ST ST72321M6, ST72321M9 User Manual

ST72321M6

ST72321M9

80-pin 8-bit MCU with 32 to 60 Kbytes Flash, ADC, five timers, SPI, SCI, I2C interface

Features

Memories

32 Kbytes to 60 Kbytes dual voltage High Density Flash (HDFlash) with read-out protection capability. In-application programming and In-circuit programming.

1 Kbyte to 2 Kbytes RAM

HDFlash endurance: 100 cycles at 85 °C; data retention: 40 years at 85 °C

Clock, reset and supply management

Enhanced low voltage supervisor (LVD) for main supply and auxiliary voltage detector (AVD) with interrupt capability

Clock sources: crystal/ceramic resonator oscillators, internal RC oscillator and bypass for external clock

PLL for 2x frequency multiplication

Four power saving modes: Halt, Active-Halt, Wait and Slow

Interrupt management

Nested interrupt controller

14 interrupt vectors plus TRAP and RESET

Top Level Interrupt (TLI) pin

15 external interrupt lines (on 4 vectors)

Up to 64 I/O ports

64 multifunctional bidirectional I/O lines

34 alternate function lines

16 high sink outputs

5 timers

Main clock controller with: Real-time base, Beep and Clock-out capabilities

Configurable watchdog timer

Two 16-bit timers with: 2 input captures, 2 output compares, external clock input on one timer, PWM and pulse generator modes

8-bit PWM Auto-Reload timer with: 2 input captures, 4 PWM outputs, output compare and time base interrupt, external clock with

LQFP80 14 x 14

event detector

4 Communication interfaces

SPI synchronous serial interface

SCI asynchronous serial interface

I2C multimaster interface (SMbus V1.1 compliant)

Analog periperal (low current coupling)

10-bit ADC with 16 input robust input ports

Instruction set

8-bit data manipulation

63 basic Instructions

17 main addressing modes

8 x 8 unsigned multiply instruction

Development tools

Full hardware/software development package

In-circuit testing capability

Table 1. Device summary

Features

ST72321M9

 

ST72321M6

Flash program memory

60 Kbytes

 

32 Kbytes

 

 

 

 

RAM (stack) - bytes

2048 bytes (256 bytes)

 

1024 (256 bytes)

 

 

 

 

Operating voltage

 

3.8 V to 5.5 V

 

 

 

Temperature range

 

-40 °C to +85 °C

 

 

 

Package

 

LQFP80 14x14

 

 

 

 

May 2009

Doc ID 12706 Rev 2

1/175

1

Table of Contents

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 REGISTER & MEMORY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 FLASH PROGRAM MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3.1 Read-out Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 ICC INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5 ICP (IN-CIRCUIT PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.6 IAP (IN-APPLICATION PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.7 RELATED DOCUMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.7.1 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 CENTRAL PROCESSING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

5.2

MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

5.3

CPU REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

6 SUPPLY, RESET AND CLOCK MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 PHASE LOCKED LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 MULTI-OSCILLATOR (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3 RESET SEQUENCE MANAGER (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.3.2 Asynchronous External RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.3.3 External Power-On RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.3.4 Internal Low Voltage Detector (LVD) RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.3.5 Internal Watchdog RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.4 SYSTEM INTEGRITY MANAGEMENT (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4.1 Low Voltage Detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

6.4.2 Auxiliary Voltage Detector (AVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

6.4.3

Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

6.4.4

Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

7 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.2 MASKING AND PROCESSING FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.3 INTERRUPTS AND LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.4 CONCURRENT & NESTED MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.5 INTERRUPT REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.6 EXTERNAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.6.1 I/O Port Interrupt Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.7 EXTERNAL INTERRUPT CONTROL REGISTER (EICR) . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41

8.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.2 SLOW MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.3 WAIT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2/175

1

Table of Contents

8.4 ACTIVE-HALT AND HALT MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.4.1 ACTIVE-HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 8.4.2 HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 8.4.3 I/O Port Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9 ON-CHIP PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9.1 WATCHDOG TIMER (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 9.1.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 9.1.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 9.1.4 How to Program the Watchdog Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 9.1.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 9.1.6 Hardware Watchdog Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 9.1.7 Using Halt Mode with the WDG (WDGHALT option) . . . . . . . . . . . . . . . . . . . . . . . 51 9.1.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 9.1.9 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.2 MAIN CLOCK CONTROLLER WITH REAL-TIME CLOCK AND BEEPER (MCC/RTC) . . 53

9.2.1 Programmable CPU Clock Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.2.2 Clock-out Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.2.3 Real-Time Clock Timer (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.2.4 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.2.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.2.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.2.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.3 PWM AUTO-RELOAD TIMER (ART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.3.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.3.3 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9.4 16-BIT TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9.4.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

65

9.4.2

Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

65

9.4.3

Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

65

9.4.4

Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

77

9.4.5

Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

77

9.4.6 Summary of Timer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

77

9.4.7

Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

78

9.5 SERIAL PERIPHERAL INTERFACE (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84

9.5.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84

9.5.2

Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84

9.5.3

General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84

9.5.4 Clock Phase and Clock Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

88

9.5.5

Error Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

89

9.5.6

Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

91

9.5.7

Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

91

9.5.8

Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

92

9.6 SERIAL COMMUNICATIONS INTERFACE (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

95

9.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.6.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.6.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3/175

Table of Contents

9.6.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.6.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.6.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.6.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.7 I2C BUS INTERFACE (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.7.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.7.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.7.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.7.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.7.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.7.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.8 10-BIT A/D CONVERTER (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.8.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.8.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.8.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.8.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.8.6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

128

10.1 CPU ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

128

10.1.1

Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

129

10.1.2

Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

129

10.1.3

Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

129

10.1.4 Indexed (No Offset, Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

129

10.1.5

Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

129

10.1.6 Indirect Indexed (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

130

10.1.7 Relative mode (Direct, Indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

130

10.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

131

11 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

11.1 PARAMETER CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

11.1.1 Minimum and Maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 11.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 11.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 11.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 11.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

11.2 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

11.2.1 Voltage Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

11.2.2 Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

11.2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

11.3 OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

11.3.1 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 11.3.2 Operating Conditions with Low Voltage Detector (LVD) . . . . . . . . . . . . . . . . . . . 137 11.3.3 Auxiliary Voltage Detector (AVD) Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 11.3.4 External Voltage Detector (EVD) Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 11.4 SUPPLY CURRENT CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

11.4.1 CURRENT CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

138

4/175

 

Table of Contents

 

11.4.2 Supply and Clock Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

140

11.4.3

On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

141

11.5 CLOCK AND TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

142

11.5.1

General Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

142

11.5.2

External Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

142

11.5.3 Crystal and Ceramic Resonator Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

143

11.5.4

RC Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

145

11.5.5

PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

146

11.6 MEMORY CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

147

11.6.1 RAM and Hardware Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

147

11.6.2

Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

147

11.7 EMC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

148

11.7.1 Functional EMS (Electro Magnetic Susceptibility) . . . . . . . . . . . . . . . . . . . . . . . . 148 11.7.2 Electro Magnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 11.7.3 Absolute Maximum Ratings (Electrical Sensitivity) . . . . . . . . . . . . . . . . . . . . . . . 150 11.8 I/O PORT PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11.8.1 General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11.8.2 Output Driving Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

11.9 CONTROL PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

11.9.1 Asynchronous RESET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

11.9.2 ICCSEL/VPP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

11.10TIMER PERIPHERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

11.10.1 8-Bit PWM-ART Auto-Reload Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 11.10.2 16-Bit Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 11.11COMMUNICATION INTERFACE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . 158

11.11.1 SPI - Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

158

11.11.2 I2C - Inter IC Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

160

11.1210-BIT ADC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

162

11.12.1 Analog Power Supply and Reference Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

11.12.2 General PCB Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

11.12.3 ADC Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12 PACKAGE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

