Samsung M471B5273DH0-CH9 User Manual

Page 1
Rev. 1.4. Aug. 2011
M471B5773DH0 M471B5273DH0
204pin Unbuffered SODIMM
based on 2Gb D-die
78FBGA with Lead-Free & Halogen-Free (RoHS compliant)
datasheet
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other­wise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
2011 Samsung Electronics Co., Ltd. All rights reserved.
- 1 -
Page 2
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM
Revision History
Revision No. History Draft Date Remark Editor
1.0 - First Release Aug. 2010 - S.H.Kim
1.01 - Changed note comment on page. 27, 35 Aug. 2010 - S.H.Kim
1.1 - Corrected IDD current spec.(IDD7) Sep. 2010 - S.H.Kim
1.2 - Changed Input/Output capacitance on page 21. Sep. 2010 - S.H.Kim
1.3 - Changed 1866 speed bin table on page 26. Nov. 2010 - S.H.Kim
1.31 - Corrected typo. Dec. 2010 - S.H.Kim
1.32 - Corrected typo. May. 2011 - J.Y.Lee
1.33 - Corrected typo. Jul. 2011 - J.Y.Lee
1.4 - Changed timing parameters (Setup/Hold time) Aug. 2011 - J.Y.Lee
- 2 -
Page 3
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM
Table Of Contents
204pin Unbuffered SODIMM based on 2Gb D-die
1. DDR3 Unbuffered SODIMM Ordering Information........................................................................................................4
2. Key Features................................................................................................................................................................. 4
3. Address Configuration ..................................................................................................................................................4
4. x64 DIMM Pin Configurations (Front side/Back Side)...................................................................................................5
5. Pin Description ............................................................................................................................................................. 6
6. Input/Output Functional Description..............................................................................................................................7
7. Function Block Diagram:...............................................................................................................................................8
7.1 2GB, 256Mx64 Module (Populated as 1 rank of x8 DDR3 SDRAMs) ..................................................................... 8
7.2 4GB, 512Mx64 Module (Populated as 2 ranks of x8 DDR3 SDRAMs) ................................................................... 9
8. Absolute Maximum Ratings .......................................................................................................................................... 10
8.1 Absolute Maximum DC Ratings............................................................................................................................... 10
8.2 DRAM Component Operating Temperature Range ................................................................................................10
9. AC & DC Operating Conditions.....................................................................................................................................10
9.1 Recommended DC Operating Conditions (SSTL-15).............................................................................................. 10
10. AC & DC Input Measurement Levels ..........................................................................................................................11
10.1 AC & DC Logic Input Levels for Single-ended Signals.......................................................................................... 11
10.2 V
10.3 AC and DC Logic Input Levels for Differential Signals .......................................................................................... 13
10.3.1. Differential Signals Definition .........................................................................................................................13
10.3.2. Differential Swing Requirement for Clock (CK-CK
10.3.3. Single-ended Requirements for Differential Signals ...................................................................................... 14
10.3.4. Differential Input Cross Point Voltage ............................................................................................................ 15
10.4 Slew Rate Definition for Single Ended Input Signals .............................................................................................15
10.5 Slew rate definition for Differential Input Signals ...................................................................................................15
11. AC & DC Output Measurement Levels .......................................................................................................................16
11.1 Single Ended AC and DC Output Levels............................................................................................................... 16
11.2 Differential AC and DC Output Levels ................................................................................................................... 16
11.3 Single-ended Output Slew Rate ............................................................................................................................ 16
11.4 Differential Output Slew Rate ................................................................................................................................ 17
12. DIMM IDD specification definition ...............................................................................................................................18
13. IDD SPEC Table .........................................................................................................................................................20
14. Input/Output Capacitance ...........................................................................................................................................21
15. Electrical Characteristics and AC timing .....................................................................................................................22
15.1 Refresh Parameters by Device Density................................................................................................................. 22
15.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................ 22
15.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ................................................................. 22
15.3.1. Speed Bin Table Notes .................................................................................................................................. 27
16. Timing Parameters by Speed Grade ..........................................................................................................................28
16.1 Jitter Notes ............................................................................................................................................................ 34
16.2 Timing Parameter Notes........................................................................................................................................ 35
17. Physical Dimensions :.................................................................................................................................................36
17.1 256Mbx8 based 256Mx64 Module (1 Rank) - M471B5773DH0 ............................................................................ 36
17.2 256Mbx8 based 512Mx64 Module (2 Ranks) - M471B5273DH0 .......................................................................... 37
Tolerances.................................................................................................................................................... 12
REF
) and Strobe (DQS-DQS) ................................................ 13
- 3 -
Page 4
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM

1. DDR3 Unbuffered SODIMM Ordering Information

Part Number
M471B5773DH0-CF8/H9/K0/MA 2GB 256Mx64 256Mx8(K4B2G0846D-HC##)*8 1 30mm
M471B5273DH0-CF8/H9/K0/MA 4GB 512Mx64 256Mx8(K4B2G0846D-HC##)*16 2 30mm
NOTE :
1. "##" - F8/H9/K0/MA
2. F8 - 1066Mbps 7-7-7 / H9 - 1333Mbps 9-9-9 / K0 - 1600Mbps 11-11-11 / MA - 1866Mbps 13-13-13
- DDR3-1866(13-13-13) is backward compatible to DDR3-1600(11-11-11), DDR3-1333(9-9-9), DDR3-1066(7-7-7)
- DDR3-1600(11-11-11) is backward compatible to DDR3-1333(9-9-9), DDR3-1066(7-7-7)
- DDR3-1333(9-9-9) is backward compatible to DDR3-1066(7-7-7)
2
Density Organization Component Composition
Number of
Rank
Height

2. Key Features

Speed
tCK(min) 2.5 1.875 1.5 1.25 1.07 ns
CAS Latency 6 791113 tCK
tRCD(min) 15 13.125 13.5 13.75 13.91 ns
tRP(min) 15 13.125 13.5 13.75 13.91 ns
tRAS(min) 37.5 37.5 36 35 34 ns
tRC(min) 52.5 50.625 49.5 48.75 47.91 ns
• JEDEC standard 1.5V ± 0.075V Power Supply
•V
= 1.5V ± 0.075V
DDQ
• 400MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin, 800MHz fCK for 1600Mb/sec/pin, 933MHz fCK for 1866Mb/sec/pin
• 8 independent internal bank
• Programmable CAS Latency: 5,6,7,8,9,10,11,13
• Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock
• Programmable CAS Write Latency(CWL) = 5 (DDR3-800), 6 (DDR3-1066), 7 (DDR3-1333), 8 (DDR3-1600) and 9 (DDR3-1866)
• Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or
write [either On the fly using A12 or MRS]
• Bi-directional Differential Data Strobe
• On Die Termination using ODT pin
• Average Refresh Period 7.8us at lower then T
• Asynchronous Reset
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866
6-6-6 7-7-7 9-9-9 11-11 -11 13-13-13
85°C, 3.9us at 85°C < T
CASE
CASE
95°C
Unit

3. Address Configuration

Organization Row Address Column Address Bank Address Auto Precharge
256Mx8(2Gb) based Module A0-A14 A0-A9 BA0-BA2 A10/AP
- 4 -
Page 5
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM

4. x64 DIMM Pin Configurations (Front side/Back Side)

Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back
1
3
V
REFDQ
V
2
SS
4 DQ4 KEY 141 DQ34 142 DQ39
5 DQ0 6 DQ5 73 CKE0 74 CKE1
7DQ18
9
V
SS
10 DQS077 NC 78
11 DM0 12DQS079 BA2 80
13
V
SS
14
15 DQ2 16 DQ6 83 A12/BC
V
SS
71
V
SS
72
V
SS
139
143 DQ35 144
V
SS
V
SS
75
81
V
DD
V
DD
76
82
V
A15
A14
V
DD
DD
145
3
3
147
149
151
84 A11 153 DM5 154 DQS5
17 DQ3 18 DQ7 85 A9 86 A7 155
19
V
SS
20
V
SS
87
V
DD
88
V
DD
157 DQ42 158 DQ46
21 DQ8 22 DQ12 89 A8 90 A6 159 DQ43 160 DQ47
23 DQ9 24 DQ13 91 A5 92 A4 161
25
27 DQS
V
SS
26
1 28 DM1 95 A3 96 A2 165 DQ49 166 DQ53
29 DQS1 30 RESET
31
V
SS
32
V
SS
93
V
DD
94
V
DD
163 DQ48 164 DQ52
97 A1 98 A0 167
V
SS
99
V
DD
100
V
DD
169
33 DQ10 34 DQ14 101 CK0 102 CK1 171
35 DQ11 36 DQ15 103 CK0104CK1 173
37
V
SS
38
39 DQ16 40 DQ20
41 DQ17 42 DQ21
43
45 DQS
V
SS
44
246 DM2
47 DQS2 48
49
V
SS
50 DQ22 117
50 DQ18 52 DQ23
53 DQ19 54
55
V
SS
56 DQ28
57 DQ24 58 DQ29
59 DQ25 60
61
V
SS
62 DQS3 129 DQ32 130 DQ36 199
63 DM3 64 DQS3
65
V
SS
66
67 DQ26 68 DQ30
69 DQ27 70 DQ31
NOTE :
1. NC = No Connect, NU = Not Usable, RFU = Reserved Future Use
2. TEST(pin 125) is reserved for bus analysis probes and is NC on normal memory modules.
3. This address might be connected to NC balls of the DRAMs (depending on density); either way they will be connected to the termination resistor.
V
SS
105
107
109
V
SS
111
113
V
SS
115
119
V
SS
121
123
125 TEST 126
V
SS
127
131
V
SS
133
135
137
V
DD
106
V
DD
175 DQ50 176 DQ55
A10/AP 108 BA1 177 DQ51 178
BA0 110 RAS 179
V
DD
112
V
DD
181 DQ56 182 DQ61
WE 114 S0 183 DQ57 184
CAS 116 ODT0 185
V
A13
DD
118
3
120ODT1189
V
DD
187 DM7 188 DQS7
S1 122 NC 191 DQ58 192 DQ62
V
DD
V
SS
124
128
V
V
REFCA
V
DD
SS
193 DQ59 194 DQ63
195
197 SA0 198 NC
DQ33 132 DQ37 201 SA1 202 SCL
V
SS
134
V
SS
203
DQS4136 DM4
DQS4 138
V
SS
V
SS
140 DQ38
V
V
SS
146 DQ44
DQ40 148 DQ45
DQ41 150
V
SS
V
SS
V
SS
V
SS
DQS
DQS6
V
SS
6
152 DQS5
156
162
168
170
172
174 DQ54
V
V
V
V
DM6
V
V
V
SS
180 DQ60
V
V
V
V
V
DDSPD
V
SS
SS
SS
TT
186 DQS7
190
196
V
V
200 SDA
204
V
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
TT
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.
- 5 -
Page 6
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM

