ST ST72311R, ST72511R, ST72512R, ST72532R User Manual

查询ST722311R6T1供应商
ST72311R, ST72511R,
ST72512R, ST72532R
8-BIT MCU WITH NESTED INTERRUPTS, EEPROM, ADC,
16-BIT TIMERS, 8-BIT PWM ART, SPI, SCI, CAN INTERFACES
DATASHEET
Memories
(ROM,OTP and EPROM) with read-out protection
– 256 bytes E2PROM Data memory
(only on ST72532R4)
– 1024 to 2048 bytes RAM
Clock, Reset and Supply Management
– Enhanced reset system – Low voltage supply supervisor – Clock sources: crystal/ceramic resonator os-
cillator or external clock – Beep and Clock-out capability – 4 Power Saving Modes: Halt, Active-Halt,
Wait and Slow
Interrupt Management
– Nested interrupt controller – 13 interrupt vectors plus TRAP and RESET – 15 external interrupt lines (on 4 vectors) – TLI dedicated top level interrupt pin
48 I/O Ports
– 48 multifunctional bidirectional I/O lines – 32 alternate function lines – 12 high sink outputs
5 Timers
– Configurable watchdog timer – Real time clock timer – One 8-bit auto-reload timer with 4 independ-
ent PWM output channels, 2 input captures,
output compares and external clock with
event detector (except on ST725x2R4) – Two 16-bittimerswith:2 input captures, 2out-
put compares,external clock input on one tim-
er, PWM and Pulse generator modes
3 Communications Interfaces
– SPI synchronous serial interface – SCI asynchronous serial interface – CAN interface (except on ST72311Rx)
1 Analog peripheral
– 8-bit ADC with 8 input channels
Instruction Set
– 8-bit data manipulation – 63 basic instructions – 17 main addressing modes – 8 x 8 unsigned multiply instruction – True bit manipulation
Development Tools
– Full hardware/software development package
TQFP64
14 x 14
Device Summary
Features ST72511R9 ST72511R7 ST72511R6 ST72311R9 ST72311R7 ST72311R6 ST72512R4 ST72532R4
Program memory -bytes 60K 48K 32K 60K 48K 32K 16K 16K RAM (stack) - bytes 2048 (256) 1536 (256) 1024 (256) 2048 (256) 1536 (256) 1024 (256) 1024 (256) 1024 (256) EEPROM - bytes - - - ----256
Peripherals Operating Supply 3.0V to 5.5V 3.0 to 5.5V
CPU Frequency 2 to 8 MHz (with 4 to 16 MHz oscillator) 2 to 4 MHz Operating Temperature -40°C to +85°C (-40°C to +105/125°C optional) Packages TQFP64
Note 1. See Section 12.3.1 on page 133 for more information on VDDversus f
watchdog, two 16-bit timers, 8-bit PWM
ART, SPI,SCI, CAN, ADC
watchdog, two 16-bit timers, 8-bit PWM
ART, SPI, SCI, ADC
.
OSC
watchdog, two 16-bit timers,
SPI, SCI, CAN, ADC
1)
1)
Rev. 2.1
February 2000 1/164
1
Table of Contents
1 GENERAL DESCRIPTION . . . . . . ................................................ 6
1.1 INTRODUCTION . ....................................................... 6
1.2 PIN DESCRIPTION . . . . . . ................................................ 7
1.3 REGISTER & MEMORY MAP . . . . . . . . . . . . . . . .............................. 11
2 EPROM PROGRAM MEMORY . . . . . . . ........................................... 15
3 DATA EEPROM . . . . . . . . . .................................................... 16
3.1 INTRODUCTION . ...................................................... 16
3.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................... 16
3.3 MEMORY ACCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 17
3.4 POWER SAVING MODES . . . . . . ......................................... 18
3.5 ACCESS ERROR HANDLING . . . . . . . . . . . ................................. 18
3.6 REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 19
4 CENTRAL PROCESSING UNIT . . ............................................... 20
4.1 INTRODUCTION . ...................................................... 20
4.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................... 20
4.3 CPU REGISTERS . . . . . . . . . . . . . . . . . . . . . ................................. 20
5 SUPPLY, RESET AND CLOCK MANAGEMENT . . . . ................................23
5.1 LOW VOLTAGE DETECTOR (LVD) . . . . . . . . ................................24
5.2 RESET SEQUENCE MANAGER (RSM) . . . . . ................................25
5.2.1 Introduction . . . . . . . . . . . . ...........................................25
5.2.2 Asynchronous External RESET pin . . . .................................26
5.2.3 Internal Low Voltage Detection RESET . . . . . . . . . . . . . . . . . . . . . . ........... 26
5.2.4 Internal Watchdog RESET . . . ........................................ 26
5.3 LOW CONSUMPTION OSCILLATOR . . . . . .................................. 27
6 INTERRUPTS .. ............................................................. 28
6.1 INTRODUCTION . ...................................................... 28
6.2 MASKING AND PROCESSING FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 INTERRUPTS AND LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4 CONCURRENT & NESTED MANAGEMENT . . . . . . . . . . . . . .................... 30
6.5 INTERRUPT REGISTER DESCRIPTION . . . ................................. 31
7 POWER SAVING MODES . . . . . . . . . . ........................................... 34
7.1 INTRODUCTION . ...................................................... 34
7.2 SLOW MODE . . . . . . . . . . . . . . ...........................................34
7.3 WAIT MODE . . . . . . . . . . . ............................................... 35
7.4 ACTIVE-HALT AND HALT MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.4.1 ACTIVE-HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.4.2 HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................ 38
8.1 INTRODUCTION . ...................................................... 38
8.2 FUNCTIONAL DESCRIPTION . . . . ........................................38
8.2.1 Input Modes . . .................................................... 38
8.2.2 Output Modes . . . . . . . . . . . . . ........................................38
8.2.3 Alternate Functions . . . . . . ...........................................38
164
2/164
2
Table of Contents
8.3 I/O PORT IMPLEMENTATION . . . . ........................................41
8.4 LOW POWER MODES . . . . . . . . . . . . . . . . . ................................. 42
8.5 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . ................................. 42
8.5.1 Register Description . . . . . ........................................... 43
9 MISCELLANEOUS REGISTERS . . . . . . . . . . . . . . .................................. 45
9.1 I/O PORT INTERRUPT SENSITIVITY .. . . . . ................................45
9.2 I/O PORT ALTERNATE FUNCTIONS . . . . . ..................................45
9.3 MISCELLANEOUS REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10 ON-CHIPPERIPHERALS . . . . . . ............................................... 49
10.1 WATCHDOG TIMER (WDG) . . . . . . . . . . . . . . . . . . . ........................... 49
10.1.1 Introduction . . . . . . . . . . . . . . . ........................................ 49
10.1.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 49
10.1.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.1.4 Hardware Watchdog Option . . ........................................50
10.1.5 Low Power Modes .. ............................................... 50
10.1.6 Interrupts . . ....................................................... 50
10.1.7 Register Description . ............................................... 50
10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK TIMER (MCC/RTC) . . . . . . . 52
10.2.1 Programmable CPU Clock Prescaler . . . . . . . . . . . . . . . . . . . . ............... 52
10.2.2 Clock-out Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.2.3 Real Time Clock Timer (RTC) ........................................ 52
10.2.4 Register Description . ............................................... 53
10.2.5 Low Power Modes . . . . . . . . . ........................................53
10.2.6 Interrupts . . ....................................................... 53
10.3 PWM AUTO-RELOAD TIMER (ART) . . . . . . . ................................54
10.3.1 Introduction . . . . . . . . . . . . . . . ........................................ 54
10.3.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.3.3 Register Description . ............................................... 58
10.4 16-BIT TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 61
10.4.1 Introduction . . . . . . . . . . . . . . . ........................................ 61
10.4.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 61
10.4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.4.4 Low Power Modes . . . . . . . . . ........................................73
10.4.5 Interrupts . . . . . . . . . . . . . ...........................................73
10.4.6 Summary of Timer modes . . . . . . . . . . .................................73
10.4.7 Register Description . ............................................... 74
