Samsung M471B1G73QH0-YK0 User Manual

Page 1
Rev. 1.21, Oct. 2013
M471B5674QH0 M471B5173QH0 M471B1G73QH0 M474B5173QH0 M474B1G73QH0
204pin Unbuffered SODIMM
1.35V
based on 4Gb Q-die
78FBGA with Lead-Free & Halogen-Free (RoHS compliant)
datasheet
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other­wise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
(C) 2013 Samsung Electronics Co., Ltd. All rights reserved.
- 1 -
Page 2
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
Revision History
Revision No. History Draft Date Remark Editor
1.0 - First SPEC Release Jul. 2013 - S.H.Kim
1.1 - Added to 4GB(1Rx8) ECC SODIMM from Product line-up Sep. 2013 - S.H.Kim
- Corrected Typo.
1.2 - Added 2GB(1Rx16) SODIMM IDD Value. Oct. 2013 - S.H.Kim
1.21 - Added Note 3 of Chapter #1. Oct. 2013 - S.H.Kim
- 2 -
Page 3
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
Table Of Contents
204pin Unbuffered SODIMM based on 4Gb Q-die
1. DDR3L Unbuffered SODIMM Ordering Information......................................................................................................4
2. Key Features.................................................................................................................................................................4
3. Address Configuration ..................................................................................................................................................4
4. x64 DIMM Pin Configurations (Front side/Back Side)...................................................................................................5
5. x72 DIMM Pin Configurations (Front side/Back Side)...................................................................................................6
6. Pin Description .............................................................................................................................................................7
7. SPD and Thermal Sensor for ECC SODIMMs..............................................................................................................7
8. Input/Output Functional Description..............................................................................................................................8
9. Function Block Diagram:...............................................................................................................................................10
9.1 2GB, 256Mx64 Module (Populated as 1 rank of x16 DDR3 SDRAMs) ................................................................... 10
9.2 4GB, 512Mx64 Module (Populated as 1 rank of x8 DDR3 SDRAMs) ..................................................................... 11
9.3 8GB, 1Gx64 Module (Populated as 2 ranks of x8 DDR3 SDRAMs)........................................................................12
9.4 4GB, 512Mx72 Module (Populated as 1 rank of x8 DDR3 SDRAMs) ..................................................................... 13
9.5 8GB, 1Gx72 Module (Populated as 2 ranks of x8 DDR3 SDRAMs)........................................................................14
10. Absolute Maximum Ratings ........................................................................................................................................15
10.1 Absolute Maximum DC Ratings............................................................................................................................. 15
10.2 DRAM Component Operating Temperature Range ..............................................................................................15
11. AC & DC Operating Conditions...................................................................................................................................15
11.1 Recommended DC Operating Conditions ............................................................................................................15
12. AC & DC Input Measurement Levels ..........................................................................................................................16
12.1 AC & DC Logic Input Levels for Single-ended Signals..........................................................................................16
12.2 V
12.3 AC and DC Logic Input Levels for Differential Signals ..........................................................................................19
12.3.1. Differential Signals Definition ......................................................................................................................... 19
12.3.2. Differential Swing Requirement for Clock (CK -
12.3.3. Single-ended Requirements for Differential Signals ......................................................................................21
12.3.4. Differential Input Cross Point Voltage ............................................................................................................ 22
12.4 Slew Rate Definition for Single Ended Input Signals.............................................................................................23
12.5 Slew rate definition for Differential Input Signals ................................................................................................... 23
13. AC & DC Output Measurement Levels .......................................................................................................................23
13.1 Single Ended AC and DC Output Levels...............................................................................................................23
13.2 Differential AC and DC Output Levels ................................................................................................................... 23
13.3 Single-ended Output Slew Rate ............................................................................................................................ 23
13.4 Differential Output Slew Rate ................................................................................................................................ 25
14. IDD specification definition..........................................................................................................................................26
15. IDD SPEC Table .........................................................................................................................................................28
16. Input/Output Capacitance ...........................................................................................................................................31
17. Electrical Characteristics and AC timing .....................................................................................................................32
17.1 Refresh Parameters by Device Density................................................................................................................. 32
17.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................32
17.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................32
17.3.1. Speed Bin Table Notes .................................................................................................................................. 36
18. Timing Parameters by Speed Grade ..........................................................................................................................37
18.1 Jitter Notes ............................................................................................................................................................40
18.2 Timing Parameter Notes........................................................................................................................................ 41
19. Physical Dimensions :.................................................................................................................................................42
19.1 256Mbx16 based 256Mx64 Module (1 Rank) - M471B5674QH0.......................................................................... 42
19.2 512Mbx8 based 512Mx64 Module (1 Rank) - M471B5173QH0............................................................................ 43
19.3 512Mbx8 based 1Gx64 Module (2 Ranks) - M471B1G73QH0 .............................................................................44
19.4 512Mbx8 based 512Mx72 Module (1 Rank) - M474B5173QH0............................................................................ 45
19.5 512Mbx8 based 1Gx72 Module (2 Ranks) - M474B1G73QH0 .............................................................................46
Tolerances....................................................................................................................................................18
REF
CK) and Strobe (DQS - DQS) ............................................. 19
- 3 -
Page 4
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

1. DDR3L Unbuffered SODIMM Ordering Information

Part Number
M471B5674QH0-YH9/K0 2GB 256Mx64 256Mx16(K4B4G1646Q-HY##)*4 1 30mm
M471B5173QH0-YH9/K0 4GB 512Mx64 512Mx8(K4B4G0846Q-HY##)*8 1 30mm
M471B1G73QH0-YH9/K0 8GB 1Gx64 512Mx8(K4B4G0846Q-HY##)*16 2 30mm
M474B5173QH0-YK0
M474B1G73QH0-YK0 8GB 1Gx72 512Mx8(K4B4G0846Q-HY##)*18 2 30mm
NOTE :
1. "##" - H9/K0
2. H9 - 1333Mbps 9-9-9 / K0 - 1600Mbps 11-11-11
- DDR3L-1600(11-11-11) is backward compatible to DDR3L-1333(9-9-9)
3. Please contact Samsung for product availability.
2
3
Density Organization
4GB 512Mx72 512Mx8(K4B4G0846Q-HY##)*9 1 30mm
Component Composition
1
Number of
Rank
Height

2. Key Features

Speed
tCK(min) 2.5 1.875 1.5 1.25 ns
CAS Latency 6 7 9 11 nCK
tRCD(min) 15 13.125 13.5 13.75 ns
tRP(min) 15 13.125 13.5 13.75 ns
tRAS(min) 37.5 37.5 36 35 ns
tRC(min) 52.5 50.625 49.5 48.75 ns
• JEDEC standard 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V) Power Supply
•V
• 400 MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin, 800MHz fCK for 1600Mb/sec/pin
• 8 independent internal bank
• Programmable CAS Latency: 5,6,7,8,9,10,11
• Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock
• Programmable CAS Write Latency(CWL) = 5 (DDR3-800), 6 (DDR3-1066), 7 (DDR3-1333) and 8 (DDR3-1600)
• 8-bit pre-fetch
• Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or
• Bi-directional Differential Data Strobe
• Internal(self) calibration : Internal self calibration through ZQ pin (RZQ : 240 ohm ± 1%)
• On Die Termination using ODT pin
• Average Refresh Period 7.8us at lower then T
• Asynchronous Reset
= 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)
DDQ
write [either On the fly using A12 or MRS]
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
6-6-6 7-7-7 9-9-9 11-11-11
85C, 3.9us at 85C < T
CASE
CASE
95C
Unit

3. Address Configuration

Organization Row Address Column Address Bank Address Auto Precharge
512Mx8(4Gb) based Module A0-A15 A0-A9 BA0-BA2 A10/AP
256Mx16(4Gb) based Module A0-A14 A0-A9 BA0-BA2 A10/AP
- 4 -
Page 5
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

4. x64 DIMM Pin Configurations (Front side/Back Side)

Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back
1
3
V
REFDQ
V
2
SS
4 DQ4 KEY
V
SS
71
V
SS
72
V
SS
5 DQ0 6 DQ5 73 CKE0 74 CKE1
7 DQ1 8
9
V
SS
10 DQS0 77 NC 78
V
SS
75
11 DM0 12 DQS0 79 BA2 80
13
V
SS
14
V
SS
81
15 DQ2 16 DQ6 83 A12/
V
DD
V
DD
76
82
V
A15
A14
V
DD
3
3
DD
BC 84 A11 153 DM5 154 DQS5
17 DQ3 18 DQ7 85 A9 86 A7 155
19
V
SS
20
V
SS
87
V
DD
88
V
DD
21 DQ8 22 DQ12 89 A8 90 A6 159 DQ43 160 DQ47
23 DQ9 24 DQ13 91 A5 92 A4 161
25
27
V
SS
26
DQS1 28 DM1 95 A3 96 A2 165 DQ49 166 DQ53
V
SS
93
V
DD
94
V
DD
29 DQS1 30 RESET 97 A1 98 A0 167
31
V
SS
32
V
SS
99
V
DD
100
V
DD
33 DQ10 34 DQ14 101 CK0 102 CK1 171
35 DQ11 36 DQ15 103 CK0 104 CK1 173
37
V
SS
38
V
SS
39 DQ16 40 DQ20
41 DQ17 42 DQ21
43
V
SS
44
V
SS
45 DQS2 46 DM2
47 DQS2 48
49
V
SS
50 DQ22
V
SS
51 DQ18 52 DQ23
53 DQ19 54
55
V
SS
56 DQ28
V
SS
57 DQ24 58 DQ29
59 DQ25 60
61
V
SS
62 DQS3
V
SS
105 V
107
A10/AP 108 BA1 177 DQ51 178
109
111 V
113
115
117 V
119
121
123 V
125
127 V
129
DD
106
V
DD
BA0 110 RAS 179
DD
112
V
DD
WE 114 S0 183 DQ57 184
CAS 116 ODT0 185
V
DD
A13
DD
118
3
120 ODT1 189
S1 122 NC 191 DQ58 192 DQ62
DD
124
TEST 126
SS
128
V
V
REFCA
V
DD
SS
DQ32 130 DQ36 199
63 DM3 64 DQS3 131 DQ33 132 DQ37 201 SA1 202 SCL
65
V
SS
66
V
SS
133 V
SS
134
V
SS
67 DQ26 68 DQ30 135 DQS4 136 DM4
69 DQ27 70 DQ31
137
DQS4 138
V
SS
NOTE :
1. NC = No Connect, NU = Not Used, RFU = Reserved Future Use
2. TEST(pin 125) is reserved for bus analysis probes and is NC on normal memory modules.
3. This address might be connected to NC balls of the DRAMs (depending on density); either way they will be connected to the termination resistor.
139 V
141
143
145 V
147
149
151
SS
DQ34 142 DQ39
DQ35 144
SS
DQ40 148 DQ45
DQ41 150
V
SS
V
SS
140 DQ38
V
SS
146 DQ44
V
SS
152 DQS5
156
V
SS
157 DQ42 158 DQ46
V
SS
162
V
SS
163 DQ48 164 DQ52
169
V
SS
DQS6
DQS6
V
SS
168
170
172
174 DQ54
V
SS
DM6
V
SS
175 DQ50 176 DQ55
V
SS
V
SS
180 DQ60
181 DQ56 182 DQ61
V
SS
V
SS
186 DQS7
187 DM7 188 DQS7
V
SS
190
V
SS
193 DQ59 194 DQ63
195
V
SS
196
V
SS
197 SA0 198 NC
203
V
DDSPD
V
TT
200 SDA
204
V
TT
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.
- 5 -
Page 6
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

5. x72 DIMM Pin Configurations (Front side/Back Side)

Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back
1
3
V
REFDQ
V
2
SS
4 DQ4 KEY
5 DQ0 6 DQ5 73
7 DQ1 8
9
V
SS
10 DQS0 77 DQS8 78
11 DM0 12 DQS0 79
13 DQ2 14
15 DQ3 16 DQ6 83 CB3 84
17
V
SS
18 DQ7 85
19 DQ8 20
21 DQ9 22 DQ12 89 CKE1 90 A14 159 DQ42 160 DQ46
23
V
SS
24 DQ13 91 BA2 92 A9 161 DQ43 162 DQ47
25 DQS1 26
27 DQS1 28 DM1 95 A12/BC 96 A11 165 DQ48 166 DQ52
29
V
SS
30 RESET 97 A8 98 A7 167 DQ49 168 DQ53
31 DQ10 32
33 DQ11 34 DQ14 101
35
V
SS
36 DQ15 103 A3 104 A4 173
37 DQ16 38
39 DQ17 40 DQ20
41
43
V
SS
42 DQ21
DQS2 44 DM2
45 DQS2 46
47
V
SS
48 DQ22
49 DQ18 50 DQ23
50 DQ19 52
53
V
SS
54 DQ28
55 DQ24 56 DQ29
57 DQ25 58
59 DM3 60 DQS3
61
V
SS
62 DQS3
63 DQ26 64
65 DQ27 66 DQ30
67
V
SS
68 DQ31
69 CB0 70
NOTE :
1. NC = No Connect, NU = Not Usable, RFU = Reserved Future Use
2. TEST(pin 125) is reserved for bus analysis probes and is NC on normal memory modules.
3. This address might be connected to NC balls of the DRAMs (depending on density); either way they will be connected to the termination resistor.
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
71 CB1 72 CB4
V
SS
74 CB5
75 DQS8 76 DM8
V
SS
V
SS
80 CB6
139
141
143
145
147
149
DQS4 140 DM4
DQS4 142 DQ38
V
SS
144 DQ39
DQ34 146
DQ35 148 DQ44
V
SS
150 DQ45
81 CB2 82 CB7 151 DQ40 152
V
REFCA
V
DD
86
V
DD
153 DQ41 154 DQS5
155
V
SS
156 DQS5
87 CKE0 88 A15 157 DM5 158
93
V
DD
94
99 A5 100 A6 169
105
107
109
111
113
115
117
119
121
123
125
127
129
131
133
135
137
V
DD
A1 106 A2 175
A0 108 BA1 177 DQ50 178
V
DD
CK0 112 Par_In, NC,CK1 181
CK0 114 Err_out, NC,CK1 183 DQ56 184
V
DD
A10/AP
BA0 120 S2 189 DM7 190
WE 122 RAS 191 DQ58 192 DQ62
V
DD
CAS 126 ODT0 195
S0 128 ODT1 197 SA0 198 EVENT
S1 130 A13 199
V
DD
DQ32 134 DQ36 203
DQ33 136 DQ37
V
SS
102
110
116
118
124
132
138
V
DD
V
DD
V
DD
V
DD
S3 187
V
DD
V
DD
V
SS
163
171
V
SS
V
SS
DQS6
DQS6
V
SS
164
170
172
174 DQ54
176 DQ55
179 DQ51 180 DQ60
V
SS
182 DQ61
185 DQ57 186 DQS7
V
SS
188 DQS7
193 DQ59 194 DQ63
V
V
DDSPD
SS
196
200 SDA
201 SA1 202 SCL
V
TT
204
V
SS
V
SS
V
SS
V
SS
V
SS
DM6
V
SS
V
SS
V
SS
V
SS
V
TT
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.
- 6 -
Page 7
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

6. Pin Description

Pin Name Description Number Pin Name Description Number
CK0, CK1 Clock Inputs, positive line 2 DQ0-DQ63 Data Input/Output 64
CK0, CK1 Clock Inputs, negative line 2 DM0-DM7
CKE0, CKE1 Clock Enables 2 DQS0-DQS7 Data strobes 8
RAS Row Address Strobe 1 DQS0-DQS7 Data strobes complement 8
CAS Column Address Strobe 1 RESET Reset Pin 1
WE Write Enable 1 TEST
S0, S1 Chip Selects 2
A0-A9, A11,
A13-A15
Address Inputs 14
A10/AP Address Input/Autoprecharge 1
A12/BC Address Input/Burst chop 1
BA0-BA2 SDRAM Bank Addresses 3
V
V
V
REFDQ
V
REFCA
V
DDSPD
V
DD
SS
TT
ODT0, ODT1 On-die termination control 2 NC Reserved for future use 3
SCL Serial Presence Detect (SPD) Clock Input 1 Total 204
SDA SPD Data Input/Output 1
SA0-SA1 SPD Address 2
NOTE:
*The V
DD
and V
pins are tied common to a single power-plane on these designs.
DDQ
Data Masks/ Data strobes, Termination data strobes
Logic Analyzer specific test pin (No connect on SODIMM)
Core and I/O Power 18
Ground 52
Input/Output Reference 2
SPD and Temp sensor Power 1
Termination Voltage 2
8
1

7. SPD and Thermal Sensor for ECC SODIMMs

On DIMM thermal sensor will provide DRAM temperature readout through a integrated thermal sensor.
SCL
EVENT
NOTE :
1. Raw Cards D (1Rx8 ECC) and E (2Rx8 ECC) support a thermal sensor.
2. When the SPD and the thermal sensor are placed on the module, R1 is placed but R2 is not. When only the SPD is placed on the module, R2 is placed but R1 is not.
[ Table 1 ] Temperature Sensor Characteristics
Grade Range
75 < Ta < 95 - +/- 0.5 +/- 1.0
B
40 < Ta < 125 - +/- 1.0 +/- 2.0 -
-20 < Ta < 125 - +/- 2.0 +/- 3.0 -
Resolution 0.25 C /LSB -
R1 0
WP/EVENT
SA0 SA1 SA2 R2 0
SA0 SA1 SA2
Min. Typ. Max.
Temperature Sensor Accuracy
SDA
Units NOTE
-
C
- 7 -
Page 8
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

8. Input/Output Functional Description

Symbol Type Function
CK0-CK1 Input
CK0-CK1 Input
CKE0-CKE1 Input
S0-S3 Input
RAS, CAS, WE Input
ODT0-ODT1 Input
REFDQ Supply
V
REFCA Supply
V
BA0-BA2 Input
A[15:13,12/
BC,11,10/AP,9:0]
DQ[63:0], CB[7:0]
DM[8:0]
V
DD, VSS Supply Power and ground for the DDR SDRAM input buffers and core logic.
VTT Supply Termination Voltage for Address/Command/Control/Clock nets.
DQS0-DQS17 I/O Positive line of the differential data strobe for input and output data.
DQS0-DQS17 I/O Negative line of the differential data strobe for input and output data.
SA0-SA1 Input
SDA I/O
SCL Input
EVENT
Input
I/O Data and Check Bit Input/Output pins.
Input Masks write data when high, issued concurrently with input data.
OUT (open drain)
Positive line of the differential pair of system clock inputs that drives input to the on-DIMM Clock Driver (72b-SO-RDIMM), on-DIMM PLL (72b-SO-CDIMM), or to DRAMs on rank 0 (72b-SO-DIMM).
Negative line of the differential pair of system clock inputs that drives input to the on-DIMM Clock Driver (72b-SO-RDIMM), on-DIMM PLL (72b-SO-CDIMM), or to DRAMs on rank 0 (72b-SO-DIMM).
CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input buffers and output drivers of the SDRAMs. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row ACTIVE in any bank). Connected to the registering clock driver on 72b-SO-RDIMMs, connected to DRAMs on 72b-SOCDIMMs
and 72b-SO-DIMMs.
Enables the command decoders for the associated rank of SDRAM when low and disables decoders when high. When decoders are disabled, new commands are ignored and previous operations continue. Connected to SDRAMs on 72b-SO-CDIMMs and 72b-SO-DIMMs. For 72b-SO-RDIMMs, other combinations of these input signals perform unique functions, including disabling all outputs (except CKE and ODT) of the register(s) on the DIMM or accessing internal control words in the register device(s). For modules with two registers, S[3:2] operate similarly to S[1:0] for the second set of
register outputs or register control words
When sampled at the positive rising edge of the clock, CAS_n, RAS_n, and WE_n define the operation to be executed by the SDRAM. Connected to SDRAMs on 72b-SO-CDIMMs and 72b-SODIMMs,
connected to the registering clock driver on 72b-SO-RDIMMs.
On-Die Termination control signals. Connected to SDRAMs on 72b-SO-CDIMMs and 72b-SODIMMs, connected to the registering clock driver on 72b-SO-RDIMMs.
Reference voltage for DQ0-DQ63 and CB0-CB7.
Reference voltage for A0-A15, BA0-BA2, RAS_n, CAS_n, WE_n, S0_n, S1_n, CKE0, CKE1, Par_In, ODT0 and ODT1.
Selects which SDRAM bank of eight is activated. BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines mode register is to be accessed during an MRS cycle. Connected to SDRAMs on 72b-SO-CDIMMs and 72b-SO-DIMMs, connected to the registering clock driver on
72b-SO-RDIMMs.
Provided the row address for Active commands and the column address and Auto Precharge bit for Read/Write commands to select one location out of the memory array in the respective bank. A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by BA. A12 is also utilized for BL 4/8 identification for ‘’BL on the fly’’ during CAS command. The address inputs also provide the op-code during Mode Register Set commands. Connected to SDRAMs on 72b-SO-CDIMMs and 72b-SO-DIMMs, connected to the registering clock driver on
72b-SO-RDIMMs.
These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD EEPROM address range.
This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be connected from the SDA bus line to V
This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected from the SCL bus time to V
This signal indicates that a thermal event has been detected in the thermal sensing device.The system should guarantee the electrical level requirement is met for the EVENT_n pin on TS/SPD part.
DDSPD on the system planar to act as a pullup.
DDSPD on the system planar to act as a pullup.
- 8 -
Page 9
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
Symbol Type Function
V
DDSPD Supply
RESET Input
Par_In Input
Err_Out
OUT (open drain)
Serial EEPROM positive power supply wired to a separate power pin at the connector which supports from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation.
The RESET_n pin is connected to the RESET_n pin on the register (72b-SO-RDIMM) and to the RESET_n pin on the SDRAMs (all modules). When low, all register outputs will be driven low and the Clock Driver clocks to the DRAMs and register(s) will be set to low level (the Clock Driver will
remain synchronized with the input clock).
Parity bit for the Address and Control bus. (“1 “: Odd, “0 “: Even). Not used on 72b-SO-DIMMs or 72b-SO-CDIMMs.
Parity error detected on the Address and Control bus. A resistor may be connected from Err_Out_n bus line to VDD on the system planar to act as a pull up. Not used on 72b-SO-DIMMs or 72b-SOCDIMMs.
- 9 -
Page 10
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

9. Function Block Diagram:

9.1 2GB, 256Mx64 Module (Populated as 1 rank of x16 DDR3 SDRAMs)

S0
RAS
CASWECK0
CK0
CKE0
ODT0
/BA[0:N]
DQS0 DQS0
DM0
DQ[0:7]
DQS1 DQS1
DM1
DQ[8:15]
DQS2 DQS2
DM2
DQ[16:23]
DQS3 DQS3
DM3
DQ[24:31]
DQS4 DQS4
DM4
DQ[32:39]
DQS5 DQS5
DM5
DQ[40:47]
LDQS LDQS LDM DQ[0:7] UDQS UDQS UDM DQ[8:15]
CS
RAS
LDQS LDQS LDM DQ[0:7] UDQS UDQS UDM DQ[8:15]
CS
RAS
LDQS LDQS LDM DQ[0:7] UDQS UDQS UDM DQ[8:15]
240
1%
ZQ
D0
CASWECKCKCKE
240
1%
ZQ
D1
CASWECKCKCKE
240
1%
ZQ
D2
A[0:N]
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
V
V
DDSPD
V
REFCA
V
REFDQ
V
DD
V
SS
CK0
CK0 D0 - D3
CK1
CK1
ODT1
S1
CKE1
RESET D0 - D3
tt
SCL SA0 SA1
SCL A0 A1 A2
(SPD)
WP
SDA
V
tt
SPD
D0 - D3
D0 - D3
D0 - D3
D0 - D3, SPD
D0 - D3
Terminated near
card edge
NC
NC
NC
DQS6 DQS6
DM6
DQ[48:55]
DQS7 DQS7
DM7
DQ[56:63]
CS
RAS
LDQS LDQS LDM DQ[0:7] UDQS UDQS UDM DQ[8:15]
CS
RAS
CS
RAS
CASWECKCKCKE
CASWECKCKCKE
CASWECKCKCKE
D3
240
1%
ZQ
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
D1 D2D0
Address and Controllines
D3
tt
V
Note :
1. DQ wiring may differ from that shown however ,DQ, DM, DQS and DQS relationships are maintained as shown
Vtt
V
DD
Vtt
Rank0
- 10 -
Page 11
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