5. Pin Description

Pin Name Description Number Pin Name Description Number
CK0, CK1 Clock Inputs, positive line 2 DQ0-DQ63 Data Input/Output 64
CK
0, CK1 Clock Inputs, negative line 2 DM0-DM7
Data Masks/ Data strobes, Termination data strobes
CKE0, CKE1 Clock Enables 2 DQS0-DQS7 Data strobes 8
RAS
CAS
WE
S
0, S1 Chip Selects 2
A0-A9, A11,
A13-A15
A10/AP Address Input/Autoprecharge 1
A12/BC
BA0-BA2 SDRAM Bank Addresses 3
Row Address Strobe 1 DQS0-DQS7 Data strobes complement 8
Column Address Strobe 1 RESET Reset Pin 1
Write Enable 1 TEST
V
DD
Address Inputs 14
Address Input/Burst chop 1
V
V
REFDQ
V
REFCA
V
DDSPD
V
SS
TT
Logic Analyzer specific test pin (No connect on SODIMM)
Core and I/O Power 18
Ground 52
Input/Output Reference 2
SPD and Temp sensor Power 1
Termination Voltage 2
ODT0, ODT1 On-die termination control 2 NC Reserved for future use 3
SCL Serial Presence Detect (SPD) Clock Input 1 Total 204
SDA SPD Data Input/Output 1
SA0-SA1 SPD Address 2
NOTE:
*The V
DD
and V
pins are tied common to a single power-plane on these designs.
DDQ
8
1
- 6 -
Page 7
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM

6. Input/Output Functional Description

Symbol Ty pe Function
CK0-CK1
-CK1
CK0
CKE0-CKE1 Input
S
0-S1 Input
AS, CAS, WE Input
R
BA0-BA2 Input Selects which DDR3 SDRAM internal bank of eight is activated.
ODT0-ODT1 Input Asserts on-die termination for DQ, DM, DQS, and DQS signals if enabled via the DDR3 SDRAM mode register.
A0-A9,
A10/AP,
A11
A12/BC
A13-A15
DQ0-DQ63 I/O Data Input/Output pins.
DM0-DM7 Input
DQS0-DQS7 DQS
0-DQS7
V
DD,VDDSPD,
V
SS
V
REFDQ,
V
REFCA
SDA I/O
SCL Input This signal is used to clock data into and out of the SPD EEPROM and Temp sensor.
SA0-SA1 Input Address pins used to select the Serial Presence Detect and Temp sensor base address.
TEST I/O The TEST pin is reserved for bus analysis tools and is not connected on normal memory modules
RESET
Input
Input
I/O
Supply Power supplies for core, I/O, Serial Presence Detect, Temp sensor, and ground for the module.
Supply Reference voltage for SSTL15 inputs.
Input RESET In Active Low This signal resets the DDR3 SDRAM
The system clock inputs. All address and command lines are sampled on the cross point of the rising edge of CK and falling edge of CK. A Delay Locked Loop (DLL) circuit is driven from the clock inputs and output timing for read opera­tions is synchronized to the input clock.
Activates the DDR3 SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode or the Self Refresh mode.
Enables the associated DDR3 SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is selected by S
When sampled at the cross point of the rising edge of CK and falling edge of CK the operation to be executed by the SDRAM.
During a Bank Activate command cycle, defines the row address when sampled at the cross point of the rising edge of CK and falling edge of CK cross point of the rising edge of CK and falling edge of CK autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0­BAn defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA0-BAn to control which bank(s) to precharge. If AP is high, all banks will be pre­charged regardless of the state of BA0-BAn inputs. If AP is low, then BA0-BAn are used to define which bank to pre­charge.A12(BC performed (HIGH, no burst chop; LOW, burst chopped)
The data write masks, associated with one data byte. In Write mode, DM operates as a byte mask by allowing input data to be written if it is low but blocks the write operation if it is high. In Read mode, DM lines have no effect.
The data strobes, associated with one data byte, sourced with data transfers. In Write mode, the data strobe is sourced by the controller and is centered in the data window. In Read mode, the data strobe is sourced by the DDR3 SDRAMs and is sent at the leading edge of the data window. DQS the crosspoint of respective DQS and DQS
This is a bidirectional pin used to transfer data into or out of the SPD EEPROM and Temp sensor. A resistor must be connected from the SDA bus line to V
0; Rank 1 is selected by S1.
, signals CAS, RAS, and WE define
. During a Read or Write command cycle, defines the column address when sampled at the
. In addition to the column address, AP is used to invoke
) is sampled during READ and WRITE commands to determine if burst chop (on-the fly) will be
.
on the system planar to act as a pull up.
DDSPD
signals are complements, and timing is relative to
- 7 -
Page 8
Rev. 1.4
NOTE :
1. DQ wiring may differ from that shown how­ever ,DQ, DM, DQS and DQS
relationships
are maintained as shown
V
SS
V
DD
D0 - D7
V
REFCA
V
DDSPD
SPD
CK0
V
REFDQ
D0 - D7
D0 - D7
D0 - D7, SPD
V
tt
CK0
CK1
CK1
S1
V
tt
D0 - D7
D0 - D7
NC
V
tt
V4V3V2V1
D7D6D5D4
V
tt
V4V3V2V1
D3D2D1D0
Address and Controllines
A0 A1 A2
SA0 SA1
SCL
SDA
WP
SCL
(SPD)
S0
RAS
CASWECK0
CK0
CKE0
ODT0
A[0:N]
/BA[0:N]
DQS0 DQS0
DM0
DQS DQS
D0
CS
RAS
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
ZQ
DQ[0:7]
DM
240Ω
± 1%
DQ[0:7]
CS
RAS
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
DQS1 DQS1
DM1
DQS DQS
D4
ZQ
DQ[0:7]
DM
240Ω
± 1%
DQ[8:15]
DQS2 DQS
2
DM2
DQS DQS
D1
CS
RAS
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
ZQ
DQ[0:7]
DM
240
Ω
± 1%
DQ[16:23]
CS
RAS
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
DQS3 DQS
3
DM3
DQS DQS
D5
ZQ
DQ[0:7]
DM
240
Ω
± 1%
DQ[24:31]
DQS4 DQS4
DM4
DQS DQS
D2
CS
RAS
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
ZQ
DQ[0:7]
DM
240Ω
± 1%
DQ[32:39]
CS
RAS
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
DQS5 DQS5
DM5
DQS DQS
D6
ZQ
DQ[0:7]
DM
240Ω
± 1%
DQ[40:47]
DQS6 DQS6
DM6
DQS DQS
D3
CS
RAS
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
ZQ
DQ[0:7]
DM
240
Ω
± 1%
DQ[48:55]
CS
RAS
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
DQS7 DQS7
DM7
DQS DQS
D7
ZQ
DQ[0:7]
DM
240
Ω
± 1%
DQ[56:63]
Vtt
V
DD
Vtt
ODT1
NC
CKE1
NC
RESET
D0 - D7
Terminated near card edge
Rank0
Unbuffered SODIMM datasheet DDR3 SDRAM

7. Function Block Diagram:

7.1 2GB, 256Mx64 Module (Populated as 1 rank of x8 DDR3 SDRAMs)

- 8 -
Page 9
Rev. 1.4
S1
RAS
CASWECK1
CK1
CKE1
ODT1
A[0:N]
/BA[0:N]
S0
CK0
CK0
CKE0
ODT0
DQS3 DQS3
DM3
DQS DQS
D11
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
DQ[0:7]
DM
240Ω
± 1%
DQ[24:31]
D3
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
240Ω
± 1%
Vtt
V
DD
Vtt
Rank0
Rank1
V
SS
V
DD
D0 - D15
V
REFCA
V
DDSPD
SPD
CK0
V
REFDQ
D0 - D15
D0 - D15
D0 - D15, SPD
V
tt
CK1
CK0
CK1
RESET
V
tt
D8 - D15
D0 - D7
D0 - D7
D8 - D15
D0 - D7
DQS DQS
DQ[0:7]
DM
DQS1 DQS1
DM1
DQS DQS
D1
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
DQ[0:7]
DM
240
Ω
± 1%
DQ[8:15]
D9
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
240Ω
± 1%
DQS DQS
DQ[0:7]
DM
DQS0 DQS0
DM0
DQS DQS
D0
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
DQ[0:7]
DM
240Ω
± 1%
DQ[0:7]
D8
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
240Ω
± 1%
DQS DQS
DQ[0:7]
DM
DQS2 DQS2
DM2
DQS DQS
D2
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
DQ[0:7]
DM
240Ω
± 1%
DQ[16:23]
D10
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
240Ω
± 1%
DQS DQS
DQ[0:7]
DM
DQS DQS
D4
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
DQ[0:7]
DM
240Ω
± 1%
D12
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
240Ω
± 1%
DQS DQS
DQ[0:7]
DM
DQS DQS
D14
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
DQ[0:7]
DM
240
Ω
± 1%
D6
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
240Ω
± 1%
DQS DQS
DQ[0:7]
DM
DQS DQS
D15
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
DQ[0:7]
DM
240Ω
± 1%
D7
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
240Ω
± 1%
DQS DQS
DQ[0:7]
DM
DQS DQS
D13
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
DQ[0:7]
DM
240Ω
± 1%
D5
CS
RAS
CASWECKCKCKE
ODT
A[N:0]/BA[N:0]
ZQ
240Ω
± 1%
DQS DQS
DQ[0:7]
DM
DQS4 DQS4 DM4 DQ[32:39]
DQS6 DQS6 DM6 DQ[48:55]
DQS7 DQS7 DM7 DQ[56:63]
DQS5 DQS5 DM5 DQ[40:47]
V
DD
Vtt
A0 A1 A2
SA0 SA1
SCL
SDA
WP
SCL
(SPD)
V7
V8
V5
V6
V2
V3
D6D12D3D9
V
tt
Address and Controllines
D7D5D10D8
V1
V4
V9
V7
V6
V9
V8
V4
V3
D15D13D2D0
D14D4D11D1
V1
V2
V5
V1
NOTE :
1. DQ wiring may differ from that shown however ,DQ, DM, DQS and DQS
relationships are maintained as shown
Unbuffered SODIMM datasheet DDR3 SDRAM

7.2 4GB, 512Mx64 Module (Populated as 2 ranks of x8 DDR3 SDRAMs)