12.1 ECOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

12.2 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

12.3 THERMAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

166

13 ST72321Mx DEVICE CONFIGURATION AND ORDERING INFORMATION . . . . . . . . . . . . 167

13.1 FLASH OPTION BYTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

167

13.2 DEVICE ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

14 KNOWN LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

14.1 SAFE CONNECTION OF OSC1/OSC2 PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 14.2 RESET PIN PROTECTION WITH LVD ENABLED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 14.3 UNEXPECTED RESET FETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 14.4 EXTERNAL INTERRUPT MISSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 14.5 CLEARING ACTIVE INTERRUPTS OUTSIDE INTERRUPT ROUTINE . . . . . . . . . . . . . 171 14.6 SCI WRONG BREAK DURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5/175

Table of Contents

14.7 16-BIT TIMER PWM MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 14.8 TIMD SET SIMULTANEOUSLY WITH OC INTERRUPT . . . . . . . . . . . . . . . . . . . . . . . . . 172 14.9 I2C MULTIMASTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 14.10INTERNAL RC OSCILLATOR WITH LVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 14.11I/O BEHAVIOUR DURING ICC MODE ENTRY SEQUENCE . . . . . . . . . . . . . . . . . . . . 172 14.12READ-OUT PROTECTION WITH LVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

15 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6/175

ST ST72321M6, ST72321M9 User Manual

ST72321M6 ST72321M9

1 INTRODUCTION

The ST72321Mx Flash devices are members of the ST7 microcontroller family designed for midrange applications.

All devices are based on a common industrystandard 8-bit core, featuring an enhanced instruction set and are available with Flash memory.

Under software control, all devices can be placed in Wait, Slow, Active-halt or Halt mode, reducing

Figure 1. Device Block Diagram

power consumption when the application is in idle or stand-by state.

The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 microcontrollers feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes.

 

8-BIT CORE

 

PROGRAM

 

ALU

 

MEMORY

 

 

 

(32 - 60 Kbytes)

RESET

CONTROL

 

 

VPP

 

 

 

 

RAM

TLI

 

 

 

 

(1024-2048 Bytes)

VSS

 

 

LVD

 

 

VDD

 

 

EVD

AVD

 

WATCHDOG

OSC1

 

 

OSC

 

 

OSC2

 

 

 

 

I2C

 

 

ADDRESS

 

MCC/RTC/BEEP

PA7:0

 

 

(8-bits)

 

 

 

PORT A

 

PORT F

AND

PORT B

PF7:0

 

(8-bits)

TIMER A

DATA

PB7:0

 

PWM ART

 

 

(8-bits)

 

BEEP

BUS

PORT C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PORT E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC7:0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIMER B

 

 

 

 

 

 

 

 

(8-bits)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PE7:0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(8-bits)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SPI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PG7:0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PD7:0

 

 

 

 

 

 

 

 

 

 

 

 

PORT D

 

 

 

 

 

 

 

PORT G

 

 

 

 

 

 

(8-bits)

(8-bits)

 

 

 

 

 

 

 

 

 

10-BIT ADC

 

 

 

 

 

 

 

PORT H

 

 

 

 

 

 

 

 

PH7:0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(8-bits)

VAREF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSSA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7/175

ST72321M6 ST72321M9

2 PIN DESCRIPTION

Figure 2. 80-Pin LQFP 14x14 Package Pinout

(HS) PE4 1

(HS) PE5 2

(HS) PE6 3

(HS) PE7 4 PWM3 / PB0 5 PWM2 / PB1 6 PWM1 / PB2 7 PWM0 / PB3 8

PG0 9

PG1 10

PG2 11

PG3 12 ARTCLK / (HS) PB4 13

ARTIC1 / PB5 14

ARTIC2 / PB6 15 PB7 16 AIN0 / PD0 17

AIN1 / PD1 18

AIN2 / PD2 19

AIN3 / PD3 20

PE3

PE2

PE1/ RDI

PE0/ TDO

2

OSC1

OSC2

2

PH7

PH6

PH5

PH4

TLI

EVD

RESET

ICCSEL/

SCLI

SDAI

PA5(HS)

PA4(HS)

 

V

V

V

PA7(HS)/

PA6(HS)/

 

 

 

 

 

DD

 

 

SS

 

 

 

 

 

 

 

PP

 

 

 

 

 

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

VSS_1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

59

VDD_1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

58

PA3 (HS)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ei0

57

PA2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56

PA1

 

ei2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

55

PA0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

54

PC7 / SS / AIN15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

53

PC6 / SCK /ICCCLK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52

PH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

51

PH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

PH1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49

PH0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

48

PC5 / MOSI / AIN14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ei3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47

PC4 / MISO / ICCDATA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46

PC3 (HS) /ICAP1_B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45

PC2(HS) / ICAP2_B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44

PC1 / OCMP1_B / AIN13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43

PC0 / OCMP2_B /AIN12

 

 

 

 

 

 

 

 

 

 

 

 

 

ei1

 

 

 

 

 

42

VSS_0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41

VDD_0

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

 

PG6

PG7

AIN4/PD4

AIN5 / PD5

AIN6 / PD6

AIN7 / PD7

AREF

SSA

DD3

SS3

PG4

PG5

MCO /AIN8 / PF0

BEEP / (HS) PF1

(HS) PF2

OCMP2 A / AIN9 /PF3

OCMP1 A/AIN10 /PF4

ICAP2 A/ AIN11 /PF5

ICAP1 A / (HS) / PF6

EXTCLK A / (HS) PF7

 

V

V

V

V

 

(HS)

20 mA high sink capability

eix

associated external interrupt vector

8/175

ST72321M6 ST72321M9

PIN DESCRIPTION (Cont’d)

Legend / Abbreviations for Table 2 :

Type:

I = input, O = output, S = supply

Input level:

A = Dedicated analog input

In/Output level: C = CMOS 0.3VDD/0.7VDD

 

 

CT= CMOS 0.3VDD/0.7VDD with input trigger

 

 

TT= TTL 0.8 V / 2 V with Schmitt trigger

Output level:

HS = 20 mA high sink (on N-buffer only)

Port and control configuration:

Input:

float = floating, wpu = weak pull-up, int = interrupt 1), ana = analog

Output:

OD = open drain 2), PP = push-pull

The RESET configuration of each pin is shown in bold. This configuration is valid as long as the device is in reset state.

Table 2. Device Pin Description

Pin n°

 

 

Level

 

 

 

Port

 

 

Main

 

 

 

Type

 

 

 

 

 

 

 

 

 

 

LQFP80

 

Input

Output

float

wpu

 

int

ana

OD

PP

function

 

 

Pin Name

 

 

 

 

Input

 

Output

Alternate function

 

 

 

 

 

 

 

 

 

 

 

 

(after

 

 

 

 

 

 

 

 

 

 

 

 

 

reset)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

PE4 (HS)

I/O

CT

HS

X

X

 

 

 

X

X

Port E4

 

2

PE5 (HS)

I/O

CT

HS

X

X

 

 

 

X

X

Port E5

 

3

PE6 (HS)

I/O

CT

HS

X

X

 

 

 

X

X

Port E6

 

4

PE7 (HS)

I/O

CT

HS

X

X

 

 

 

X

X

Port E7

 

5

PB0/PWM3

I/O

CT

 

X

 

ei2

 

X

X

Port B0

PWM Output 3

6

PB1/PWM2

I/O

CT

 

X

 

ei2

 

X

X

Port B1

PWM Output 2

7

PB2/PWM1

I/O

CT

 

X

 

ei2

 

X

X

Port B2

PWM Output 1

8

PB3/PWM0

I/O

CT

 

X

 

 

ei2

 

X

X

Port B3

PWM Output 0

9

PG0

I/O

TT

 

X

X

 

 

 

X

X

Port G0

 

10

PG1

I/O

TT

 

X

X

 

 

 

X

X

Port G1

 

11

PG2

I/O

TT

 

X

X

 

 

 

X

X

Port G2

 

12

PG3

I/O

TT

 

X

X

 

 

 

X

X

Port G3

 

13

PB4 (HS)/ARTCLK

I/O

CT

HS

X

ei3

 

X

X

Port B4

PWM-ART External Clock

14

PB5/ARTIC1

I/O

CT

 

X

ei3

 

