking is managed by the I1 and I0 bits of the CC register and the ISPRx registers which give the interrupt software priority level of each interrupt vector (see
Table 7). The process-
ing flow is shown in Figure 14
When an interrupt request has to be serviced: – Normal processing is suspended at the end of
the current instruction execution.
– The PC, X, A and CC registers are saved onto
the stack.
– I1 and I0 bits of CC register are set according to
the corresponding values in the ISPRx registers of the serviced interrupt vector.
– The PC is then loaded with the interrupt vector of
the interrupt to service and the first instruction of the interrupt service routine is fetched (refer to “Interrupt Mapping” table for vector addresses).
The interrupt service routine should end with the IRET instruction which causes the contents of the saved registers to be recovered from the stack.
Note: As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack and the program in the previous level will resume.
Table 7. Interrupt Software Priority Levels
Interrupt software priority Level I1 I0
Level 0 (main) Level 1 0 1 Level 2 0 0 Level 3 (= interrupt disable) 1 1
Low
High
1 0
Figure 14. Interrupt Processing Flowchart
RESET
RESTORE PC, X, A, CC
FROM STACK
26/154
PENDING
INTERRUPT
N
FETCH NEXT
INSTRUCTION
Y
“IRET”
N
EXECUTE
INSTRUCTION
1
Y
THE INTERRUPT
STAYS PENDING
TRAP
Interrupt has the same or a
lower software priority
than current one
STACK PC, X, A, CC
LOAD I1:0 FROM INTERRUPT SW REG.
LOAD PC FROM INTERRUPT VECTOR
N
I1:0
software priority
than current one
Interrupt has a higher
Y
INTERRUPTS (Cont’d)
ST72324Lxx
Servicing Pending Interrupts
As several interrupts can be pending at the same time, the interrupt to be taken into account is deter
-
mined by the following two-step process: – the highest software priority interrupt is serviced, – if several interrupts have the same software pri-
ority then the interrupt with the highest hardware priority is serviced first.
Figure 15 describes this decision process.
Figure 15. Priority Decision Process
PENDING
INTERRUPTS
Same
HIGHEST HARDWARE
PRIORITY SERVICED
SOFTWARE
PRIORITY
HIGHEST SOFTWARE
PRIORITY SERVICED
Different
When an interrupt request is not serviced immedi­ately, it is latched and then processed when its software priority combined with the hardware pri
-
ority becomes the highest one. Note 1: The hardware priority is exclusive while
the software one is not. This allows the previous process to succeed with only one interrupt. Note 2: RESET and TRAP can be considered as having the highest software priority in the decision process.
Different Interrupt Vector Sources
Two interrupt source types are managed by the ST7 interrupt controller: the non-maskable type (RESET, TRAP) and the maskable type (external or from internal peripherals).
Non-Maskable Sources
These sources are processed regardless of the state of the I1 and I0 bits of the CC register (see
Figure 14). After stacking the PC, X, A and CC
registers (except for RESET), the corresponding
vector is loaded in the PC register and the I1 and I0 bits of the CC are set to disable interrupts (level
3). These sources allow the processor to exit HALT mode.
TRAP (Non Maskable Software Interrupt)
This software interrupt is serviced when the TRAP instruction is executed. It will be serviced accord
­ing to the flowchart in Figure 14.
RESET
The RESET source has the highest priority in the ST7. This means that the first current routine has the highest software priority (level 3) and the high
­est hardware priority. See the RESET chapter for more details.
Maskable Sources
Maskable interrupt vector sources can be serviced if the corresponding interrupt is enabled and if its own interrupt software priority (in ISPRx registers) is higher than the one currently being serviced (I1 and I0 in CC register). If any of these two condi
­tions is false, the interrupt is latched and thus re­mains pending.
External Interrupts
External interrupts allow the processor to exit from HALT low power mode. External interrupt sensitiv
­ity is software selectable through the External In­terrupt Control register (EICR). External interrupt triggered on edge will be latched and the interrupt request automatically cleared upon entering the interrupt service routine. If several input pins of a group connected to the same interrupt line are selected simultaneously, these will be logically ORed.
Peripheral Interrupts
Usually the peripheral interrupts cause the MCU to exit from HALT mode except those mentioned in the “Interrupt Mapping” table. A peripheral inter
­rupt occurs when a specific flag is set in the pe­ripheral status registers and if the corresponding enable bit is set in the peripheral control register. The general sequence for clearing an interrupt is based on an access to the status register followed by a read or write to an associated register. Note: The clearing sequence resets the internal latch. A pending interrupt (i.e. waiting for being serviced) will therefore be lost if the clear se
­quence is executed.
27/154
1
ST72324Lxx
INTERRUPTS (Cont’d)

7.3 INTERRUPTS AND LOW POWER MODES

All interrupts allow the processor to exit the WAIT low power mode. On the contrary, only external and other specified interrupts allow the processor to exit from the HALT modes (see column “Exit from HALT” in “Interrupt Mapping” table). When several pending interrupts are present while exit
­ing HALT mode, the first one serviced can only be an interrupt with exit from HALT mode capability and it is selected through the same decision proc
­ess shown in Figure 15.
Note: If an interrupt, that is not able to Exit from HALT mode, is pending with the highest priority when exiting HALT mode, this interrupt is serviced after the first one serviced.
Figure 16. Concurrent Interrupt Management
TRAP
IT0
TRAP
IT0
IT1
RIM
IT2
IT2
IT1
IT4
IT3
IT1
HARDWARE PRIORITY
MAIN
11 / 10

