78FBGA with Lead-Free & Halogen-Free
(RoHS compliant)
datasheet
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND
SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed
herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property
right is granted by one party to the other party under this document, by implication, estoppel or otherwise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or
similar applications where product failure could result in loss of life or personal or physical harm, or any
military or defense application, or any governmental procurement to which special terms or provisions
may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
(C) 2013 Samsung Electronics Co., Ltd. All rights reserved.
- 1 -
Page 2
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
Revision History
Revision No.HistoryDraft DateRemarkEditor
1.0- First SPEC ReleaseJul. 2013-S.H.Kim
1.1- Added to 4GB(1Rx8) ECC SODIMM from Product line-upSep. 2013-S.H.Kim
7. SPD and Thermal Sensor for ECC SODIMMs..............................................................................................................7
9. Function Block Diagram:...............................................................................................................................................10
9.1 2GB, 256Mx64 Module (Populated as 1 rank of x16 DDR3 SDRAMs) ................................................................... 10
9.2 4GB, 512Mx64 Module (Populated as 1 rank of x8 DDR3 SDRAMs) ..................................................................... 11
9.3 8GB, 1Gx64 Module (Populated as 2 ranks of x8 DDR3 SDRAMs)........................................................................12
9.4 4GB, 512Mx72 Module (Populated as 1 rank of x8 DDR3 SDRAMs) ..................................................................... 13
9.5 8GB, 1Gx72 Module (Populated as 2 ranks of x8 DDR3 SDRAMs)........................................................................14
10. Absolute Maximum Ratings ........................................................................................................................................15
10.1 Absolute Maximum DC Ratings............................................................................................................................. 15
10.2 DRAM Component Operating Temperature Range ..............................................................................................15
11. AC & DC Operating Conditions...................................................................................................................................15
11.1 Recommended DC Operating Conditions ............................................................................................................15
12. AC & DC Input Measurement Levels ..........................................................................................................................16
12.1 AC & DC Logic Input Levels for Single-ended Signals..........................................................................................16
12.2 V
12.3 AC and DC Logic Input Levels for Differential Signals ..........................................................................................19
12.3.2. Differential Swing Requirement for Clock (CK -
12.3.3. Single-ended Requirements for Differential Signals ......................................................................................21
12.3.4. Differential Input Cross Point Voltage ............................................................................................................ 22
12.4 Slew Rate Definition for Single Ended Input Signals.............................................................................................23
12.5 Slew rate definition for Differential Input Signals ................................................................................................... 23
13. AC & DC Output Measurement Levels .......................................................................................................................23
13.1 Single Ended AC and DC Output Levels...............................................................................................................23
13.2 Differential AC and DC Output Levels ................................................................................................................... 23
17. Electrical Characteristics and AC timing .....................................................................................................................32
17.1 Refresh Parameters by Device Density................................................................................................................. 32
17.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................32
17.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................32
17.3.1. Speed Bin Table Notes .................................................................................................................................. 36
18. Timing Parameters by Speed Grade ..........................................................................................................................37
RASRow Address Strobe1DQS0-DQS7 Data strobes complement8
CASColumn Address Strobe1RESETReset Pin1
WEWrite Enable1TEST
S0, S1Chip Selects2
A0-A9, A11,
A13-A15
Address Inputs14
A10/APAddress Input/Autoprecharge1
A12/BCAddress Input/Burst chop1
BA0-BA2SDRAM Bank Addresses3
V
V
V
REFDQ
V
REFCA
V
DDSPD
V
DD
SS
TT
ODT0, ODT1 On-die termination control2NCReserved for future use3
SCLSerial Presence Detect (SPD) Clock Input1Total204
SDASPD Data Input/Output1
SA0-SA1SPD Address2
NOTE:
*The V
DD
and V
pins are tied common to a single power-plane on these designs.
DDQ
Data Masks/ Data strobes,
Termination data strobes
Logic Analyzer specific test pin (No connect
on SODIMM)
Core and I/O Power18
Ground52
Input/Output Reference2
SPD and Temp sensor Power1
Termination Voltage2
8
1
7. SPD and Thermal Sensor for ECC SODIMMs
On DIMM thermal sensor will provide DRAM temperature readout through a integrated thermal sensor.
SCL
EVENT
NOTE :
1. Raw Cards D (1Rx8 ECC) and E (2Rx8 ECC) support a thermal sensor.
2. When the SPD and the thermal sensor are placed on the module, R1 is placed but R2 is not.
When only the SPD is placed on the module, R2 is placed but R1 is not.
[ Table 1 ] Temperature Sensor Characteristics
GradeRange
75 < Ta < 95-+/- 0.5+/- 1.0
B
40 < Ta < 125-+/- 1.0+/- 2.0-
-20 < Ta < 125-+/- 2.0+/- 3.0-
Resolution0.25C /LSB-
R1
0
WP/EVENT
SA0SA1SA2
R2
0
SA0SA1SA2
Min.Typ. Max.
Temperature Sensor Accuracy
SDA
UnitsNOTE
-
C
- 7 -
Page 8
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
8. Input/Output Functional Description
SymbolTypeFunction
CK0-CK1Input
CK0-CK1Input
CKE0-CKE1Input
S0-S3Input
RAS, CAS, WEInput
ODT0-ODT1Input
REFDQSupply
V
REFCASupply
V
BA0-BA2Input
A[15:13,12/
BC,11,10/AP,9:0]
DQ[63:0], CB[7:0]
DM[8:0]
V
DD, VSSSupplyPower and ground for the DDR SDRAM input buffers and core logic.
VTTSupplyTermination Voltage for Address/Command/Control/Clock nets.
DQS0-DQS17I/OPositive line of the differential data strobe for input and output data.
DQS0-DQS17I/O Negative line of the differential data strobe for input and output data.
SA0-SA1Input
SDAI/O
SCLInput
EVENT
Input
I/OData and Check Bit Input/Output pins.
InputMasks write data when high, issued concurrently with input data.
OUT
(open drain)
Positive line of the differential pair of system clock inputs that drives input to the on-DIMM Clock
Driver (72b-SO-RDIMM), on-DIMM PLL (72b-SO-CDIMM), or to DRAMs on rank 0 (72b-SO-DIMM).
Negative line of the differential pair of system clock inputs that drives input to the on-DIMM Clock
Driver (72b-SO-RDIMM), on-DIMM PLL (72b-SO-CDIMM), or to DRAMs on rank 0 (72b-SO-DIMM).
CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input buffers and
output drivers of the SDRAMs. Taking CKE LOW provides PRECHARGE POWER-DOWN and
SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row ACTIVE in any bank).
Connected to the registering clock driver on 72b-SO-RDIMMs, connected to DRAMs on 72b-SOCDIMMs
and 72b-SO-DIMMs.
Enables the command decoders for the associated rank of SDRAM when low and disables decoders
when high. When decoders are disabled, new commands are ignored and previous operations
continue. Connected to SDRAMs on 72b-SO-CDIMMs and 72b-SO-DIMMs. For 72b-SO-RDIMMs,
other combinations of these input signals perform unique functions, including disabling all outputs
(except CKE and ODT) of the register(s) on the DIMM or accessing internal control words in the register
device(s). For modules with two registers, S[3:2] operate similarly to S[1:0] for the second set of
register outputs or register control words
When sampled at the positive rising edge of the clock, CAS_n, RAS_n, and WE_n define the operation
to be executed by the SDRAM. Connected to SDRAMs on 72b-SO-CDIMMs and 72b-SODIMMs,
connected to the registering clock driver on 72b-SO-RDIMMs.
On-Die Termination control signals. Connected to SDRAMs on 72b-SO-CDIMMs and 72b-SODIMMs,
connected to the registering clock driver on 72b-SO-RDIMMs.