X

X

Port B5

PWM-ART Input Capture 1

15

PB6/ARTIC2

I/O

CT

 

X

ei3

 

X

X

Port B6

PWM-ART Input Capture 2

16

PB7

I/O

CT

 

X

 

 

ei3

 

X

X

Port B7

 

17

PD0 /AIN0

I/O

CT

 

X

X

 

 

X

X

X

Port D0

ADC Analog Input 0

18

PD1/AIN1

I/O

CT

 

X

X

 

 

X

X

X

Port D1

ADC Analog Input 1

19

PD2/AIN2

I/O

CT

 

X

X

 

 

X

X

X

Port D2

ADC Analog Input 2

20

PD3/AIN3

I/O

CT

 

X

X

 

 

X

X

X

Port D3

ADC Analog Input 3

21

PG6

I/O

TT

 

X

X

 

 

 

X

X

Port G6

 

22

PG7

I/O

TT

 

X

X

 

 

 

X

X

Port G7

 

23

PD4/AIN4

I/O

CT

 

X

X

 

 

X

X

X

Port D4

ADC Analog Input 4

24

PD5/AIN5

I/O

CT

 

X

X

 

 

X

X

X

Port D5

ADC Analog Input 5

25

PD6/AIN6

I/O

CT

 

X

X

 

 

X

X

X

Port D6

ADC Analog Input 6

9/175

ST72321M6 ST72321M9

Pin n°

 

 

Level

 

 

Port

 

 

Main

 

 

 

 

Type

 

 

 

 

 

 

 

 

 

 

LQFP80

 

Input

Output

float

wpu

int

ana

OD

PP

function

 

 

 

Pin Name

 

 

 

 

Input

 

Output

Alternate function

 

 

 

 

 

 

 

 

 

 

 

(after

 

 

 

 

 

 

 

 

 

 

 

 

 

reset)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

PD7/AIN7

I/O

CT

 

X

X

 

X

X

X

Port D7

ADC Analog Input 7

27

2)

I

 

 

 

 

 

 

 

 

Analog Reference Voltage for ADC

VAREF

 

 

 

 

 

 

 

 

28

2)

S

 

 

 

 

 

 

 

 

Analog Ground Voltage

 

VSSA

 

 

 

 

 

 

 

 

 

29

2)

S

 

 

 

 

 

 

 

 

Digital Main Supply Voltage

VDD_3

 

 

 

 

 

 

 

 

30

2)

S

 

 

 

 

 

 

 

 

Digital Ground Voltage

 

VSS_3

 

 

 

 

 

 

 

 

 

31

PG4

I/O

TT

 

X

X

 

 

X

X

Port G4

 

 

32

PG5

I/O

TT

 

X

X

 

 

X

X

Port G5

 

 

33

PF0/MCO/AIN8

I/O

CT

 

X

ei1

X

X

X

Port F0

Main clock

ADC Analog

 

out (fCPU)

Input 8

 

 

 

 

 

 

 

 

 

 

 

 

34

PF1 (HS)/BEEP

I/O

CT

HS

X

ei1

 

X

X

Port F1

Beep signal output

35

PF2 (HS)

I/O

CT

HS

X

 

ei1

 

X

X

Port F2

 

 

36

PF3/OCMP2_A/AIN9

I/O

CT

 

X

 

 

 

 

 

 

Timer A Out-

ADC Analog

 

X

 

X

X

X

Port F3

put Compare

Input 9

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

X

 

 

 

 

 

 

Timer A Out-

ADC Analog

37

PF4/OCMP1_A/AIN10

I/O

CT

 

X

 

X

X

X

Port F4

put Compare

Input 10

 

 

 

 

 

 

 

 

 

 

 

 

1

 

38

PF5/ICAP2_A/AIN11

I/O

CT

 

X

X

 

X

X

X

Port F5

Timer A Input

ADC Analog

 

 

Capture 2

Input 11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39

PF6 (HS)/ICAP1_A

I/O

CT

HS

X

X

 

 

X

X

Port F6

Timer A Input Capture 1

40

PF7 (HS)/EXTCLK_A

I/O

CT

HS

X

X

 

 

X

X

Port F7

Timer A External Clock

 

 

Source

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41

2)

S

 

 

 

 

 

 

 

 

Digital Main Supply Voltage

VDD_0

 

 

 

 

 

 

 

 

42

2)

S

 

 

 

 

 

 

 

 

Digital Ground Voltage

 

VSS_0

 

 

 

 

 

 

 

 

 

43

PC0/OCMP2_B/AIN12

I/O

CT

 

X

 

 

 

 

 

 

Timer B Out-

ADC Analog

 

X

 

X

X

X

Port C0

put Compare

Input 12

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

X

 

 

 

 

 

 

Timer B Out-

ADC Analog

44

PC1/OCMP1_B/AIN13

I/O

CT

 

X

 

X

X

X

Port C1

put Compare

Input 13

 

 

 

 

 

 

 

 

 

 

 

 

1

 

45

PC2 (HS)/ICAP2_B

I/O

CT

HS

X

X

 

 

X

X

Port C2

Timer B Input Capture 2

46

PC3 (HS)/ICAP1_B

I/O

CT

HS

X

X

 

 

X

X

Port C3

Timer B Input Capture 1

47

PC4/MISO/ICCDATA

I/O

CT

 

X

 

 

 

 

 

 

SPI Master In

ICC Data In-

 

X

 

 

X

X

Port C4

/ Slave Out

put

 

 

 

 

 

 

 

 

 

 

 

 

Data

 

 

 

 

 

 

 

 

 

 

 

 

 

SPI Master

ADC Analog

48

PC5/MOSI/AIN14

I/O

CT

 

X

X

 

X

X

X

Port C5

Out / Slave In

 

 

Input 14

 

 

 

 

 

 

 

 

 

 

 

 

Data

 

49

PH0

I/O

TT

 

X

X

 

 

X

X

Port H0

 

 

50

PH1

I/O

TT

 

X

X

 

 

X

X

Port H1

 

 

51

PH2

I/O

TT

 

X

X

 

 

X

X

Port H2

 

 

52

PH3

I/O

TT

 

X

X

 

 

X

X

Port H3

 

 

10/175

ST72321M6 ST72321M9

Pin n°

 

 

 

 

 

 

Level

 

 

Port

 

 

Main

 

 

 

 

 

 

 

 

 

Type

 

 

 

 

 

 

 

 

 

 

 

LQFP80

 

 

 

 

 

Input

Output

float

wpu

int

ana

OD

PP

function

 

 

 

 

 

 

Pin Name

 

 

 

 

Input

 

Output

Alternate function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(after

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reset)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SPI Serial

 

ICC Clock

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clock

 

Output

53

PC6/SCK/ICCCLK

I/O

CT

 

X

X

 

 

X

X

Port C6

 

 

 

 

 

Caution: Negative current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

injection not allowed on this

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SPI Slave

 

ADC Analog

54

PC7/SS/AIN15

I/O

CT

 

X

X

 

X

X

X

Port C7

Select (active

 

 

 

 

Input 15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

low)

 

 

55

PA0

I/O

CT

 

X

ei0

 

X

X

Port A0

 

 

 

56

PA1

I/O

CT

 

X

ei0

 

X

X

Port A1

 

 

 

57

PA2

I/O

CT

 

X

ei0

 

X

X

Port A2

 

 

 

58

PA3 (HS)

I/O

CT

HS

X

 

ei0

 

X

X

Port A3

 

 

 

59

2)

S

 

 

 

 

 

 

 

 

Digital Main Supply Voltage

 

VDD_1

 

 

 

 

 

 

 

 

60

2)

 

S

 

 

 

 

 

 

 

 

Digital Ground Voltage

 

 

VSS_1

 

 

 

 

 

 

 

 

 

61

PA4 (HS)

I/O

CT

HS

X

X

 

 

X

X

Port A4

 

 

 

62

PA5 (HS)

I/O

CT

HS

X

X

 

 

X

X

Port A5

 

 

 

63

 

PA6 (HS)/SDAI

I/O

CT

HS

X

 

 

 

T

 

Port A6

I2C Data 5)

 

64

PA7 (HS)/SCLI

I/O

CT

HS

X

 

 

 

T

 

Port A7

I2C Clock 5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Must be tied low. In Flash programming

65

 

VPP/ ICCSEL

I

 

 

 

 

 

 

 

 

mode, this pin acts as the programming

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

voltage input VPP.