9.2 4GB, 512Mx64 Module (Populated as 1 rank of x8 DDR3 SDRAMs)

S0
RAS
CASWECK0
CK0
CKE0
ODT0
A[0:N]
DQS0 DQS0
DM0
DQ[0:7]
DQS2 DQS2
DM2
DQ[16:23]
DQS DQS DM DQ[0:7]
CS
RAS
DQS DQS DM DQ[0:7]
CS
RAS
240
1%
ZQ
D0
CASWECKCKCKE
240
1%
ZQ
D1
CASWECKCKCKE
/BA[0:N]
ODT
A[0:N]/BA[0:N]
ODT
A[0:N]/BA[0:N]
DQS1 DQS1
DM1
DQ[8:15]
DQS3 DQS3
DM3
DQ[24:31]
DQS DQS DM DQ[0:7]
CS
RAS
DQS DQS DM DQ[0:7]
CS
RAS
240
1%
ZQ
D4
CASWECKCKCKE
240
1%
ZQ
D5
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
ODT
A[0:N]/BA[0:N]
V
DDSPD
V
REFCA
V
REFDQ
ODT1
CKE1
RESET
V
V
CK0
CK0
CK1
CK1
SCL SA0 SA1
V
DD
SS
S1
SCL A0
(SPD) A1 A2
WP
tt
SDA
V
tt
SPD
D0 - D7
D0 - D7
D0 - D7
D0 - D7, SPD
D0 - D7
D0 - D7
Terminated near card edge
NC
NC
NC
D0 - D7
DQS4 DQS4
DM4
DQ[32:39]
DQS6 DQS6
DM6
DQ[48:55]
DQS DQS DM DQ[0:7]
CS
RAS
DQS DQS DM DQ[0:7]
240
1%
ZQ
D2
CASWECKCKCKE
240
1%
ZQ
D3
ODT
A[0:N]/BA[0:N]
DQS5 DQS5
DM5
DQ[40:47]
DQS7 DQS7
DM7
DQ[56:63]
DQS DQS DM DQ[0:7]
CS
RAS
DQS DQS DM DQ[0:7]
240
1%
ZQ
D6
CASWECKCKCKE
240
1%
ZQ
D7
ODT
A[0:N]/BA[0:N]
V
tt
D7D6D5D4
V4V3V2V1
V4V3V2V1
D3D2D1D0
tt
V
Address and Controllines
NOTE :
CS
RAS
CASWECKCKCKE
Vtt
V
DD
ODT
A[0:N]/BA[0:N]
CS
RAS
CASWECKCKCKE
Vtt
ODT
A[0:N]/BA[0:N]
Rank0
1. DQ wiring may differ from that shown how­ever ,DQ, DM, DQS and are maintained as shown
DQS relationships
- 11 -
Page 12
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

9.3 8GB, 1Gx64 Module (Populated as 2 ranks of x8 DDR3 SDRAMs)

DQS3 DQS3
DM3
DQ[24:31]
DQS1 DQS1
DM1
DQ[8:15]
DQS0 DQS0
DM0
DQ[0:7]
S1
RAS
DQS DQS DM DQ[0:7]
CS
RAS
DQS DQS DM DQ[0:7]
CS
RAS
DQS DQS DM DQ[0:7]
CASWECK1
CK1
CKE1
240
1%
ZQ
D11
CASWECKCKCKE
240
1%
ZQ
D1
CASWECKCKCKE
240
1%
ZQ
D0
ODT1
A[0:N]
/BA[0:N]
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
S0
DQS DQS DM DQ[0:7]
CS
RAS
DQS DQS DM DQ[0:7]
CS
RAS
DQS DQS DM DQ[0:7]
CK0
CK0
CKE0
240
1%
ZQ
D3
CASWECKCKCKE
240
1%
ZQ
D9
CASWECKCKCKE
240
1%
ZQ
D8
ODT0
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
Rank0
Rank1
DQS DQS DM DQ[0:7]
CS
RAS
DQS DQS DM DQ[0:7]
CS
RAS
DQS DQS DM DQ[0:7]
V
DD
240
1%
ZQ
D12
CASWECKCKCKE
240
1%
ZQ
D6
CASWECKCKCKE
240
1%
ZQ
D7
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
Vtt
DQS4 DQS4 DM4 DQ[32:39]
DQS6 DQS6 DM6 DQ[48:55]
DQS7 DQS7 DM7 DQ[56:63]
V
DD
Vtt
Vtt
240
DQS DQS DM DQ[0:7]
DQS DQS DM DQ[0:7]
DQS DQS DM DQ[0:7]
CS
RAS
CASWECKCKCKE
CS
RAS
CASWECKCKCKE
D4
D14
D15
1%
ZQ
240
1%
ZQ
240
1%
ZQ
ODT
ODT
A[N:0]/BA[N:0]
A[N:0]/BA[N:0]
DQS2 DQS2
DM2
DQ[16:23]
SCL SA0 SA1
SCL A0 A1 A2
CS
RAS
DQS DQS DM DQ[0:7]
CS
RAS
CASWECKCKCKE
240
1%
ZQ
D2
CASWECKCKCKE
(SPD)
WP
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
SDA
CS
RAS
DQS DQS DM DQ[0:7]
CS
RAS
CASWECKCKCKE
240
1%
ZQ
D10
CASWECKCKCKE
V
tt
V
DDSPD
V
REFCA
V
REFDQ
V
DD
V
SS
CK0
CK1
CK0
CK1
RESET
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
CS
RAS
CASWECKCKCKE
DQS DQS DM DQ[0:7]
D13
CS
RAS
CASWECKCKCKE
V
tt
SPD
D0 - D15
D0 - D15
D0 - D15
D0 - D15, SPD
D0 - D7
D8 - D15
D0 - D7
D8 - D15
D0 - D7
240
1%
ODT
A[N:0]/BA[N:0]
CS
RAS
ZQ
ODT
A[N:0]/BA[N:0]
DQS DQS DM DQ[0:7]
CS
RAS
V3
V3
CASWECKCKCKE
CASWECKCKCKE
V2
V4
V4
V2
D5
240
1%
ZQ
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
V1
V9
V5
V1
V5
V
tt
V1
V9
NOTE :
1. DQ wiring may differ from that shown how­ever ,DQ, DM, DQS and are maintained as shown
DQS5 DQS5 DM5 DQ[40:47]
V8
D6D12D3D9
V7
D7D5D10D8
V6
V6
D15D13D2D0
V7
D14D4D11D1
V8
Address and Controllines
DQS relationships
- 12 -
Page 13
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

9.4 4GB, 512Mx72 Module (Populated as 1 rank of x8 DDR3 SDRAMs)

S0
RAS
CASWECK0
CK0
CKE0
ODT0
A[0:N]
DQS0 DQS0
DM0
DQ[0:7]
DQS2 DQS2
DM2
DQ[16:23]
DQS4 DQS4
DM4
CB[0:7]
DQS DQS DM DQ
DQS DQS DM DQ
DQS DQS DM DQ
CS
CS
RAS
RAS
240
1%
ZQ
D0
CASWECKCKCKE
240
1%
ZQ
D1
CASWECKCKCKE
240
1%
ZQ
D8
/BA[0:N]
ODT
A[0:N]/BA[0:N]
ODT
A[0:N]/BA[0:N]
DQS1 DQS1
DM1
DQ[8:15]
DQS3 DQS3
DM3
DQ[24:31]
DQS DQS DM DQ
CS
DQS DQS DM DQ
CS
RAS
RAS
240
1%
ZQ
D4
CASWECKCKCKE
240
1%
ZQ
D5
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
ODT
A[0:N]/BA[0:N]
V
DDSPD
V
REFCA
V
REFDQ
ODT1
CKE1
ENEVT
RESET
V
V
CK0
CK0
CK1
CK1
SCL SA0 SA1
V
DD
SS
S1
SCL A0
(SPD) A1 A2
WP
tt
SDA
V
tt
SPD
D0 - D8
D0 - D8
D0 - D8
D0 - D8
D0 - D8
D0 - D8
Terminated near card edge
NC
NC
NC
Temp Sensor
D0 - D8
DQS4 DQS4
DM4
DQ[32:39]
DQS6 DQS6
DM6
DQ[48:55]
V
tt
D7D6D5D4
V4V3V2V1
V4V3V2V1
D3D2D1D0
tt
V
Address and Controllines
DQS DQS DM DQ
CS
CS
RAS
RAS
CASWECKCKCKE
240
1%
ZQ
D2
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
ODT
A[0:N]/BA[0:N]
DQS5 DQS5
DM5
DQ[40:47]
DQS DQS DM DQ
CS
RAS
240
1%
ZQ
D6
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
D8
NOTE :
1. DQ wiring may differ from that shown how­ever ,DQ, DM, DQS and
240
DQS DQS DM DQ
Vtt
D3
CS
RAS
CASWECKCKCKE
1%
ZQ
V
DD
ODT
A[0:N]/BA[0:N]
DQS7 DQS7
DM7
DQ[56:63]
Vtt
DQS DQS DM DQ
CS
240
1%
ZQ
D7
RAS
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
Rank0
are maintained as shown
DQS relationships
- 13 -
Page 14
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

9.5 8GB, 1Gx72 Module (Populated as 2 ranks of x8 DDR3 SDRAMs)

DQS0 DQS0
DM0
DQ[0:7]
DQS2 DQS2
DM2
DQ[16:15]
DQS4 DQS4
DM4
DQ[32:39]
DQS DQS DM DQ
DQS DQS DM DQ
DQS DQS DM DQ
S1
CS
CS
CS
RAS
CASWECK1
240

ZQ
D1
RAS
CASWECKCKCKE
240

ZQ
D2
RAS
CASWECKCKCKE
240

ZQ
D3
RAS
CASWECKCKCKE
CK1
1%
1%
1%
CKE1
ODT1
A[0:N]
/BA[0:N]
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
DQS DQS DM DQ
DQS DQS DM DQ
DQS DQS DM DQ
S0
CS
CS
CS
RAS
RAS
RAS
CK0
CK0
CKE0
240

1%
ZQ
D10
CASWECKCKCKE
240

1%
ZQ
D11
CASWECKCKCKE
240

1%
ZQ
D12
CASWECKCKCKE
ODT0
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
Rank0
Rank1
V
DD
Vtt
Vtt
240
DQS DQS DM DQ
DQS DQS DM DQ
DQS DQS DM DQ
CS
CS
CS

D5
RAS
CASWECKCKCKE
240

D6
RAS
CASWECKCKCKE
240

D7
RAS
CASWECKCKCKE
1%
ZQ
1%
ZQ
1%
ZQ
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
DQS DQS DM DQ
DQS DQS DM DQ
DQS DQS DM DQ
C
term
D14
CS
RAS
CASWECKCKCKE
D15
CS
RAS
CASWECKCKCKE
D16
CS
RAS
CASWECKCKCKE
V
240
240
240
DD