10.5 SERIAL PERIPHERAL INTERFACE (SPI) . .................................. 79
10.5.1 Introduction . . . . . . . . . . . . . . . ........................................ 79
10.5.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 79
10.5.3 Generaldescription . . . . . . . . . ........................................ 79
10.5.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.5.5 Low Power Modes .. ............................................... 88
10.5.6 Interrupts . . . . . . . . . . . . . ...........................................88
10.5.7 Register Description . ............................................... 89
3/164
3
ST72311R, ST72511R, ST72512R, ST72532R
10.6 SERIAL COMMUNICATIONS INTERFACE (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.6.1 Introduction . . . . . . . . . . . . . . . ........................................ 92
10.6.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 92
10.6.3 GeneralDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................... 92
10.6.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.6.5 Low Power Modes .. ............................................... 99
10.6.6 Interrupts . . ....................................................... 99
10.6.7 Register Description . ..............................................100
10.7 CONTROLLER AREA NETWORK (CAN) . . . ................................ 104
10.7.1 Introduction . . . . . . . . . . . . . . . ....................................... 104
10.7.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... 105
10.7.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.7.4 Register Description . ..............................................111
10.8 8-BIT A/D CONVERTER (ADC) .......................................... 121
10.8.1 Introduction . . . . . . . . . . . . . . . ....................................... 121
10.8.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... 121
10.8.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
10.8.4 Low Power Modes . . . . . . . . . .......................................122
10.8.5 Interrupts . . ...................................................... 122
10.8.6 Register Description . ..............................................123
11 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . ................................ 125
11.1 ST7 ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.1.1 Inherent.........................................................126
11.1.2 Immediate . . ..................................................... 126
11.1.3 Direct . . . . . . . . . . . . . . . . .......................................... 126
11.1.4 Indexed(No Offset, Short, Long) . . . . . . ............................... 126
11.1.5 Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . .......................... 126
11.1.6 Indirect Indexed (Short, Long) .......................................127
11.1.7 Relative mode (Direct, Indirect) . . . . . . ................................ 127
11.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . ............................. 128
12 ELECTRICAL CHARACTERISTICS . . . . ........................................ 131
12.1 PARAMETER CONDITIONS . . . . . . . . . . . . . . . . .............................131
12.1.1 Minimum and Maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
12.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . ...............................131
12.1.3 Typical curves . . . . . . . . . . . . . ....................................... 131
12.1.4 Loading capacitor . . . . . . . . . . .......................................131
12.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
12.2 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
12.2.1 Voltage Characteristics . . . . . . . . . . . . ................................ 132
12.2.2 Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
12.2.3 Thermal Characteristics . . . . . . . . . . . . . . . ............................. 132
12.3 OPERATING CONDITIONS . . . . . . . . . . ................................... 133
12.3.1 GeneralOperating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... 133
12.3.2 OperatingConditions with Low Voltage Detector (LVD) . . . . . . . . . . . . . ....... 134
12.4 SUPPLY CURRENT CHARACTERISTICS . . . ...............................135
12.4.1 RUN and SLOW Modes . . . . . . . . . . . . . . . . . . . . . . . . . ................... 135
12.4.2 WAIT and SLOW WAIT Modes .. . . . ................................. 136
4/164
ST72311R, ST72511R, ST72512R, ST72532R
12.4.3 HALT and ACTIVE-HALT Modes . . . . . ...............................137
12.4.4 Supply and Clock Managers . . . . . . ................................... 137
12.4.5 On-ChipPeripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12.5 CLOCK AND TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . ..........138
12.5.1 GeneralTimings . . . .............................................. 138
12.5.2 External Clock Source .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
12.5.3 Crystal and Ceramic Resonator Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
12.6 MEMORY CHARACTERISTICS . . . .......................................139
12.6.1 RAM and Hardware Registers . . . . . . . ................................ 139
12.6.2 EEPROM Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12.6.3 EPROM Program Memory . . . .......................................139
12.7 EMC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
12.7.1 Functional EMS . . . . . . . . . . . . . . . . . . ................................ 140
12.7.2 Absolute Electrical Sensitivity . .......................................141
12.7.3 ESD Pin Protection Strategy . . . . . . . . . ................................ 143
12.8 I/O PORT PIN CHARACTERISTICS .......................................145
12.8.1 GeneralCharacteristics .. . . . .......................................145
12.8.2 OutputDriving Current . . . . . . .......................................146
12.9 CONTROL PIN CHARACTERISTICS . . . . . ................................. 147
12.9.1 Asynchronous RESET Pin .......................................... 147
12.9.2 VPP Pin . . . . . . . . . . . . . . . . . . . . . . . . . ...............................147
12.10 TIMER PERIPHERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . ....... 148
12.10.1Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... 148
12.10.28-Bit PWM-ART Auto-Reload Timer . ................................. 148
12.10.316-Bit Timer . . . . . . . . . . . . . . . . . . . . . ................................ 148
12.11 COMMUNICATIONS INTERFACE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . 149
12.11.1SPI - Serial Peripheral Interface . . . . . . . . . . . . .......................... 149
12.11.2SCI - Serial Communications Interface . . . . . . . . . . . . . . . . . . . . . . ..........151
12.11.3CAN - Controller Area Network Interface . . . . . . . . . . . . ................... 151
12.12 8-BIT ADC CHARACTERISTICS .. . . . . . . ................................. 152
13 PACKAGE CHARACTERISTICS . . . . . . ........................................ 154
13.1 PACKAGE MECHANICAL DATA . . . . . . . . . . . . ............................. 154
13.2 THERMAL CHARACTERISTICS . . . . . . . . . . . ...............................155
13.3 SOLDERING AND GLUEABILITY INFORMATION . . . . . . . . . . . . . . . . . . . . . ....... 156
13.4 PACKAGE/SOCKET FOOTPRINT PROPOSAL . . . . . . . . . . . ................... 157
14 DEVICE CONFIGURATION AND ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . 158
14.1 OPTION BYTES . . . ...................................................158
14.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE . . . . 159
14.3 DEVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . .......................... 161
15 ST7 GENERIC APPLICATION NOTE . . . ....................................... 162
16 SUMMARY OF CHANGES . ..................................................163
5/164
ST72311R, ST72511R, ST72512R, ST72532R
1 GENERAL DESCRIPTION
1.1 INTRODUCTION
The ST72311R, ST72511R, ST72512R and ST72532R devices are members of the ST7 mi­crocontroller family. They can be grouped as fol­lows:
– ST725xxR devices are designed for mid-range
applications witha CAN bus interface(Controller Area Network)
– ST72311R devices target the same range of ap-
plications but without CAN interface.
All devices are based on a common industry­standard 8-bit core, featuringan enhancedinstruc­tion set.
Figure 1. Device Block Diagram
8-BIT CORE
ALU
RESET
V
PP
TLI
V
DD
V
SS
OSC1 OSC2
CONTROL
LVD
OSC
MCC/RTC
Under software control, all devices can be placed in WAIT, SLOW, ACTIVE-HALT or HALT mode, reducing power consumption when the application is in idle or standby state.