 

66

 

 

 

 

I/O

CT

 

 

 

 

 

 

 

Top priority non maskable interrupt.

 

RESET

 

 

 

 

 

 

 

67

 

EVD

 

 

 

 

 

 

 

 

 

External voltage detector

 

 

 

 

 

 

 

 

 

 

 

 

 

 

68

 

TLI

I

CT

 

X

 

X

 

 

 

Top level interrupt input pin

69

PH4

I/O

TT

 

X

X

 

 

X

X

Port H4

 

 

 

70

 

PH5

I/O

TT

 

X

X

 

 

X

X

Port H5

 

 

 

71

 

PH6

I/O

TT

 

X

X

 

 

X

X

Port H6

 

 

 

72

 

PH7

I/O

TT

 

X

X

 

 

X

X

Port H7

 

 

 

73

2)

 

S

 

 

 

 

 

 

 

 

Digital Ground Voltage

 

 

VSS_2

 

 

 

 

 

 

 

 

 

74

 

OSC23)

I/O

 

 

 

 

 

 

 

 

Resonator oscillator inverter output

75

 

OSC13)

I

 

 

 

 

 

 

 

 

External clock input or Resonator oscil-

 

 

 

 

 

 

 

 

 

lator inverter input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76

2)

S

 

 

 

 

 

 

 

 

Digital Main Supply Voltage

 

VDD_2

 

 

 

 

 

 

 

 

77

PE0/TDO

I/O

CT

 

X

X

 

 

X

X

Port E0

SCI Transmit Data Out

78

PE1/RDI

I/O

CT

 

X

X

 

 

X

X

Port E1

SCI Receive Data In

79

PE2

I/O

CT

 

 

X

 

 

 

 

Port E2

 

 

 

80

PE3

I/O

CT

 

X

X

 

 

X

X

Port E3

 

 

 

Notes:

1.In the interrupt input column, “eiX” defines the associated external interrupt vector. If the weak pull-up column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input.

2.It is mandatory to connect all available VDD and VREF pins to the supply voltage and all VSS and VSSA

11/175

ST72321M6 ST72321M9

pins to ground.

3.OSC1 and OSC2 pins connect a crystal/ceramic resonator, or an external source to the on-chip oscillator.

4.On the chip, each I/O port may have up to 8 pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption.

5.In the open drain output column, “T” defines a true open drain I/O (P-Buffer and protection diode to VDD are not implemented).

12/175

ST72321M6 ST72321M9

3 REGISTER & MEMORY MAP

As shown in Figure 3, the MCU is capable of addressing 64 Kbytes of memories and I/O registers.

The available memory locations consist of 128 bytes of register locations, up to 2 Kbytes of RAM and up to 60 Kbytes of user program memory. The RAM space includes up to 256 bytes for the stack from 0100h to 01FFh.

The highest address bytes contain the user reset and interrupt vectors.

Figure 3. Memory Map

IMPORTANT: Memory locations marked as “Reserved” must never be accessed. Accessing a reseved area can have unpredictable effects on the device.

Related Documentation

AN 985: Executing Code in ST7 RAM

0000h

 

0080h

 

 

 

 

 

HW Registers

Short Addressing

 

 

 

 

 

 

 

 

 

 

 

(see Table 3)

 

 

 

 

 

007Fh

 

RAM (zero page)

 

 

 

 

 

00FFh

 

 

 

 

0080h

 

 

 

 

 

 

 

RAM

0100h

256 Bytes Stack

 

 

 

 

 

 

 

 

 

 

 

(2048 or 1024 Bytes)

 

 

 

 

 

 

01FFh

 

 

 

 

 

 

 

 

1000h

 

 

 

087Fh

 

0200h

16-bit Addressing

60 Kbytes

 

 

 

 

 

 

 

0880h

 

 

 

 

 

 

Reserved

 

RAM

 

 

 

 

 

or 047Fh

 

 

 

 

0FFFh

 

 

 

 

 

 

 

 

 

 

 

 

or 067Fh

 

 

 

 

 

1000h

 

 

8000h

 

 

 

Program Memory

or 087Fh

 

32 Kbytes

 

 

 

 

 

 

 

 

 

 

 

 

 

(60 Kbytes or 32 Kbytes)

 

 

 

 

 

 

FFDFh

 

 

 

 

 

 

 

FFE0h

Interrupt & Reset Vectors

 

 

 

 

 

 

 

 

 

 

 

 

 

FFFFh

 

 

 

FFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13/175

ST72321M6 ST72321M9

Table 3. Hardware Register Map

Address

Block

Register

Register Name

Reset

Remarks

Label

Status

 

 

 

 

 

 

 

 

 

 

0000h

Port A 2)

PADR

Port A Data Register

00h1)

R/W

0001h

PADDR

Port A Data Direction Register

00h

R/W

0002h

 

PAOR

Port A Option Register

00h

R/W

 

 

 

 

 

 

0003h

Port B 2)

PBDR

Port B Data Register

00h1)

R/W

0004h

PBDDR

Port B Data Direction Register

00h

R/W

0005h

 

PBOR

Port B Option Register

00h

R/W

 

 

 

 

 

 

0006h

 

PCDR

Port C Data Register

00h1)

R/W

0007h

Port C

PCDDR

Port C Data Direction Register

00h

R/W

0008h

 

PCOR

Port C Option Register

00h

R/W

 

 

 

 

 

 

0009h

Port D 2)

PDDR

Port D Data Register

00h1)

R/W

000Ah

PDDDR

Port D Data Direction Register

00h

R/W

000Bh

 

PDOR

Port D Option Register

00h

R/W

 

 

 

 

 

 

000Ch

 

PEDR

Port E Data Register

00h1)

R/W

000Dh

Port E 2)

PEDDR

Port E Data Direction Register

00h

R/W2)

000Eh

 

PEOR

Port E Option Register

00h

R/W2)

 

 

 

 

 

 

000Fh

Port F 2)

PFDR

Port F Data Register

00h1)

R/W

0010h

PFDDR

Port F Data Direction Register

00h

R/W

0011h

 

PFOR

Port F Option Register

00h

R/W

 

 

 

 

 

 

0012h

Port G 2)

PGDR

Port G Data Register

00h1)

R/W

0013h

PGDDR

Port G Data Direction Register

00h

R/W

0014h

 

PGOR

Port G Option Register

00h

R/W

 

 

 

 

 

 

0015h

Port H 2)

PHDR

Port H Data Register

00h1)

R/W

0016h

PHDDR

Port H Data Direction Register

00h

R/W

0017h

 

PHOR

Port H Option Register

00h

R/W

 

 

 

 

 

 

0018h

 

I2CCR

I2C Control Register

00h

R/W

0019h

 

I2CSR1

I2C Status Register 1

00h

Read Only

001Ah

 

I2CSR2

I2C Status Register 2

00h

Read Only

001Bh

I2C

I2CCCR

I2C Clock Control Register

00h

R/W

001Ch

 

I2COAR1

I2C Own Address Register 1

00h

R/W

001Dh

 

I2COAR2

I2C Own Address Register2

00h

R/W

001Eh

 

I2CDR

I2C Data Register

00h

R/W

 

 

 

 

 

 

001Fh

 

 

Reserved Area (2 Bytes)

 

 

0020h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0021h

 

SPIDR

SPI Data I/O Register

xxh

R/W

0022h

SPI

SPICR

SPI Control Register

0xh

R/W

0023h

 

SPICSR

SPI Control/Status Register

00h

R/W

 

 

 

 

 

 

14/175

ST72321M6 ST72321M9

Address

Block

Register

Register Name

Reset

Remarks

Label

Status

 