ZQ

ZQ

ZQ
1%
ODT
1%
ODT
1%
ODT
Vtt
DQS1 DQS1 DM1 DQ[8:15]
A[N:0]/BA[N:0]
DQS3 DQS3 DM3 DQ[24:31]
A[N:0]/BA[N:0]
DQS5 DQS5 DM5 DQ[40:47]
A[N:0]/BA[N:0]
DQS6 DQS6
DM6
DQ[48:55]
DQS8 DQS8
CB[0:7]
SCL SA0 SA1
DM8
SCL A0 A1 A2
DQS DQS DM DQ
DQS DQS DM DQ
CS
CS

ZQ
D4
RAS
CASWECKCKCKE
240

ZQ
D9
RAS
CASWECKCKCKE
(SPD)
WP
1%
1%
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
SDA
DQS DQS DM DQ
DQS DQS DM DQ
CS
CS
RAS
RAS
240

1%
ZQ
D13
CASWECKCKCKE
240

1%
ZQ
D18
CASWECKCKCKE
V
tt
V
DDSPD
V
REFCA
V
REFDQ
V
DD
V
SS
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
240
CK0
CK1
CK0
CK1
RESET
NOTE :
1. DQ wiring may differ from that shown however ,DQ, DM, DQS and
240

D8
RAS
CASWECKCKCKE
1%
ZQ
ODT
A[N:0]/BA[N:0]
V2
V3
V
tt
SPD
DQS DQS DM DQ
CS
D0 - D15
D0 - D15
D0 - D15
D0 - D15, SPD
D0 - D7
D8 - D15
D0 - D7
V4
V4
V3
D7
V2
D8 - D15
D0 - D7
DQS relationships are maintained as shown
DQS DQS DM DQ
CS
RAS
D14D16
D6D17
D5
240

1%
ZQ
D17
CASWECKCKCKE
V1
D10
V1
D18
V
tt
V1
DQS7 DQS7 DM7 DQ[56:63]
ODT
A[N:0]/BA[N:0]
V8
V9
V5
V5
D2D4
V7
D1D3
V6
V6
D10D12D15D8
V7
D11D13
V9
V8
Address and Controllines
- 14 -
Page 15
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

10. Absolute Maximum Ratings

10.1 Absolute Maximum DC Ratings

Symbol Parameter Rating Units NOTE
V
DD
V
Voltage on V
DDQ
V
NOTE :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and V
equal to or less than 300mV.
Voltage on any pin relative to V
IN, VOUT
T
Storage Temperature -55 to +100 C 1, 2
STG
DDQ

10.2 DRAM Component Operating Temperature Range

Symbol Parameter rating Unit NOTE
T
OPER
NOTE :
1. Operating Temperature T JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be main­tained between 0-85C under all operating conditions
3. Some applications require operation of the Extended Temperature Range between 85C and 95C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature
Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range.
Voltage on VDD pin relative to V
pin relative to V
DDQ
must be within 300mV of each other at all times;and V
SS
SS
SS
Operating Temperature Range 0 to 95 C 1, 2, 3
is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document
OPER
-0.4 V ~ 1.975 V V 1,3
-0.4 V ~ 1.975 V V 1,3
-0.4 V ~ 1.975 V V 1
must be not greater than 0.6 x V
REF
, When VDD and V
DDQ
are less than 500mV; V
DDQ
REF
may be

11. AC & DC Operating Conditions

11.1 Recommended DC Operating Conditions

Symbol Parameter Operation Voltage
V
DD
V
DDQ
NOTE:
1. Under all conditions V
tracks with VDD. AC parameters are measured with VDD and V
2. V
DDQ
3. VDD & V
DDQ
Supply Voltage
Supply Voltage for Output
must be less than or equal to VDD.
DDQ
rating are determinied by operation voltage.
1.35V 1.283 1.35 1.45 V 1, 2, 3
1.5V 1.425 1.5 1.575 V 1, 2, 3
1.35V 1.283 1.35 1.45 V 1, 2, 3
1.5V 1.425 1.5 1.575 V 1, 2, 3
tied together.
DDQ
Rating
Min. Typ. Max.
Units NOTE
- 15 -
Page 16
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

12. AC & DC Input Measurement Levels

12.1 AC & DC Logic Input Levels for Single-ended Signals

[ Table 2 ] Single Ended AC and DC input levels for Command and Address(1.35V)
Symbol Parameter
1.35V
V
(DC90)
IH.CA
V
(DC90)
IL.CA
V
(AC160)
IH.CA
(AC160)
V
IL.CA
V
(AC135)
IH.CA
V
(AC135)
IL.CA
V
(DC)
REFCA
NOTE :
1. For input only pins except
2. See "Overshoot and Undershoot specifications" on Component Datasheet.
3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV).
4. For reference: approx. VDD/2 +/- 13.5 mV
5. These levels apply for 1.35 Volt operation only. If the device is operated at 1.5 V , the respective levels in JESD79-3 (VIH/L.CA(DC100), VIH/L.CA(AC175), VIHL.CA(AC150),
VIH/L.CA(AC135), VIH/L.CA(AC125)etc.) apply. The 1.5 V levels (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), VIH/L.CA(AC135), VIHL.CA(AC125)etc.) do not apply when the device is operated in the 1.35 voltage range.
DC input logic high
DC input logic low
AC input logic high
AC input logic low Note 2
AC input logic high
AC input logic lowM Note 2
Reference Voltage for ADD, CMD inputs
RESET, V
REF
= V
REFCA
(DC)
DDR3L-800/1066/1333/1600
Min. Max.
V
+ 90 V
REF
V
SS
V
+ 160
REF
V
+135
REF
0.49*V
DD
Unit NOTE
DD
V
- 90
REF
mV 1
mV 1
Note 2 mV 1,2,5
V
REF
- 160
mV 1,2,5
Note 2 mV 1,2,5
V
REF
0.51*V
-135
DD
mV 1,2,5
V 3,4
[ Table 3 ] Single-ended AC & DC input levels for Command and Address(1.5V)
Symbol Parameter
DDR3-800/1066/1333/1600
Min. Max.
Unit NOTE
1.5V
V
(DC100)
IH.CA
V
(DC100)
IL.CA
V
(AC175)
IH.CA
V
(AC175)
IL.CA
(AC150)
V
IH.CA
V
(AC150)
IL.CA
V
(DC)
REFCA
NOTE :
1. For input only pins except
2. See "Overshoot and Undershoot specifications" on Component Datasheet.
3. The ac peak noise on VRef may not allow VRef to deviate from VRefCA(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV).
4. For reference: approx. VDD/2 +/- 15 mV.
5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100)
6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100)
7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175), VIH.CA(AC150), VIH.CA(AC135), and VIH.CA(AC125); VIH.CA(AC175) value is used when Vref + 0.175V is
referenced, VIH.CA(AC150) value is used when Vref + 0.150V is referenced, VIH.CA(AC135) value is used when Vref + 0.135V is referenced, and VIH.CA(AC125) value is used when Vref + 0.125V is referenced.
8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175), VIL.CA(AC150), VIL.CA(AC135) and VIL.CA(AC125); VIL.CA(AC175) value is used when Vref - 0.175V is
referenced, VIL.CA(AC150) value is used when Vref - 0.150V is referenced, VIL.CA(AC135) value is used when Vref - 0.135V is referenced, and VIL.CA(AC125) value is used when Vref - 0.125V is referenced.
9. VrefCA(DC) is measured relative to VDD at the same point in time on the same device
DC input logic high
DC input logic low
AC input logic high
AC input logic low Note 2
AC input logic high
AC input logic low Note 2
Reference Voltage for ADD, CMD inputs
RESET, V
REF
= V
REFCA
(DC)
V
+ 100 V
REF
V
SS
V
+ 175
REF
V
+150
REF
0.49*V
DD
DD
V
- 100
REF
mV 1,5
mV 1,6
Note 2 mV 1,2,7
V
REF
- 175
mV 1,2,8
Note 2 mV 1,2,7
V
REF
0.51*V
-150
DD
mV 1,2,8
V 3,4,9
- 16 -
Page 17
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
[ Table 4 ] Single Ended AC and DC input levels for DQ and DM(1.35V)
Symbol Parameter
V
(DC90)
IH.DQ
V
(DC90)
IL.DQ
(AC160)
V
IH.DQ
V
(AC160)
IL.DQ
V
(AC135)
IH.DQ
V
(AC135)
IL.DQ
(DC)
V
REF
DQ
NOTE :
1. For input only pins except
2. See "Overshoot and Undershoot specifications" on Component Datasheet.
3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV).
4. For reference: approx. VDD/2 +/- 13.5 mV.
5. These levels apply for 1.35 Volt operation only. If the device is operated at 1.5 V, the respective levels in JESD79-3 ( VIH/L.DQ(DC100), VIH/L.DQ(AC175), VIH/ L.DQ(AC150), VIH/L.DQ(AC135), etc. ) apply. The 1.5 V levels (VIH/L.DQ(DC100), VIH/L.DQ(AC175), VIH/L.DQ(AC150), VIH/L.DQ(AC135), etc. ) do not apply when the device is operated in the 1.35 voltage range.
DC input logic high
DC input logic low
AC input logic high
AC input logic low Note 2
AC input logic high
AC input logic low Note 2
Reference Voltage for DQ, DM inputs
RESET, V
REF
= V
REFDQ
(DC)
DDR3L-800/1066 DDR3L-1333/1600
Min. Max. Min. Max.
1.35V
V
+ 90 V
REF
V
SS
V
+ 160
REF
V
+ 135
REF
0.49*V
DD
DD
V
- 90 V
REF
Note 2 - - mV 1,2,5
V
- 160
REF
Note 2
V
- 135
REF
0.51*V
DD
V
+ 90 V
REF
SS
- - mV 1,2,5
V
+ 135
REF
Note 2
0.49*V
DD
Unit NOTE
mV 1
mV 1
V
REF
DD
- 90
Note 2 mV 1,2,5
V
- 135
REF
0.51*V
DD
mV 1,2,5
V 3,4
[ Table 5 ] Single-ended AC & DC input levels for DQ and DM (1.5V)
Symbol Parameter
DDR3-800/1066 DDR3-1333/1600
Min. Max. Min. Max.
Unit NOTE
1.5V
V
(DC100)
IH.DQ
(DC100)
V
IL.DQ
(AC175)
V
IH.DQ
V
(AC175)
IL.DQ
V
(AC150)
IH.DQ
(AC150)
V
IL.DQ
V
(AC135)
IH.DQ
V
(AC135)
IL.DQ
V
(DC)
REF
DQ
NOTE :
1. For input only pins except
2. See "Overshoot and Undershoot specifications" on Component Datasheet.
3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV).
4. For reference: approx. VDD/2 +/- 15 mV.
5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100)
6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100)
7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150), and VIH.DQ(AC135); VIH.DQ(AC175) value is used when Vref + 0.175V is referenced, VIH.DQ(AC150) value is used when Vref + 0.150V is referenced, and VIH.DQ(AC135) value is used when Vref + 0.135V is referenced.
8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150), and VIL.DQ(AC135); VIL.DQ(AC175) value is used when Vref - 0.175V is referenced, VIL.DQ(AC150) value is used when Vref - 0.150V is referenced, and VIL.DQ(AC135) value is used when Vref - 0.135V is referenced.
9. VrefCA(DC) is measured relative to VDD at the same point in time on the same device
10. Optional in DDR3 SDRAM for DDR3-800/1066/1333/1600: Users should refer to the DRAM supplier data sheetand/or the DIMM SPD to determine if DDR3 SDRAM devices support this option.
DC input logic high
DC input logic low
AC input logic high
AC input logic low NOTE 2
AC input logic high
AC input logic low NOTE 2
AC input logic high
AC input logic low NOTE 2
Reference Voltage for DQ, DM inputs
RESET, V
REF
= V
REFDQ
(DC)
V
+ 100 V
REF
V
SS
V
+ 175
REF
V
+ 150
REF
V
+ 135
REF
0.49*V
DD
DD
V
- 100 V
REF
+ 100 V
REF
SS
DD
V
- 100
REF
mV 1,5
mV 1,6
V
NOTE 2 - - mV 1,2,7
V
REF
NOTE 2
V
REF
NOTE 2
V
REF
0.51*V
- 175
- 150
- 135
DD
- - mV 1,2,8
V
REF
NOTE 2
V
REF
NOTE 2
0.49*V
+ 150
+ 135
DD
NOTE 2 mV 1,2,7
V
REF
- 150
mV 1,2,8
NOTE 2 mV 1,2,7,10
V
- 135
REF
0.51*V
DD
mV 1,2,8,10
V 3,4,9
- 17 -
Page 18
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
12.2 V
Tolerances
REF
The dc-tolerance limits and ac-noise limits for the reference voltages V
(t) as a function of time. (V
V
REF
V
(DC) is the linear average of V
REF
thermore V
(t) may temporarily deviate from V
REF
stands for V
REF
(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements of V
REF
voltage
and V
REFCA
(DC) by no more than ± 1% VDD.
REF
REFDQ
likewise).
Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits
REFCA
and V
are illustrate in Figure 1. It shows a valid reference voltage
REFDQ
REF
V
DD
V
SS
time
. Fur-
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on V
" shall be understood as V
"V
REF
This clarifies, that dc-variations of V
which setup and hold is measured. System timing and voltage budgets need to account for V
(DC), as defined in Figure 1.
REF
affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
REF
(DC) deviations from the optimum position within the
REF
REF
.
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V
Timing and voltage effects due to ac-noise on V
up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
REF
ac-noise.
REF
- 18 -
Page 19
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