- 9 -
Page 10
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM

8. Absolute Maximum Ratings

8.1 Absolute Maximum DC Ratings

Symbol Parameter Rating Units NOTE
V
DD
V
Voltage on V
DDQ
V
NOTE :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and V
equal to or less than 300mV.
Voltage on any pin relative to V
IN, VOUT
T
Storage Temperature -55 to +100 °C 1, 2
STG
DDQ
Voltage on VDD pin relative to V
pin relative to V
DDQ
must be within 300mV of each other at all times;and V
SS
SS
SS
must be not greater than 0.6 x V
REF

8.2 DRAM Component Operating Temperature Range

Symbol Parameter rating Unit NOTE
T
OPER
NOTE :
1. Operating Temperature T JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be main­tained between 0-85°C under all operating conditions
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature
Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range.
is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document
OPER
Operating Temperature Range 0 to 95 °C 1, 2, 3
-0.4 V ~ 1.975 V V 1,3
-0.4 V ~ 1.975 V V 1,3
-0.4 V ~ 1.975 V V 1
, When VDD and V
DDQ
are less than 500mV; V
DDQ
REF
may be

9. AC & DC Operating Conditions

9.1 Recommended DC Operating Conditions (SSTL-15)

Symbol Parameter
V
DD
V
DDQ
NOTE:
1. Under all conditions V
2. V
tracks with VDD. AC parameters are measured with VDD and V
DDQ
Supply Voltage 1.425 1.5 1.575 V 1,2
Supply Voltage for Output 1.425 1.5 1.575 V 1,2
must be less than or equal to VDD.
DDQ
tied together.
DDQ
Min. Typ . Max.
Rating
Units NOTE
- 10 -
Page 11
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM

10. AC & DC Input Measurement Levels

10.1 AC & DC Logic Input Levels for Single-ended Signals

[ Table 1 ] Single-ended AC & DC input levels for Command and Address
Symbol Parameter
V
(DC100)
IH.CA
(DC100)
V
IL.CA
V
(AC175)
IH.CA
(AC175)
V
IL.CA
(AC150)
V
IH.CA
V
(AC150)
IL.CA
V
(AC135)
IH.CA
(AC135)
V
IL.CA
(AC125)
V
IH.CA
(AC125)
V
IL.CA
V
REFCA
NOTE :
1. For input only pins except RESET
2. See ’Overshoot/Undershoot Specification’ on page 18.
3. The AC peak noise on V
4. For reference : approx. V
5. V
(dc) is used as a simplified symbol for V
IH
6. V
(dc) is used as a simplified symbol for V
IL
7. V
(ac) is used as a simplified symbol for V
IH
(AC150) value is used when VREF + 150mV is referenced, V
, V
IH.CA
VREF + 125mV is referenced.
(ac) is used as a simplified symbol for V
8. V
IL
enced, V when V
REF
DC input logic high
DC input logic low
AC input logic high
AC input logic low Note 2
AC input logic high
AC input logic low Note 2
AC input logic high - -
AC input logic low - - Note 2
AC input logic high - -
AC input logic low - - Note 2
Reference Voltage for ADD,
(DC)
CMD inputs
, V
may not allow V
REF
/2 ± 15mV
DD
(AC150) value is used when V
IL.CA
- 125mV is referenced.
REF
= V
(DC)
REFCA
to deviate from V
REF
(DC100)
IH.CA
(DC100)
IL.CA
(AC175), V
IH.CA
(AC175) and V
IL.CA
- 150mV is referenced, V
REF
DDR3-800/1066/1333/1600 DDR3-1866
Min. Max. Min. Max.
V
+ 100 V
REF
V
SS
V
+ 175
REF
V
+150
REF
0.49*V
DD
(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
REF
(AC150), V
IH.CA
IL.CA
IH.CA
(AC135) value is used when VREF + 135mV is referenced and V
IH.CA
(AC150), V
DD
V
- 100 V
REF
Note 2 - - mV 1,2,7
V
- 175
REF
Note 2 - -
V
-150
REF
0.51*V
DD
(AC135) and V
(AC135) and V
IL.CA
(AC135) value is used when V
IL.CA
IH.CA
(AC125); V
(AC125); V
IL.CA
V
+ 100 V
REF
SS
--mV1,2,8
--
V
+ 135
REF
V
+125
REF
0.49*V
DD
(AC175) value is used when V
IH.CA
(AC175) value is used when V
IL.CA
- 135mV is referenced and V
REF
Unit NOTE
DD
V
- 100
REF
mV 1,5
mV 1,6
mV 1,2,7
mV 1,2,8
Note 2 mV 1,2,7
V
- 135
REF
Note 2
V
-125
REF
0.51*V
DD
REF
(AC125) value is used when
IH.CA
IL.CA
mV 1,2,8
mV 1,2,7
mV 1,2,8
V 3,4
+ 175mV is referenced
- 175mV is refer-
REF
(AC125) value is used
[ Table 2 ]
Single-ended AC & DC input levels for DQ and DM
Symbol Parameter
V
(DC100)
IH.DQ
V
(DC100)
IL.DQ
(AC175)
V
IH.DQ
(AC175)
V
IL.DQ
(AC150)
V
IH.DQ
(AC150)
V
IL.DQ
V
(AC135)
IH.DQ
(AC135)
V
IL.DQ
V
REF
DQ
NOTE :
1. For input only pins except RESET
2. See ’Overshoot/Undershoot Specification’ on page 18.
3. The AC peak noise on V
4. For reference : approx. V
(dc) is used as a simplified symbol for V
5. V
IH
6. V
(dc) is used as a simplified symbol for V
IL
(ac) is used as a simplified symbol for V
7. V
IH
V
(AC150) value is used when V
IH.DQ
(ac) is used as a simplified symbol for V
8. V
IL
V
- 150mV is referenced.
REF
DC input logic high
DC input logic low
AC input logic high
AC input logic low NOTE 2
AC input logic high
AC input logic low NOTE 2
AC input logic high - - - -
AC input logic low - - - - NOTE 2
Reference Voltage for DQ,
(DC)
DM inputs
, V
may not allow V
REF
/2 ± 15mV
DD
REF
= V
REF
(DC)
REFDQ
to deviate from V
REF
(DC100)
IH.DQ
(DC100)
IL.DQ
IH.DQ
+ 150mV is referenced.
(AC175), V
IL.DQ
DDR3-800/1066 DDR3-1333/1600 DDR3-1866
Min. Max. Min. Max. Min. Max.
V
+ 100 V
REF
V
SS
V
+ 175
REF
V
+ 150
REF
0.49*V
(AC175), V
IL.DQ
DD
V
- 100 V
REF
NOTE 2----mV1,2,7
V
- 175
REF
NOTE 2
V
- 150
REF
0.51*V
DD
(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
REF
(AC150) and V
IH.DQ
(AC150) ; V
IL.DQ
V
+ 100 V
REF
SS
V
----mV1,2,8
V
+ 150
REF
DD
V
0.51*V
IH.DQ
NOTE 2
0.49*V
DD
(AC135) ; V
IH.DQ
(AC175) value is used when V
V
DD
- 100 V
REF
+ 100 V
REF
SS
NOTE 2 - - mV 1,2,7
- 150
REF
DD
(AC175) value is used when V
- 175mV is referenced, V
REF
- - mV 1,2,8
V
+ 135
REF
0.49*V
DD
Unit NOTE
mV 1,5
mV 1,6
V
REF
DD
- 100
NOTE 2 mV 1,2,7
V
- 135
REF
0.51*V
+ 175mV is referenced,
REF
(AC150) value is used when
IL.DQ
DD
mV 1,2,8
V 3,4
- 11 -
Page 12
Rev. 1.4
voltage
V
DD
V
SS
time
Unbuffered SODIMM datasheet DDR3 SDRAM
10.2 V
Tolerances.
REF
The dc-tolerance limits and ac-noise limits for the reference voltages V
V
(t) as a function of time. (V
REF
V
(DC) is the linear average of V
REF
thermore V
(t) may temporarily deviate from V
REF
stands for V
REF
REF
REFCA
and V
REFDQ
likewise).
(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements of V
(DC) by no more than ± 1% VDD.
REF
REFCA
and V
are illustrate in Figure 1. It shows a valid reference voltage
REFDQ
REF
. Fur-
Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on V
" shall be understood as V
"V
REF
This clarifies, that dc-variations of V
which setup and hold is measured. System timing and voltage budgets need to account for V
(DC), as defined in Figure 1.
REF
affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
REF
(DC) deviations from the optimum position within the
REF
REF
.
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V
Timing and voltage effects due to ac-noise on V
up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
REF
ac-noise.
REF
- 12 -
Page 13
Rev. 1.4
0.0
tDVAC
V
IH
.DIFF.MIN
half cycle
Differential Input Voltage (i.e. DQS-DQS, CK-CK)
time
tDVAC
VIH.DIFF.AC.MIN
V
IL
.DIFF.MAX
V
IL
.DIFF.AC.MAX
Unbuffered SODIMM datasheet DDR3 SDRAM

10.3 AC and DC Logic Input Levels for Differential Signals

10.3.1 Differential Signals Definition

Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC

10.3.2 Differential Swing Requirement for Clock (CK-CK) and Strobe (DQS-DQS)

Symbol Parameter
V
IHdiff
V
ILdiff
V
(AC)
IHdiff
V
(AC)
ILdiff
NOTE :
1. Used to define a differential signal slew-rate.
2. for CK - CK
then the reduced level applies also here.
3. These values are not defined, however they single-ended signals CK, CK
nals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undershoot Specification"
use VIH/VIL(AC) of ADD/CMD and V
differential input high +0.2 NOTE 3 V 1
differential input low NOTE 3 -0.2 V 1
differential input high ac
2 x (VIH(AC) - V
differential input low ac NOTE 3
; for DQS - DQS use VIH/VIL(AC) of DQs and V
REFCA
[ Table 3 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS.
tDVAC [ps] @ |V
Slew Rate [V/ns]
> 4.0 75 - 175 - TBD - TBD -
4.0 57 - 170 - TBD - TBD -
= 350mV
min max min max min max min max
IH/Ldiff
(AC)|
tDVAC [ps] @ |V
3.0 50 - 167 - TBD - TBD -
2.0 38 - 163 - TBD - TBD -
1.8 34 - 162 - TBD - TBD -
1.6 29 - 161 - TBD - TBD -
1.4 22 - 159 - TBD - TBD -
1.2 13 - 155 - TBD - TBD -
1.0 0 - 150 - TBD - TBD -
< 1.0 0 - 150 - TBD - TBD -
DDR3-800/1066/1333/1600/1866
min max
)
REF
, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended sig-
IH/Ldiff
(AC)|
tDVAC [ps] @ |V
= 300mV
NOTE 3 V 2
2 x (VIL(AC) - V
; if a reduced ac-high or ac-low level is used for a signal group,
REFDQ
REF
IH/Ldiff
)
(AC)|
= 270mV
unit NOTE
tDVAC [ps] @ |V
V2
(AC)|
IH/Ldiff
= 250mV
- 13 -
Page 14
Rev. 1.4
VDD or V
DDQ
V
SEH
min
V
DD
/2 or V
DDQ
/2
V
SEL
max
V
SEH
VSS or V
SSQ
V
SEL
CK or DQS
time
Unbuffered SODIMM datasheet DDR3 SDRAM