The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, allST7 micro­controllers feature true bit manipulation, 8x8 un­signed multiplication and indirect addressing modes.
PROGRAM
MEMORY
(16K - 60K Bytes)
RAM
(1024, 2048 Bytes)
EEPROM
(256 Bytes)
ADDRESS AND DATA BUS
WATCHDOG
6/164
4
PF7:0
(8-BIT)
PE7:0
(8-BIT)
PD7:0
(8-BIT)
V
DDA
V
SSA
PORT F
TIMER A
BEEP
PORT E
CAN
SCI
PORT D
8-BIT ADC
PORT A
PORT B
PWM ART
PORT C
TIMER B
SPI
PA7:0
(8-BIT)
PB7:0
(8-BIT)
PC7:0
(8-BIT)
1.2 PIN DESCRIPTION Figure 2. 64-Pin TQFP Package Pinout
ST72311R, ST72511R, ST72512R, ST72532R
(HS) PE4 (HS) PE5 (HS) PE6
(HS) PE7 PWM3 / PB0 PWM2 / PB1 PWM1 / PB2 PWM0 / PB3
ARTCLK / PB4
PB5 PB6 PB7
AIN0 / PD0 AIN1 / PD1
AIN2 / PD2 AIN3 / PD3
_2
DD
PE1 / RDI
PE0 / TDO
V
PE3 / CANRX
PE2 / CANTX
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
1
OSC1
OSC2
_2
SS
TLIncRESET
V
PP
V
PA7 (HS)
PA6 (HS)
2 3 4 5 6
ei2
7
ei0
8 9 10
ei3
11 12 13 14
DD_3
V
SS_3
V
ei1
MCO / PF0
BEEP / PF1
PF2
OCMP2_A / PF3
OCMP1_A / PF4
ICAP2_A / PF5
15 16
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
SSA
DDA
V
V
AIN4 / PD4
AIN5 / PD5
AIN6 / PD6
AIN7 / PD7
PA5 (HS)
ICAP1_A / (HS) PF6
PA4 (HS)
V
48
SS_1
V
47
DD_1
PA3
46
PA2
45
PA1
44
PA0
43
PC7 / SS
42
PC6 / SCK
41
PC5 / MOSI
40
PC4 / MISO
39
PC3 (HS) / ICAP1_B
38
PC2 (HS) / ICAP2_B
37
PC1 / OCMP1_B
36
PC0 / OCMP2_B
35
V
34
SS_0
V
33
DD_0
EXTCLK_A / (HS) PF7
(HS) 20mA high sink capability eix associated external interrupt vector
7/164
5
ST72311R, ST72511R, ST72512R, ST72532R
PIN DESCRIPTION (Cont’d)
For external pin connection guidelines, refer to Section 12 ”ELECTRICAL CHARACTERISTICS” on page
131. Legend / Abbreviations for Table 1: Type: I = input, O = output, S = supply Input level: A = Dedicated analog input In/Output level: C = CMOS 0.3VDD/0.7VDD,
CT= CMOS 0.3VDD/0.7VDDwith input trigger Output level: HS = 20mA high sink (on N-buffer only) Port and control configuration:
– Input: float = floating, wpu = weak pull-up, int = interrupt1), ana = analog
– Output: OD = open drain2), PP = push-pull Refer to Section 8 ”I/O PORTS” onpage 38 for more details on the software configuration of the I/O ports. The RESET configuration of each pin is shown in bold. This configuration is valid as long as the device is
in reset state.
Table 1. Device Pin Description
Pin n°
Pin Name
Level Port
Input Output
Type
TQFP64
Output
float
wpu
int
ana
OD
PP
Input
1 PE4 (HS) I/O CTHS X X X X Port E4 2 PE5 (HS) I/O C 3 PE6 (HS) I/O C 4 PE7 (HS) I/O C 5 PB0/PWM3 I/O C 6 PB1/PWM2 I/O C 7 PB2/PWM1 I/O C 8 PB3/PWM0 I/O C
9 PB4/ARTCLK I/O C 10 PB5 I/O C 11 PB6 I/O C 12 PB7 I/O C 13 PD0/AIN0 I/O C 14 PD1/AIN1 I/O C 15 PD2/AIN2 I/O C 16 PD3/AIN3 I/O C 17 PD4/AIN4 I/O C 18 PD5/AIN5 I/O C 19 PD6/AIN6 I/O C 20 PD7/AIN7 I/O C 21 V 22 V 23 V
DDA SSA DD_3
S Analog Power Supply Voltage S Analog Ground Voltage S Digital Main Supply Voltage
HS X X X X Port E5
T
HS X X X X Port E6
T
HS X X X X Port E7
T
X ei2 X X Port B0 PWM Output 3
T
X ei2 X X Port B1 PWM Output 2
T
X ei2 X X Port B2 PWM Output 1
T
X ei2 X X Port B3 PWM Output 0
T
X ei3 X X Port B4 PWM-ART External Clock
T
X ei3 X X Port B5
T
X ei3 X X Port B6
T
X ei3 X X Port B7
T
X X X X X Port D0 ADC Analog Input 0
T
X X X X X Port D1 ADC Analog Input 1
T
X X X X X Port D2 ADC Analog Input 2
T
X X X X X Port D3 ADC Analog Input 3
T
X X X X X Port D4 ADC Analog Input 4
T
X X X X X Port D5 ADC Analog Input 5
T
X X X X X Port D6 ADC Analog Input 6
T
X X X X X Port D7 ADC Analog Input 7
T
Main
function
(after
reset)
Alternate function
8/164
6
ST72311R, ST72511R, ST72512R, ST72532R
Pin n°
Pin Name
TQFP64
24 V
SS_3
25 PF0/MCO I/O C 26 PF1/BEEP I/O C 27 PF2 I/O C 28 PF3/OCMP2_A I/O C 29 PF4/OCMP1_A I/O C 30 PF5/ICAP2_A I/O C 31 PF6 (HS)/ICAP1_A I/O C 32 PF7 (HS)/EXTCLK_A I/O C 33 V
DD_0
34 V
SS_0
35 PC0/OCMP2_B I/O C 36 PC1/OCMP1_B I/O C 37 PC2 (HS)/ICAP2_B I/O C 38 PC3 (HS)/ICAP1_B I/O C 39 PC4/MISO I/O C 40 PC5/MOSI I/O C 41 PC6/SCK I/O C 42 PC7/SS I/O C 43 PA0 I/O C 44 PA1 I/O C 45 PA2 I/O C 46 PA3 I/O C 47 V
DD_1
48 V
SS_1
49 PA4 (HS) I/O C 50 PA5 (HS) I/O C 51 PA6 (HS) I/O C 52 PA7 (HS) I/O C
Level Port
Input Output
Type
Input
Output
float
wpu
int
ana
OD
PP
Main
function
(after
reset)
Alternate function
S Digital Ground Voltage
X ei1 X X Port F0 Main clock output (f
T
X ei1 X X Port F1 Beep signal output
T
X ei1 X X Port F2
T
X X X X Port F3 Timer A Output Compare 2
T
X X X X Port F4 Timer A Output Compare 1
T
X X X X Port F5 Timer A Input Capture 2
T
HS X X X X Port F6 Timer A Input Capture 1
T
HS X X X X Port F7 Timer A External Clock Source
T
S Digital Main Supply Voltage S Digital Ground Voltage
X X X X Port C0 Timer B Output Compare 2
T
X X X X Port C1 Timer B Output Compare 1
T
HS X X X X Port C2 Timer B Input Capture 2
T
HS X X X X Port C3 Timer B Input Capture 1
T
X X X X Port C4 SPI Master In / Slave Out Data
T
X X X X Port C5 SPI Master Out / Slave In Data
T
X X X X Port C6 SPI Serial Clock
T
X X X X Port C7 SPI Slave Select (active low)
T
X ei0 X X Port A0
T
X ei0 X X Port A1
T
X ei0 X X Port A2
T
X ei0 X X Port A3
T
S Digital Main Supply Voltage S Digital Ground Voltage
HS X X X X Port A4
T
HS X X X X Port A5
T
HS X T Port A6
T
HS X T Port A7
T
OSC
/2)
Must betied low in user mode. In programming
53 V
PP
I
mode when available, this pin acts as the pro­gramming voltage input V
PP
. 54 RESET I/O C X X Top priority nonmaskable interrupt (active low) 55 NC Not Connected 56 NMI I C 57 V
SS_3
58 OSC2
59 OSC1 60 V
DD_3
3)
3)
S Digital Ground Voltage
I/O
I
S Digital Main Supply Voltage
T
X Non maskable interrupt input pin
External clock mode input pull-up orcrystal/ce­ramic resonator oscillator inverter output
External clock input or crystal/ceramic resona­tor oscillator inverter input
9/164
ST72311R, ST72511R, ST72512R, ST72532R
Pin n°
Pin Name
TQFP64
61 PE0/TDO I/O C 62 PE1/RDI I/O C 63 PE2/CANTX I/O C 64 PE3/CANRX I/O C
Level Port
Input Output
Type
Input
Output
float
X X X X Port E0 SCI Transmit Data Out
T
X X X X Port E1 SCI Receive Data In
T T T
X Port E2 CAN Transmit Data Output
X X X X Port E3 CAN Receive Data Input
wpu
int
ana
OD
PP
Main
function
(after
reset)
Alternate function
Notes:
1. In the interrupt input column, “eiX” defines the associated external interrupt vector. If the weak pull-up column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input.