12.3 AC and DC Logic Input Levels for Differential Signals

12.3.1 Differential Signals Definition

tDVAC
VIH.DIFF.AC.MIN
.DIFF.MIN
V
IH
0.0 half cycle
.DIFF.MAX
V
IL
.DIFF.AC.MAX
V
IL
Differential Input Voltage (i.e. DQS-DQS, CK-CK)
Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC

12.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS)

DDR3-800/1066/1333/1600
Symbol Parameter
min max min max
V
IHdiff
V
ILdiff
V
(AC)
IHdiff
(AC)
V
ILdiff
NOTE :
1. Used to define a differential signal slew-rate.
2. for CK -
3. These values are not defined, however they single-ended signals CK,
CK use VIH/VIL(AC) of ADD/CMD and V
then the reduced level applies also here.
nals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification"
differential input high +0.18 NOTE 3 +0.20 NOTE 3 V 1
differential input low NOTE 3 -0.18 NOTE 3 -0.20 V 1
differential input high ac
2 x (VIH(AC) - V
differential input low ac NOTE 3
; for DQS - DQS use VIH/VIL(AC) of DQs and V
REFCA
REF
)
NOTE 3
2 x (VIL(AC) - V
CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended sig-
2 x (VIH(AC) - V
)
REF
REFDQ
tDVAC
time
unit NOTE1.35V 1.5V
)
REF
NOTE 3
; if a reduced ac-high or ac-low level is used for a signal group,
NOTE 3 V 2
2 x (VIL(AC) - V
REF
)
V2
- 19 -
Page 20
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
[ Table 6 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.35V)
DDR3L-800/1066/1333/1600
Slew Rate [V/ns]
tDVAC [ps] @ |V
min max min max
> 4.0 189 - 201 -
4.0 189 - 201 -
3.0 162 - 179 -
2.0 109 - 134 -
1.8 91 - 119 -
1.6 69 - 100 -
1.4 40 - 76 -
1.2 note - 44 -
1.0 note - note -
< 1.0 note - note -
NOTE: Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.
(AC)| = 320mV tDVAC [ps] @ |V
IH/Ldiff
(AC)| = 270mV
IH/Ldiff
[ Table 7 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.5V)
DDR3-800 / 1066 / 1333 / 1600
Slew Rate [V/ns]
tDVAC [ps] @ |V
350mV
IH/Ldiff
(AC)| =
tDVAC [ps] @ |V
300mV
IH/Ldiff
(AC)| =
tDVAC [ps] @ |V
IH/Ldiff
(AC)| =
(DQS-DQS#) only (Optional)
min max min max min max
> 4.0 75 - 175 - 214
4.0 57 - 170 - 214
3.0 50 - 167 - 191
2.0 38 - 119 - 146
1.8 34 - 102 - 131
1.6 29 - 81 - 113
1.4 22 - 54 - 88
1.2 note - 19 - 56
1.0 note - note - 11
< 1.0 note - note - note
NOTE: Rising input differential signal shall become equal to or greater than VIHdiff(ac) level and Falling input differential signal shall become equal to or less than VILdiff(ac) level.
- 20 -
Page 21
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

12.3.3 Single-ended Requirements for Differential Signals

Each individual component of a differential signal (CK, DQS, CK, DQS) has also to comply with certain requirements for single-ended signals.
CK and CK have to approximately reach V
half-cycle.
DQS have to reach V
SEH
min / V
max (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle proceeding and following a
SEL
valid transition.
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if V
signals, then these ac-levels apply also for the single-ended signals CK and
SEH
min / V
max (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every
SEL
150(AC)/VIL150(AC) is used for ADD/CMD
IH
CK .
VDD or V
VDD/2 or V
VSS or V
V
V
SEH
SEL
DDQ
min
DDQ
max
SSQ
V
SEH
/2
Figure 3. Single-ended requirement for differential signals
Note that while ADD/CMD and DQ signal requirements are with respect to V
with respect to V
ended components of differential signals the requirement to reach V
/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-
DD
max, V
SEL
mode characteristics of these signals.
CK or DQS
V
SEL
time
, the single-ended components of differential signals have a requirement
REF
min has no bearing on timing, but adds a restriction on the common
SEH
[ Table 8 ] Single ended levels for CK, DQS, CK, DQS
Symbol Parameter
V
SEH
V
SEL
NOTE :
1. For CK,
2. V
3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended sig-
CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS) use VIH/VIL(AC) of DQs.
(AC)/VIL(AC) for DQs is based on V
IH
reduced level applies also here
nals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification"
Single-ended high-level for strobes
Single-ended high-level for CK,
CK
Single-ended low-level for strobes NOTE 3
Single-ended low-level for CK, CK NOTE 3
; VIH(AC)/VIL(AC) for ADD/CMD is based on V
REFDQ
(V
DD
(V
DD
DDR3-800/1066/1333/1600
Min Max
/2)+0.175
/2)+0.175
NOTE 3 V 1, 2
NOTE 3 V 1, 2
(VDD/2)-0.175
(V
/2)-0.175
DD
; if a reduced ac-high or ac-low level is used for a signal group, then the
REFCA
Unit NOTE
V 1, 2
V 1, 2
- 21 -
Page 22
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

12.3.4 Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual
cross point of true and complement signal to the mid level between of VDD and VSS.
V
DD
CK, DQS
V
IX
VDD/2
V
IX
Figure 4. VIX Definition
V
IX
CK, DQS
V
SS
[ Table 9 ] Cross point voltage for differential input signals (CK, DQS) : 1.35V
Symbol Parameter
V
V
NOTE :
1. The relationbetween Vix Min/Max and VSEL/VSEH should satisfy following. (VDD/2) + Vix(Min) - VSEL 25mV VSEH - ((VDD/2) + Vix(Max)) 25mV
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK
IX
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS
IX
[ Table 10 ] Cross point voltage for differential input signals (CK, DQS) : 1.5V
Symbol Parameter
V
V
NOTE :
1. Extended range for V
±250 mV, and the differential slew rate of CK-
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK
IX
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS
IX
is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing V
IX
CK is larger than 3 V/ ns.
DDR3L-800/1066/1333/1600
Min Max
Unit NOTE
-150 150 mV 1
-150 150 mV
DDR3-800/1066/1333/1600
Min Max
Unit NOTE
-150 150 mV
-175 175 mV 1
-150 150 mV
/ V
SEL
of at least VDD/2
SEH
- 22 -
Page 23
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

12.4 Slew Rate Definition for Single Ended Input Signals

See "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals. See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals.

12.5 Slew rate definition for Differential Input Signals

Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below.
[ Table 11 ] Differential input slew rate definition
Description
Differential input slew rate for rising edge (CK-
CK and DQS-DQS)
Differential input slew rate for falling edge (CK-CK and DQS-DQS)
NOTE : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds
Measured
From To
V
ILdiffmax
V
IHdiffmin
V
V
IHdiffmin
ILdiffmax
V
0
IHdiffmin
[V
IHdiffmin
[V
IHdiffmin
Defined by
- V
ILdiffmax] /
- V
ILdiffmax] /
Delta TRdiff
Delta TFdiff
V
ILdiffmax
delta TFdiff
delta TRdiff
Differential input slew rate definition for DQS, DQS and CK, CK

13. AC & DC Output Measurement Levels

13.1 Single Ended AC and DC Output Levels

[ Table 12 ] Single Ended AC and DC output levels
Symbol Parameter DDR3-800/1066/1333/1600 Units NOTE
VOH(DC) DC output high measurement level (for IV curve linearity) 0.8 x V
VOM(DC) DC output mid measurement level (for IV curve linearity) 0.5 x V
(DC) DC output low measurement level (for IV curve linearity) 0.2 x V
V
OL
(AC) AC output high measurement level (for output SR) VTT + 0.1 x V
V
OH
VOL(AC) AC output low measurement level (for output SR) VTT - 0.1 x V
NOTE : 1. The swing of +/-0.1 x V
load of 25 to V
TT=VDDQ
is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 and an effective test
DDQ
/2.
DDQ
DDQ
DDQ
DDQ
DDQ

13.2 Differential AC and DC Output Levels

[ Table 13 ] Differential AC and DC output levels
Symbol Parameter DDR3-800/1066/1333/1600 Units NOTE
V
(AC) AC differential output high measurement level (for output SR) +0.2 x V
OHdiff
V
(AC) AC differential output low measurement level (for output SR) -0.2 x V
OLdiff
NOTE : 1. The swing of +/-0.2xV
load of 25 to V
TT=VDDQ
is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 and an effective test
DDQ
/2 at each of the differential outputs.
DDQ
DDQ
V
V
V
V1
V1
V1
V1

13.3 Single-ended Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)
for single ended signals as shown in below.
- 23 -
Page 24
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
[ Table 14 ] Single ended Output slew rate definition
Description
Single ended output slew rate for rising edge
Single ended output slew rate for falling edge
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 15 ] Single ended output slew rate
Parameter Symbol
Single ended output slew rate SRQse
Operation
Voltage
1.35V 1.75
Min Max Min Max Min Max Min Max
1.5V 2.5 5 2.5 5 2.5 5 2.5 5 V/ns
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)
se : Single-ended Signals
For Ron = RZQ/7 setting
NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.
- Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ signals in the same byte lane are static (i.e they stay at either high or low).
- Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies.
Measured
From To
Defined by
VOL(AC) VOH(AC) [VOH(AC)-VOL(AC)] / Delta TRse
VOH(AC) VOL(AC) [VOH(AC)-VOL(AC)] / Delta TFse
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
1)
5
1.75
1)
5
1.75
1)
5
1.75
Units
1)
5
V/ns
V
(AC)
OHdiff
VTT
V
(AC)
OLdiff
delta TRdiffdelta TFdiff
Figure 5. Single-ended output slew rate definition
- 24 -
Page 25
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