 

 

 

 

 

 

 

 

 

0024h

 

ISPR0

Interrupt Software Priority Register 0

FFh

R/W

0025h

 

ISPR1

Interrupt Software Priority Register 1

FFh

R/W

0026h

ITC

ISPR2

Interrupt Software Priority Register 2

FFh

R/W

0027h

ISPR3

Interrupt Software Priority Register 3

FFh

R/W

 

 

 

 

 

 

 

0028h

 

EICR

External Interrupt Control Register

00h

R/W

 

 

 

 

 

 

0029h

Flash

FCSR

Flash Control/Status Register

00h

R/W

 

 

 

 

 

 

002Ah

WATCHDOG

WDGCR

Watchdog Control Register

7Fh

R/W

 

 

 

 

 

 

002Bh

 

SICSR

System Integrity Control/Status Register

000x 000x b

R/W

 

 

 

 

 

 

002Ch

MCC

MCCSR

Main Clock Control / Status Register

00h

R/W

002Dh

MCCBCR

Main Clock Controller: Beep Control Register

00h

R/W

 

 

 

 

 

 

 

002Eh

 

 

 

 

 

to

 

 

Reserved Area (3 Bytes)

 

 

0030h

 

 

 

 

 

 

 

 

 

 

 

0031h

 

TACR2

Timer A Control Register 2

00h

R/W

0032h

 

TACR1

Timer A Control Register 1

00h

R/W

0033h

 

TACSR

Timer A Control/Status Register

xxxx x0xx b

R/W

0034h

 

TAIC1HR

Timer A Input Capture 1 High Register

xxh

Read Only

0035h

 

TAIC1LR

Timer A Input Capture 1 Low Register

xxh

Read Only

0036h

 

TAOC1HR

Timer A Output Compare 1 High Register

80h

R/W

0037h

 

TAOC1LR

Timer A Output Compare 1 Low Register

00h

R/W

0038h

TIMER A

TACHR

Timer A Counter High Register

FFh

Read Only

0039h

 

TACLR

Timer A Counter Low Register

FCh

Read Only

003Ah

 

TAACHR

Timer A Alternate Counter High Register

FFh

Read Only

003Bh

 

TAACLR

Timer A Alternate Counter Low Register

FCh

Read Only

003Ch

 

TAIC2HR

Timer A Input Capture 2 High Register

xxh

Read Only

003Dh

 

TAIC2LR

Timer A Input Capture 2 Low Register

xxh

Read Only

003Eh

 

TAOC2HR

Timer A Output Compare 2 High Register

80h

R/W

003Fh

 

TAOC2LR

Timer A Output Compare 2 Low Register

00h

R/W

 

 

 

 

 

 

0040h

 

 

Reserved Area (1 Byte)

 

 

 

 

 

 

 

 

0041h

 

TBCR2

Timer B Control Register 2

00h

R/W

0042h

 

TBCR1

Timer B Control Register 1

00h

R/W

0043h

 

TBCSR

Timer B Control/Status Register

xxxx x0xx b

R/W

0044h

 

TBIC1HR

Timer B Input Capture 1 High Register

xxh

Read Only

0045h

 

TBIC1LR

Timer B Input Capture 1 Low Register

xxh

Read Only

0046h

 

TBOC1HR

Timer B Output Compare 1 High Register

80h

R/W

0047h

 

TBOC1LR

Timer B Output Compare 1 Low Register

00h

R/W

0048h

TIMER B

TBCHR

Timer B Counter High Register

FFh

Read Only

0049h

 

TBCLR

Timer B Counter Low Register

FCh

Read Only

004Ah

 

TBACHR

Timer B Alternate Counter High Register

FFh

Read Only

004Bh

 

TBACLR

Timer B Alternate Counter Low Register

FCh

Read Only

004Ch

 

TBIC2HR

Timer B Input Capture 2 High Register

xxh

Read Only

004Dh

 

TBIC2LR

Timer B Input Capture 2 Low Register

xxh

Read Only

004Eh

 

TBOC2HR

Timer B Output Compare 2 High Register

80h

R/W

004Fh

 

TBOC2LR

Timer B Output Compare 2 Low Register

00h

R/W

 

 

 

 

 

 

15/175

ST72321M6 ST72321M9

Address

Block

Register

Register Name

Reset

Remarks

Label

Status

 

 

 

 

 

 

 

 

 

 

0050h

 

SCISR

SCI Status Register

C0h

Read Only

0051h

 

SCIDR

SCI Data Register

xxh

R/W

0052h

 

SCIBRR

SCI Baud Rate Register

00h

R/W

0053h

SCI

SCICR1

SCI Control Register 1

x000 0000b

R/W

0054h

SCICR2

SCI Control Register 2

00h

R/W

 

0055h

 

SCIERPR

SCI Extended Receive Prescaler Register

00h

R/W

0056h

 

 

Reserved area

---

 

0057h

 

SCIETPR

SCI Extended Transmit Prescaler Register

00h

R/W

 

 

 

 

 

 

0058h

 

 

 

 

 

to

 

 

Reserved Area (24 Bytes)

 

 

006Fh

 

 

 

 

 

 

 

 

 

 

 

0070h

 

ADCCSR

Control/Status Register

00h

R/W

0071h

ADC

ADCDRH

Data High Register

00h

Read Only

0072h

 

ADCDRL

Data Low Register

00h

Read Only

 

 

 

 

 

 

0073h

 

PWMDCR3

PWM AR Timer Duty Cycle Register 3

00h

R/W

0074h

 

PWMDCR2

PWM AR Timer Duty Cycle Register 2

00h

R/W

0075h

 

PWMDCR1

PWM AR Timer Duty Cycle Register 1

00h

R/W

0076h

 

PWMDCR0

PWM AR Timer Duty Cycle Register 0

00h

R/W

0077h

 

PWMCR

PWM AR Timer Control Register

00h

R/W

0078h

PWM ART

ARTCSR

Auto-Reload Timer Control/Status Register

00h

R/W

0079h

 

ARTCAR

Auto-Reload Timer Counter Access Register

00h

R/W

007Ah

 

ARTARR

Auto-Reload Timer Auto-Reload Register

00h

R/W

007Bh

 

ARTICCSR

AR Timer Input Capture Control/Status Reg.

00h

R/W

007Ch

 

ARTICR1

AR Timer Input Capture Register 1

00h

Read Only

007Dh

 

ARTICR2

AR Timer Input Capture Register 1

00h

Read Only

 

 

 

 

 

 

007Eh

 

 

Reserved Area (2 Bytes)

 

 

007Fh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: x=undefined, R/W=read/write

Notes:

1.The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents.

2.The bits associated with unavailable pins must always keep their reset value.

16/175

ST72321M6 ST72321M9

4 FLASH PROGRAM MEMORY

4.1 Introduction

The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individual sectors and programmed on a Byte-by-Byte basis using an external VPP supply.

The HDFlash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (In-Circuit Programming) or IAP (In-Application Programming).

The array matrix organisation allows each sector to be erased and reprogrammed without affecting other sectors.

4.2 Main Features

Three Flash programming modes:

Insertion in a programming tool. In this mode, all sectors including option bytes can be programmed or erased.

ICP (In-Circuit Programming). In this mode, all sectors including option bytes can be programmed or erased without removing the device from the application board.

IAP (In-Application Programming) In this mode, all sectors except Sector 0, can be programmed or erased without removing the device from the application board and while the application is running.

ICT (In-Circuit Testing) for downloading and executing user application test patterns in RAM

Read-out protection

Register Access Security System (RASS) to prevent accidental programming or erasing

4.3 Structure

The Flash memory is organised in sectors and can be used for both code and data storage.

Figure 4. Memory Map and Sector Address

Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see Table 4). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flash memory when only a partial erasing is required.

The first two sectors have a fixed size of 4 Kbytes (see Figure 4). They are mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000hFFFFh).