2. In the open drain output column, “T” defines a true open drain I/O (P-Buffer and protection diode to V are not implemented). See Section 8 ”I/O PORTS” on page 38 and Section 12.8 ”I/O PORT PIN CHAR-
DD
ACTERISTICS” on page 145 for more details.
3. OSC1and OSC2 pins connect acrystal/ceramic resonatoror an external sourceto theon-chip oscillator see Section 1.2 ”PIN DESCRIPTION” on page 7 and Section 12.5 ”CLOCK AND TIMING CHARACTER­ISTICS” on page 138 for more details.
10/164
1.3 REGISTER & MEMORY MAP
ST72311R, ST72511R, ST72512R, ST72532R
As shown in the Figure 3, the MCU is capable of addressing 64K bytes of memories and I/O regis­ters.
The available memory locations consist of 128 bytes of register location, up to 2Kbytes of RAM, up to 256 bytes of data EEPROM and up to
Figure 3. Memory Map
0000h
007Fh 0080h
087Fh 0880h
0BFFh 0C00h
0CFFh 0D00h
0FFFh
1000h
FFDFh FFE0h
FFFFh
HW Registers
(see Table 2)
1024 Bytes RAM 1536 Bytes RAM 2048 Bytes RAM
Reserved
Optional EEPROM
(256 Bytes)
Reserved
Program Memory
(60K, 48K, 32K, 16K Bytes)
Interrupt & Reset Vectors
(see Table 7 on page 32)
60Kbytes of user program memory. The RAM space includes up to 256 bytes for the stack from 0100h to 01FFh.
The highest address bytes contain the user reset and interrupt vectors.
0080h
00FFh
0100h
01FFh
0200h
047Fh or 067Fh or 087Fh
Short Addressing RAM (zero page)
Stack
(256 Bytes)
16-bit Addressing
RAM
1000h
60 KBytes
4000h
48 KBytes
8000h
32 KBytes
C000h
16 KBytes
FFFFh
11/164
ST72311R, ST72511R, ST72512R, ST72532R
Table 2. Hardware Register Map
Address Block
0000h 0001h
Port A
0002h
Register
Label
PADR PADDR PAOR
Register Name
Port A Data Register Port A Data Direction Register Port A Option Register
0003h Reserved Area (1 Byte) 0004h
0005h 0006h
Port C
PCDR PCDDR PCOR
Port C Data Register Port C Data Direction Register Port C Option Register
0007h Reserved Area (1 Byte)
0008h 0009h 000Ah
Port B
PBDR PBDDR PBOR
Port B Data Register Port B Data Direction Register Port B Option Register
000Bh Reserved Area (1 Byte)
000Ch 000Dh 000Eh
Port E
PEDR PEDDR PEOR
Port E Data Register Port E Data Direction Register Port E Option Register
000Fh Reserved Area (1 Byte) 0010h
0011h 0012h
Port D
PDDR PDDDR PDOR
Port D Data Register Port D Data Direction Register Port D Option Register
Reset
Status
00h
00h 00h
00h
00h 00h
00h
00h 00h
00h
00h 00h
00h
00h 00h
Remarks
1)
R/W R/W
2)
R/W
1)
R/W R/W R/W
1)
R/W R/W R/W
1)
R/W
2)
R/W
2)
R/W
1)
R/W R/W R/W
0013h Reserved Area (1 Byte)
0014h 0015h 0016h
Port F
PFDR PFDDR PFOR
Port F Data Register Port F Data Direction Register Port F Option Register
00h
00h 00h
1)
0017h
to
Reserved Area (9 Bytes)
001Fh 0020h MISCR1 Miscellaneous Register 1 00h R/W
0021h 0022h 0023h
0024h 0025h 0026h 0027h
SPI
ITC
SPIDR SPICR SPISR
ISPR0 ISPR1 ISPR2 ISPR3
SPI Data I/O Register SPI Control Register SPI Status Register
Interrupt Software Priority Register 0 Interrupt Software Priority Register 1 Interrupt Software Priority Register 2 Interrupt Software Priority Register 3
xxh 0xh 00h
FFh FFh FFh FFh
0028h Reserved Area (1 Byte)
0029h MCC MCCSR Main Clock Control / Status Register 01h R/W
12/164
R/W R/W R/W
R/W R/W Read Only
R/W R/W R/W R/W
ST72311R, ST72511R, ST72512R, ST72532R
Address Block
002Ah 002Bh
002Ch EEPROM EECSR Data EEPROM Control/Status Register 00h R/W
002Dh
to
0030h
0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 0039h 003Ah 003Bh 003Ch 003Dh 003Eh 003Fh
WATCHDOG
TIMER A
Register
Label
WDGCR WDGSR
TACR2 TACR1 TASR TAIC1HR TAIC1LR TAOC1HR TAOC1LR TACHR TACLR TAACHR TAACLR TAIC2HR TAIC2LR TAOC2HR TAOC2LR
Register Name
Watchdog Control Register Watchdog Status Register
Reserved Area (4 Bytes)
Timer A Control Register 2 Timer A Control Register 1 Timer A Status Register Timer A Input Capture 1 High Register Timer A Input Capture 1 Low Register Timer A Output Compare 1 High Register Timer A Output Compare 1 Low Register Timer A Counter High Register Timer A Counter Low Register Timer A Alternate Counter High Register Timer A Alternate Counter Low Register Timer A Input Capture 2 High Register Timer A Input Capture 2 Low Register Timer A Output Compare 2 High Register Timer A Output Compare 2 Low Register
Reset
Status
7Fh
000x 000x
00h 00h
xxh
xxh
xxh 80h 00h
FFh FCh FFh FCh
xxh
xxh 80h 00h
Remarks
R/W R/W
R/W R/W Read Only Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W
R/W 0040h MISCR2 Miscellaneous Register 2 00h R/W
0041h 0042h 0043h 0044h 0045h 0046h 0047h 0048h 0049h 004Ah 004Bh 004Ch 004Dh 004Eh 004Fh
0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h
TIMER B
SCI
TBCR2 TBCR1 TBSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBCHR TBCLR TBACHR TBACLR TBIC2HR TBIC2LR TBOC2HR TBOC2LR
SCISR SCIDR SCIBRR SCICR1 SCICR2 SCIERPR
SCIETPR
Timer B Control Register 2 Timer B Control Register 1 Timer B Status Register Timer B Input Capture 1 High Register Timer B Input Capture 1 Low Register Timer B Output Compare 1 High Register Timer B Output Compare 1 Low Register Timer B Counter High Register Timer B Counter Low Register Timer B Alternate Counter High Register Timer B Alternate Counter Low Register Timer B Input Capture 2 High Register Timer B Input Capture 2 Low Register Timer B Output Compare 2 High Register Timer B Output Compare 2 Low Register
SCI Status Register SCI Data Register SCI Baud Rate Register SCI Control Register 1 SCI Control Register 2 SCI Extended Receive Prescaler Register Reserved area SCI Extended Transmit Prescaler Register