Reference voltage for DQ0-DQ63 and CB0-CB7.
Reference voltage for A0-A15, BA0-BA2, RAS_n, CAS_n, WE_n, S0_n, S1_n, CKE0, CKE1,
Par_In, ODT0 and ODT1.
Selects which SDRAM bank of eight is activated.
BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied.
Bank address also determines mode register is to be accessed during an MRS cycle. Connected to
SDRAMs on 72b-SO-CDIMMs and 72b-SO-DIMMs, connected to the registering clock driver on
72b-SO-RDIMMs.
Provided the row address for Active commands and the column address and Auto Precharge bit for
Read/Write commands to select one location out of the memory array in the respective bank. A10 is
sampled during a Precharge command to determine whether the Precharge applies to one bank
(A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by
BA. A12 is also utilized for BL 4/8 identification for ‘’BL on the fly’’ during CAS command. The
address inputs also provide the op-code during Mode Register Set commands. Connected to
SDRAMs on 72b-SO-CDIMMs and 72b-SO-DIMMs, connected to the registering clock driver on
72b-SO-RDIMMs.
These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD
EEPROM address range.
This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be
connected from the SDA bus line to V
This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected
from the SCL bus time to V
This signal indicates that a thermal event has been detected in the thermal sensing device.The system
should guarantee the electrical level requirement is met for the EVENT_n pin on TS/SPD part.
DDSPD on the system planar to act as a pullup.
DDSPD on the system planar to act as a pullup.
- 8 -
Page 9
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
SymbolTypeFunction
V
DDSPDSupply
RESETInput
Par_InInput
Err_Out
OUT
(open drain)
Serial EEPROM positive power supply wired to a separate power pin at the connector which supports
from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation.
The RESET_n pin is connected to the RESET_n pin on the register (72b-SO-RDIMM) and to the
RESET_n pin on the SDRAMs (all modules). When low, all register outputs will be driven low and
the Clock Driver clocks to the DRAMs and register(s) will be set to low level (the Clock Driver will
remain synchronized with the input clock).
Parity bit for the Address and Control bus. (“1 “: Odd, “0 “: Even). Not used on 72b-SO-DIMMs or
72b-SO-CDIMMs.
Parity error detected on the Address and Control bus. A resistor may be connected from Err_Out_n
bus line to VDD on the system planar to act as a pull up. Not used on 72b-SO-DIMMs or 72b-SOCDIMMs.
- 9 -
Page 10
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
9. Function Block Diagram:
9.1 2GB, 256Mx64 Module (Populated as 1 rank of x16 DDR3 SDRAMs)
S0
RAS
CASWECK0
CK0
CKE0
ODT0
/BA[0:N]
DQS0
DQS0
DM0
DQ[0:7]
DQS1
DQS1
DM1
DQ[8:15]
DQS2
DQS2
DM2
DQ[16:23]
DQS3
DQS3
DM3
DQ[24:31]
DQS4
DQS4
DM4
DQ[32:39]
DQS5
DQS5
DM5
DQ[40:47]
LDQS
LDQS
LDM
DQ[0:7]
UDQS
UDQS
UDM
DQ[8:15]
CS
RAS
LDQS
LDQS
LDM
DQ[0:7]
UDQS
UDQS
UDM
DQ[8:15]
CS
RAS
LDQS
LDQS
LDM
DQ[0:7]
UDQS
UDQS
UDM
DQ[8:15]
240
1%
ZQ
D0
CASWECKCKCKE
240
1%
ZQ
D1
CASWECKCKCKE
240
1%
ZQ
D2
A[0:N]
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
V
V
DDSPD
V
REFCA
V
REFDQ
V
DD
V
SS
CK0
CK0D0 - D3
CK1
CK1
ODT1
S1
CKE1
RESETD0 - D3
tt
SCL
SA0
SA1
SCL
A0
A1
A2
(SPD)
WP
SDA
V
tt
SPD
D0 - D3
D0 - D3
D0 - D3
D0 - D3, SPD
D0 - D3
Terminated near
card edge
NC
NC
NC
DQS6
DQS6
DM6
DQ[48:55]
DQS7
DQS7
DM7
DQ[56:63]
CS
RAS
LDQS
LDQS
LDM
DQ[0:7]
UDQS
UDQS
UDM
DQ[8:15]
CS
RAS
CS
RAS
CASWECKCKCKE
CASWECKCKCKE
CASWECKCKCKE
D3
240
1%
ZQ
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
D1D2D0
Address and Controllines
D3
tt
V
Note :
1. DQ wiring may differ from that shown
however ,DQ, DM, DQS and DQS
relationships are maintained as shown
Vtt
V
DD
Vtt
Rank0
- 10 -
Page 11
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
9.2 4GB, 512Mx64 Module (Populated as 1 rank of x8 DDR3 SDRAMs)
S0
RAS
CASWECK0
CK0
CKE0
ODT0
A[0:N]
DQS0
DQS0
DM0
DQ[0:7]
DQS2
DQS2
DM2
DQ[16:23]
DQS
DQS
DM
DQ[0:7]
CS
RAS
DQS
DQS
DM
DQ[0:7]
CS
RAS
240
1%
ZQ
D0
CASWECKCKCKE
240
1%
ZQ
D1
CASWECKCKCKE
/BA[0:N]
ODT
A[0:N]/BA[0:N]
ODT
A[0:N]/BA[0:N]
DQS1
DQS1
DM1
DQ[8:15]
DQS3
DQS3
DM3
DQ[24:31]
DQS
DQS
DM
DQ[0:7]
CS
RAS
DQS
DQS
DM
DQ[0:7]
CS
RAS
240
1%
ZQ
D4
CASWECKCKCKE
240
1%
ZQ
D5
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
ODT
A[0:N]/BA[0:N]
V
DDSPD
V
REFCA
V
REFDQ
ODT1
CKE1
RESET
V
V
CK0
CK0
CK1
CK1
SCL
SA0
SA1
V
DD
SS
S1
SCL
A0
(SPD)
A1
A2
WP
tt
SDA
V
tt
SPD
D0 - D7
D0 - D7
D0 - D7
D0 - D7, SPD
D0 - D7
D0 - D7
Terminated near
card edge
NC
NC
NC
D0 - D7
DQS4
DQS4
DM4
DQ[32:39]
DQS6
DQS6
DM6
DQ[48:55]
DQS
DQS
DM
DQ[0:7]
CS
RAS
DQS
DQS
DM
DQ[0:7]
240
1%
ZQ
D2
CASWECKCKCKE
240
1%
ZQ
D3
ODT
A[0:N]/BA[0:N]
DQS5
DQS5
DM5
DQ[40:47]
DQS7
DQS7
DM7
DQ[56:63]
DQS
DQS
DM
DQ[0:7]
CS
RAS
DQS
DQS
DM
DQ[0:7]
240
1%
ZQ
D6
CASWECKCKCKE
240
1%
ZQ
D7
ODT
A[0:N]/BA[0:N]
V
tt
D7D6D5D4
V4V3V2V1
V4V3V2V1
D3D2D1D0
tt
V
Address and Controllines
NOTE :
CS
RAS
CASWECKCKCKE
Vtt
V
DD
ODT
A[0:N]/BA[0:N]