Table 4. Sectors available in Flash devices

Flash Size (Kbytes)

Available Sectors

 

 

4

Sector 0

 

 

8

Sectors 0,1

 

 

> 8

Sectors 0,1, 2

 

 

4.3.1 Read-out Protection

Read-out protection, when selected, provides a protection against Program Memory content extraction and against write access to Flash memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller.

In Flash devices, this protection is removed by reprogramming the option. In this case, the entire program memory is first automatically erased and the device can be reprogrammed.

Read-out protection is enabled and removed through the FMP_R bit in the option byte.

Note: The LVD is not supported if read-out protection is enabled.

 

 

4K

 

 

8K

 

 

 

10K

 

 

16K

 

 

24K

 

 

32K

 

 

 

48K

 

 

60K

 

 

 

FLASH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MEMORY SIZE

1000h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECTOR 2

BFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D7FFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52 Kbytes

 

 

 

DFFFh

 

 

 

 

 

2 Kbytes

8 Kbytes

16 Kbytes

24 Kbytes

40 Kbytes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Kbytes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECTOR 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Kbytes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECTOR 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17/175

ST72321M6 ST72321M9

FLASH PROGRAM MEMORY (Cont’d)

4.4 ICC Interface

ICC needs a minimum of 4 and up to 6 pins to be connected to the programming tool (see Figure 5). These pins are:

RESET: device reset

VSS: device power supply ground

ICCCLK: ICC output serial clock pin

ICCDATA: ICC input/output serial data pin

ICCSEL/VPP: programming voltage

OSC1(or OSCIN): main clock input for external source (optional)

VDD: application board power supply (optional, see Figure 5, Note 3)

Figure 5. Typical ICC Interface

PROGRAMMING TOOL

ICC CONNECTOR

ICC Cable

APPLICATION BOARD

(See Note 3)

APPLICATION CL2

POWER SUPPLY

 

 

 

 

 

OSC2

V

 

DD

 

 

 

 

OPTIONAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(See Note 4)

 

9

 

7

 

5

 

3

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

8

 

6

 

4

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CL1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SS

ICCSEL/VPP

 

RESET

 

ICCCLK

 

ICCDATA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ST7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OSC1

V

 

 

 

ICC CONNECTOR

HE10 CONNECTOR TYPE

APPLICATION

RESET SOURCE

See Note 2

See Note 1

APPLICATION

I/O

Notes:

1.If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the Programming Tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to implemented in case another device forces the signal. Refer to the Programming Tool documentation for recommended resistor values.

2.During the ICC session, the programming tool must control the RESET pin. This can lead to conflicts between the programming tool and the application reset circuit if it drives more than 5mA at

high level (push pull output or pull-up resistor<1 kΩ). A schottky diode can be used to isolate the application RESET circuit in this case. When using a classical RC network with R>1 kΩ or

a reset management IC with open drain output and pull-up resistor>1 kΩ, no additional components are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session.

3.The use of Pin 7 of the ICC connector depends on the Programming Tool architecture. This pin must be connected when using most ST Programming Tools (it is used to monitor the application power supply). Please refer to the Programming Tool manual.

4.Pin 9 has to be connected to the OSC1 or OSCIN pin of the ST7 when the clock is not available in the application or if the selected clock option is not programmed in the option byte. ST7 devices with multi-oscillator capability need to have OSC2 grounded in this case.

18/175

ST72321M6 ST72321M9

FLASH PROGRAM MEMORY (Cont’d)

4.5 ICP (In-Circuit Programming)

To perform ICP the microcontroller must be switched to ICC (In-Circuit Communication) mode by an external controller or programming tool.

Depending on the ICP code downloaded in RAM, Flash memory programming can be fully customized (number of bytes to program, program locations, or selection serial communication interface for downloading).

When using an STMicroelectronics or third-party programming tool that supports ICP and the specific microcontroller device, the user needs only to implement the ICP hardware interface on the application board (see Figure 5). For more details on the pin locations, refer to the device pinout description.

4.6 IAP (In-Application Programming)

This mode uses a BootLoader program previously stored in Sector 0 by the user (in ICP mode or by plugging the device in a programming tool).

This mode is fully controlled by user software. This allows it to be adapted to the user application, (us- er-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored, etc.). For example, it is

possible to download code from the SPI, SCI, USB or CAN interface and program it in the Flash. IAP mode can be used to program any of the Flash sectors except Sector 0, which is write/erase protected to allow recovery in case errors occur during the programming operation.

4.7 Related Documentation

For details on Flash programming and ICC protocol, refer to the ST7 Flash Programming Reference Manual and to the ST7 ICC Protocol Reference Manual.

4.7.1 Register Description

FLASH CONTROL/STATUS REGISTER (FCSR)

Read/Write

Reset Value: 0000 0000 (00h)

7

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

0

0

0

0

0

0

0

0

 

 

 

 

 

 

 

 

This register is reserved for use by Programming Tool software. It controls the Flash programming and erasing operations.

Figure 6. Flash Control/Status Register Address and Reset Value

Address

Register

7

6

5

4

3

2

1

0

(Hex.)

Label

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0029h

FCSR

 

 

 

 

 

 

 

 

Reset Value

0

0

0

0

0

0

0

0

 

 

 

 

 

 

 

 

 

 

 

19/175

ST72321M6 ST72321M9

5 CENTRAL PROCESSING UNIT

5.1 INTRODUCTION

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.

5.2 MAIN FEATURES

Enable executing 63 basic instructions

Fast 8-bit by 8-bit multiply

17 main addressing modes (with indirect addressing mode)

Two 8-bit index registers

16-bit stack pointer

Low power HALT and WAIT modes

Priority maskable hardware interrupts

Non-maskable software/hardware interrupts

5.3 CPU REGISTERS

The six CPU registers shown in Figure 1 are not present in the memory mapping and are accessed by specific instructions.

Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.

Index Registers (X and Y)

These 8-bit registers are used to create effective addresses or as temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)

The Y register is not affected by the interrupt automatic procedures.

Program Counter (PC)

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).

Figure 7. CPU Registers

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACCUMULATOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET VALUE = XXh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X INDEX REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET VALUE = XXh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y INDEX REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET VALUE = XXh

 

 

 

 

 

 

 

 

 

PCH

8

 

 

 

7

 

 

PCL

 

0

 

 

PROGRAM COUNTER

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET VALUE = RESET VECTOR @ FFFEh-FFFFh

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

I1

H

I0

N

 

Z

C

 

CONDITION CODE REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET VALUE = 1

1

1 X

1 X

X

X

 

 

 

15

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

0

 

 

STACK POINTER

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET VALUE = STACK HIGHER ADDRESS

 

 

 

 

 

X = Undefined Value

20/175

ST72321M6 ST72321M9

CENTRAL PROCESSING UNIT (Cont’d)

Condition Code Register (CC)

Read/Write

Reset Value: 111x1xxx

7

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

1

1

I1

H

I0

N

Z

C

 

 

 

 

 

 

 

 

The 8-bit Condition Code register contains the interrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions.

These bits can be individually tested and/or controlled by specific instructions.

Arithmetic Management Bits

Bit 4 = H Half carry.

This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions.

0:No half carry has occurred.

1:A half carry has occurred.

This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.

Bit 2 = N Negative.

This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It’s a copy of the result 7th bit.

0:The result of the last operation is positive or null.

1:The result of the last operation is negative (that is, the most significant bit is a logic 1).

This bit is accessed by the JRMI and JRPL instructions.

21/175

Bit 1 = Z Zero.

This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero.

0:The result of the last operation is different from zero.

1:The result of the last operation is zero.

This bit is accessed by the JREQ and JRNE test instructions.

Bit 0 = C Carry/borrow.

This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation.

0:No overflow or underflow has occurred.

1:An overflow or underflow has occurred.

This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the “bit test and branch”, shift and rotate instructions.

Interrupt Management Bits

Bit 5,3 = I1, I0 Interrupt

The combination of the I1 and I0 bits gives the current interrupt software priority.