00h 00h
xxh xxh
xxh 80h 00h
FFh FCh FFh FCh
xxh
xxh 80h 00h
C0h
xxh
00xx xxxx
xxh 00h 00h
00h
R/W R/W Read Only Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W
Read Only R/W R/W R/W R/W R/W
R/W
13/164
ST72311R, ST72511R, ST72512R, ST72532R
Address Block
0058h 0059h
005Ah 005Bh 005Ch 005Dh 005Eh 005Fh 0060h
to
006Fh
0070h 0071h
0072h 0073h 0074h 0075h 0076h
0077h 0078h 0079h
CAN
ADC
PWM ART
Register
Label
CANISR CANICR CANCSR CANBRPR CANBTR CANPSR
ADCDR ADCCSR
PWMDCR3 PWMDCR2 PWMDCR1 PWMDCR0 PWMCR
ARTCSR ARTCAR ARTARR
Register Name
Reserved Area (2 Bytes)
CAN Interrupt Status Register CAN Interrupt Control Register CAN Control / Status Register CAN Baud Rate Prescaler Register CAN Bit Timing Register CAN Page Selection Register First address to Last address of CAN page X
Data Register Control/Status Register
PWM AR Timer Duty Cycle Register 3 PWM AR Timer Duty Cycle Register 2 PWM AR Timer Duty Cycle Register 1 PWM AR Timer Duty Cycle Register 0 PWM AR Timer Control Register
Auto-Reload Timer Control/Status Register Auto-Reload Timer Counter Access Register Auto-Reload Timer Auto-Reload Register
Reset
Status
00h 00h 00h 00h 23h 00h
xxh 00h
00h 00h 00h 00h 00h
00h 00h 00h
Remarks
R/W R/W R/W R/W R/W R/W See CAN Description
Read Only R/W
R/W R/W R/W R/W R/W
R/W R/W R/W
007Ah
to
007Fh
Reserved Area (6 Bytes)
Legend: x=undefined, R/W=read/write Notes:
1. The contents of the I/O port DR registers are readable only in output configuration. In input configura­tion, the values of the I/O pins are returned instead of the DR register contents.
2. The bits associated with unavailable pins must always keep their reset value.
14/164
2 EPROM PROGRAM MEMORY
ST72311R, ST72511R, ST72512R, ST72532R
The program memory of the OTP and EPROM de­vices can be programmed with EPROM program­ming tools available from STMicroelectronics
EPROM Erasure
EPROM devices are erased by exposure to high intensity UV light admitted through the transparent window. This exposure discharges the floating gate to its initial state through induced photo cur­rent.
It is recommended that the EPROM devices be kept out of direct sunlight, since the UV content of
sunlight can be sufficient to cause functional fail­ure. Extended exposure to room level fluorescent lighting may also cause erasure.
An opaque coating (paint, tape, label, etc...) should be placed over the package window if the product is to be operated under these lighting con­ditions. Covering the window also reduces IDDin power-saving modes due to photo-diode leakage currents.
15/164
ST72311R, ST72511R, ST72512R, ST72532R
3 DATA EEPROM
3.1 INTRODUCTION
The Electrically Erasable Programmable Read Only Memory can be used as a non volatile back­up for storing data. Using theEEPROM requires a basic access protocol described in this chapter.
Figure 4. EEPROM Block Diagram
FALLING
EEPROM INTERRUPT
EECSR
DETECTOR
EEPROMRESERVED
IE LAT00000 PGM
3.2 MAIN FEATURES
Up to 16 Bytes programmed in the same cycle
EEPROM mono-voltage (charge pump)
Chained erase and programming cycles
Internal control of the global programming cycle
duration
End of programming cycle interrupt flag
WAIT mode management
EDGE
HIGH VOLTAGE
PUMP
ADDRESS
DECODER
ADDRESS BUS
4
ROW
DECODER
4
4
MEMORY MATRIX
(1 ROW = 16 x 8 BITS)
DATA
MULTIPLEXER
EEPROM
128128
16 x 8 BITS
DATA LATCHES
DATA BUS
16/164
DATA EEPROM (Cont’d)
ST72311R, ST72511R, ST72512R, ST72532R
3.3 MEMORY ACCESS
The Data EEPROM memory read/write access modes are controlled by the LAT bit of the EEP­ROM Control/Status register (EECSR). The flow­chart in Figure 5 describes these different memory access modes.
Read Operation (LAT=0)
The EEPROM can be read asa normal ROM loca­tion when the LAT bit of the EECSR register is cleared. In a read cycle, the byte to be accessed is put on the data bus in less than 1 CPU clock cycle. This means that reading data from EEPROM takes the same time as reading data from EPROM, but this memory cannot be used to exe­cute machine code.
Write Operation (LAT=1)
To access the write mode, the LAT bit has to be set by software (the PGM bit remains cleared). When a write access to the EEPROM area occurs, the value is latched inside the 16 data latches ac­cording to its address.
Figure 5. Data EEPROM Programming Flowchart
When PGM bit is set by the software, all the previ­ous bytes written in the data latches (up to 16) are programmed in the EEPROM cells. The effective high address (row) is determined by the last EEP­ROM write sequence. To avoid wrong program­ming, the user must take care that all the bytes written between two programming sequences have the same high address: only the four Least Significant Bits of the address can change.
At the end of the programming cycle, the PGM and LAT bits are cleared simultaneously, and an inter­rupt is generated if the IE bitis set. The Data EEP­ROM interrupt request is cleared by hardware when the Data EEPROM interrupt vector is fetched.
Note: Care should be taken during the program­ming cycle. Writing to the same memory location will over-program the memory (logical AND be­tween the two write access data result) because the data latches are only cleared at the end of the programming cycle and by the falling edge of LAT bit. It is not possible to read the latched data. This note is ilustrated by the Figure 6.