CS
RAS
CASWECKCKCKE
Vtt
ODT
A[0:N]/BA[0:N]
Rank0
1. DQ wiring may differ from that shown however ,DQ, DM, DQS and
are maintained as shown
DQS relationships
- 11 -
Page 12
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
9.3 8GB, 1Gx64 Module (Populated as 2 ranks of x8 DDR3 SDRAMs)
DQS3
DQS3
DM3
DQ[24:31]
DQS1
DQS1
DM1
DQ[8:15]
DQS0
DQS0
DM0
DQ[0:7]
S1
RAS
DQS
DQS
DM
DQ[0:7]
CS
RAS
DQS
DQS
DM
DQ[0:7]
CS
RAS
DQS
DQS
DM
DQ[0:7]
CASWECK1
CK1
CKE1
240
1%
ZQ
D11
CASWECKCKCKE
240
1%
ZQ
D1
CASWECKCKCKE
240
1%
ZQ
D0
ODT1
A[0:N]
/BA[0:N]
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
S0
DQS
DQS
DM
DQ[0:7]
CS
RAS
DQS
DQS
DM
DQ[0:7]
CS
RAS
DQS
DQS
DM
DQ[0:7]
CK0
CK0
CKE0
240
1%
ZQ
D3
CASWECKCKCKE
240
1%
ZQ
D9
CASWECKCKCKE
240
1%
ZQ
D8
ODT0
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
Rank0
Rank1
DQS
DQS
DM
DQ[0:7]
CS
RAS
DQS
DQS
DM
DQ[0:7]
CS
RAS
DQS
DQS
DM
DQ[0:7]
V
DD
240
1%
ZQ
D12
CASWECKCKCKE
240
1%
ZQ
D6
CASWECKCKCKE
240
1%
ZQ
D7
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
Vtt
DQS4
DQS4
DM4
DQ[32:39]
DQS6
DQS6
DM6
DQ[48:55]
DQS7
DQS7
DM7
DQ[56:63]
V
DD
Vtt
Vtt
240
DQS
DQS
DM
DQ[0:7]
DQS
DQS
DM
DQ[0:7]
DQS
DQS
DM
DQ[0:7]
CS
RAS
CASWECKCKCKE
CS
RAS
CASWECKCKCKE
D4
D14
D15
1%
ZQ
240
1%
ZQ
240
1%
ZQ
ODT
ODT
A[N:0]/BA[N:0]
A[N:0]/BA[N:0]
DQS2
DQS2
DM2
DQ[16:23]
SCL
SA0
SA1
SCL
A0
A1
A2
CS
RAS
DQS
DQS
DM
DQ[0:7]
CS
RAS
CASWECKCKCKE
240
1%
ZQ
D2
CASWECKCKCKE
(SPD)
WP
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
SDA
CS
RAS
DQS
DQS
DM
DQ[0:7]
CS
RAS
CASWECKCKCKE
240
1%
ZQ
D10
CASWECKCKCKE
V
tt
V
DDSPD
V
REFCA
V
REFDQ
V
DD
V
SS
CK0
CK1
CK0
CK1
RESET
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
CS
RAS
CASWECKCKCKE
DQS
DQS
DM
DQ[0:7]
D13
CS
RAS
CASWECKCKCKE
V
tt
SPD
D0 - D15
D0 - D15
D0 - D15
D0 - D15, SPD
D0 - D7
D8 - D15
D0 - D7
D8 - D15
D0 - D7
240
1%
ODT
A[N:0]/BA[N:0]
CS
RAS
ZQ
ODT
A[N:0]/BA[N:0]
DQS
DQS
DM
DQ[0:7]
CS
RAS
V3
V3
CASWECKCKCKE
CASWECKCKCKE
V2
V4
V4
V2
D5
240
1%
ZQ
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
V1
V9
V5
V1
V5
V
tt
V1
V9
NOTE :
1. DQ wiring may differ from that shown however ,DQ, DM, DQS and
are maintained as shown
DQS5
DQS5
DM5
DQ[40:47]
V8
D6D12D3D9
V7
D7D5D10D8
V6
V6
D15D13D2D0
V7
D14D4D11D1
V8
Address and Controllines
DQS relationships
- 12 -
Page 13
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
9.4 4GB, 512Mx72 Module (Populated as 1 rank of x8 DDR3 SDRAMs)
S0
RAS
CASWECK0
CK0
CKE0
ODT0
A[0:N]
DQS0
DQS0
DM0
DQ[0:7]
DQS2
DQS2
DM2
DQ[16:23]
DQS4
DQS4
DM4
CB[0:7]
DQS
DQS
DM
DQ
DQS
DQS
DM
DQ
DQS
DQS
DM
DQ
CS
CS
RAS
RAS
240
1%
ZQ
D0
CASWECKCKCKE
240
1%
ZQ
D1
CASWECKCKCKE
240
1%
ZQ
D8
/BA[0:N]
ODT
A[0:N]/BA[0:N]
ODT
A[0:N]/BA[0:N]
DQS1
DQS1
DM1
DQ[8:15]
DQS3
DQS3
DM3
DQ[24:31]
DQS
DQS
DM
DQ
CS
DQS
DQS
DM
DQ
CS
RAS
RAS
240
1%
ZQ
D4
CASWECKCKCKE
240
1%
ZQ
D5
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
ODT
A[0:N]/BA[0:N]
V
DDSPD
V
REFCA
V
REFDQ
ODT1
CKE1
ENEVT
RESET
V
V
CK0
CK0
CK1
CK1
SCL
SA0
SA1
V
DD
SS
S1
SCL
A0
(SPD)
A1
A2
WP
tt
SDA
V
tt
SPD
D0 - D8
D0 - D8
D0 - D8
D0 - D8
D0 - D8
D0 - D8
Terminated near
card edge
NC
NC
NC
Temp Sensor
D0 - D8
DQS4
DQS4
DM4
DQ[32:39]
DQS6
DQS6
DM6
DQ[48:55]
V
tt
D7D6D5D4
V4V3V2V1
V4V3V2V1
D3D2D1D0
tt
V
Address and Controllines
DQS
DQS
DM
DQ
CS
CS
RAS
RAS
CASWECKCKCKE
240
1%
ZQ
D2
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
ODT
A[0:N]/BA[0:N]
DQS5
DQS5
DM5
DQ[40:47]
DQS
DQS
DM
DQ
CS
RAS
240
1%
ZQ
D6
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
D8
NOTE :
1. DQ wiring may differ from that shown however ,DQ, DM, DQS and
240
DQS
DQS
DM
DQ
Vtt
D3
CS
RAS
CASWECKCKCKE
1%
ZQ
V
DD
ODT
A[0:N]/BA[0:N]
DQS7
DQS7
DM7
DQ[56:63]
Vtt
DQS
DQS
DM
DQ
CS
240
1%
ZQ
D7
RAS
CASWECKCKCKE
ODT
A[0:N]/BA[0:N]
Rank0
are maintained as shown
DQS relationships
- 13 -
Page 14
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
9.5 8GB, 1Gx72 Module (Populated as 2 ranks of x8 DDR3 SDRAMs)
DQS0
DQS0
DM0
DQ[0:7]
DQS2
DQS2
DM2
DQ[16:15]
DQS4
DQS4
DM4
DQ[32:39]
DQS
DQS
DM
DQ
DQS
DQS
DM
DQ
DQS
DQS
DM
DQ
S1
CS
CS
CS
RAS
CASWECK1
240
ZQ
D1
RAS
CASWECKCKCKE
240
ZQ
D2
RAS
CASWECKCKCKE
240
ZQ
D3
RAS
CASWECKCKCKE
CK1
1%
1%
1%
CKE1
ODT1
A[0:N]
/BA[0:N]
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
DQS
DQS
DM
DQ
DQS
DQS
DM
DQ
DQS
DQS
DM
DQ
S0
CS
CS
CS
RAS
RAS
RAS
CK0
CK0
CKE0
240
1%
ZQ
D10
CASWECKCKCKE
240
1%
ZQ
D11
CASWECKCKCKE
240
1%
ZQ
D12
CASWECKCKCKE
ODT0
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
Rank0
Rank1
V
DD
Vtt
Vtt
240
DQS
DQS
DM
DQ
DQS
DQS
DM
DQ
DQS
DQS
DM
DQ
CS
CS
CS
D5
RAS
CASWECKCKCKE
240
D6
RAS
CASWECKCKCKE
240
D7
RAS
CASWECKCKCKE
1%
ZQ
1%
ZQ
1%
ZQ
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
DQS
DQS
DM
DQ
DQS
DQS
DM
DQ
DQS
DQS
DM
DQ
C
term
D14
CS
RAS
CASWECKCKCKE
D15
CS
RAS
CASWECKCKCKE
D16
CS
RAS
CASWECKCKCKE
V
240
240
240
DD
ZQ
ZQ
ZQ
1%
ODT
1%
ODT
1%
ODT
Vtt
DQS1
DQS1
DM1
DQ[8:15]
A[N:0]/BA[N:0]
DQS3
DQS3
DM3
DQ[24:31]
A[N:0]/BA[N:0]
DQS5
DQS5
DM5
DQ[40:47]
A[N:0]/BA[N:0]
DQS6
DQS6
DM6
DQ[48:55]
DQS8
DQS8
CB[0:7]
SCL
SA0
SA1
DM8
SCL
A0
A1
A2
DQS
DQS
DM
DQ
DQS
DQS
DM
DQ
CS
CS
ZQ
D4
RAS
CASWECKCKCKE