7.4 CONCURRENT & NESTED MANAGEMENT

The following Figure 16 and Figure 17 show two different interrupt management modes. The first is called concurrent mode and does not allow an in terrupt to be interrupted, unlike the nested mode in
Figure 17. The interrupt hardware priority is given
in this order from the lowest to the highest: MAIN, IT4, IT3, IT2, IT1, IT0. The software priority is giv en for each interrupt.
Warning: A stack overflow may occur without no­tifying the software of the failure.
SOFTWARE PRIORITY LEVEL
IT3
IT4
MAIN
3 3 3 3 3 3 3/0
I1
11 11 11 11 11 11
I0
USED STACK = 10 BYTES
10
-
-
Figure 17. Nested Interrupt Management
IT4
IT3
TRAP
TRAP
IT0
HARDWARE PRIORITY
MAIN
RIM
IT2
IT2
IT1
IT1
IT4
11 / 10
28/154
1
IT4
IT0
IT3
IT1
SOFTWARE PRIORITY LEVEL
IT2
10
MAIN
I1 I0
3 3 2 1 3 3 3/0
11 11 00 01 11 11
USED STACK = 20 BYTES
INTERRUPTS (Cont’d)

7.5 INTERRUPT REGISTER DESCRIPTION

ST72324Lxx
CPU CC REGISTER INTERRUPT BITS
Read / Write Reset Value: 111x 1010 (xAh)
7 0
1 1 I1 H I0 N Z C
Bit 5, 3 = I1, I0 Software Interrupt Priority These two bits indicate the current interrupt soft-
ware priority.
Interrupt Software Priority Level I1 I0
Level 0 (main) Level 1 0 1 Level 2 0 0 Level 3 (= interrupt disable*) 1 1
Low
High
1 0
These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software pri
­ority registers (ISPRx).
They can be also set/cleared by software with the RIM, SIM, HALT, WFI, IRET and PUSH/POP in
­structions (see “Interrupt Dedicated Instruction Set” table).
*Note: TRAP and RESET events can interrupt a level 3 program.
INTERRUPT SOFTWARE PRIORITY REGIS­TERS (ISPRX)
Read/Write (bit 7:4 of ISPR3 are read only) Reset Value: 1111 1111 (FFh)
7 0
ISPR0 I1_3 I0_3 I1_2 I0_2 I1_1 I0_1 I1_0 I0_0
ISPR1 I1_7 I0_7 I1_6 I0_6 I1_5 I0_5 I1_4 I0_4
ISPR2 I1_11 I0_11 I1_10 I0_10 I1_9 I0_9 I1_8 I0_8
ISPR3 1 1 1 1 I1_13 I0_13 I1_12 I0_12
These four registers contain the interrupt software priority of each interrupt vector.
– Each interrupt vector (except RESET and TRAP)
has corresponding bits in these registers where its own software priority is stored. This corre
-
spondance is shown in the following table.
Vector address ISPRx bits
FFFBh-FFFAh I1_0 and I0_0 bits* FFF9h-FFF8h I1_1 and I0_1 bits
... ...
FFE1h-FFE0h I1_13 and I0_13 bits
– Each I1_x and I0_x bit value in the ISPRx regis-
ters has the same meaning as the I1 and I0 bits in the CC register.
– Level 0 can not be written (I1_x=1, I0_x=0). In
this case, the previously stored value is kept. (ex
-
ample: previous=CFh, write=64h, result=44h)
The RESET, and TRAP vectors have no software priorities. When one is serviced, the I1 and I0 bits of the CC register are both set.
Caution: If the I1_x and I0_x bits are modified while the interrupt x is executed the following be
­haviour has to be considered: If the interrupt x is still pending (new interrupt or flag not cleared) and the new software priority is higher than the previ
­ous one, the interrupt x is re-entered. Otherwise, the software priority stays unchanged up to the next interrupt request (after the IRET of the inter
­rupt x).
29/154
1
ST72324Lxx
INTERRUPTS (Cont’d)
Table 8. Dedicated Interrupt Instruction Set
Instruction New Description Function/Example I1 H I0 N Z C
HALT Entering Halt mode 1 0 IRET Interrupt routine return Pop CC, A, X, PC I1 H I0 N Z C JRM Jump if I1:0=11 (level 3) I1:0=11 ? JRNM Jump if I1:0<>11 I1:0<>11 ? POP CC Pop CC from the Stack Mem => CC I1 H I0 N Z C RIM Enable interrupt (level 0 set) Load 10 in I1:0 of CC 1 0 SIM Disable interrupt (level 3 set) Load 11 in I1:0 of CC 1 1 TRAP Software trap Software NMI 1 1 WFI Wait for interrupt 1 0
Note: During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI instructions change the current software priority up to the next IRET instruction or one of the previously mentioned instructions.
30/154
1
Loading...
+ 124 hidden pages