13.4 Differential Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V
(AC) for differential signals as shown in below.
diff
[ Table 16 ] Differential Output slew rate definition
Description
Differential output slew rate for rising edge
Differential output slew rate for falling edge
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
V
V
Measured
From To
(AC) V
OLdiff
(AC) V
OHdiff
OHdiff
OLdiff
(AC) [V
(AC) [V
OHdiff
OHdiff
(AC)-V
(AC)-V
Defined by
(AC)] / Delta TRdiff
OLdiff
(AC)]/ Delta TFdiff
OLdiff
[ Table 17 ] Differential Output slew rate
Parameter Symbol
Differential output slew rate SRQdiff
Operation
Voltage
1.35V 3.5 12 3.5 12 3.5 12 3.5 12 V/ns
1.5V 5 10 5 10 5 10 5 10 V/ns
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Min Max Min Max Min Max Min Max
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)
diff : Differential Signals
For Ron = RZQ/7 setting
V
(AC)
OHdiff
OLdiff
(AC) and V
Units
OH-
VTT
V
OLdiff
delta TRdiffdelta TFdiff
Figure 6. Differential output slew rate definition
(AC)
- 25 -
Page 26
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

14. IDD specification definition

Symbol Description
IDD0
IDD1
IDD2N
IDD2P0
IDD2P1
IDD2Q
IDD3N
IDD3P
IDD4R
IDD4W
IDD5B
IDD6
IDD6ET
IDD7
IDD8
Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: Refer to Component Datasheet for detail pattern ; BL: 8
Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time:
0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers
2)
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pat-
tern
Operating One Bank Active-Read-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: Refer to Component Datasheet for detail pattern ; BL: 8
and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers
2)
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pat-
tern
Precharge Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode
2)
Registers
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exit
Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8 Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit
Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
3)
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
3)
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ODT Signal: stable at 0
Active Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode
2)
Registers
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
Active Power-Down Current CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers Signal: stable at 0
Operating Burst Read Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
1)
; AL: 0; CS: High between RD; Command, Address,
Bank Address Inputs: partially toggling ; Data IO: seamless read data burst with different data between one burst and the next one ; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers
at 0; Pattern Details: Refer to Component Datasheet for detail pattern
Operating Burst Write Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
1)
; AL: 0; CS: High between WR; Command, Address,
Bank Address Inputs: partially toggling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers
HIGH; Pattern Details: Refer to Component Datasheet for detail pattern
at
Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: Refer to Component Datasheet for detail pattern ; BL: 8
Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC ; Output Buffer and RTT: Enabled in Mode Registers
Self Refresh Current: Normal Temperature Range TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 8 Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
Self-Refresh Current: Extended Temperature Range (optional) TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Extended5); CKE: Low; External clock: Off; CK and CK:
LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 8
2)
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
4)
; Self-Refresh Temperature Range (SRT): Normal5); CKE: Low; External clock: Off; CK and CK:
1)
; AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0;
6)
1)
; AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0;
2)
; ODT Signal: FLOATING
Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: CL-1; CS: High
between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and the next one ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing ; Output Buffer and RTT:
Enabled in Mode Registers
2)
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
RESET Low Current RESET : Low; External clock : off; CK and
CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal :
FLOATING
1)
; AL: 0; CS: High between ACT and PRE;
1)
; AL: 0; CS: High between ACT, RD
2)
; ODT Signal: stable
2)
; ODT Signal: stable
1)
; AL: 0; CS: High between REF; Command,
2)
; ODT Signal: FLOATING
2)
; ODT
2)
;
2)
;
2)
;
- 26 -
Page 27
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
NOTE :
1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit
4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range
6) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device
7) IDD current measure method and detail patterns are described on DDR3 component datasheet
8) VDD and VDDQ are merged on module PCB.
9) DIMM IDD SPEC is measured with Qoff condition
(IDDQ values are not considered)
- 27 -
Page 28
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

15. IDD SPEC Table

M471B5674QH0 : 2GB (256Mx64) Module
Symbol
IDD0 175 180 mA
IDD1 250 275 mA
IDD2P0(slow exit) 55 60 mA
IDD2P1(fast exit) 55 60 mA
IDD2N 75 80 mA
IDD2Q 75 80 mA
IDD3P 70 75 mA
IDD3N 110 120 mA
IDD4R 465 535 mA
IDD4W 440 500 mA
IDD5B 570 580 mA
IDD6 40 40 mA
IDD7 675 760 mA
IDD8 25 25 mA
DDR3L-1333 DDR3L-1600
9-9-9 11-11-11
Unit NOTE
M471B5173QH0 : 4GB (512Mx64) Module
Symbol
IDD0 320 320 mA
IDD1 400 440 mA
IDD2P0(slow exit) 120 120 mA
IDD2P1(fast exit) 120 120 mA
IDD2N 160 160 mA
IDD2Q 160 160 mA
IDD3P 160 160 mA
IDD3N 240 240 mA
IDD4R 680 800 mA
IDD4W 680 840 mA
IDD5B 1160 1160 mA
IDD6 120 120 mA
IDD7 1320 1360 mA
IDD8 120 120 mA
DDR3L-1333 DDR3L-1600
9-9-9 11-11-11
Unit NOTE
- 28 -
Page 29
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
M471B1G73QH0 : 8GB (1Gx64) Module
Symbol
IDD0 480 480 mA 1
IDD1 560 600 mA 1
IDD2P0(slow exit) 240 240 mA
IDD2P1(fast exit) 240 240 mA
IDD2N 320 320 mA
IDD2Q 320 320 mA
IDD3P 320 320 mA
IDD3N 400 400 mA
IDD4R 840 960 mA 1
IDD4W 840 1000 mA 1
IDD5B 1320 1320 mA 1
IDD6 240 240 mA
IDD7 1480 1520 mA 1
IDD8 240 240 mA
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
DDR3L-1333 DDR3L-1600
9-9-9 11-11-11
Unit NOTE
M474B5173QH0 : 4GB (512Mx72) Module
Symbol
IDD0 TBD mA
IDD1 TBD mA
IDD2P0(slow exit) TBD mA
IDD2P1(fast exit) TBD mA
IDD2N TBD mA
IDD2Q TBD mA
IDD3P TBD mA
IDD3N TBD mA
IDD4R TBD mA
IDD4W TBD mA
IDD5B TBD mA
IDD6 TBD mA
IDD7 TBD mA
IDD8 TBD mA
DDR3L-1600
11-11-11
Unit NOTE
- 29 -
Page 30
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
M474B1G73QH0 : 8GB (1Gx72) Module
Symbol
IDD0 540 mA 1
IDD1 675 mA 1
IDD2P0(slow exit) 270 mA
IDD2P1(fast exit) 270 mA
IDD2N 360 mA
IDD2Q 360 mA
IDD3P 360 mA
IDD3N 450 mA
IDD4R 1080 mA 1
IDD4W 1125 mA 1
IDD5B 1485 mA 1
IDD6 270 mA
IDD7 1710 mA 1
IDD8 270 mA
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
DDR3L-1600
11-11-11
Unit NOTE
- 30 -
Page 31
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

16. Input/Output Capacitance

[ Table 18 ] Input/Output Capacitance
Parameter Symbol
Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS)
Input capacitance (CK and CK)
Input capacitance delta (CK and CK)
Input capacitance (All other input-only pins)
Input/Output capacitance delta (DQS and DQS)
Input capacitance delta (All control input-only pins)
Input capacitance delta (all ADD and CMD input-only pins)
Input/output capacitance delta (DQ, DM, DQS, DQS, TDQS, TDQS)
CIO 1.4 2.5 1.4 2.5 1.4 2.3 1.5 2.2 pF 1,2,3
CCK 0.8 1.6 0.8 1.6 0.8 1.4 0.8 1.4 pF 2,3
CDCK 0 0.15 0 0.15 0 0.15 0 0.15 pF 2,3,4
CI 0.75 1.3 0.75 1.3 0.75 1.3 0.75 1.2 pF 2,3,6
CDDQS 0 0.2 0 0.2 0 0.15 0 0.15 pF 2,3,5
CDI_CTRL -0.5 0.3 -0.5 0.3 -0.4 0.2 -0.4 0.2 pF 2,3,7,8
CDI_ADD_CMD -0.5 0.5 -0.5 0.5 -0.4 0.4 -0.4 0.4 pF 2,3,9,10
CDIO -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 pF 2,3,11
Input/output capacitance of ZQ pin CZQ - 3 - 3 - 3 - 3 pF 2, 3, 12
Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS)
Input capacitance (CK and CK)
Input capacitance delta (CK and CK)
Input capacitance (All other input-only pins)
Input capacitance delta (DQS and DQS)
Input capacitance delta (All control input-only pins)
Input capacitance delta (all ADD and CMD input-only pins)
Input/output capacitance delta (DQ, DM, DQS, DQS, TDQS, TDQS)
CIO 1.4 3.0 1.4 2.7 1.4 2.5 1.4 2.3 pF 1,2,3
CCK 0.8 1.6 0.8 1.6 0.8 1.4 0.8 1.4 pF 2,3
CDCK 0 0.15 0 0.15 0 0.15 0 0.15 pF 2,3,4
CI 0.75 1.4 0.75 1.35 0.75 1.3 0.75 1.3 pF 2,3,6
CDDQS 0 0.2 0 0.2 0 0.15 0 0.15 pF 2,3,5
CDI_CTRL -0.5 0.3 -0.5 0.3 -0.4 0.2 -0.4 0.2 pF 2,3,7,8
CDI_ADD_CMD -0.5 0.5 -0.5 0.5 -0.4 0.4 -0.4 0.4 pF 2,3,9,10
CDIO -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 pF 2,3,11
Input/output capacitance of ZQ pin CZQ - 3 - 3 - 3 - 3 pF 2, 3, 12
NOTE : This parameter is Component Input/Output Capacitance so that is different from Module level Capacitance.
1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS
2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with
V
, V
, VSS, V
DD
DDQ
die termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of CCK-CCK
5. Absolute value of CIO(DQS)-CIO(DQS)
6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.
7. CDI_CTRL applies to ODT, CS and CKE
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))
9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS))
12. Maximum external load capacitance on ZQ pin: 5pF
applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=V
SSQ
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Min Max Min Max Min Max Min Max
1.35V
1.5V
=1.5V or 1.35V, V
DDQ
Units NOTE
/2 and on-
BIAS=VDD
- 31 -
Page 32
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

17. Electrical Characteristics and AC timing

[0 C<T

17.1 Refresh Parameters by Device Density

All Bank Refresh to active/refresh cmd time tRFC 110 160 260 350 ns
Average periodic refresh interval tREFI
NOTE :
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this material.