240
ZQ
D9
RAS
CASWECKCKCKE
(SPD)
WP
1%
1%
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
SDA
DQS
DQS
DM
DQ
DQS
DQS
DM
DQ
CS
CS
RAS
RAS
240
1%
ZQ
D13
CASWECKCKCKE
240
1%
ZQ
D18
CASWECKCKCKE
V
tt
V
DDSPD
V
REFCA
V
REFDQ
V
DD
V
SS
ODT
A[N:0]/BA[N:0]
ODT
A[N:0]/BA[N:0]
240
CK0
CK1
CK0
CK1
RESET
NOTE :
1. DQ wiring may differ from that shown however ,DQ, DM, DQS and
240
D8
RAS
CASWECKCKCKE
1%
ZQ
ODT
A[N:0]/BA[N:0]
V2
V3
V
tt
SPD
DQS
DQS
DM
DQ
CS
D0 - D15
D0 - D15
D0 - D15
D0 - D15, SPD
D0 - D7
D8 - D15
D0 - D7
V4
V4
V3
D7
V2
D8 - D15
D0 - D7
DQS relationships are maintained as shown
DQS
DQS
DM
DQ
CS
RAS
D14D16
D6D17
D5
240
1%
ZQ
D17
CASWECKCKCKE
V1
D10
V1
D18
V
tt
V1
DQS7
DQS7
DM7
DQ[56:63]
ODT
A[N:0]/BA[N:0]
V8
V9
V5
V5
D2D4
V7
D1D3
V6
V6
D10D12D15D8
V7
D11D13
V9
V8
Address and Controllines
- 14 -
Page 15
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
10. Absolute Maximum Ratings
10.1 Absolute Maximum DC Ratings
SymbolParameter RatingUnitsNOTE
V
DD
V
Voltage on V
DDQ
V
NOTE :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and V
equal to or less than 300mV.
Voltage on any pin relative to V
IN, VOUT
T
Storage Temperature -55 to +100C 1, 2
STG
DDQ
10.2 DRAM Component Operating Temperature Range
SymbolParameterratingUnitNOTE
T
OPER
NOTE :
1. Operating Temperature T
JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85C under all operating conditions
3. Some applications require operation of the Extended Temperature Range between 85C and 95C case temperature. Full specifications are guaranteed in this range, but the
following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us.
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature
Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range.
Voltage on VDD pin relative to V
pin relative to V
DDQ
must be within 300mV of each other at all times;and V
SS
SS
SS
Operating Temperature Range 0 to 95C1, 2, 3
is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document
OPER
-0.4 V ~ 1.975 VV 1,3
-0.4 V ~ 1.975 VV 1,3
-0.4 V ~ 1.975 VV 1
must be not greater than 0.6 x V
REF
, When VDD and V
DDQ
are less than 500mV; V
DDQ
REF
may be
11. AC & DC Operating Conditions
11.1 Recommended DC Operating Conditions
SymbolParameterOperation Voltage
V
DD
V
DDQ
NOTE:
1. Under all conditions V
tracks with VDD. AC parameters are measured with VDD and V
2. V
DDQ
3. VDD & V
DDQ
Supply Voltage
Supply Voltage for Output
must be less than or equal to VDD.
DDQ
rating are determinied by operation voltage.
1.35V1.2831.351.45V1, 2, 3
1.5V1.4251.51.575V1, 2, 3
1.35V1.2831.351.45V1, 2, 3
1.5V1.4251.51.575V1, 2, 3
tied together.
DDQ
Rating
Min.Typ. Max.
UnitsNOTE
- 15 -
Page 16
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
12. AC & DC Input Measurement Levels
12.1 AC & DC Logic Input Levels for Single-ended Signals
[ Table 2 ] Single Ended AC and DC input levels for Command and Address(1.35V)
SymbolParameter
1.35V
V
(DC90)
IH.CA
V
(DC90)
IL.CA
V
(AC160)
IH.CA
(AC160)
V
IL.CA
V
(AC135)
IH.CA
V
(AC135)
IL.CA
V
(DC)
REFCA
NOTE :
1. For input only pins except
2. See "Overshoot and Undershoot specifications" on Component Datasheet.
3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV).
4. For reference: approx. VDD/2 +/- 13.5 mV
5. These levels apply for 1.35 Volt operation only. If the device is operated at 1.5 V , the respective levels in JESD79-3 (VIH/L.CA(DC100), VIH/L.CA(AC175), VIHL.CA(AC150),
VIH/L.CA(AC135), VIH/L.CA(AC125)etc.) apply. The 1.5 V levels (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), VIH/L.CA(AC135), VIHL.CA(AC125)etc.) do not
apply when the device is operated in the 1.35 voltage range.
DC input logic high
DC input logic low
AC input logic high
AC input logic lowNote 2
AC input logic high
AC input logic lowM Note 2
Reference Voltage for ADD, CMD inputs
RESET, V
REF
= V
REFCA
(DC)
DDR3L-800/1066/1333/1600
Min.Max.
V
+ 90V
REF
V
SS
V
+ 160
REF
V
+135
REF
0.49*V
DD
UnitNOTE
DD
V
- 90
REF
mV1
mV1
Note 2mV1,2,5
V
REF
- 160
mV1,2,5
Note 2mV1,2,5
V
REF
0.51*V
-135
DD
mV1,2,5
V3,4
[ Table 3 ] Single-ended AC & DC input levels for Command and Address(1.5V)
SymbolParameter
DDR3-800/1066/1333/1600
Min.Max.
UnitNOTE
1.5V
V
(DC100)
IH.CA
V
(DC100)
IL.CA
V
(AC175)
IH.CA
V
(AC175)
IL.CA
(AC150)
V
IH.CA
V
(AC150)
IL.CA
V
(DC)
REFCA
NOTE :
1. For input only pins except
2. See "Overshoot and Undershoot specifications" on Component Datasheet.
3. The ac peak noise on VRef may not allow VRef to deviate from VRefCA(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV).
4. For reference: approx. VDD/2 +/- 15 mV.
5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100)
6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100)
7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175), VIH.CA(AC150), VIH.CA(AC135), and VIH.CA(AC125); VIH.CA(AC175) value is used when Vref + 0.175V is
referenced, VIH.CA(AC150) value is used when Vref + 0.150V is referenced, VIH.CA(AC135) value is used when Vref + 0.135V is referenced, and VIH.CA(AC125) value is
used when Vref + 0.125V is referenced.