10.3.3 Single-ended Requirements for Differential Signals

Each individual component of a differential signal (CK, DQS, CK, DQS) has also to comply with certain requirements for single-ended signals.
CK and CK
have to approximately reach V
half-cycle.
DQS, DQS
have to reach V
SEH
min / V
ing a valid transition.
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if V
signals, then these ac-levels apply also for the single-ended signals CK and CK
min / V
SEH
max (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle proceeding and follow-
SEL
max (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every
SEL
150(AC)/VIL150(AC) is used for ADD/CMD
IH
.
Figure 3. Single-ended requirement for differential signals
Note that while ADD/CMD and DQ signal requirements are with respect to V
with respect to V
ended components of differential signals the requirement to reach V
/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-
DD
SEL
, the single-ended components of differential signals have a requirement
REF
max, V
min has no bearing on timing, but adds a restriction on the common
SEH
mode characteristics of these signals.
[ Table 4 ] Single-ended levels for CK, DQS, CK, DQS
Symbol Parameter
V
SEH
V
SEL
NOTE :
1. For CK, CK
2. V
IH
reduced level applies also here
3. These values are not defined, however the single-ended signals CK, CK
nals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification"
use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS) use VIH/VIL(AC) of DQs.
(AC)/VIL(AC) for DQs is based on V
Single-ended high-level for strobes
Single-ended high-level for CK, CK
Single-ended low-level for strobes NOTE3
Single-ended low-level for CK, CK
; VIH(AC)/VIL(AC) for ADD/CMD is based on V
REFDQ
(V
(VDD/2)+0.175
, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended sig-
DDR3-800/1066/1333/1600/1866
Min Max
/2)+0.175
DD
NOTE3
; if a reduced ac-high or ac-low level is used for a signal group, then the
REFCA
Unit NOTE
NOTE3 V 1, 2
NOTE3 V 1, 2
/2)-0.175
(V
(V
DD
/2)-0.175
DD
V1, 2
V1, 2
- 14 -
Page 15
Rev. 1.4
V
DD
CK, DQS
VDD/2
CK, DQS
V
SS
V
IX
V
IX
V
IX
V
IHdiffmin
0
V
ILdiffmax
delta TRdiff
delta TFdiff
Unbuffered SODIMM datasheet DDR3 SDRAM

10.3.4 Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK
cross point of true and complement signal to the mid level between of V
[ Table 5 ] Cross point voltage for differential input signals (CK, DQS)
Symbol Parameter
V
IX
V
IX
NOTE :
1. Extended range for V
±250 mV, and the differential slew rate of CK-CK
2. The relation between V
(V
/2) + VIX(Min) - V
DD
- ((VDD/2) + VIX(Max)) 25mV
V
SEH
and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual
and VSS.
DD
Figure 4. VIX Definition
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS
is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing V
IX
Min/Max and V
IX
25mV
SEL
is larger than 3 V/ ns.
should satisfy following.
SEL/VSEH
DDR3-800/1066/1333/1600/1866
Min Max
-150 150 mV 2
-175 175 mV 1
-150 150 mV 2
SEL
/ V
Unit NOTE
of at least VDD/2
SEH

10.4 Slew Rate Definition for Single Ended Input Signals

See "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals. See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals.

10.5 Slew rate definition for Differential Input Signals

Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below.
[ Table 6 ] Differential input slew rate definition
Description
Differential input slew rate for rising edge (CK-CK
Differential input slew rate for falling edge (CK-CK
NOTE : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds
and DQS-DQS)
and DQS-DQS)
Figure 5. Differential input slew rate definition for DQS, DQS and CK, CK
Measured
From To
V
ILdiffmax
V
IHdiffmin
V
V
- 15 -
IHdiffmin
ILdiffmax
V
IHdiffmin
V
IHdiffmin
Defined by
- V
ILdiffmax
Delta TRdiff
- V
ILdiffmax
Delta TFdiff
Page 16
Rev. 1.4
V
OH(AC)
V
OL(AC)
delta TRsedelta TFse
VTT
Unbuffered SODIMM datasheet DDR3 SDRAM

11. AC & DC Output Measurement Levels

11.1 Single Ended AC and DC Output Levels

[ Table 7 ] Single Ended AC and DC output levels
Symbol Parameter DDR3-800/1066/1333/1600/1866 Units NOTE
(DC) DC output high measurement level (for IV curve linearity) 0.8 x V
V
OH
V
(DC) DC output mid measurement level (for IV curve linearity) 0.5 x V
OM
V
(DC) DC output low measurement level (for IV curve linearity) 0.2 x V
OL
V
(AC) AC output high measurement level (for output SR) VTT + 0.1 x V
OH
V
(AC) AC output low measurement level (for output SR) VTT - 0.1 x V
OL
NOTE : 1. The swing of +/-0.1 x V
load of 25Ω to V
TT=VDDQ
is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test
DDQ
/2.
DDQ
DDQ
DDQ
DDQ
DDQ

11.2 Differential AC and DC Output Levels

[ Table 8 ] Differential AC and DC output levels
Symbol Parameter DDR3-800/1066/1333/1600/1866 Units NOTE
(AC) AC differential output high measurement level (for output SR) +0.2 x V
V
OHdiff
V
(AC) AC differential output low measurement level (for output SR) -0.2 x V
OLdiff
NOTE : 1. The swing of +/-0.2xV
load of 25Ω to V
TT=VDDQ
is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test
DDQ
/2 at each of the differential outputs.
DDQ
DDQ
V
V
V
V1
V1
V1
V1

11.3 Single-ended Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in below.
[ Table 9 ] Single ended Output slew rate definition
Description
Single ended output slew rate for rising edge
Single ended output slew rate for falling edge
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 10 ] Single ended output slew rate
Parameter Symbol
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866
Min Max Min Max Min Max Min Max Min Max
Single ended output slew rate SRQse 2.5 5 2.5 5 2.5 5 2.5 5 2.5
Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output) se : Single-ended Signals
For Ron = RZQ/7 setting
NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.
- Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ
- Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the
signals in the same byte lane are static (i.e they stay at either high or low).
remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies.
Measured
From To
(AC) VOH(AC)
V
OL
V
(AC) VOL(AC)
OH
Defined by
(AC)-VOL(AC)
V
OH
Delta TRse
(AC)-VOL(AC)
V
OH
Delta TFse
Units
1)
5
V/ns
Figure 6. Single-ended Output Slew Rate Definition
- 16 -
Page 17
Rev. 1.4
V
OHdiff
(AC)
V
OLdiff
(AC)
delta TRdiffdelta TFdiff
VTT
Unbuffered SODIMM datasheet DDR3 SDRAM

11.4 Differential Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V
(AC) for differential signals as shown in below.
diff
OLdiff
(AC) and V
[ Table 11 ] Differential Output slew rate definition
Description
Differential output slew rate for rising edge
Differential output slew rate for falling edge
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
V
V
Measured
From To
(AC) V
OLdiff
(AC) V
OHdiff
OHdiff
OLdiff
(AC)
(AC)
V
V
OHdiff
OHdiff
Defined by
(AC)-V
OLdiff
Delta TRdiff
(AC)-V
OLdiff
Delta TFdiff
(AC)
(AC)
[ Table 12 ] Differential Output slew rate
Parameter Symbol
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866
Min Max Min Max Min Max Min Max Min Max
Units
Differential output slew rate SRQdiff 5 10 5 10 5 10 5 10 5 12 V/ns
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)
diff : Differential Signals For Ron = RZQ/7 setting
OH-
Figure 7. Differential output slew rate definition
- 17 -
Page 18
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM

12. DIMM IDD specification definition

Symbol Description
IDD0
IDD1
IDD2N
IDD2P0
IDD2P1
IDD2Q
IDD3N
IDD3P
IDD4R
IDD4W
IDD5B
IDD6
IDD6ET
IDD7
IDD8
Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: Refer to Component Datasheet for detail pattern ; BL: 8
Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time:
0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers
2)
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pat-
tern
Operating One Bank Active-Read-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: Refer to Component Datasheet for detail pattern ; BL: 8
and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers
2)
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pat-
tern
Precharge Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8 Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode
2)
Registers
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
Precharge Power-Down Current Slow Exit
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8 Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exit
3)
Precharge Power-Down Current Fast Exit
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8 Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit
3)
Precharge Quiet Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ODT Signal: stable at 0
Active Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode
2)
Registers
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
Active Power-Down Current CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers Signal: stable at 0
Operating Burst Read Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
1)
; AL: 0; CS: High between RD; Command, Address,
Bank Address Inputs: partially toggling ; Data IO: seamless read data burst with different data between one burst and the next one ; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers
at 0; Pattern Details: Refer to Component Datasheet for detail pattern
Operating Burst Write Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
1)
; AL: 0; CS: High between WR; Command, Address,
Bank Address Inputs: partially toggling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers
; Pattern Details: Refer to Component Datasheet for detail pattern
at HIGH
Burst Refresh Current
CKE: High; External clock: On; tCK, CL, nRFC: Refer to Component Datasheet for detail pattern ; BL: 8 Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC ; Output Buffer and
RTT: Enabled in Mode Registers
Self Refresh Current: Normal Temperature Range
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 8
Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
Self-Refresh Current: Extended Temperature Range (optional)
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Extended5); CKE: Low; External clock: Off; CK and CK:
LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 8
2)
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
4)
; Self-Refresh Temperature Range (SRT): Normal5); CKE: Low; External clock: Off; CK and CK:
1)
; AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0;
6)
1)
; AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0;
2)
; ODT Signal: FLOATING
Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
Operating Bank Interleave Read Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: Refer to Component Datasheet for detail pattern ; BL: 8
between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and the next one ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing ; Output Buffer and RTT:
Enabled in Mode Registers
2)
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
RESET Low Current RESET : Low; External clock : off; CK and CK
: LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal :
FLOATING
1)
; AL: 0; CS: High between ACT and PRE;
1)
; AL: 0; CS: High between ACT, RD
2)
; ODT Signal: stable
2)
; ODT Signal: stable
1)
; AL: 0; CS: High between REF; Command,
2)
; ODT Signal: FLOATING
1)
; AL: CL-1; CS: High
2)
; ODT
2)
;
2)
;
2)
;
- 18 -
Page 19
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM
NOTE :
1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit
4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range
6) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device
7) IDD current measure method and detail patterns are described on DDR3 component datasheet
8) VDD and VDDQ are merged on module PCB.
9) DIMM IDD SPEC is measured with Qoff condition
(IDDQ values are not considered)
- 19 -
Page 20
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM

13. IDD SPEC Table

M471B5773DH0 : 2GB (256Mx64) Module
Symbol
IDD0 280 320 360 400 mA
IDD1 360 400 440 480 mA
IDD2P0(slow exit) 96 96 96 96 mA
IDD2P1(fast exit) 120 120 120 136 mA
IDD2N 136 160 160 160 mA
IDD2Q 136 160 160 160 mA
IDD3P 136 136 160 160 mA
IDD3N 240 280 280 296 mA
IDD4R 520 600 720 800 mA
IDD4W 560 640 760 880 mA
IDD5B 880 920 960 960 mA
IDD6 96 96 96 96 mA
IDD7 840 1080 1120 1160 mA
IDD8 96 96 96 96 mA
(DDR3-1066@CL=7)
CF8
CH9
(DDR3-1333@CL=9)
CK0
(DDR3-1600@CL=11)
CMA
(DDR3-1866@CL=13)
Unit NOTE
M471B5273DH0 : 4GB (512Mx64) Module
Symbol
IDD0 416 480 520 560 mA 1
IDD1 496 560 600 640 mA 1
IDD2P0(slow exit) 192 192 192 192 mA
IDD2P1(fast exit) 240 240 240 272 mA
IDD2N 272 320 320 320 mA
IDD2Q 272 320 320 320 mA
IDD3P 272 272 320 320 mA
IDD3N 376 440 440 456 mA
IDD4R 656 760 880 960 mA 1
IDD4W 696 800 920 1040 mA 1
IDD5B 1016 1080 1120 1120 mA 1
IDD6 192 192 192 192 mA
IDD7 976 1240 1280 1320 mA 1
IDD8 192 192 192 192 mA
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
(DDR3-1066@CL=7)
CF8
CH9
(DDR3-1333@CL=9)
CK0
(DDR3-1600@CL=11)
CMA
(DDR3-1866@CL=13)
Unit NOTE
- 20 -
Page 21
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM

14. Input/Output Capacitance

[ Table 13 ] Input/Output Capacitance
Parameter Symbol
Input/output capacitance (DQ, DM, DQS, DQS
, TDQS, TDQS)
Input capacitance (CK and CK)
Input capacitance delta (CK and CK)
Input capacitance (All other input-only pins)
Input capacitance delta (DQS and DQS)
Input capacitance delta (All control input-only pins)
Input capacitance delta (all ADD and CMD input-only pins)
Input/output capacitance delta (DQ, DM, DQS, DQS
, TDQS, TDQS)
CIO 1.5 3.0 1.5 2.7 1.5 2.5 1.5 2.3 1.4 2.2 pF 1,2,3
CCK 0.8 1.6 0.8 1.6 0.8 1.4 0.8 1.4 0.8 1.3 pF 2,3
CDCK 0 0.15 0 0.15 0 0.15 0 0.15 0 0.15 pF 2,3,4
CI 0.75 1.5 0.75 1.5 0.75 1.3 0.75 1.3 0.75 1.2 pF 2,3,6
CDDQS 0 0.2 0 0.2 0 0.15 0 0.15 0 0.15 pF 2,3,5
CDI_CTRL -0.5 0.3 -0.5 0.3 -0.4 0.2 -0.4 0.2 -0.4 0.2 pF 2,3,7,8
CDI_ADD_CMD -0.5 0.5 -0.5 0.5 -0.4 0.4 -0.4 0.4 -0.4 0.4 pF 2,3,9,10
CDIO -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 pF 2,3,11
Input/output capacitance of ZQ pin CZQ - 3 - 3 - 3 - 3 - 3 pF 2, 3, 12
NOTE : This parameter is Component Input/Output Capacitance so that is different from Module level Capacitance.
1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS
2. This parameter is not subject to production test. It is verified by design and characterization.
The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with
V
, V
, VSS, V
DD
DDQ
termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of CCK-CCK
5. Absolute value of CIO(DQS)-CIO(DQS)
6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.
7. CDI_CTRL applies to ODT, CS and CKE
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))
9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS))
12. Maximum external load capacitance on ZQ pin: 5pF
applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=V
SSQ
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866
Min Max Min Max Min Max Min Max Min Max
=1.5V, V
DDQ
BIAS=VDD
Units NOTE
/2 and on-die
- 21 -
Page 22
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM

15. Electrical Characteristics and AC timing

(0 °C<T

15.1 Refresh Parameters by Device Density

All Bank Refresh to active/refresh cmd time tRFC 110 160 260 350 ns
Average periodic refresh interval tREFI
NOTE :
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this material.

15.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin

Speed DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866
Parameter min min min min min
CL 6 7 91113tCK
tRCD 15 13.13 13.5 13.75 13.91 ns
tRP 15 13.13 13.5 13.75 13.91 ns
tRAS 37.5 37.5 36 35 34 ns
tRC 52.5 50.63 49.5 48.75 47.91 ns
tRRD 10 7.5 6.0 6.0 5.0 ns
tFAW 40 37.5 30 30 27 ns
95 °C, V
CASE
Parameter Symbol 1Gb 2Gb 4Gb 8Gb Units NOTE
= 1.5V ± 0.075V; VDD = 1.5V ± 0.075V)
DDQ
0 °CT
CASE
85 °C < T
CASE
85°C
95°C
7.8 7.8 7.8 7.8 μs
3.9 3.9 3.9 3.9 μs 1
Units NOTEBin (CL - tRCD - tRP) 6-6-6 7-7-7 9-9-9 11- 11-11 13-13-13

15.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin

DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
[ Table 14 ] DDR3-800 Speed Bins
Speed DDR3-800
Units NOTECL-nRCD-nRP 6 - 6 - 6
Parameter Symbol min max
Internal read command to first data tAA 15 20 ns
ACT to internal read or write delay time tRCD 15 - ns
PRE command period tRP 15 - ns
ACT to ACT or REF command period tRC 52.5 - ns
ACT to PRE command period tRAS 37.5 9*tREFI ns
CL = 5 CWL = 5 tCK(AVG) 3.0 3.3 ns 1,2,3,4,10,11
CL = 6 CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3
Supported CL Settings 5, 6 nCK
Supported CWL Settings 5 nCK
- 22 -
Page 23
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM
[ Table 15 ] DDR3-1066 Speed Bins
Speed DDR3-1066
Units NOTECL-nRCD-nRP 7 - 7 - 7
Parameter Symbol min max
Internal read command to first data tAA 13.125 20 ns
ACT to internal read or write delay time tRCD 13.125 - ns
PRE command period tRP 13.125 - ns
ACT to ACT or REF command period tRC 50.625 - ns
ACT to PRE command period tRAS 37.5 9*tREFI ns
CL = 5
CL = 6
CL = 7
CL = 8
Supported CL Settings 5, 6,7,8 nCK
Supported CWL Settings 5,6 nCK
CWL = 5 tCK(AVG) 3.0 3.3 ns 1,2,3,4,5,10,11
CWL = 6 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,5
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,4,9
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3
- 23 -
Page 24
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM
[ Table 16 ] DDR3-1333 Speed Bins
Speed DDR3-1333
Units NOTECL-nRCD-nRP 9 -9 - 9
Parameter Symbol min max
Internal read command to first data tAA
ACT to internal read or write delay time tRCD
PRE command period tRP
ACT to ACT or REF command period tRC
ACT to PRE command period tRAS 36 9*tREFI ns
CL = 5
CWL = 5 tCK(AVG) 3.0 3.3 ns 1,2,3,4,6,10,11
CWL = 6,7 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,6
CL = 6
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,6
CWL = 7 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) Reserved ns 4
CL = 7
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,4,6
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4
CWL = 5 tCK(AVG) Reserved ns 4
CL = 8
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,6
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4
CL = 9
CL = 10
CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,4,9
CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) Reserved ns 1,2,3
Supported CL Settings 5,6,7,8,9 nCK
Supported CWL Settings 5,6,7 nCK
13.5
(13.125)
13.5
(13.125)
13.5
(13.125)
49.5
(49.125)
9
9
9
9
20 ns
- ns
- ns
- ns
- 24 -
Page 25
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM
[ Table 17 ] DDR3-1600 Speed Bins
Speed DDR3-1600
Units NOTECL-nRCD-nRP 11-11-11
Parameter Symbol min max
Internal read command to first data tAA
ACT to internal read or write delay time tRCD
PRE command period tRP
ACT to ACT or REF command period tRC
ACT to PRE command period tRAS 35 9*tREFI ns
CL = 5
CWL = 5 tCK(AVG) 3.0 3.3 ns 1,2,3,4,7,10,11
CWL = 6,7,8 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,7
CL = 6
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,7
CWL = 7, 8 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) Reserved ns 4
CL = 7
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,4,7
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,7
CWL = 8 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) Reserved ns 4
CL = 8
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,7
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,7
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4
CWL = 5,6 tCK(AVG) Reserved ns 4
CL = 9
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,4,7
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4
CWL = 5,6 tCK(AVG) Reserved ns 4
CL = 10
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,7
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4
CL = 11
CWL = 5,6,7 tCK(AVG) Reserved ns 4
CWL = 8 tCK(AVG) 1.25 <1.5 ns 1,2,3,9
Supported CL Settings 5,6,7,8,9,10,11 nCK
Supported CWL Settings 5,6,7,8 nCK
13.75
(13.125)
13.75
(13.125)
13.75
(13.125)
48.75
(48.125)
9
9
9
9
20 ns
- ns
- ns
- ns
- 25 -
Page 26
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM
[ Table 18 ] DDR3-1866 Speed Bins
Speed DDR3-1866
Units NOTECL-nRCD-nRP 13-13-13
Parameter Symbol min max
Internal read command to first data tAA
ACT to internal read or write delay time tRCD
PRE command period tRP
ACT to ACT or REF command period tRC
ACT to PRE command period tRAS 34 9*tREFI ns
CL = 5
CWL = 5 tCK(AVG) 3.0 3.3 ns
CWL = 6,7,8,9 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,8
CL = 6
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,8
CWL = 7,8,9 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) Reserved ns 4
CL = 7
CWL = 6 tCK(AVG) 1.875 2.5 ns 1,2,3,4,8
CWL = 7,8,9 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) Reserved ns 4
CL = 8
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,8
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,8
CWL = 8,9 tCK(AVG) Reserved ns 4
CWL = 5,6 tCK(AVG) Reserved ns 4
CL = 9
CWL = 7 tCK(AVG) 1.5 1.875 ns 1,2,3,4,8
CWL = 8 tCK(AVG) Reserved ns 4
CWL = 9 tCK(AVG) Reserved ns 4
CWL = 5,6 tCK(AVG) Reserved ns 4
CL = 10
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,8
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4,8
CWL = 5,6,7 tCK(AVG) Reserved ns 4
CL = 11
CWL = 8 tCK(AVG) 1.25 1.5 ns 1,2,3,4,8
CWL = 9 tCK(AVG) Reserved ns 1,2,3,4
CL = 12
CL = 13
CWL = 5,6,7,8 tCK(AVG) Reserved ns 4
CWL = 9 tCK(AVG) Reserved ns 1,2,3,4
CWL = 5,6,7,8 tCK(AVG) Reserved ns 4
CWL = 9 tCK(AVG) 1.07 <1.25 ns 1,2,3,9
Supported CL Settings 5,6,7,8,9,10,11,13 nCK
Supported CWL Settings 5,6,7,8,9 nCK
13.91
(13.125)
13.91
(13.125)
13.91
(13.125)
47.91
(47.125)
12
12
12
12
20 ns
- ns
- ns
- ns
1,2,3,4,8,10,
11
- 26 -
Page 27
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM

15.3.1 Speed Bin Table Notes

Absolute Specification (T
NOTE :
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements
from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guar-
anteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL".
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or
1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
4. "Reserved" settings are not allowed. User must program a different value.
5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
8. Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
9. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example,
DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte
20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte
18), and tRPmin (Byte 20). DDR3-1866(CL13) devices supporting downshift to DDR3-1600(CL11) or DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600 devices supporting down binning to DDR3-1333 or DDR3-1066 should program
13.125ns in SPD byte for tAAmin (Byte 16), tRCDmin (Byte 18) and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accodingly. For example, 49.125ns, (tRASmin + tRPmin = 36ns + 13.125ns) for DDR3-1333 and 48.125ns (tRASmin + tRPmin = 35ns + 13.125ns) for DDR3-
1600.
10. DDR3 800 AC timing apply if DRAM operates at lower than 800 MT/s data rate.
11. For CL5 support DIMM SPD include CL5 on supportable CAS Latency(Byte 14-bit1 set HIGH).
12. For devices supporting optional down binning to CL=11, CL=9 and CL=7, tAA/tRCD/tRPmin must be 13.125ns. SPD setting must be programed to match. For example,
DDR3-1866 devices supporting down binning to DDR3-1600 or DDR3-1333 or 1066 should program 13.125ns in SPD bytes for tAAmin(byte16), tRCDmin(Byte18) and tRPmin (byte20). Once tRP (Byte20) is programmed to 13.125ns, tRCmin (Byte21,23) also should be programmed accordingly. For example, 47.125ns (tRASmin + tRP­min = 34ns + 13.125ns)
OPER
; V
= VDD = 1.5V +/- 0.075 V);
DDQ
- 27 -
Page 28
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM

16. Timing Parameters by Speed Grade

[ Table 19 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333 (Cont.)
Speed DDR3-800 DDR3-1066 DDR3-1333
Parameter Symbol MIN MAX MIN MAX MIN MAX
Clock Timing
Minimum Clock Cycle Time (DLL off mode) tCK(DLL_OFF) 8 - 8 - 8 - ns 6
Average Clock Period tCK(avg)
Clock Period tCK(abs)
Average high pulse width tCH(avg) 0. 47 0.53 0.47 0.53 0.47 0.53 tCK(avg)
Average low pulse width tCL(avg) 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg)
Clock Period Jitter tJIT(per) -100 100 -90 90 -80 80 ps
Clock Period Jitter during DLL locking period tJIT(per, lck) -90 90 -80 80 -70 70 ps
Cycle to Cycle Period Jitter tJIT(cc) 200 180 160 ps
Cycle to Cycle Period Jitter during DLL locking period tJIT(cc, lck) 180 160 140 ps
Cumulative error across 2 cycles tERR(2per) - 147 147 - 132 132 - 118 118 ps
Cumulative error across 3 cycles tERR(3per) - 175 175 - 157 157 - 140 140 ps
Cumulative error across 4 cycles tERR(4per) - 194 194 - 175 175 - 155 155 ps
Cumulative error across 5 cycles tERR(5per) - 209 209 - 188 188 - 168 168 ps
Cumulative error across 6 cycles tERR(6per) - 222 222 - 200 200 - 177 177 ps
Cumulative error across 7 cycles tERR(7per) - 232 232 - 209 209 - 186 186 ps
Cumulative error across 8 cycles tERR(8per) - 241 241 - 217 217 - 193 193 ps
Cumulative error across 9 cycles tERR(9per) - 249 249 - 224 224 - 200 200 ps
Cumulative error across 10 cycles tERR(10per) - 257 257 - 231 231 - 205 205 ps
Cumulative error across 11 cycles tERR(11per) - 263 263 - 237 237 - 210 210 ps
Cumulative error across 12 cycles tERR(12per) - 269 269 - 242 242 - 215 215 ps
Cumulative error across n = 13, 14 ... 49, 50 cycles tERR(nper)
Absolute clock HIGH pulse width tCH(abs) 0.43 - 0.43 - 0.43 - tCK(avg) 25
Absolute clock Low pulse width tCL(abs) 0.43 - 0.43 - 0.43 - tCK(avg) 26
Data Timing
DQS,DQS to DQ skew, per group, per access tDQSQ - 200 - 150 - 125 ps 13
DQ output hold time from DQS, DQS tQH 0.38 - 0.38 - 0.38 - tCK(avg) 13, g
DQ low-impedance time from CK, CK tLZ(DQ) -800 400 -600 300 -500 250 ps 13,14, f
DQ high-impedance time from CK, CK tHZ(DQ) - 400 - 300 - 250 ps 13,14, f
tDS(base)
Data setup time to DQS, DQS referenced to V
(AC)VIL(AC) levels
IH
Data hold time to DQS, DQS referenced to VIH(DC)VIL(DC) levels
DQ and DM Input pulse width for each input tDIPW 600
Data Strobe Timing
DQS, DQS differential READ Preamble tRPRE 0.9 NOTE 19 0.9 NOTE 19 0.9 NOTE 19 tCK 13, 19, g
DQS, DQS differential READ Postamble tRPST 0.3 NOTE 11 0.3 NOTE 11 0.3 NOTE 11 tCK 11, 13, b
DQS, DQS differential output high time tQSH 0.38 - 0.38 - 0.4 - tCK(avg) 13, g
DQS, DQS differential output low time tQSL 0.38 - 0.38 - 0.4 - tCK(avg) 13, g
DQS, DQS differential WRITE Preamble tWPRE 0.9 - 0.9 - 0.9 - tCK
DQS, DQS differential WRITE Postamble tWPST 0.3 - 0.3 - 0.3 - tCK
DQS, DQS rising edge output access time from rising CK, CK tDQSCK -400 400 -300 300 -255 255 ps 13,f
DQS, DQS low-impedance time (Referenced from RL-1) tLZ(DQS) -800 400 -600 300 -500 250 ps 13,14,f
DQS, DQS high-impedance time (Referenced from RL+BL/2) tHZ(DQS) - 400 - 300 - 250 ps 12,13,14
DQS, DQS differential input low pulse width tDQSL 0.45 0.55 0.45 0.55 0.45 0.55 tCK 29, 31
DQS, DQS differential input high pulse width tDQSH 0.45 0.55 0.45 0.55 0.45 0.55 tCK 30, 31
DQS, DQS rising edge to CK, CK rising edge tDQSS -0.25 0.25 -0.25 0.25 -0.25 0.25 tCK(avg) c
DQS,DQS falling edge setup time to CK, CK rising edge tDSS 0.2 - 0.2 - 0.2 - tCK(avg) c, 32
DQS,DQS falling edge hold time to CK, CK rising edge tDSH 0.2 - 0.2 - 0.2 - tCK(avg) c, 32
AC175
tDS(base)
AC150
tDH(base)
DC100
tCK(avg)min +
tJIT(per)min
125
150
tCK(avg)max +
tJIT(per)max
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max
75
-
-
-
-
See Speed Bins Table
tCK(avg)min +
tJIT(per)min
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per) min
100
490
tCK(avg)max +
tJIT(per)max
25
75
tCK(avg)min +
tJIT(per)min
-
-
-
-
tCK(avg)max +
tJIT(per)max
- - ps d, 17
30 - ps d, 17
65 - ps d, 17
400
-
Units NOTE
ps
ps
ps 24
ps 28
- 28 -
Page 29
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM
[ Table 19 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333 (Cont.)
Speed DDR3-800 DDR3-1066 DDR3-1333
Parameter Symbol MIN MAX MIN MAX MIN MAX
Command and Address Timing
DLL locking time tDLLK 512 - 512 - 512 - nCK
internal READ Command to PRECHARGE Command delay tRTP
Delay from start of internal write transaction to internal read com­mand
WRITE recovery time tWR 15 - 15 - 15 - ns e
Mode Register Set command cycle time tMRD 4 - 4 - 4 - nCK
Mode Register Set command updat e delay tMOD
CAS to CAS command delay tCCD 4 - 4 - 4 - nCK
Auto precharge write recovery + precharge time tDAL(min) WR + roundup (tRP / tCK(AVG)) nCK
Multi-Purpose Register Recovery Time tMPRR 1 - 1 - 1 - nCK 22
ACTIVE to PRECHARGE command period tRAS See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” on page 42 ns e
ACTIVE to ACTIVE command period for 1KB page size tRRD
ACTIVE to ACTIVE command period for 2KB page size tRRD
Four activate window for 1KB page size tFAW 40 - 37.5 - 30 - ns e
Four activate window for 2KB page size tFAW 50 - 50 - 45 - ns e
Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels
Command and Address hold time from CK, CK referenced to VIH(DC) / VIL(DC) levels
Control & Address Input pulse width for each input tIPW 900
Calibration Timing
Power-up and RESET calibration time tZQinitI 512 - 512 - 512 - nCK
Normal operation Full calibration time tZQoper 256 - 256 - 256 - nCK
Normal operation short calibration time tZQCS 64 - 64 - 64 - nCK 23
Reset Timing
Exit Reset from CKE HIGH to a valid command tXPR
Self Refresh Timing
Exit Self Refresh to commands not requiring a locked DLL tXS
Exit Self Refresh to commands requiring a locked DLL tXSDLL tDLLK(min) - tDLLK(min) - tDLLK(min) - nCK
Minimum CKE low width for Self refresh entry to exit timing tCKESR
Valid Clock Requirement after Self Refresh Entry (SRE) or Power ­Down Entry (PDE)
Valid Clock Requirement before Self Refresh Exit (SRX) or Power­Down Exit (PDX) or Reset Exit
tWTR
tIS(base)
AC175
tIS(base)
AC150
tIH(base)
DC100
tCKSRE
tCKSRX
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
max
(12nCK,15ns)
max
(4nCK,10ns)
max
(4nCK,10ns)
200
200+150
275
max(5nCK,
tRFC + 10ns)
max(5nCK,tRF
C + 10ns)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
max
(12nCK,15ns)
max
(4nCK,7.5ns)
max
(4nCK,10ns)
125
125+150
200
780
max(5nCK,
tRFC + 10ns)
max(5nCK,tRF
C + 10ns)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
max
(12nCK,15ns)
max
(4nCK,6ns)
max
(4nCK,7.5ns)
65 - ps b,16
65+125 - ps b,16,27
140 - ps b,16
620 - ps 28
max(5nCK,
tRFC + 10ns)
max(5nCK,tRF
C + 10ns)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
Units NOTE
- e
- e,18
-
- e
- e
-
-
-
-
-
- 29 -
Page 30
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM
[ Table 19 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333
Speed DDR3-800 DDR3-1066 DDR3-1333
Parameter Symbol MIN MAX MIN MAX MIN MAX
Power Down Timing
Exit Power Down with DLL on to any valid command;Exit Pre­charge Power Down with DLL frozen to commands not requiring a locked DLL
Exit Precharge Power Down with DLL frozen to commands re­quiring a locked DLL
CKE minimum pulse width tCKE
Command pass disable delay tCPDED 1 - 1 - 1 - nCK
Power Down Entry to Exit Timing tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCK 15
Timing of ACT command to Power Down entry tACTPDEN 1 - 1 - 1 - nCK 20
Timing of PRE command to Power Down entry tPRPDEN 1 - 1 - 1 - nCK 20
Timing of RD/RDA command to Power Down entry tRDPDEN RL + 4 +1 - RL + 4 +1 - RL + 4 +1 -
Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)
Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)
Timing of WR command to Power Down entry (BC4MRS)
Timing of WRA command to Power Down entry (BC4MRS)
Timing of REF command to Power Down entry tREFPDEN 1 - 1 - 1 - 20,21
Timing of MRS command to Power Down entry tMRSPDEN tMOD(min) - tMOD(min) - tMOD(min) -
ODT Timing
ODT high time without write command or with write command and BC4
ODT high time with Write command and BL8 ODTH8 6 - 6 - 6 - nCK
Asynchronous RTT turn-on delay (Power-Down with DLL fro­zen)
Asynchronous RTT turn-off delay (Power-Down with DLL fro­zen)
RTT turn-on tAON -400 400 -300 300 -250 250 ps 7,f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference tAOF 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) 8,f
RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) f
Write Leveling Timing
First DQS/DQS rising edge after write leveling mode is pro­grammed
DQS/DQS delay after write leveling mode is programmed tWLDQSEN 25 - 25 - 25 - tCK 3
Write leveling setup time from rising CK, CK crossing to rising DQS, DQS
Write leveling hold time from rising DQS, DQS crossing to rising CK, CK
Write leveling output delay tWLO 0 9 0 9 0 9 ns
Write leveling output error tWLOE 0 2 0 2 0 2 ns
crossing
crossing
tXP
tXPDLL
tWRPDEN
tWRAPDEN WL+4+WR +1 - WL+4+WR+1 - WL+4+WR+1 - nCK 10
tWRPDEN
tWRAPDEN
ODTH4 4 - 4 - 4 - nCK
tAONPD 2 8.5 2 8.5 2 8.5 ns
tAOFPD 2 8.5 2 8.5 2 8.5 ns
tWLMRD 40 - 40 - 40 - tCK 3
tWLS 325 - 245 - 195 - ps
tWLH 325 - 245 - 195 - ps
max
(3nCK,
7.5ns)
max
(10nCK,
24ns)
max
(3nCK,
7.5ns)
WL + 4 +(tWR/
tCK(avg))
WL + 2 +(tWR/
tCK(avg))
WL +2 +WR
+1
-
-
-
-
-
-
max
(3nCK,
7.5ns)
max
(10nCK,
24ns)
max
(3nCK,
5.625ns)
WL + 4
+(tWR/
tCK(avg))
WL + 2
+(tWR/
tCK(avg))
WL +2 +WR
+1
-
-
-
-
-
-
max
(3nCK,6ns)
max
(10nCK,
24ns)
max
(3nCK,
5.625ns)
WL + 4 +(tWR/
tCK(avg))
WL + 2 +(tWR/
tCK(avg))
WL +2 +WR
+1
Units NOTE
-
- 2
-
- nCK 9
- nCK 9
- nCK 10
- 30 -
Page 31
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM
[ Table 20 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866 (Cont.)
Speed DDR3-1600 DDR3-1866
Parameter Symbol MIN MAX MIN MAX
Clock Timing
Minimum Clock Cycle Time (DLL off mode) tCK(DLL_OFF) 8 - 8 - ns 6
Average Clock Period tCK(avg) See Speed Bins Table ps
Clock Period tCK(abs)
Average high pulse width tCH(avg) 0.47 0.53 0.47 0.53 tCK(avg)
Average low pulse width tCL(avg) 0.47 0.53 0.47 0.53 tCK(avg)
Clock Period Jitter tJIT(per) -70 70 -60 60 ps
Clock Period Jitter during DLL locking period tJIT(per, lck) -60 60 -50 50 ps
Cycle to Cycle Period Jitter tJIT(cc) 140 120 ps
Cycle to Cycle Period Jitter during DLL locking period tJIT(cc, lck) 120 100 ps
Cumulative error across 2 cycles tERR(2p er) -103 103 -88 88 ps
Cumulative error across 3 cycles tERR(3p er) -122 122 -105 105 ps
Cumulative error across 4 cycles tERR(4p er) -136 136 -117 117 ps
Cumulative error across 5 cycles tERR(5p er) -147 147 -126 126 ps
Cumulative error across 6 cycles tERR(6p er) -155 155 -133 133 ps
Cumulative error across 7 cycles tERR(7p er) -163 163 -139 139 ps
Cumulative error across 8 cycles tERR(8p er) -169 169 -145 145 ps
Cumulative error across 9 cycles tERR(9p er) -175 175 -150 150 ps
Cumulative error across 10 cycles tERR(10per) -180 180 -154 154 ps
Cumulative error across 11 cycles tERR(11per) -184 184 -158 158 ps
Cumulative error across 12 cycles tERR(12per) -188 188 -161 161 ps
Cumulative error across n = 13, 14 ... 49, 50 cycles tERR(nper)
Absolute clock HIGH pulse width tCH(abs) 0.43 - 0.43 - tCK(avg) 25
Absolute clock Low pulse width tCL(abs) 0.43 - 0.43 - tCK(avg) 26
Data Timing
DQS,DQS to DQ skew, per group, per access tDQSQ - 100 - 85 ps 13
DQ output hold time from DQS, DQS tQH 0. 38 - 0.38 - tCK(avg) 13, g
DQ low-impedance time from CK, CK tLZ(DQ) -450 225 -390 195 ps 13,14, f
DQ high-impedance time from CK, CK tHZ(DQ) - 225 - 195 ps 13,14, f
tDS(base)
Data setup time to DQS, DQS referenced to VIH(AC)VIL(AC) lev­els
Data hold time to DQS, DQS referenced to VIH(AC)VIL(AC) levels
DQ and DM Input pulse width for each input tDIPW 360
Data Strobe Timing
DQS, DQS differential READ Preamble tRP RE 0.9 NOTE 19 0.9 NOTE 19 tCK 13, 19, g
DQS, DQS differential READ Postamble tRPST 0.3 NOTE 11 0.3 NOTE 11 tCK 11, 13, b
DQS, DQS differential output high time tQSH 0.4 - 0.4 - tCK(avg) 13, g
DQS, DQS differential output low time tQSL 0.4 - 0.4 - tCK(avg) 13, g
DQS, DQS differential WRITE Preamble tWPRE 0.9 - 0.9 - tCK
DQS, DQS differential WRITE Postamble tWPST 0.3 - 0.3 - tCK
DQS, DQS rising edge output access time from rising CK, CK tDQSCK -225 225 -195 195 ps 13,f
DQS, DQS low-impedance time (Referenced from RL-1) tLZ(DQS) -450 225 -390 195 ps 13,14,f
DQS, DQS high-impedance time (Referenced from RL+BL/2) tHZ(DQS) - 225 - 195 ps 12,13,14
DQS, DQS differential input low pulse width tDQSL 0.45 0.55 0.45 0.55 tCK 29, 31
DQS, DQS differential input high pulse width tDQSH 0.45 0.55 0.45 0.55 tCK 30, 31
DQS, DQS rising edge to CK, CK rising edge tDQSS -0.27 0.27 -0.27 0.27 tCK(avg) c
DQS,DQS falling edge setup time to CK, CK rising edge tDSS 0.9 NOTE 19 0.18 - tCK(avg) c, 32
DQS,DQS falling edge hold time to CK, CK rising edge tDSH 0.3 NOTE 11 0.18 - tCK(avg) c, 32
AC150
tDS(base)
AC135
tDH(base)
DC100
tCK(avg)min + tJIT(per)min
10 - -
- - 0
45 - 20
tCK(avg)max +
tJIT(per)max
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max
-
tCK(avg)min +
tJIT(per)min
320
tCK(avg)max +
tJIT(per)max
-
-
-
-
Units NOTE
ps
ps 24
ps d, 17
ps d, 17
ps d, 17
ps 28
- 31 -
Page 32
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM
[ Table 20 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866 (Cont.)
Speed DDR3-1600 DDR3-1866
Parameter Symbol MIN MAX MIN MAX
Command and Address Timing
DLL locking time tDLLK 512 - 512 - nCK
internal READ Command to PRECHARGE Command delay tRTP
Delay from start of internal write transaction to internal read com­mand
WRITE recovery time tWR 15 - 15 - ns e
Mode Register Set command cycle time tMRD 4 - 4 - nCK
Mode Register Set command updat e delay tMOD
CAS# to CAS# command delay tCCD 4 - 4 - nCK
Auto precharge write recovery + precharge time tDAL(min)
Multi-Purpose Register Recovery Time tMPRR 1 - 1 - nCK 22
ACTIVE to PRECHARGE command period tRAS See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” on page 42 ns e
ACTIVE to ACTIVE command period for 1KB page size tRRD
ACTIVE to ACTIVE command period for 2KB page size tRRD
Four activate window for 1KB page size tFA W 30 - 27 - ns e
Four activate window for 2KB page size tFA W 40 - 35 - ns e
Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels
Command and Address hold time from CK, CK referenced to VIH(AC) / VIL(AC) levels
Control & Address Input pulse width for each input tIPW 560 - 535
Calibration Timing
Power-up and RESET calibration time tZQinitI 512 - max(512nCK,640ns) - nCK
Normal operation Full calibration time tZQoper 256 - max(256nCK,320ns) - nCK
Normal operation short calibration time tZQCS 64 - max(64nCK,80ns) - nCK 23
Reset Timing
Exit Reset from CKE HIGH to a valid command tXPR
Self Refresh Timing
Exit Self Refresh to commands not requiring a locked DLL tXS
Exit Self Refresh to commands requiring a locked DLL tXSDLL tDLLK(min) - tDLLK(min) - nCK
Minimum CKE low width for Self refresh entry to exit timing tCKESR tCKE(min) + 1tCK - tCKE(min) + 1nCK -
Valid Clock Requirement after Self Refresh Entry (SRE) or Power­Down Entry (PDE)
Valid Clock Requirement before Self Refresh Exit (SRX) or Power­Down Exit (PDX) or Reset Exit
tWTR
tIS(base)
AC175
tIS(base)
AC150
tIS(base)
AC135
tIS(base)
AC125
tIH(base)
DC100
tCKSRE
tCKSRX
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
max
(12nCK,15ns)
max
(4nCK,6ns)
max
(4nCK,7.5ns)
45 - - - ps b,16
170 - -
- - 65
- - 150
120 - 100
max(5nCK, tRFC +
10ns)
max(5nCK,tRFC +
10ns)
max(5nCK,
10ns)
max(5nCK,
10ns)
-
-
-
-
-
-
-
-
-
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
max
(12nCK,15ns)
WR + roundup (tRP /
tCK(AVG))
max
(4nCK, 5ns)
max
(4nCK, 6ns)
max(5nCK, tRFC +
10ns)
max(5nCK,tRFC +
10ns)
max(5nCK,
10ns)
max(5nCK,
10ns)
- e
- e,18
-
- e
- e
-
-
-
-
-
-
-
-
-
Units NOTE
nCK
ps b,16
ps b,16
ps b,16,27
ps b,16
ps 28
- 32 -
Page 33
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM
[ Table 20 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866
Speed DDR3-1600 DDR3-1866
Parameter Symbol MIN MAX MIN MAX
Power Down Timing
Exit Power Down with DLL on to any valid command;Exit Pre­charge Power Down with DLL frozen to commands not requiring a locked DLL
Exit Precharge Power Down with DLL frozen to commands re­quiring a locked DLL
CKE minimum pulse width tCKE
Command pass disable delay tC PDED 1 - 2 - nCK
Power Down Entry to Exit Timing tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCK 15
Timing of ACT command to Power Down entry tACTPDEN 1 - 1 - nCK 20
Timing of PRE command to Power Down entry tPRPDEN 1 - 1 - nCK 20
Timing of RD/RDA command to Power Down entry tRDPDEN RL + 4 +1 - RL + 4 +1 -
Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)
Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)
Timing of WR command to Power Down entry (BC4MRS)
Timing of WRA command to Power Down entry (BC4MRS)
Timing of REF command to Power Down entry tREFPDEN 1 - 1 - 20,21
Timing of MRS command to Power Down entry tMRSPDEN tMOD(min) - tMOD(min) -
ODT Timing
ODT high time without write command or with write command and BC4
ODT high time with Write command and BL8 ODTH8 6 - 6 - nCK
Asynchronous RTT turn-on delay (Power-Down with DLL fro­zen)
Asynchronous RTT turn-off delay (Power-Down with DLL fro­zen)
RTT turn-on tAON -225 225 -195 195 ps 7,f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference tAOF 0.3 0.7 0.3 0.7 tCK(avg) 8,f
RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 tCK(avg) f
Write Leveling Timing
First DQS pulse rising edge after tDQSS margining mode is pro­grammed
DQS/DQS delay after tDQS margining mode is programmed tWLDQSEN 25 - 25 - tCK 3
Write leveling setup time from rising CK, CK crossing to rising DQS, DQS
Write leveling hold time from rising DQS, DQS crossing to rising CK, CK
Write leveling output delay tWLO 0 7.5 0 7.5 ns
Write leveling output error tWLOE 0 2 0 2 ns
crossing
crossing
tXP
tXPDLL
tWRPDEN
tWRAPDEN WL + 4 +WR +1 - WL + 4 +WR +1 - nCK 10
tWRPDEN
tWRAPDEN WL +2 +WR +1 - WL +2 +WR +1 - nCK 10
ODTH4 4 - 4 - nCK
tAONPD 2 8.5 2 8.5 ns
tAOFPD 2 8.5 2 8.5 ns
tWLMRD 40 - 40 - tCK 3
tWLS 165 - 140 - ps
tWLH 165 - 140 - ps
max
(3nCK,6ns)
max
(10nCK,
24ns)
max
(3nCK,5ns)
WL + 4 +(tWR/
tCK(avg))
WL + 2 +(tWR/
tCK(avg))
- max(3nCK,6ns) -
- max(10nCK,24ns) - 2
- max(3nCK,5ns) -
-
-
WL + 4 +(tWR/
tCK(avg))
WL + 2 +(tWR/
tCK(avg))
- nCK 9
- nCK 9
Units NOTE
- 33 -
Page 34
Rev. 1.4
Unbuffered SODIMM datasheet DDR3 SDRAM