READ MODE
LAT=0
PGM=0
READ BYTES
IN EEPROM AREA
INTERRUPT GENERATION
IF IE=1 0 1
CLEARED BY HARDWARE
WRITE MODE
LAT=1
PGM=0
WRITE UP TO 16 BYTES
IN EEPROM AREA
(with the same 12 MSB of the address)
START PROGRAMMING CYCLE
LAT=1
PGM=1 (set by software)
LAT
17/164
ST72311R, ST72511R, ST72512R, ST72532R
DATA EEPROM (Cont’d)
3.4 POWER SAVING MODES Wait mode
The DATA EEPROM can enter WAIT mode on ex­ecution of the WFI instruction of the microcontrol­ler. The DATA EEPROM will immediately enter this mode if there is no programming in progress, otherwise the DATA EEPROM will finish the cycle and then enter WAIT mode.
Halt mode
The DATA EEPROM immediatly enters HALT mode if themicrocontroller executes the HALT in­struction. Therefore the EEPROM will stop the function in progress, and data may be corrupted.
Figure 6. Data EEPROM Programming Cycle
READ OPERATION NOT POSSIBLE
INTERNAL PROGRAMMING VOLTAGE
ERASE CYCLE WRITE CYCLE
WRITE OF
DATA LATCHES
3.5 ACCESS ERROR HANDLING
If a readaccess occurs while LAT=1, thenthe data bus will not be driven.
If a write access occurs while LAT=0, then the data on the bus will not be latched.
If a programming cycle is interrupted(by software/ RESET action), the memory data will not be guar­anteed.
READ OPERATION POSSIBLE
t
PROG
EEPROM INTERRUPT
LAT
PGM
18/164
DATA EEPROM (Cont’d)
ST72311R, ST72511R, ST72512R, ST72532R
3.6 REGISTER DESCRIPTION
Bit 1 = LAT
Latch Access Transfer
This bit is set by software. It is cleared by hard-
CONTROL/STATUS REGISTER (CSR)
Read/Write Reset Value: 0000 0000 (00h)
70
00000IELATPGM
ware at the end of the programming cycle. It can only be cleared by software if PGM bit is cleared. 0: Read mode 1: Write mode
Bit 0 = PGM
Programming control and status
Thisbitis set bysoftwaretobegin theprogramming cycle. At the end of the programming cycle, this bit isclearedbyhardwareandaninterruptisgenerated
Bit 7:3 = Reserved, forced by hardware to 0.
if the ITE bit is set. 0: Programming finished or not yet started
Bit 2 = IE
Interrupt enable
Thisbitisset andclearedby software. Itenablesthe Data EEPROM interrupt capability when the PGM bit is cleared byhardware. The interrupt request is
1: Programming cycle is in progress
Note: if the PGM bit is cleared during the program­ming cycle, the memory data is not guaranteed
automatically cleared when thesoftware enters the interrupt routine. 0: Interrupt disabled 1: Interrupt enabled
Table 3. DATA EEPROM Register Map and Reset Values
Address
(Hex.)
002Ch
Register
Label
EECSR
Reset Value
76543210
00000IE0
RWM
0
PGM
0
19/164
ST72311R, ST72511R, ST72512R, ST72532R
4 CENTRAL PROCESSING UNIT
4.1 INTRODUCTION
This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.
4.2 MAIN FEATURES
Enable executing 63 basic instructions
Fast 8-bit by 8-bit multiply
17 main addressing modes (with indirect
addressing mode)
Two 8-bit index registers
16-bit stack pointer
Low power HALT and WAIT modes
Priority maskable hardware interrupts
Non-maskable software/hardware interrupts
Figure 7. CPU Registers
4.3 CPU REGISTERS
The 6 CPU registers shown in Figure 7 are not present in the memory mapping andare accessed by specific instructions.
Accumulator (A)
The Accumulator is an 8-bit general purpose reg­ister used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.
Index Registers (X and Y)
These 8-bit registers are used to create effective addresses or as temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the fol­lowing instruction refers to the Y register.)
The Y register is not affected by theinterrupt auto­matic procedures.
Program Counter (PC)
The programcounter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program CounterLow which is the LSB) and PCH (Program Counter High which is the MSB).
70
RESET VALUE = XXh
70
RESET VALUE = XXh
70
RESET VALUE= XXh
PCH
RESET VALUE = RESET VECTOR @ FFFEh-FFFFh
RESET VALUE =
15
RESET VALUE = STACKHIGHER ADDRESS
715 8
70
1C1I1HI0NZ
1X11X1XX
87 0
PCL
0
ACCUMULATOR
X INDEX REGISTER
Y INDEX REGISTER
PROGRAM COUNTER
CONDITION CODE REGISTER
STACK POINTER
X = Undefined Value
20/164
ST72311R, ST72511R, ST72512R, ST72532R
CENTRAL PROCESSING UNIT (Cont’d) Condition Code Register (CC)
Read/Write Reset Value: 111x1xxx
70
11I1HI0NZ
C
The 8-bit Condition Code register contains the in­terrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP in­structions.
These bits can be individually tested and/or con­trolled by specific instructions.
Arithmetic management bits
Bit 4 = H
Half carry
.
This bit is set by hardware whena carry occurs be­tween bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions.
0: No half carry has occurred. 1: An half carry has occurred.
This bit is tested using the JRH or JRNH instruc­tion. The H bit is useful in BCD arithmetic subrou­tines.
Bit 2 = N
Negative
.
This bit is set and cleared by hardware. It is repre­sentative of the result sign of the last arithmetic, logical or data manipulation. It’s a copy of the re­sult 7thbit. 0: Theresult of the last operation ispositive or null. 1: The result of the last operation is negative
(i.e. the most significant bit is a logic 1).
This bit is accessed by the JRMI and JRPLinstruc­tions.
Bit 1 = Z
Zero
.
This bit is set and cleared by hardware. This bit in­dicates that the result of the last arithmetic, logical or data manipulation is zero. 0: The result of the last operation is different from
zero.
1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test
instructions. Bit 0 = C
Carry/borrow.
This bit is set and cleared by hardware and soft­ware. It indicates an overflow or an underflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred. 1: An overflow or underflow has occurred.
This bit is driven by the SCF and RCF instructions and tested by theJRC and JRNC instructions. It is also affected by the “bit test and branch”, shift and rotate instructions.
Interrupt management bits
Bit 5,3 = I1, I0
Interrupt.
The combination of the Iand I0 bits gives the cur­rent interrupt software priority.
Interrupt SoftwarePriority I1 I0
Level 0 (main) 1 0 Level 1 0 1 Level 2 0 0 Level 3 (= interrupt disable) 1 1
These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software pri­ority registers (IxSPR). They can be also set/ cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.
See the interrupt management chapter for more details.
21/164
ST72311R, ST72511R, ST72512R, ST72532R
CENTRAL PROCESSING UNIT (Cont’d) Stack Pointer (SP)
Read/Write Reset Value: 01 FFh
15 8
00000001
The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD in­struction.
Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stackupper limit, with­out indicating the stack overflow. The previously stored information is then overwritten and there­fore lost.The stack also wraps in caseof anunder­flow.
70
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0
The stack is used to save the return address dur­ing a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instruc-
The Stack Pointer is a 16-bit register which is al­ways pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 8).
Since the stack is 256 bytes deep, the 8 most sig­nificant bits are forced by hardware. Following an MCU Reset, or after a Reset Stack Pointer instruc­tion (RSP), the Stack Pointer contains its reset val­ue (the SP7 to SP0 bits are set) which is the stack
tions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in Figure 8
– When an interrupt is received, the SP is decre-
mented and the context is pushed on the stack.