8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175), VIL.CA(AC150), VIL.CA(AC135) and VIL.CA(AC125); VIL.CA(AC175) value is used when Vref - 0.175V is
referenced, VIL.CA(AC150) value is used when Vref - 0.150V is referenced, VIL.CA(AC135) value is used when Vref - 0.135V is referenced, and VIL.CA(AC125) value is
used when Vref - 0.125V is referenced.
9. VrefCA(DC) is measured relative to VDD at the same point in time on the same device
DC input logic high
DC input logic low
AC input logic high
AC input logic lowNote 2
AC input logic high
AC input logic low Note 2
Reference Voltage for ADD, CMD inputs
RESET, V
REF
= V
REFCA
(DC)
V
+ 100V
REF
V
SS
V
+ 175
REF
V
+150
REF
0.49*V
DD
DD
V
- 100
REF
mV1,5
mV1,6
Note 2mV1,2,7
V
REF
- 175
mV1,2,8
Note 2mV1,2,7
V
REF
0.51*V
-150
DD
mV1,2,8
V3,4,9
- 16 -
Page 17
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
[ Table 4 ] Single Ended AC and DC input levels for DQ and DM(1.35V)
SymbolParameter
V
(DC90)
IH.DQ
V
(DC90)
IL.DQ
(AC160)
V
IH.DQ
V
(AC160)
IL.DQ
V
(AC135)
IH.DQ
V
(AC135)
IL.DQ
(DC)
V
REF
DQ
NOTE :
1. For input only pins except
2. See "Overshoot and Undershoot specifications" on Component Datasheet.
3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV).
4. For reference: approx. VDD/2 +/- 13.5 mV.
5. These levels apply for 1.35 Volt operation only. If the device is operated at 1.5 V, the respective levels in JESD79-3 ( VIH/L.DQ(DC100), VIH/L.DQ(AC175), VIH/
L.DQ(AC150), VIH/L.DQ(AC135), etc. ) apply. The 1.5 V levels (VIH/L.DQ(DC100), VIH/L.DQ(AC175), VIH/L.DQ(AC150), VIH/L.DQ(AC135), etc. ) do not apply when the
device is operated in the 1.35 voltage range.
DC input logic high
DC input logic low
AC input logic high
AC input logic lowNote 2
AC input logic high
AC input logic lowNote 2
Reference Voltage for DQ, DM
inputs
RESET, V
REF
= V
REFDQ
(DC)
DDR3L-800/1066DDR3L-1333/1600
Min.Max.Min.Max.
1.35V
V
+ 90V
REF
V
SS
V
+ 160
REF
V
+ 135
REF
0.49*V
DD
DD
V
- 90V
REF
Note 2--mV1,2,5
V
- 160
REF
Note 2
V
- 135
REF
0.51*V
DD
V
+ 90V
REF
SS
--mV1,2,5
V
+ 135
REF
Note 2
0.49*V
DD
UnitNOTE
mV1
mV1
V
REF
DD
- 90
Note 2mV1,2,5
V
- 135
REF
0.51*V
DD
mV1,2,5
V3,4
[ Table 5 ] Single-ended AC & DC input levels for DQ and DM (1.5V)
SymbolParameter
DDR3-800/1066DDR3-1333/1600
Min.Max.Min.Max.
UnitNOTE
1.5V
V
(DC100)
IH.DQ
(DC100)
V
IL.DQ
(AC175)
V
IH.DQ
V
(AC175)
IL.DQ
V
(AC150)
IH.DQ
(AC150)
V
IL.DQ
V
(AC135)
IH.DQ
V
(AC135)
IL.DQ
V
(DC)
REF
DQ
NOTE :
1. For input only pins except
2. See "Overshoot and Undershoot specifications" on Component Datasheet.
3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV).
4. For reference: approx. VDD/2 +/- 15 mV.
5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100)
6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100)
7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150), and VIH.DQ(AC135); VIH.DQ(AC175) value is used when Vref + 0.175V is referenced,
VIH.DQ(AC150) value is used when Vref + 0.150V is referenced, and VIH.DQ(AC135) value is used when Vref + 0.135V is referenced.
8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150), and VIL.DQ(AC135); VIL.DQ(AC175) value is used when Vref - 0.175V is referenced,
VIL.DQ(AC150) value is used when Vref - 0.150V is referenced, and VIL.DQ(AC135) value is used when Vref - 0.135V is referenced.
9. VrefCA(DC) is measured relative to VDD at the same point in time on the same device
10. Optional in DDR3 SDRAM for DDR3-800/1066/1333/1600: Users should refer to the DRAM supplier data sheetand/or the DIMM SPD to determine if DDR3 SDRAM devices
support this option.
DC input logic high
DC input logic low
AC input logic high
AC input logic lowNOTE 2
AC input logic high
AC input logic lowNOTE 2
AC input logic high
AC input logic lowNOTE 2
Reference Voltage for DQ, DM
inputs
RESET, V
REF
= V
REFDQ
(DC)
V
+ 100V
REF
V
SS
V
+ 175
REF
V
+ 150
REF
V
+ 135
REF
0.49*V
DD
DD
V
- 100V
REF
+ 100V
REF
SS
DD
V
- 100
REF
mV1,5
mV1,6
V
NOTE 2--mV1,2,7
V
REF
NOTE 2
V
REF
NOTE 2
V
REF
0.51*V
- 175
- 150
- 135
DD
--mV1,2,8
V
REF
NOTE 2
V
REF
NOTE 2
0.49*V
+ 150
+ 135
DD
NOTE 2mV1,2,7
V
REF
- 150
mV1,2,8
NOTE 2mV1,2,7,10
V
- 135
REF
0.51*V
DD
mV1,2,8,10
V3,4,9
- 17 -
Page 18
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
12.2 V
Tolerances
REF
The dc-tolerance limits and ac-noise limits for the reference voltages V
(t) as a function of time. (V
V
REF
V
(DC) is the linear average of V
REF
thermore V
(t) may temporarily deviate from V
REF
stands for V
REF
(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements of V
REF
voltage
and V
REFCA
(DC) by no more than ± 1% VDD.
REF
REFDQ
likewise).
Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits
REFCA
and V
are illustrate in Figure 1. It shows a valid reference voltage
REFDQ
REF
V
DD
V
SS
time
. Fur-
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on V
" shall be understood as V
"V
REF
This clarifies, that dc-variations of V
which setup and hold is measured. System timing and voltage budgets need to account for V
(DC), as defined in Figure 1.
REF
affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
REF
(DC) deviations from the optimum position within the
REF
REF
.
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V
Timing and voltage effects due to ac-noise on V
up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
REF
ac-noise.
REF
- 18 -
Page 19
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
12.3 AC and DC Logic Input Levels for Differential Signals
12.3.1 Differential Signals Definition
tDVAC
VIH.DIFF.AC.MIN
.DIFF.MIN
V
IH
0.0
half cycle
.DIFF.MAX
V
IL
.DIFF.AC.MAX
V
IL
Differential Input Voltage (i.e. DQS-DQS, CK-CK)
Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC
12.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS)
DDR3-800/1066/1333/1600
SymbolParameter
minmaxminmax
V
IHdiff
V
ILdiff
V
(AC)
IHdiff
(AC)
V
ILdiff
NOTE :
1. Used to define a differential signal slew-rate.
2. for CK -
3. These values are not defined, however they single-ended signals CK,
CK use VIH/VIL(AC) of ADD/CMD and V
then the reduced level applies also here.
nals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification"
differential input high+0.18NOTE 3 +0.20NOTE 3 V1
differential input low NOTE 3 -0.18NOTE 3 -0.20V1
differential input high ac
2 x (VIH(AC) - V
differential input low acNOTE 3
; for DQS - DQS use VIH/VIL(AC) of DQs and V
REFCA
REF
)
NOTE 3
2 x (VIL(AC) - V
CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended sig-
2 x (VIH(AC) - V
)
REF
REFDQ
tDVAC
time
unitNOTE1.35V1.5V
)
REF
NOTE 3
; if a reduced ac-high or ac-low level is used for a signal group,
NOTE 3V2
2 x (VIL(AC) - V
REF
)
V2
- 19 -
Page 20
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
[ Table 6 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.35V)
DDR3L-800/1066/1333/1600
Slew Rate [V/ns]
tDVAC [ps] @ |V
minmaxminmax
> 4.0189-201-
4.0189-201-
3.0162-179-
2.0109-134-
1.891-119-
1.669-100-
1.440-76-
1.2note-44-
1.0note-note-
< 1.0note-note-
NOTE: Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.