16.1 Jitter Notes

Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the
input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.
Specific Note b These parameters are measured from a command/address signal (CKE, CS
edge to its respective clock signal (CK/CK tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not.
Specific Note c These parameters are measured from a data strobe signal (DQS, DQS
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
Specific Note d These parameters are measured from a data signal (DM, DQ0, DQ1, etc.) transition edge to its respective data strobe signal
(DQS, DQS
Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge com­mand at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter.
Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input
clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(der­ated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!) Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <= 12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.
) crossing.
) crossing. The spec values are not affected by the amount of clock jitter applied (i.e.
, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition
) crossing to its respective clock signal (CK, CK) crossing.
Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input
clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/ max usage!)
- 34 -
Page 35
Rev. 1.4
ZQCorrection
(TSens x Tdriftrate) + (VSens x Vdriftrate)
0.5
(1.5 x 1) + (0.15 x 15)
= 0.133
~
~
128ms
Unbuffered SODIMM datasheet DDR3 SDRAM

16.2 Timing Parameter Notes

1. Actual value dependant upon measurement level definitions which are TBD.
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
3. The max values are system dependent.
4. WR as programmed in mode register
5. Value must be rounded-up to next higher integer value
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet"
8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet".
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles as programmed in MR0
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing
Diagram Datasheet.
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated
by TBD
13. Value is only valid for RON34
14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.
15. tREFI depends on T
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,
V
(DC) = V
REF
See "Address/Command Setup, Hold and Derating" on component datasheet.
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,
V
(DC)= V
REF
See "Data Setup, Hold and Slew Rate Derating" on component datasheet.
18. Start of internal write transaction is defined as follows ;
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL. For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram
Datasheet"
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down
IDD spec will not be applied until finishing those operations.
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time
such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet".
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-
ject to in the application, is illustrated. The interval could be defined by the following formula:
OPER
DQ(DC). For input only pins except RESET, V
REF
DQ(DC). For input only pins except RESET, V
REF
REF
REF
(DC)=V
(DC)=V
REF
REF
CA(DC).
CA(DC).
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.
For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calcu­lated as:
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) AC175 specification by adding an additional 125 ps for DDR3-800/1066 or 100ps for DDR3-
1333/1600 of derating to accommodate for the lower alternate threshold of 150mV and another 25ps to account for the earlier reference point [(175mv - 150 mV) / 1 V/ns].
28. Pulse width of a input signal is defined as the width between the first crossing of V
(DC) and the consecutive crossing of V
REF
REF
(DC)
29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
33. The tIS(base) AC125 specifications are adjusted from the tIS(base) AC135 specification by adding an additional 75ps for DDR3-1866 and 65ps for DDR3-2133
to accommodate for the lower alternate threshold of 125mV and another 10ps to account for the earlier reference point [(135mv - 125mV) / 1 V/ns].
- 35 -
Page 36
Rev. 1.4
The used device is 256M x8 DDR3 SDRAM, FBGA. DDR3 SDRAM Part NO : K4B2G0846D - HC**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
0.25 MAX
2.55
Detail BDetail A
1.00 ± 0.10
0.45 ± 0.03
4.00 ± 0.10
0.10 ABM C
2X 4.00 ± 0.10
0.10 ABM C
2X 1.80
(OPTIONAL HOLES)
0.60
Units : Millimeters
21.00
24.80
63.60
39.00
AB
Max 3.8
1.00 ± 0.10
SPD
1.65
6
30.00 ± 0.15
20.00
67.60
0.10 ABM C
Unbuffered SODIMM datasheet DDR3 SDRAM

17. Physical Dimensions :

17.1 256Mbx8 based 256Mx64 Module (1 Rank) - M471B5773DH0

- 36 -
Page 37
Rev. 1.4
The used device is 256M x8 DDR3 SDRAM, FBGA. DDR3 SDRAM Part NO : K4B2G0846D - HC**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
0.25 MAX
2.55
Detail BDetail A
1.00 ± 0.10
0.45 ± 0.03
4.00 ± 0.10
0.10 ABM C
2X 4.00 ± 0.10
0.10 ABM C
2X 1.80
(OPTIONAL HOLES)
0.60
Units : Millimeters
21.00
24.80
63.60
39.00
A
B
Max 3.8
1.00 ± 0.10
SPD
1.65
6
30.00 ± 0.15
20.00
67.60
0.10 ABM C
Unbuffered SODIMM datasheet DDR3 SDRAM

17.2 256Mbx8 based 512Mx64 Module (2 Ranks) - M471B5273DH0

- 37 -
Loading...