– On return frominterrupt, the SP is incremented
and the context is popped from the stack.
A subroutine call occupies twolocations and an in­terrupt five locations in the stack area.
higher address.
Figure 8. Stack Manipulation Example
CALL
Subroutine
Interrupt
Event
PUSH Y POP Y IRET
RET
or RSP
@ 0100h
SP
@ 01FFh
SP
CC
A
X PCH PCL
PCH
PCL
Stack Higher Address = 01FFh Stack Lower Address =
PCH PCL
0100h
SP
Y
CC
A X
PCH
PCL
PCH
PCL
SP
CC
A X
PCH
PCL
PCH
PCL
SP
PCH PCL
SP
22/164
ST72311R, ST72511R, ST72512R, ST72532R
5 SUPPLY, RESET AND CLOCK MANAGEMENT
The ST72311R, ST72511R, ST72512R and ST72532R microcontrollers include a range of util­ity features for securing the application in critical situations (for example in case of a power brown­out), and reducing the number of external compo­nents. An overview is shown in Figure 9.
Main features
Main supply low voltage detection (LVD)
RESET Manager (RSM)
Low consumption resonator oscillator
Figure 9. Clock, RESET, Option and Supply Management Overview
OSC2
OSC1
RESET
V
DD
V
SS
OSCILLATOR
RESET
LOW VOLTAGE
DETECTOR
(LVD)
f
OSC
TO
MAIN CLOCK
CONTROLLER
FROM
WATCHDOG
PERIPHERAL
23/164
ST72311R, ST72511R, ST72512R, ST72532R
5.1 LOW VOLTAGE DETECTOR (LVD)
To allow the integration of power management features in theapplication, the Low Voltage Detec­tor function (LVD) generates a static reset when the VDDsupply voltage is below a V value. This means that it secures the power-up as
reference
IT-
well as the power-down keeping the ST7 in reset. The V
than the V
referencevalue for a voltage drop is lower
IT-
referencevalue for power-on in order
IT+
to avoida parasitic reset when theMCU starts run­ning and sinks current on the supply (hysteresis).
The LVD Reset circuitry generates a reset when VDDis below:
–V
when VDDis rising
IT+
–V
when VDDis falling
IT-
The LVD function is illustrated in Figure 10. Provided the minimum VDDvalue (guaranteed for
the oscillator frequency) is below V
, the MCU
IT-
can onlybe in two modes:
Figure 10. Low Voltage Detector vs Reset
V
DD
V
IT+
V
IT-
– under full software control – in static safe reset
In these conditions, secure operation is always en­sured for the application without the need for ex­ternal reset hardware.
During a Low Voltage Detector Reset, the RESET pin is held low, thus permitting the MCU to reset other devices.
Notes: The LVD allows the device to be used without any
external RESET circuitry. The LVD is an optional function which can be se-
lected whenordering the device (ordering informa­tion).
V
hys
RESET
24/164
5.2 RESET SEQUENCE MANAGER (RSM)
ST72311R, ST72511R, ST72512R, ST72532R
5.2.1 Introduction
The reset sequence manager includes three RE­SET sources as shown in Figure 12:
External RESET source pulse
Internal LVD RESET (Low Voltage Detection)
Internal WATCHDOG RESET
These sources act on the RESET pin and it is al­ways kept low during the delay phase.
The RESET service routine vector is fixed at ad­dresses FFFEh-FFFFh in the ST7 memory map.
The basic RESET sequence consists of 3 phases as shown in Figure11:
Delay depending on the RESET source
4096 CPU clock cycle delay
RESET vector fetch
Figure 12. Reset Block Diagram
V
RESET
DD
R
ON
f
CPU
The 4096 CPU clock cycle delay allows the oscil­lator to stabilise and ensures that recovery has taken place from the Reset state.
The RESET vector fetch phase duration is 2 clock cycles.
Figure 11. RESET Sequence Phases
RESET
DELAY
INTERNAL RESET
4096 CLOCKCYCLES
COUNTER
FETCH
VECTOR
INTERNAL RESET
WATCHDOG RESET
LVD RESET
25/164
ST72311R, ST72511R, ST72512R, ST72532R
RESET SEQUENCE MANAGER (Cont’d)
5.2.2 Asynchronous External RESET pin
The RESET pin is both an input andan open-drain output with integrated RONweak pull-up resistor. This pull-up has no fixed value but varies in ac­cordance with the input voltage. It can be pulled low by external circuitry to reset the device. See electrical characteristics section for more details.
A RESET signal originating from an external source must have a duration of atleast t
h(RSTL)in
in order to berecognized as shown in Figure 13. This detection is asynchronous and therefore the MCU can enterreset state even in HALT mode.
The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteris­tics section.
Figure 13. RESET Sequences
V
DD
V
IT+
V
IT-
5.2.3 Internal Low Voltage Detection RESET
Two different RESET sequences caused by the in­ternal LVD circuitry can be distinguished:
Power-On RESET
Voltage Drop RESET
The device RESET pin acts as an output that is pulled low when VDD<V VDD<V
(falling edge)as shown in Figure 13.
IT-
The LVD filters spikes on VDDlarger than t
(rising edge) or
IT+
g(VDD)
to
avoid parasitic resets.
5.2.4 Internal WatchdogRESET
The RESET sequence generated by a internal Watchdog counter overflow is shown in Figure 13.
Starting fromthe Watchdog counter underflow, the device RESET pin acts as an output that is pulled low during t
w(RSTL)out
.
CAUTION: this output signal as not enought ener­gy to be used to drive external devices.
WATCHDOG
RESET
EXTERNAL RESET SOURCE
RESET PIN
WATCHDOG RESET
RUN
LVD
RESET
DELAY
RUN
t
h(RSTL)in
SHORT EXT.
RESET
RUN
DELAY
WATCHDOG UNDERFLOW
RUN
DELAY
t
w(RSTL)out
INTERNAL RESET (4096T FETCH VECTOR
CPU
)
26/164
5.3 LOW CONSUMPTION OSCILLATOR
ST72311R, ST72511R, ST72512R, ST72532R
The f
main clock of the ST7 can be generated
OSC
by two different source types:
an external source
a crystal or ceramic resonator oscillators
The associated hardware configuration are shown in Table 4. Refer to the electrical characteristics section for more details.
External Clock Source
In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1pin while the OSC2 pinis tied to ground.
Crystal/Ceramic Oscillator
This oscillator (based on constant current source) is optimized in terms of consumption and has the advantage of producing a very accurate rate on the main clock of the ST7. When using this oscillator, the resonator and the load capacitances have to be connected as shown in Table 4 and have to be mounted as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time.
This oscillator is not stopped during the RESET phase to avoid losing time in the oscillator start-up phase.
These oscillators are not stopped during the RESET phase to avoid losing time in the oscillator start-up phase.
Table 4. ST7 Clock Sources
Hardware Configuration
ST7
ST7
LOAD
CAPACITORS
External ClockCrystal/Ceramic Resonators
OSC1 OSC2
EXTERNAL
SOURCE
OSC1 OSC2
C
L1
V
DD
R
OBP
C
L2
27/164
ST72311R, ST72511R, ST72512R, ST72532R
6 INTERRUPTS
6.1 INTRODUCTION
The ST7 enhanced interrupt management pro­vides the following features:
Hardware interrupts
Software interrupt (TRAP)
Nested or concurrent interrupt management
with flexible interrupt priority and level management:
– Up to 4 software programmable nesting levels – Up to 16 interrupt vectors fixed by hardware – 3 non maskable events: TLI, RESET, TRAP
This interrupt management is based on: – Bit 5 and bit 3 of the CPU CC register (I1:0), – Interrupt software priority registers (ISPRx), – Fixed interrupt vector addresses located at the
high addresses of the memory map (FFE0h to FFFFh) sorted by hardware priority order.