(AC)| = 320mVtDVAC [ps] @ |V
IH/Ldiff
(AC)| = 270mV
IH/Ldiff
[ Table 7 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.5V)
DDR3-800 / 1066 / 1333 / 1600
Slew Rate [V/ns]
tDVAC [ps] @ |V
350mV
IH/Ldiff
(AC)| =
tDVAC [ps] @ |V
300mV
IH/Ldiff
(AC)| =
tDVAC [ps] @ |V
IH/Ldiff
(AC)| =
(DQS-DQS#) only (Optional)
minmaxminmaxminmax
> 4.075-175-214
4.057-170-214
3.050-167-191
2.038-119-146
1.834-102-131
1.629-81-113
1.422-54-88
1.2note-19-56
1.0note-note-11
< 1.0note-note-note
NOTE: Rising input differential signal shall become equal to or greater than VIHdiff(ac) level and Falling input differential signal shall become equal to or less than VILdiff(ac)
level.
- 20 -
Page 21
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
12.3.3 Single-ended Requirements for Differential Signals
Each individual component of a differential signal (CK, DQS, CK, DQS) has also to comply with certain requirements for single-ended signals.
CK and CK have to approximately reach V
half-cycle.
DQS have to reach V
SEH
min / V
max (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle proceeding and following a
SEL
valid transition.
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if V
signals, then these ac-levels apply also for the single-ended signals CK and
SEH
min / V
max (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every
SEL
150(AC)/VIL150(AC) is used for ADD/CMD
IH
CK .
VDD or V
VDD/2 or V
VSS or V
V
V
SEH
SEL
DDQ
min
DDQ
max
SSQ
V
SEH
/2
Figure 3. Single-ended requirement for differential signals
Note that while ADD/CMD and DQ signal requirements are with respect to V
with respect to V
ended components of differential signals the requirement to reach V
/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-
DD
max, V
SEL
mode characteristics of these signals.
CK or DQS
V
SEL
time
, the single-ended components of differential signals have a requirement
REF
min has no bearing on timing, but adds a restriction on the common
SEH
[ Table 8 ] Single ended levels for CK, DQS, CK, DQS
SymbolParameter
V
SEH
V
SEL
NOTE :
1. For CK,
2. V
3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended sig-
CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS) use VIH/VIL(AC) of DQs.
(AC)/VIL(AC) for DQs is based on V
IH
reduced level applies also here
nals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification"
Single-ended high-level for strobes
Single-ended high-level for CK,
CK
Single-ended low-level for strobesNOTE 3
Single-ended low-level for CK, CKNOTE 3
; VIH(AC)/VIL(AC) for ADD/CMD is based on V
REFDQ
(V
DD
(V
DD
DDR3-800/1066/1333/1600
MinMax
/2)+0.175
/2)+0.175
NOTE 3V1, 2
NOTE 3V1, 2
(VDD/2)-0.175
(V
/2)-0.175
DD
; if a reduced ac-high or ac-low level is used for a signal group, then the
REFCA
UnitNOTE
V1, 2
V1, 2
- 21 -
Page 22
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
12.3.4 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual
cross point of true and complement signal to the mid level between of VDD and VSS.
V
DD
CK, DQS
V
IX
VDD/2
V
IX
Figure 4. VIX Definition
V
IX
CK, DQS
V
SS
[ Table 9 ] Cross point voltage for differential input signals (CK, DQS) : 1.35V
SymbolParameter
V
V
NOTE :
1. The relationbetween Vix Min/Max and VSEL/VSEH should satisfy following.
(VDD/2) + Vix(Min) - VSEL 25mV
VSEH - ((VDD/2) + Vix(Max)) 25mV
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK
IX
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS
IX
[ Table 10 ] Cross point voltage for differential input signals (CK, DQS) : 1.5V
SymbolParameter
V
V
NOTE :
1. Extended range for V
±250 mV, and the differential slew rate of CK-
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK
IX
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS
IX
is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing V
IX
CK is larger than 3 V/ ns.
DDR3L-800/1066/1333/1600
MinMax
UnitNOTE
-150150mV1
-150150mV
DDR3-800/1066/1333/1600
MinMax
UnitNOTE
-150150mV
-175175mV1
-150150mV
/ V
SEL
of at least VDD/2
SEH
- 22 -
Page 23
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
12.4 Slew Rate Definition for Single Ended Input Signals
See "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals.
See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals.
12.5 Slew rate definition for Differential Input Signals
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below.
Differential input slew rate for falling edge (CK-CK and DQS-DQS)
NOTE : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds
Measured
FromTo
V
ILdiffmax
V
IHdiffmin
V
V
IHdiffmin
ILdiffmax
V
0
IHdiffmin
[V
IHdiffmin
[V
IHdiffmin
Defined by
- V
ILdiffmax] /
- V
ILdiffmax] /
Delta TRdiff
Delta TFdiff
V
ILdiffmax
delta TFdiff
delta TRdiff
Differential input slew rate definition for DQS, DQS and CK, CK
13. AC & DC Output Measurement Levels
13.1 Single Ended AC and DC Output Levels
[ Table 12 ] Single Ended AC and DC output levels
SymbolParameterDDR3-800/1066/1333/1600UnitsNOTE
VOH(DC) DC output high measurement level (for IV curve linearity)0.8 x V
VOM(DC) DC output mid measurement level (for IV curve linearity)0.5 x V
(DC) DC output low measurement level (for IV curve linearity)0.2 x V
V
OL
(AC) AC output high measurement level (for output SR)VTT + 0.1 x V
V
OH
VOL(AC)AC output low measurement level (for output SR)VTT - 0.1 x V
NOTE : 1. The swing of +/-0.1 x V
load of 25 to V
TT=VDDQ
is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 and an effective test
DDQ
/2.
DDQ
DDQ
DDQ
DDQ
DDQ
13.2 Differential AC and DC Output Levels
[ Table 13 ] Differential AC and DC output levels
SymbolParameterDDR3-800/1066/1333/1600UnitsNOTE
V
(AC)AC differential output high measurement level (for output SR)+0.2 x V
OHdiff
V
(AC)AC differential output low measurement level (for output SR)-0.2 x V
OLdiff
NOTE : 1. The swing of +/-0.2xV
load of 25 to V
TT=VDDQ
is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 and an effective test
DDQ
/2 at each of the differential outputs.
DDQ
DDQ
V
V
V
V1
V1
V1
V1
13.3 Single-ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)
for single ended signals as shown in below.
- 23 -
Page 24
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
[ Table 14 ] Single ended Output slew rate definition
Description
Single ended output slew rate for rising edge
Single ended output slew rate for falling edge
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 15 ] Single ended output slew rate
ParameterSymbol
Single ended output slew rate SRQse
Operation
Voltage
1.35V1.75
MinMaxMinMaxMinMaxMinMax
1.5V2.552.552.552.55V/ns
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)
se : Single-ended Signals
For Ron = RZQ/7 setting
NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.
- Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ
signals in the same byte lane are static (i.e they stay at either high or low).
- Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the
remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies.
Operating One Bank Active-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, CL: Refer to Component Datasheet for detail pattern ; BL: 8
Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time:
0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers
2)
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pat-
tern
Operating One Bank Active-Read-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: Refer to Component Datasheet for detail pattern ; BL: 8
and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time:
0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers
2)
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pat-
tern
Precharge Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode
2)
Registers
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
Precharge Power-Down Current Slow Exit
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exit
Precharge Power-Down Current Fast Exit
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit
Precharge Quiet Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
3)
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
3)
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
ODT Signal: stable at 0
Active Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode
2)
Registers
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
Active Power-Down Current
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
1)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers
Signal: stable at 0
Operating Burst Read Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
1)
; AL: 0; CS: High between RD; Command, Address,
Bank Address Inputs: partially toggling ; Data IO: seamless read data burst with different data between one burst and the next one ; DM:stable at 0; Bank
Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers
at 0; Pattern Details: Refer to Component Datasheet for detail pattern
Operating Burst Write Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 8
1)
; AL: 0; CS: High between WR; Command, Address,
Bank Address Inputs: partially toggling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank
Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers
HIGH; Pattern Details: Refer to Component Datasheet for detail pattern
at
Burst Refresh Current
CKE: High; External clock: On; tCK, CL, nRFC: Refer to Component Datasheet for detail pattern ; BL: 8
Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC ; Output Buffer and
RTT: Enabled in Mode Registers
Self Refresh Current: Normal Temperature Range
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): DisabledLOW; CL: Refer to Component Datasheet for detail pattern ; BL: 8
Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
Self-Refresh Current: Extended Temperature Range (optional)
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Extended5); CKE: Low; External clock: Off; CK and CK:
LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 8
2)
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
4)
; Self-Refresh Temperature Range (SRT):Normal5); CKE: Low; External clock: Off; CK and CK:
1)
; AL: 0; CS, Command, Address, Bank Address,Data IO: FLOATING;DM:stable at 0;
6)
1)
; AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0;
2)
; ODT Signal: FLOATING
Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
Operating Bank Interleave Read Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: CL-1; CS: High
between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and
the next one ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing ; Output Buffer and RTT:
Enabled in Mode Registers
2)
; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
RESET Low Current
RESET : Low; External clock : off; CK and
CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal :
FLOATING
1)
; AL: 0; CS: High between ACT and PRE;
1)
; AL: 0; CS: High between ACT, RD
2)
; ODT Signal: stable
2)
; ODT Signal: stable
1)
; AL: 0; CS: High between REF; Command,
2)
; ODT Signal: FLOATING
2)
; ODT
2)
;
2)
;
2)
;
- 26 -
Page 27
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
NOTE :
1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit
4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range
6) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device
7) IDD current measure method and detail patterns are described on DDR3 component datasheet
8) VDD and VDDQ are merged on module PCB.
9) DIMM IDD SPEC is measured with Qoff condition
(IDDQ values are not considered)
- 27 -
Page 28
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
15. IDD SPEC Table
M471B5674QH0 : 2GB (256Mx64) Module
Symbol
IDD0175180mA
IDD1250275mA
IDD2P0(slow exit)5560mA
IDD2P1(fast exit)5560mA
IDD2N7580mA
IDD2Q7580mA
IDD3P7075mA
IDD3N110120mA
IDD4R465535mA
IDD4W440500mA
IDD5B570580mA
IDD64040mA
IDD7675760mA
IDD82525mA
DDR3L-1333DDR3L-1600
9-9-911-11-11
UnitNOTE
M471B5173QH0 : 4GB (512Mx64) Module
Symbol
IDD0320320mA
IDD1400440mA
IDD2P0(slow exit)120120mA
IDD2P1(fast exit)120120mA
IDD2N160160mA
IDD2Q160160mA
IDD3P160160mA
IDD3N240240mA
IDD4R680800mA
IDD4W680840mA
IDD5B11601160mA
IDD6120120mA
IDD713201360mA
IDD8120120mA
DDR3L-1333DDR3L-1600
9-9-911-11-11
UnitNOTE
- 28 -
Page 29
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
M471B1G73QH0 : 8GB (1Gx64) Module
Symbol
IDD0480480mA1
IDD1560600mA1
IDD2P0(slow exit)240240mA
IDD2P1(fast exit)240240mA
IDD2N320320mA
IDD2Q320320mA
IDD3P320320mA
IDD3N400400mA
IDD4R840960mA1
IDD4W8401000mA1
IDD5B13201320mA1
IDD6240240mA
IDD714801520mA1
IDD8240240mA
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
DDR3L-1333DDR3L-1600
9-9-911-11-11
UnitNOTE
M474B5173QH0 : 4GB (512Mx72) Module
Symbol
IDD0TBDmA
IDD1TBDmA
IDD2P0(slow exit)TBDmA
IDD2P1(fast exit)TBDmA
IDD2NTBDmA
IDD2QTBDmA
IDD3PTBDmA
IDD3NTBDmA
IDD4RTBDmA
IDD4WTBDmA
IDD5BTBDmA
IDD6TBDmA
IDD7TBDmA
IDD8TBDmA
DDR3L-1600
11-11-11
UnitNOTE
- 29 -
Page 30
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
M474B1G73QH0 : 8GB (1Gx72) Module
Symbol
IDD0540mA1
IDD1675mA1
IDD2P0(slow exit)270mA
IDD2P1(fast exit)270mA
IDD2N360mA
IDD2Q360mA
IDD3P360mA
IDD3N450mA
IDD4R1080mA1
IDD4W1125mA1
IDD5B1485mA1
IDD6270mA
IDD71710mA1
IDD8270mA
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
Input/output capacitance of ZQ pinCZQ-3-3-3-3pF2, 3, 12
NOTE : This parameter is Component Input/Output Capacitance so that is different from Module level Capacitance.
1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS
2. This parameter is not subject to production test. It is verified by design and characterization.
The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with
V
, V
, VSS, V
DD
DDQ
die termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of CCK-CCK
5. Absolute value of CIO(DQS)-CIO(DQS)
6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.
7. CDI_CTRL applies to ODT, CS and CKE
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))
9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE
12. Maximum external load capacitance on ZQ pin: 5pF
applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=V
SSQ
DDR3-800DDR3-1066DDR3-1333DDR3-1600
MinMaxMinMaxMinMaxMinMax
1.35V
1.5V
=1.5V or 1.35V, V
DDQ
UnitsNOTE
/2 and on-
BIAS=VDD
- 31 -
Page 32
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
17. Electrical Characteristics and AC timing
[0 C<T
17.1 Refresh Parameters by Device Density
All Bank Refresh to active/refresh cmd timetRFC110160260350ns
Average periodic refresh intervaltREFI
NOTE :
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in
this material.