Interrupt Software Priority

I1

I0

 

 

 

 

Level 0

(main)

1

0

 

 

 

 

Level 1

 

0

1

 

 

 

 

Level 2

 

0

0

 

 

 

 

Level 3

(= interrupt disable)

1

1

 

 

 

 

These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (IxSPR). They can be also set/ cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.

See the interrupt management chapter for more details.

ST72321M6 ST72321M9

CENTRAL PROCESSING UNIT (Cont’d)

Stack Pointer (SP)

Read/Write

Reset Value: 01 FFh

15

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

0

0

0

0

0

0

0

1

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

SP7

SP6

SP5

SP4

SP3

SP2

SP1

SP0

 

 

 

 

 

 

 

 

The Stack Pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 2).

Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware. Following an MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address.

Figure 8. Stack Manipulation Example

The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD instruction.

Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow.

The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instructions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in Figure 2.

When an interrupt is received, the SP is decremented and the context is pushed on the stack.

On return from interrupt, the SP is incremented and the context is popped from the stack.

A subroutine call occupies two locations and an interrupt five locations in the stack area.

CALL

Interrupt

PUSH Y

POP Y

IRET

RET

Subroutine

Event

 

 

 

or RSP

@ 0100h

 

 

 

 

SP

 

SP

 

SP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

 

 

 

CC

 

 

 

CC

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

A

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

X

 

 

 

X

 

 

 

 

 

 

SP

 

 

 

 

PCH

 

 

 

PCH

 

 

 

PCH

SP

 

 

 

 

 

 

 

PCL

 

 

 

PCL

 

 

 

PCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCH

 

 

 

PCH

 

 

 

PCH

 

 

 

PCH

 

 

 

PCH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@ 01FFh PCL

 

 

 

PCL

 

 

 

PCL

 

 

 

PCL

 

 

 

PCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stack Higher Address = 01FFh

Stack Lower Address = 0100h

22/175

ST72321M6 ST72321M9

6 SUPPLY, RESET AND CLOCK MANAGEMENT

The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components. An overview is shown in Figure 10.

For more details, refer to dedicated parametric section.

Main features

Optional PLL for multiplying the frequency by 2 (not to be used with internal RC oscillator)

Reset Sequence Manager (RSM)

Multi-Oscillator Clock Management (MO)

5 Crystal/Ceramic resonator oscillators

1 Internal RC oscillator

System Integrity Management (SI)

Main supply Low voltage detection (LVD)

Auxiliary Voltage detector (AVD) with interrupt capability for monitoring the main supply or the EVD pin

6.1 PHASE LOCKED LOOP

If the clock frequency input to the PLL is in the range 2 to 4 MHz, the PLL can be used to multiply

the frequency by two to obtain an fOSC2 of 4 to 8 MHz. The PLL is enabled by option byte. If the PLL

is disabled, then fOSC2 = fOSC/2.

Caution: The PLL is not recommended for applications where timing accuracy is required. See “PLL Characteristics” on page 146.

Figure 9. PLL Block Diagram

fOSC

 

 

PLL x 2

 

0

 

fOSC2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/ 2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PLL OPTION BIT

Figure 10. Clock, Reset and Supply Block Diagram

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OSC2

 

 

 

 

MULTI-

fOSC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fOSC2

 

 

 

 

 

 

PLL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OSCILLATOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OSC1

 

 

 

 

(MO)

 

 

 

(option)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYSTEM INTEGRITY MANAGEMENT

 

 

 

 

 

 

 

RESET SEQUENCE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AVD Interrupt Request

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET

 

 

 

 

 

MANAGER

 

 

 

 

 

 

 

SICSR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(RSM)

 

 

 

 

 

 

 

 

 

 

AVD AVD AVD LVD

0 0 0

WDG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S IE F RF

 

 

 

 

 

 

RF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOW VOLTAGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DETECTOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(LVD)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUXILIARY VOLTAGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EVD

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

DETECTOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(AVD)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAIN CLOCK

fCPU

CONTROLLER

 

 

WITH REALTIME

 

 

 

 

CLOCK (MCC/RTC)

 

 

 

 

 

WATCHDOG

TIMER (WDG)

23/175

ST72321M6 ST72321M9

6.2 MULTI-OSCILLATOR (MO)

The main clock of the ST7 can be generated by three different source types coming from the multioscillator block:

an external source

4 crystal or ceramic resonator oscillators

an internal high frequency RC oscillator

Each oscillator is optimized for a given frequency range in terms of consumption and is selectable through the option byte. The associated hardware configurations are shown in Table 5. Refer to the electrical characteristics section for more details.

Caution: The OSC1 and/or OSC2 pins must not be left unconnected. For the purposes of Failure Mode and Effect Analysis, it should be noted that if the OSC1 and/or OSC2 pins are left unconnected, the ST7 main oscillator may start and, in this configuration, could generate an fOSC clock frequency in excess of the allowed maximum (>16 MHz.), putting the ST7 in an unsafe/undefined state. The product behaviour must therefore be considered undefined when the OSC pins are left unconnected.

External Clock Source

In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin while the OSC2 pin is tied to ground.

Crystal/Ceramic Oscillators

This family of oscillators has the advantage of producing a very accurate rate on the main clock of the ST7. The selection within a list of 4 oscillators with different frequency ranges has to be done by option byte in order to reduce consumption (refer to section 13.1 on page 167 for more details on the frequency ranges). In this mode of the multi-oscil- lator, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. The loading capacitance values must be adjusted according to the selected oscillator.

These oscillators are not stopped during the RESET phase to avoid losing time in the oscillator start-up phase.

Internal RC Oscillator

This oscillator allows a low cost solution for the main clock of the ST7 using only an internal resistor and capacitor. Internal RC oscillator mode has the drawback of a lower frequency accuracy and should not be used in applications that require accurate timing.

In this mode, the two oscillator pins have to be tied to ground.

Table 5. ST7 Clock Sources

 

Hardware Configuration

External Clock

ST7

 

OSC1

OSC2

EXTERNAL

 

 

SOURCE

 

Resonators

ST7

 

OSC1

OSC2

 

 

Crystal/Ceramic

CL1

CL2

LOAD

 

CAPACITORS

 

 

Internal RC Oscillator

ST7

 

OSC1

OSC2

 

 

24/175

ST72321M6 ST72321M9

6.3 RESET SEQUENCE MANAGER (RSM)

6.3.1 Introduction

The reset sequence manager includes three RESET sources as shown in Figure 12:

External RESET source pulse

Internal LVD RESET (Low Voltage Detection)

Internal WATCHDOG RESET

These sources act on the RESET pin and it is always kept low during the delay phase.

The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory map.

The basic RESET sequence consists of 3 phases as shown in Figure 11:

Active Phase depending on the RESET source

256 or 4096 CPU clock cycle delay (selected by option byte)

RESET vector fetch

The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilise and ensures that recovery has taken place from the Reset state. The shorter or longer clock cycle delay should be selected by option byte to correspond to the stabilization time of the external oscillator used in the application (see section 13.1 on page 167).

Figure 12. Reset Block Diagram

The RESET vector fetch phase duration is 2 clock cycles.

Figure 11. RESET Sequence Phases

RESET

Active Phase

INTERNAL RESET

FETCH

256 or 4096 CLOCK CYCLES

VECTOR

 

 

 

 

6.3.2 Asynchronous External RESET pin

The RESET pin is both an input and an open-drain output with integrated RON weak pull-up resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It can be pulled low by external circuitry to reset the device. See “CONTROL PIN CHARACTERISTICS” on page 154 for more details.

A RESET signal originating from an external

source must have a duration of at least th(RSTL)in in order to be recognized (see Figure 13). This de-

tection is asynchronous and therefore the MCU can enter reset state even in HALT mode.

 

 

 

 

 

 

 

 

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RON

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Filter

 

 

 

 

 

 

 

 

 

 

 

INTERNAL

 

RESET

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PULSE

 

 

 

WATCHDOG RESET

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GENERATOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LVD RESET

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25/175

ST72321M6 ST72321M9

RESET SEQUENCE MANAGER (Cont’d)

The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteristics section.