This enhanced interrupt controller guarantees full upward compatibility with the standard (not nest­ed) ST7 interrupt controller.
6.2 MASKING AND PROCESSING FLOW
The interrupt masking is managed by the I1and I0 bits of the CC register and the ISPRx registers which give the interrupt software priority level of each interrupt vector (see Table 5). The process­ing flow is shown in Figure 14
When an interrupt request has to be serviced: – Normal processing is suspended at the end of
the current instruction execution.
– The PC, X, A and CC registers are saved onto
the stack.
– I1 and I0 bits of CC register are set according to
the corresponding values in the ISPRx registers of the serviced interrupt vector.
– ThePC isthen loadedwith the interrupt vector of
the interrupt to service and the first instruction of the interrupt service routine is fetched (refer to “Interrupt Mapping” table for vector addresses).
The interrupt service routine should end with the IRET instruction which causes the contents of the saved registers to be recovered from the stack.
Note: As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack and the program in the previous level will resume.
Table 5. Interrupt Software Priority Levels
Interrupt software priority Level I1 I0
Level 0 (main) Low Level 1 0 1 Level 2 0 0 Level 3 (= interrupt disable) 1 1
High
10
Figure 14. Interrupt Processing Flowchart
RESET
RESTORE PC,X, A,CC
FROM STACK
28/164
PENDING
INTERRUPT
N
FETCH NEXT
INSTRUCTION
Y
“IRET”
EXECUTE
INSTRUCTION
Y
Interrupt has the same or a
lower software priority
than current one
THE INTERRUPT
STAYS PENDING
N
STACK PC, X, A, CC
LOAD I1:0 FROM INTERRUPT SW REG.
LOAD PC FROM INTERRUPT VECTOR
TLI
I1:0
software priority
Interrupt has a higher
Y
N
than current one
INTERRUPTS (Cont’d)
ST72311R, ST72511R, ST72512R, ST72532R
Servicing Pending Interrupts
As several interrupts can be pending at the same time, theinterrupt to be taken into account is deter­mined by the following two-step process:
– the highestsoftware priority interrupt is serviced, – if several interrupts have the same software pri-
ority thenthe interrupt with the highest hardware priority is serviced first.
Figure 15 describes this decision process.
Figure 15. Priority Decision Process
PENDING
INTERRUPTS
Same
HIGHESTHARDWARE PRIORITY SERVICED
SOFTWARE
PRIORITY
HIGHEST SOFTWARE PRIORITY SERVICED
Different
When an interrupt request is not serviced immedi­ately, it is latched and then processed when its software priority combined with the hardware pri­ority becomes the highest one.
Note 1: The hardware priority is exclusive while the software one is not. This allows the previous process to succeed with only one interrupt. Note 2: RESET, TRAP and TLI are non maskable and they can be considered as having the highest software priority in the decision process.
Different Interrupt Vector Sources
Two interrupt source types are managed by the ST7 interrupt controller: the non-maskable type (RESET, TLI, TRAP) and the maskable type (ex­ternal or from internal peripherals).
Non-Maskable Sources
These sources are processed regardless of the state of the I1 and I0 bits of the CC register (see Figure 14). After stacking the PC, X, A and CC registers (except for RESET), the corresponding vector is loaded in the PC register and the I1 and
I0 bits of the CC are set to disable interrupts (level
3). These sources allow the processor to exit HALT mode.
TLI (Top Level Hardware Interrupt)
This hardware interrupt occurs when a specific edge is detected on the dedicated TLI pin. Its de­tailed specification is given in the Miscellaneous register chapter.
TRAP (Non Maskable Software Interrupt)
This software interrupt is serviced when the TRAP instruction is executed. It will be serviced accord­ing to the flowchart on Figure 14 as a TLI.
RESET
The RESET source has the highest priority in the ST7. This means that the first current routine has the highest software priority (level 3) and thehigh­est hardware priority. See the RESET chapter for more details.
Maskable Sources
Maskable interrupt vector sourcescan be serviced if the corresponding interrupt is enabled and if its own interrupt software priority (in ISPRx registers) is higher than the one currently being serviced (I1 and I0 in CC register). If any of these two condi­tions is false, the interrupt is latched and thus re­mains pending.
External Interrupts
External interrupts allow the processor to exit from HALT low power mode. External interrupt sensitivity is softwareselectable through the Miscellaneous registers (MISCRx). External interrupt triggeredon edge will be latched and the interrupt request automatically cleared upon entering the interrupt service routine. If several input pins of a group connected to the same interrupt line are selected simultaneously, these will be logically ORed.
Peripheral Interrupts
Usually the peripheral interrupts cause the MCU to exit from HALT mode except those mentioned in the “Interrupt Mapping” table. A peripheral interrupt occurs when a specific flag is set in the peripheral status registers and if the corresponding enable bit is set in the peripheral control register. The general sequence for clearing an interrupt is based on an access to the status register followed by a read or write to an associated register. Note: The clearing sequence resets the internal latch. A pending interrupt (i.e. waiting for being serviced) will therefore be lost if the clear se­quence is executed.
29/164
ST72311R, ST72511R, ST72512R, ST72532R
INTERRUPTS (Cont’d)
6.3 INTERRUPTS AND LOW POWER MODES
All interrupts allow the processor to exit the WAIT low power mode. On the contrary, only external and other specified interrupts allow the processor to exit the HALT modes (see column “Exit from HALT” in“Interrupt Mapping” table). When several pending interrupts are present while exiting HALT mode, the first one serviced can only be an inter­rupt with exit from HALT mode capability and it is selected through the same decision process shown in Figure 15
Note: If an interrupt, that is not able to Exit from HALT mode, is pending with the highest priority when exiting HALT mode, this interrupt is serviced after the first one serviced.
Figure 16. Concurrent interrupt management
IT2
IT1
IT4
IT2
RIM
IT1
IT3
TLI
IT0
TLI
IT1
HARDWARE PRIORITY
MAIN
11 / 10
6.4 CONCURRENT & NESTED MANAGEMENT
The following Figure 16 and Figure 17 show two different interrupt management modes. The first is called concurrent mode and does not allow an in­terrupt to be interrupted, unlike the nested mode in Figure 17 The interrupt hardware priority is given in this order from the lowest to the highest: MAIN, IT4, IT3, IT2, IT1, IT0,TLI. The software priority is given for each interrupt.
Warning: A stack overflow may occur without no­tifying the software of the failure.
SOFTWARE PRIORITY LEVEL
IT0
IT3
IT4
MAIN
3 3 3 3 3 3 3/0
I1
11 11 11 11 11 11
10
I0
USED STACK = 10 BYTES
Figure 17. Nested interrupt management
IT2
IT1
HARDWARE PRIORITY
MAIN
IT4
IT1
IT2
RIM
TLI
IT3
TLI
IT4 IT4
11 / 10 10
30/164
IT0
IT0
IT3
IT1
SOFTWARE PRIORITY LEVEL
IT2
MAIN
I1 I0
3 3 2 1 3 3 3/0
11 11 00 01 11 11
USED STACK = 20 BYTES
Loading...
+ 134 hidden pages