17.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin

Parameter min min min min
95 C, V
CASE
Parameter Symbol 1Gb 2Gb 4Gb 8Gb Units NOTE
Speed DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
CL 6 7911tCK
tRCD 15 13.13 13.5 13.75 ns
tRP 15 13.13 13.5 13.75 ns
tRAS 37.5 37.5 36 35 ns
tRC 52.5 50.63 49.5 48.75 ns
tRRD 10 7.5 6.0 6.0 ns
tFAW 40 37.5 30 30 ns
= 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V); VDD = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)]
DDQ
0CT
85CT
CASE
CASE
85C
95C
7.8 7.8 7.8 7.8 s
3.9 3.9 3.9 3.9 s 1
Units NOTEBin (CL - tRCD - tRP) 6-6-6 7-7-7 9-9-9 11-11-11

17.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin

DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
[ Table 19 ] DDR3-800 Speed Bins
Speed DDR3-800
Units NOTECL-nRCD-nRP 6 - 6 - 6
Parameter Symbol min max
Internal read command to first data tAA 15 20 ns
ACT to internal read or write delay time tRCD 15 - ns
PRE command period tRP 15 - ns
ACT to ACT or REF command period tRC 52.5 - ns
ACT to PRE command period tRAS 37.5 9*tREFI ns
CL = 5 CWL = 5 tCK(AVG) 3.0 3.3 ns 1,2,3,4,9,10
CL = 6 CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3
Supported CL Settings 5,6 nCK
Supported CWL Settings 5 nCK
- 32 -
Page 33
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
[ Table 20 ] DDR3-1066 Speed Bins
Speed DDR3-1066
Units NOTECL-nRCD-nRP 7 - 7 - 7
Parameter Symbol min max
Internal read command to first data tAA 13.125 20 ns
ACT to internal read or write delay time tRCD 13.125 - ns
PRE command period tRP 13.125 - ns
ACT to ACT or REF command period tRC 50.625 - ns
ACT to PRE command period tRAS 37.5 9*tREFI ns
CL = 5
CL = 6
CL = 7
CL = 8
Supported CL Settings 5,6,7,8 nCK
Supported CWL Settings 5,6 nCK
CWL = 5 tCK(AVG) 3.0 3.3 ns 1,2,3,4,5,9,10
CWL = 6 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,5
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,4,8
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3
- 33 -
Page 34
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
[ Table 21 ] DDR3-1333 Speed Bins
Speed DDR3-1333
Units NOTECL-nRCD-nRP 9 -9 - 9
Parameter Symbol min max
Internal read command to first data tAA
ACT to internal read or write delay time tRCD
PRE command period tRP
ACT to ACT or REF command period tRC
ACT to PRE command period tRAS 36 9*tREFI ns
CL = 5
CWL = 5 tCK(AVG) 3.0 3.3 ns 1,2,3,4,6,9,10
CWL = 6,7 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,6
CL = 6
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,6
CWL = 7 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) Reserved ns 4
CL = 7
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,4,6
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4
CWL = 5 tCK(AVG) Reserved ns 4
CL = 8
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,6
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4
CL = 9
CL = 10
CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,4,8
CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3
Supported CL Settings 5,6,7,8,9,10 nCK
Supported CWL Settings 5,6,7 nCK
13.5
(13.125)
13.5
(13.125)
13.5
(13.125)
49.5
(49.125)
8
8
8
8
20 ns
- ns
- ns
- ns
- 34 -
Page 35
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
[ Table 22 ] DDR3-1600 Speed Bins
Speed DDR3-1600
Units NOTECL-nRCD-nRP 11-11-11
Parameter Symbol min max
Internal read command to first data tAA
ACT to internal read or write delay time tRCD
PRE command period tRP
ACT to ACT or REF command period tRC
ACT to PRE command period tRAS 35 9*tREFI ns
CL = 5
CWL = 5 tCK(AVG) 3.0 3.3 ns 1,2,3,4,7,9,10
CWL = 6,7,8 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,7
CL = 6
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,7
CWL = 7, 8 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) Reserved ns 4
CL = 7
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,4,7
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,7
CWL = 8 tCK(AVG) Reserved ns 4
CWL = 5 tCK(AVG) Reserved ns 4
CL = 8
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,7
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,7
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4
CWL = 5,6 tCK(AVG) Reserved ns 4
CL = 9
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,4,7
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4
CWL = 5,6 tCK(AVG) Reserved ns 4
CL = 10
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,7
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4
CL = 11
CWL = 5,6,7 tCK(AVG) Reserved ns 4
CWL = 8 tCK(AVG) 1.25 <1.5 ns 1,2,3,8
Supported CL Settings 5,6,7,8,9,10,11 nCK
Supported CWL Settings 5,6,7,8 nCK
13.75
(13.125)
13.75
(13.125)
13.75
(13.125)
48.75
(48.125)
8
8
8
8
20 ns
- ns
- ns
- ns
- 35 -
Page 36
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

17.3.1 Speed Bin Table Notes

Absolute Specification [T
NOTE :
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guar­anteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL".
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or
1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
4. "Reserved" settings are not allowed. User must program a different value.
5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization.
6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization.
7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization.
8. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte
20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte
18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns (tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11).
9. DDR3 800 AC timing apply if DRAM operates at lower than 800 MT/s data rate.
10. For CL5 support DIMM SPD include CL5 on supportable CAS Latency(Byte 14-bit1 set HIGH).
OPER
; V
= VDD = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)];
DDQ
- 36 -
Page 37
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

18. Timing Parameters by Speed Grade

[ Table 23 ] Timing Parameters by Speed Bin (Cont.)
Speed DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX
Clock Timing
Minimum Clock Cycle Time (DLL off mode)
Average Clock Period tCK(avg) See Speed Bins Table ps
Clock Period tCK(abs)
Average high pulse width tCH(avg) 0.47 0.53 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg)
Average low pulse width tCL(avg) 0.47 0.53 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg)
Clock Period Jitter tJIT(per) -100 100 -90 90 -80 80 -70 70 ps
Clock Period Jitter during DLL locking period tJIT(per, lck) -90 90 -80 80 -70 70 -60 60 ps
Cycle to Cycle Period Jitter tJIT(cc) 200 180 160 140 ps
Cycle to Cycle Period Jitter during DLL locking period tJIT(cc, lck) 180 160 140 120 ps
Cumulative error across 2 cycles tERR(2per) - 147 147 - 132 132 - 118 118 -103 103 ps
Cumulative error across 3 cycles tERR(3per) - 175 175 - 157 157 - 140 140 -122 122 ps
Cumulative error across 4 cycles tERR(4per) - 194 194 - 175 175 - 155 155 -136 136 ps
Cumulative error across 5 cycles tERR(5per) - 209 209 - 188 188 - 168 168 -147 147 ps
Cumulative error across 6 cycles tERR(6per) - 222 222 - 200 200 - 177 177 -155 155 ps
Cumulative error across 7 cycles tERR(7per) - 232 232 - 209 209 - 186 186 -163 163 ps
Cumulative error across 8 cycles tERR(8per) - 241 241 - 217 217 - 193 193 -169 169 ps
Cumulative error across 9 cycles tERR(9per) - 249 249 - 224 224 - 200 200 -175 175 ps
Cumulative error across 10 cycles tERR(10per) - 257 257 - 231 231 - 205 205 -180 180 ps
Cumulative error across 11 cycles tERR(11per) - 263 263 - 237 237 - 210 210 -184 184 ps
Cumulative error across 12 cycles tERR(12per) - 269 269 - 242 242 - 215 215 -188 188 ps
Cumulative error across n = 13, 14 ... 49, 50 cycles tERR(nper)
Absolute clock HIGH pulse width tCH(abs) 0.43 - 0.43 - 0.43 - 0.43 - tCK(avg) 25
Absolute clock Low pulse width tCL(abs) 0.43 - 0.43 - 0.43 - 0.43 - tCK(avg) 26
Data Timing
DQS,DQS to DQ skew, per group, per access tDQSQ - 200 - 150 - 125 - 100 ps 13
DQ output hold time from DQS, DQS tQH 0.38 - 0.38 - 0.38 - 0.38 - tCK(avg) 13, g
DQ low-impedance time from CK, CK tLZ(DQ) -800 400 -600 300 -500 250 -450 225 ps 13,14, f
DQ high-impedance time from CK, CK tHZ(DQ) - 400 - 300 - 250 - 225 ps 13,14, f
Data setup time to DQS, DQS referenced to
(AC)VIL(AC) levels
V
IH
Data hold time from DQS, DQS referenced to
(DC)VIL(DC) levels
V
IH
DQ and DM Input pulse width for each input tDIPW 600
tCK(DLL_OF
F)
tDS(base)
AC160
tDS(base)
AC135
tDS(base)
AC175
tDS(base)
AC150
tDH(base)
DC90
tDH(base)
DC100
8 - 8 - 8 - 8 - ns 6
tCK(avg)min +
tJIT(per)min
90
140
75
125
160
150
tCK(avg)max +
tJIT(per)max
-
-
-
-
-
-
-
tCK(avg)min +
tJIT(per)min
tCK(avg)max +
tJIT(per)max
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min
tERR(nper)max = (1 + 0.68ln(n))*tJIT(per)max
40
90
25
75
110
100
490
-
-
-
-
-
-
-
tCK(avg)min +
tJIT(per)min
1.35V
----psd, 17
45 - 25 - ps
1.5V
- - - - ps d, 17
30 - 10 - ps
1.35V
75 - 55 - ps d, 17
1.5V
65 - 45 - ps d, 17
400
tCK(avg)max +
tJIT(per)max
-
tCK(avg)min +
tJIT(per)min
360
tCK(avg)max +
tJIT(per)max
-
Units NOTE
ps
ps 24
ps 28
- 37 -
Page 38
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
[ Table 23 ] Timing Parameters by Speed Bin (Cont.)
Speed DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX
Data Strobe Timing
DQS, DQS differential READ Preamble tRPRE 0.9 Note 19 0.9 Note 19 0.9 Note 19 0.9 Note 19 tCK(avg) 13, 19, g
DQS, DQS differential READ Postamble tRPST 0.3 Note 11 0.3 Note 11 0.3 Note 11 0.3 Note 11 tCK(avg) 11, 13, b
DQS, DQS differential output high time tQSH 0.38 - 0.38 - 0.4 - 0.4 - tCK(avg) 13, g
DQS, DQS differential output low time tQSL 0.38 - 0.38 - 0.4 - 0.4 - tCK(avg) 13, g
DQS, DQS differential WRITE Preamble tWPRE 0.9 - 0.9 - 0.9 - 0.9 - tCK(avg)
DQS, DQS differential WRITE Postamble tWPST 0.3 - 0.3 - 0.3 - 0.3 - tCK(avg)
DQS, DQS rising edge output access time from rising
CK
CK,
DQS, DQS low-impedance time (Referenced from RL-
1)
DQS, DQS high-impedance time (Referenced from RL+BL/2)
DQS, DQS differential input low pulse width tDQSL 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 tCK(avg) 29, 31
DQS, DQS differential input high pulse width tDQSH 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 tCK(avg) 30, 31
DQS, DQS rising edge to CK, CK rising edge tDQSS -0.25 0.25 -0.25 0.25 -0.25 0.25 -0.27 0.27 tCK(avg) c
DQS,DQS falling edge setup time to CK, CK rising edge tDSS 0.2 - 0.2 - 0.2 - 0.18 - tCK(avg) c, 32
DQS,DQS falling edge hold time to CK, CK rising edge tDSH 0.2 - 0.2 - 0.2 - 0.18 - tCK(avg) c, 32
Command and Address Timing
DLL locking time tDLLK 512 - 512 - 512 - 512 - nCK
internal READ Command to PRECHARGE Command delay
Delay from start of internal write transaction to internal read command
WRITE recovery time tWR 15 - 15 - 15 - 15 - ns e
Mode Register Set command cycle time tMRD 4 - 4 - 4 - 4 - nCK
Mode Register Set command update delay tMOD
CAS to CAS command delay tCCD 4 - 4 - 4 - 4 - nCK
Auto precharge write recovery + precharge time tDAL(min) WR + roundup (tRP / tCK(AVG)) nCK
Multi-Purpose Register Recovery Time tMPRR 1 - 1 - 1 - 1 - nCK 22
ACTIVE to PRECHARGE command period tRAS See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” ns e
ACTIVE to ACTIVE command period for 1KB page size tRRD
ACTIVE to ACTIVE command period for 2KB page size tRRD
Four activate window for 1KB page size tFAW 40 - 37.5 - 30 - 30 - ns e
Four activate window for 2KB page size tFAW 50 - 50 - 45 - 40 - ns e
Command and Address setup time to CK, CK refer­enced to V
Command and Address hold time from CK, CK refer­enced to V
Control & Address Input pulse width for each input tIPW 900
Calibration Timing
Power-up and RESET calibration time tZQinitI 512 - 512 - 512 - 512 - nCK
Normal operation Full calibration time tZQoper 256 - 256 - 256 - 256 - nCK
Normal operation short calibration time tZQCS 64 - 64 - 64 - 64 - nCK 23
(AC) / VIL(AC) levels
IH
(DC) / VIL(DC) levels
IH
tDQSCK -400 400 -300 300 -255 255 -225 225 ps 13,f
tLZ(DQS) -800 400 -600 300 -500 250 -450 225 ps 13,14,f
tHZ(DQS) - 400 - 300 - 250 - 225 ps 12,13,14
tRTP
tWTR
tIS(base)
AC160
tIS(base)
AC135
tIS(base)
AC175
tIS(base)
AC150
tIH(base)
DC90
tIH(base)
DC100
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
max
(12nCK,15ns)
max
(4nCK,10ns)
max
(4nCK,10ns)
215
365
200
350
285
275 200 140 120 - ps b,16
-
-
-
-
-
-
-
-
-
-
-
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
max
(12nCK,15ns)
max
(4nCK,7.5ns)
max
(4nCK,10ns)
140
290
125
275
210
780
-
-
-
-
-
-
-
-
-
-
-
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
max
(12nCK,15ns)
max
(4nCK,6ns)
max
(4nCK,7.5ns)
1.35V
80 - 60 - ps b,16
205 - 185 - ps b,16,27
1.5V
65 - 45 - ps b,16
190 - 170 - ps b,16,27
1.35V
150 - 130 - ps b,16
1.5V
620 - 560 - ps 28
-
-
-
-
-
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
max
(12nCK,15ns)
max
(4nCK,6ns)
max
(4nCK,7.5ns)
Units NOTE
- e
- e,18
-
- e
- e
- 38 -
Page 39
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM
[ Table 23 ] Timing Parameters by Speed Bin
Speed DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Parameter Symbol MIN MAX MIN MAX MIN MAX MIN MAX
Reset Timing
tXS
tXP
max(5nCK,
tRFC +
10ns)
max(5nCK,t
RFC +
10ns)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
max
(3nCK,
7.5ns)
max
(10nCK,
24ns)
max
(3nCK,
7.5ns)
WL + 4 +(tWR/
tCK(avg))
WL + 4
+WR +1
WL + 2 +(tWR/
tCK(avg))
WL +2 +WR
+1
Exit Reset from CKE HIGH to a valid command tXPR
Self Refresh Timing
Exit Self Refresh to commands not requiring a locked DLL
Exit Self Refresh to commands requiring a locked DLL tXSDLL tDLLK(min) - tDLLK(min) - tDLLK(min) - tDLLK(min) - nCK
Minimum CKE low width for Self refresh entry to exit timing
Valid Clock Requirement after Self Refresh Entry (SRE) or Power-Down Entry (PDE)
Valid Clock Requirement before Self Refresh Exit (SRX) or Power-Down Exit (PDX) or Reset Exit
Power Down Timing
Exit Power Down with DLL on to any valid com­mand;Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL
Exit Precharge Power Down with DLL frozen to com­mands requiring a locked DLL
CKE minimum pulse width tCKE
Command pass disable delay tCPDED 1 - 1 - 1 - 1 - nCK
Power Down Entry to Exit Timing tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCK(avg) 15
Timing of ACT command to Power Down entry tACTPDEN 1 - 1 - 1 - 1 - nCK 20
Timing of PRE command to Power Down entry tPRPDEN 1 - 1 - 1 - 1 - nCK 20
Timing of RD/RDA command to Power Down entry tRDPDEN RL + 4 +1 - RL + 4 +1 - RL + 4 +1 - RL + 4 +1 -
Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)
Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)
Timing of WR command to Power Down entry (BC4MRS)
Timing of WRA command to Power Down entry (BC4MRS)
Timing of REF command to Power Down entry tREFPDEN 1 - 1 - 1 - 1 - 20,21
Timing of MRS command to Power Down entry tMRSPDEN tMOD(min) - tMOD(min) - tMOD(min) - tMOD(min) -
ODT Timing
ODT high time without write command or with write command and BC4
ODT high time with Write command and BL8 ODTH8 6 - 6 - 6 - 6 - nCK
Asynchronous RTT turn-on delay (Power-Down with DLL frozen)
Asynchronous RTT turn-off delay (Power-Down with DLL frozen)
RTT turn-on tAON -400 400 -300 300 -250 250 -225 225 ps 7,f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference
RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) f
Write Leveling Timing
First DQS/DQS rising edge after write leveling mode is programmed
DQS/DQS delay after write leveling mode is pro­grammed
Write leveling setup time from rising CK, CK crossing to rising DQS,
Write leveling hold time from rising DQS, DQS cross­ing to rising CK,
Write leveling output delay tWLO 0 9 0 9 0 9 0 7.5 ns
Write leveling output error tWLOE 0 2 0 2 0 2 0 2 ns
DQS crossing
CK crossing
tCKESR
tCKSRE
tCKSRX
tXPDLL
tWRPDEN
tWRAPDEN
tWRPDEN
tWRAPDEN
ODTH4 4 - 4 - 4 - 4 - nCK
tAONPD 2 8.5 2 8.5 2 8.5 2 8.5 ns
tAOFPD 2 8.5 2 8.5 2 8.5 2 8.5 ns
tAOF 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) 8,f
tWLMRD 40 - 40 - 40 - 40 - tCK(avg) 3
tWLDQSEN 25 - 25 - 25 - 25 - tCK(avg) 3
tWLS 325 - 245 - 195 - 165 - ps
tWLH 325 - 245 - 195 - 165 - ps
-
-
-
-
-
-
-
-
-
-
-
-
max(5nCK,
tRFC +
10ns)
max(5nCK,t
RFC +
10ns)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
max
(3nCK,
7.5ns)
max
(10nCK,
24ns)
max
(3nCK,
5.625ns)
WL + 4 +(tWR/
tCK(avg))
WL + 4
+WR +1
WL + 2 +(tWR/
tCK(avg))
WL +2 +WR
+1
-
-
-
-
-
-
-
-
-
-
-
-
max(5nCK,
tRFC +
10ns)
max(5nCK,t
RFC +
10ns)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
max
(3nCK,6ns)
max
(10nCK,
24ns)
max
(3nCK,
5.625ns)
WL + 4 +(tWR/
tCK(avg))
WL + 4
+WR +1
WL + 2 +(tWR/
tCK(avg))
WL +2 +WR
+1
-
-
-
-
-
-
-
-
-
-
-
-
max(5nCK,
tRFC +
10ns)
max(5nCK,t
RFC + 10ns)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
max
(3nCK,6ns)
max
(10nCK,
24ns)
max
(3nCK,5ns)
WL + 4 +(tWR/
tCK(avg))
WL + 4 +WR
+1
WL + 2 +(tWR/
tCK(avg))
WL +2 +WR
+1
Units NOTE
-
-
-
-
-
-
- 2
-
- nCK 9
- nCK 10
- nCK 9
- nCK 10
- 39 -
Page 40
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