If the external RESET pulse is shorter than

tw(RSTL)out (see short ext. Reset in Figure 13), the signal on the RESET pin may be stretched. Other-

wise the delay will not be applied (see long ext. Reset in Figure 13). Starting from the external RESET pulse recognition, the device RESET pin acts as an output that is pulled low during at least

tw(RSTL)out.

6.3.3 External Power-On RESET

If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until VDD is over the minimum level specified for the selected fOSC frequency. (see “OPERATING CONDITIONS” on page 136)

Figure 13. RESET Sequences

A proper reset signal for a slow rising VDD supply can generally be provided by an external RC network connected to the RESET pin.

6.3.4 Internal Low Voltage Detector (LVD)

RESET

Two different RESET sequences caused by the internal LVD circuitry can be distinguished:

Power-On RESET

Voltage Drop RESET

The device RESET pin acts as an output that is pulled low when VDD<VIT+ (rising edge) or VDD<VIT- (falling edge) as shown in Figure 13.

The LVD filters spikes on VDD larger than tg(VDD) to avoid parasitic resets.

6.3.5 Internal Watchdog RESET

The RESET sequence generated by a internal Watchdog counter overflow is shown in Figure 13.

Starting from the Watchdog counter underflow, the device RESET pin acts as an output that is pulled low during at least tw(RSTL)out.

VDD

VIT+(LVD)

VIT-(LVD)

LVD

SHORT EXT.

RESET

RESET

RUN

RUN

ACTIVE

ACTIVE

PHASE

 

LONG EXT.

 

WATCHDOG

RESET

 

RESET

RUN

RUN

RUN

ACTIVE

 

ACTIVE

PHASE

 

PHASE

tw(RSTL)out

 

tw(RSTL)out

 

 

th(RSTL)in

 

th(RSTL)in

 

tw(RSTL)out

DELAY

EXTERNAL

RESET

SOURCE

RESET PIN

WATCHDOG

RESET

WATCHDOG UNDERFLOW

INTERNAL RESET (256 or 4096 TCPU)

VECTOR FETCH

26/175

ST72321M6 ST72321M9

6.4 SYSTEM INTEGRITY MANAGEMENT (SI)

The System Integrity Management block contains the Low Voltage Detector (LVD), and Auxiliary Voltage Detector (AVD) functions. It is managed by the SICSR register.

6.4.1 Low Voltage Detector (LVD)

The Low Voltage Detector function (LVD) generates a static reset when the VDD supply voltage is below a VIT- reference value. This means that it secures the power-up as well as the power-down keeping the ST7 in reset.

The VIT- reference value for a voltage drop is lower than the VIT+ reference value for power-on in order to avoid a parasitic reset when the MCU starts running and sinks current on the supply (hysteresis).

The LVD Reset circuitry generates a reset when VDD is below:

VIT+ when VDD is rising

VIT- when VDD is falling

The LVD function is illustrated in Figure 14.

The voltage threshold can be configured by option byte to be low, medium or high.

Provided the minimum VDD value (guaranteed for the oscillator frequency) is above VIT-, the MCU can only be in two modes:

under full software control

in static safe reset

In these conditions, secure operation is always ensured for the application without the need for external reset hardware.

During a Low Voltage Detector Reset, the RESET pin is held low, thus permitting the MCU to reset other devices.

Notes:

The LVD allows the device to be used without any external RESET circuitry.

If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range. Below 3.8 V, device operation is not guaranteed.

The LVD is an optional function which can be selected by option byte.

It is recommended to make sure that the VDD supply voltage rises monotonously when the device is exiting from Reset, to ensure the application functions properly.

Figure 14. Low Voltage Detector vs Reset

VDD

Vhys

VIT+

VIT-

RESET

27/175

ST72321M6 ST72321M9

SYSTEM INTEGRITY MANAGEMENT (Cont’d)

6.4.2 Auxiliary Voltage Detector (AVD)

The Voltage Detector function (AVD) is based on an analog comparison between a VIT-(AVD) and

VIT+(AVD) reference value and the VDD main supply or the external EVD pin voltage level (VEVD). The VIT- reference value for falling voltage is lower

than the VIT+ reference value for rising voltage in order to avoid parasitic detection (hysteresis).

The output of the AVD comparator is directly readable by the application software through a realtime status bit (AVDF) in the SICSR register. This bit is read only.

Caution: The AVD function is active only if the LVD is enabled through the option byte.

6.4.2.1 Monitoring the VDD Main Supply

This mode is selected by clearing the AVDS bit in the SICSR register.

The AVD voltage threshold value is relative to the selected LVD threshold configured by option byte (see section 13.1 on page 167).

If the AVD interrupt is enabled, an interrupt is gen-

erated when the voltage crosses the VIT+(AVD) or VIT-(AVD) threshold (AVDF bit toggles).

In the case of a drop in voltage, the AVD interrupt acts as an early warning, allowing software to shut down safely before the LVD resets the microcontroller. See Figure 15.

The interrupt on the rising edge is used to inform the application that the VDD warning state is over.

If the voltage rise time trv is less than 256 or 4096 CPU cycles (depending on the reset delay selected by option byte), no AVD interrupt will be generated when VIT+(AVD) is reached.

If trv is greater than 256 or 4096 cycles then:

– If the AVD interrupt is enabled before the

VIT+(AVD) threshold is reached, then 2 AVD interrupts will be received: the first when the AVDIE

bit is set, and the second when the threshold is reached.

If the AVD interrupt is enabled after the VIT+(AVD) threshold is reached then only one AVD interrupt will occur.

Figure 15. Using the AVD to Monitor VDD (AVDS bit=0)

VDD

 

Early Warning Interrupt

 

 

 

 

 

 

 

 

(Power has dropped, MCU

 

 

 

 

not yet in reset)

 

 

VIT+(AVD)

 

Vhyst

 

 

 

 

 

 

VIT-(AVD)

 

 

 

 

VIT+(LVD)

 

 

 

 

VIT-(LVD)

 

 

 

RISE TIME

AVDF bit

0

1

1

0

AVD INTERRUPT

 

 

 

 

REQUEST

 

 

 

 

IF AVDIE bit = 1

 

 

 

 

 

 

INTERRUPT PROCESS

 

INTERRUPT PROCESS

LVD RESET

 

 

 

 

28/175

 

 

 

 

ST72321M6 ST72321M9

SYSTEM INTEGRITY MANAGEMENT (Cont’d)

6.4.2.2 Monitoring a Voltage on the EVD pin

This mode is selected by setting the AVDS bit in the SICSR register.

The AVD circuitry can generate an interrupt when the AVDIE bit of the SICSR register is set. This interrupt is generated on the rising and falling edges

of the comparator output. This means it is generated when either one of these two events occur:

VEVD rises up to VIT+(EVD)

VEVD falls down to VIT-(EVD)

The EVD function is illustrated in Figure 16.

For more details, refer to the Electrical Characteristics section.

Figure 16. Using the Voltage Detector to Monitor the EVD pin (AVDS bit=1)

VEVD

Vhyst

VIT+(EVD)

VIT-(EVD)

AVDF

0

1

 

0

 

 

AVD INTERRUPT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REQUEST

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IF AVDIE = 1

 

 

 

 

INTERRUPT PROCESS

 

 

INTERRUPT PROCESS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29/175

ST72321M6 ST72321M9

SYSTEM INTEGRITY MANAGEMENT (Cont’d)

6.4.3 Low Power Modes

Mode

Description

 

 

WAIT

No effect on SI. AVD interrupts cause the

device to exit from Wait mode.

 

 

 

HALT

The CRSR register is frozen.

 

 

6.4.3.1 Interrupts

The AVD interrupt event generates an interrupt if the corresponding Enable Control Bit (AVDIE) is

30/175

set and the interrupt mask in the CC register is reset (RIM instruction).

Interrupt Event

Event

Enable

Exit

Exit

Flag

Control

from

from

 

Bit

Wait

Halt

 

 

 

 

 

 

 

AVD event

AVDF

AVDIE

Yes

No

 

 

 

 

 

Loading...
+ 145 hidden pages