18.1 Jitter Notes

Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the
input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.
Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition
edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not.
Specific Note c These parameters are measured from a data strobe signal (DQS, DQS) crossing to its respective clock signal (CK, CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
Specific Note d These parameters are measured from a data signal (DM, DQ0, DQ1, etc.) transition edge to its respective data strobe signal
(DQS, DQS) crossing.
Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge com­mand at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter.
Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input
clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!) Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <= 12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.
Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input
clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/ max usage!)
- 40 -
Page 41
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

18.2 Timing Parameter Notes

1. Actual value dependant upon measurement level definitions see "Device Operation & Timing Diagram Datasheet".
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
3. The max values are system dependent.
4. WR as programmed in mode register
5. Value must be rounded-up to next higher integer value
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet"
8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet".
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles as programmed in MR0
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing
Diagram Datasheet.
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated
by 18.1-Jitter Notes on page 40
13. Value is only valid for RON34
14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.
15. tREFI depends on T
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,
V
(DC) = V
REF
See "Address/Command Setup, Hold and Derating" on component datasheet.
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS,
V
(DC)= V
REF
See "Data Setup, Hold and Slew Rate Derating" on component datasheet.
18. Start of internal write transaction is defined as follows ;
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL. For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram Data-
sheet"
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down
IDD spec will not be applied until finishing those operations.
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time
such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet".
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-
ject to in the application, is illustrated. The interval could be defined by the following formula:
OPER
DQ(DC). For input only pins except RESET, V
REF
DQ(DC). For input only pins except RESET, V
REF
REF
REF
(DC)=V
(DC)=V
REF
REF
CA(DC).
DQS differential slew rate. Note for DQ and DM signals,
CA(DC).
ZQCorrection
(TSens x Tdriftrate) + (VSens x Vdriftrate)
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.
For example, if TSens = 1.5% /C, VSens = 0.15% / mV, Tdriftrate = 1C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calcu­lated as:
0.5
(1.5 x 1) + (0.15 x 15)
= 0.133
~
~
128ms
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alter-
nate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].
28. Pulse width of a input signal is defined as the width between the first crossing of V
29. tDQSL describes the instantaneous differential input low pulse width on DQS-
30. tDQSH describes the instantaneous differential input high pulse width on DQS-
(DC) and the consecutive crossing of V
REF
REF
(DC)
DQS, as measured from one falling edge to the next consecutive rising edge.
DQS, as measured from one rising edge to the next consecutive falling edge.
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
- 41 -
Page 42
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

19. Physical Dimensions :

19.1

256Mbx16 based 256Mx64 Module (1 Rank) - M471B5674QH0

Units : Millimeters
67.60 ± 0.13
21.00
63.60
SPD
B
A
39.00
Max 2.2
30.00 ± 0.13
1.00 ± 0.10
1.65
4.00 ± 0.10
1.00 ± 0.10
Detail A
The used device is 256M x16 DDR3L SDRAM, BOC. DDR3 SDRAM Part NO : K4B4G1646Q - HY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
0.60
0.45 ± 0.03
2.55
0.25 MAX
Detail B
- 42 -
Page 43
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

19.2 512Mbx8 based 512Mx64 Module (1 Rank) - M471B5173QH0

Units : Millimeters
67.60 ± 0.13
21.00
63.60
SPD
B
A
39.00
Max 3.8
30.00 ± 0.13
1.00 ± 0.10
1.65
4.00 ± 0.10
1.00 ± 0.10
Detail A
The used device is 512M x8 DDR3L SDRAM, BOC. DDR3 SDRAM Part NO : K4B4G0846Q - HY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
0.60
0.45 ± 0.03
2.55
0.25 MAX
Detail B
- 43 -
Page 44
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

19.3 512Mbx8 based 1Gx64 Module (2 Ranks) - M471B1G73QH0

Units : Millimeters
67.60 ± 0.13
21.00
63.60
B
A
39.00
SPD
Max 3.8
30.00 ± 0.13
1.00 ± 0.10
1.65
4.00 ± 0.10
1.00 ± 0.10
Detail A
The used device is 512M x8 DDR3L SDRAM, BOC. DDR3 SDRAM Part NO : K4B4G0846Q - HY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
0.60
0.45 ± 0.03
2.55
0.25 MAX
Detail B
- 44 -
Page 45
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

19.4 512Mbx8 based 512Mx72 Module (1 Rank) - M474B5173QH0

Units : Millimeters
67.60 ± 0.13
21.00
63.60
B
A
39.00
SPD
Max 3.8
30.00 ± 0.13
1.00 ± 0.10
1.65
4.00 ± 0.10
1.00 ± 0.10
Detail A
The used device is 512M x8 DDR3L SDRAM, BOC. DDR3 SDRAM Part NO : K4B4G0846Q - HY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
0.60
0.45 ± 0.03
2.55
0.25 MAX
Detail B
- 45 -
Page 46
Rev. 1.21
Unbuffered SODIMM datasheet DDR3L SDRAM

19.5 512Mbx8 based 1Gx72 Module (2 Ranks) - M474B1G73QH0

Units : Millimeters
67.60 ± 0.13
21.00
63.60
B
A
39.00
SPD
Max 3.8
30.00 ± 0.13
1.00 ± 0.10
1.65
4.00 ± 0.10
1.00 ± 0.10
Detail A
The used device is 512M x8 DDR3L SDRAM, BOC. DDR3 SDRAM Part NO : K4B4G0846Q - HY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
0.60
0.45 ± 0.03
2.55
0.25 MAX
Detail B
- 46 -
Loading...