17.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin
17.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin
DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
[ Table 19 ] DDR3-800 Speed Bins
SpeedDDR3-800
UnitsNOTECL-nRCD-nRP6 - 6 - 6
ParameterSymbolminmax
Internal read command to first datatAA1520ns
ACT to internal read or write delay timetRCD15-ns
PRE command periodtRP15-ns
ACT to ACT or REF command periodtRC52.5-ns
ACT to PRE command periodtRAS37.59*tREFIns
CL = 5CWL = 5tCK(AVG)3.03.3ns1,2,3,4,9,10
CL = 6CWL = 5tCK(AVG)2.53.3ns1,2,3
Supported CL Settings5,6nCK
Supported CWL Settings5nCK
- 32 -
Page 33
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
[ Table 20 ] DDR3-1066 Speed Bins
SpeedDDR3-1066
UnitsNOTECL-nRCD-nRP7 - 7 - 7
ParameterSymbolminmax
Internal read command to first datatAA13.12520ns
ACT to internal read or write delay timetRCD13.125-ns
PRE command periodtRP13.125-ns
ACT to ACT or REF command periodtRC50.625-ns
ACT to PRE command periodtRAS37.59*tREFIns
CL = 5
CL = 6
CL = 7
CL = 8
Supported CL Settings5,6,7,8nCK
Supported CWL Settings5,6nCK
CWL = 5tCK(AVG)3.03.3ns1,2,3,4,5,9,10
CWL = 6tCK(AVG)Reservedns4
CWL = 5tCK(AVG)2.53.3ns1,2,3,5
CWL = 6tCK(AVG)Reservedns1,2,3,4
CWL = 5tCK(AVG)Reservedns4
CWL = 6tCK(AVG)1.875<2.5ns1,2,3,4,8
CWL = 5tCK(AVG)Reservedns4
CWL = 6tCK(AVG)1.875<2.5ns1,2,3
- 33 -
Page 34
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
[ Table 21 ] DDR3-1333 Speed Bins
SpeedDDR3-1333
UnitsNOTECL-nRCD-nRP9 -9 - 9
ParameterSymbolminmax
Internal read command to first datatAA
ACT to internal read or write delay timetRCD
PRE command periodtRP
ACT to ACT or REF command periodtRC
ACT to PRE command periodtRAS369*tREFIns
CL = 5
CWL = 5tCK(AVG)3.03.3ns1,2,3,4,6,9,10
CWL = 6,7tCK(AVG)Reservedns4
CWL = 5tCK(AVG)2.53.3ns1,2,3,6
CL = 6
CWL = 6tCK(AVG)Reservedns1,2,3,4,6
CWL = 7tCK(AVG)Reservedns4
CWL = 5tCK(AVG)Reservedns4
CL = 7
CWL = 6tCK(AVG)1.875<2.5ns1,2,3,4,6
CWL = 7tCK(AVG)Reservedns1,2,3,4
CWL = 5tCK(AVG)Reservedns4
CL = 8
CWL = 6tCK(AVG)1.875<2.5ns1,2,3,6
CWL = 7tCK(AVG)Reservedns1,2,3,4
CL = 9
CL = 10
CWL = 5,6tCK(AVG)Reservedns4
CWL = 7tCK(AVG)1.5<1.875ns1,2,3,4,8
CWL = 5,6tCK(AVG)Reservedns4
CWL = 7tCK(AVG)1.5<1.875ns1,2,3
Supported CL Settings5,6,7,8,9,10nCK
Supported CWL Settings5,6,7nCK
13.5
(13.125)
13.5
(13.125)
13.5
(13.125)
49.5
(49.125)
8
8
8
8
20ns
-ns
-ns
-ns
- 34 -
Page 35
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
[ Table 22 ] DDR3-1600 Speed Bins
SpeedDDR3-1600
UnitsNOTECL-nRCD-nRP11-11-11
ParameterSymbolminmax
Internal read command to first datatAA
ACT to internal read or write delay timetRCD
PRE command periodtRP
ACT to ACT or REF command periodtRC
ACT to PRE command periodtRAS359*tREFIns
CL = 5
CWL = 5tCK(AVG)3.03.3ns1,2,3,4,7,9,10
CWL = 6,7,8tCK(AVG)Reservedns4
CWL = 5tCK(AVG)2.53.3ns1,2,3,7
CL = 6
CWL = 6tCK(AVG)Reservedns1,2,3,4,7
CWL = 7, 8tCK(AVG)Reservedns4
CWL = 5tCK(AVG)Reservedns4
CL = 7
CWL = 6tCK(AVG)1.875<2.5ns1,2,3,4,7
CWL = 7tCK(AVG)Reservedns1,2,3,4,7
CWL = 8tCK(AVG)Reservedns4
CWL = 5tCK(AVG)Reservedns4
CL = 8
CWL = 6tCK(AVG)1.875<2.5ns1,2,3,7
CWL = 7tCK(AVG)Reservedns1,2,3,4,7
CWL = 8tCK(AVG)Reservedns1,2,3,4
CWL = 5,6tCK(AVG)Reservedns4
CL = 9
CWL = 7tCK(AVG)1.5<1.875ns1,2,3,4,7
CWL = 8tCK(AVG)Reservedns1,2,3,4
CWL = 5,6tCK(AVG)Reservedns4
CL = 10
CWL = 7tCK(AVG)1.5<1.875ns1,2,3,7
CWL = 8tCK(AVG)Reservedns1,2,3,4
CL = 11
CWL = 5,6,7tCK(AVG)Reservedns4
CWL = 8tCK(AVG)1.25<1.5ns1,2,3,8
Supported CL Settings5,6,7,8,9,10,11nCK
Supported CWL Settings5,6,7,8nCK
13.75
(13.125)
13.75
(13.125)
13.75
(13.125)
48.75
(48.125)
8
8
8
8
20ns
-ns
-ns
-ns
- 35 -
Page 36
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
17.3.1 Speed Bin Table Notes
Absolute Specification [T
NOTE :
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements
from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns],
rounding up to the next "SupportedCL".
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or
1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
4. "Reserved" settings are not allowed. User must program a different value.
5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
8. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example,
DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte
20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte
18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin
+ tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns (tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11).
9. DDR3 800 AC timing apply if DRAM operates at lower than 800 MT/s data rate.
10. For CL5 support DIMM SPD include CL5 on supportable CAS Latency(Byte 14-bit1 set HIGH).
First DQS/DQS rising edge after write leveling mode
is programmed
DQS/DQS delay after write leveling mode is programmed
Write leveling setup time from rising CK, CK crossing
to rising DQS,
Write leveling hold time from rising DQS, DQS crossing to rising CK,
Write leveling output delaytWLO09090907.5ns
Write leveling output errortWLOE02020202ns
DQS crossing
CK crossing
tCKESR
tCKSRE
tCKSRX
tXPDLL
tWRPDEN
tWRAPDEN
tWRPDEN
tWRAPDEN
ODTH44-4-4-4-nCK
tAONPD28.528.528.528.5ns
tAOFPD28.528.528.528.5ns
tAOF0.30.70.30.70.30.70.30.7tCK(avg)8,f
tWLMRD40-40-40-40-tCK(avg)3
tWLDQSEN25-25-25-25-tCK(avg)3
tWLS325-245-195-165-ps
tWLH325-245-195-165-ps
-
-
-
-
-
-
-
-
-
-
-
-
max(5nCK,
tRFC +
10ns)
max(5nCK,t
RFC +
10ns)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
max
(3nCK,
7.5ns)
max
(10nCK,
24ns)
max
(3nCK,
5.625ns)
WL + 4
+(tWR/
tCK(avg))
WL + 4
+WR +1
WL + 2
+(tWR/
tCK(avg))
WL +2 +WR
+1
-
-
-
-
-
-
-
-
-
-
-
-
max(5nCK,
tRFC +
10ns)
max(5nCK,t
RFC +
10ns)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
max
(3nCK,6ns)
max
(10nCK,
24ns)
max
(3nCK,
5.625ns)
WL + 4
+(tWR/
tCK(avg))
WL + 4
+WR +1
WL + 2
+(tWR/
tCK(avg))
WL +2 +WR
+1
-
-
-
-
-
-
-
-
-
-
-
-
max(5nCK,
tRFC +
10ns)
max(5nCK,t
RFC + 10ns)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
max
(3nCK,6ns)
max
(10nCK,
24ns)
max
(3nCK,5ns)
WL + 4
+(tWR/
tCK(avg))
WL + 4 +WR
+1
WL + 2
+(tWR/
tCK(avg))
WL +2 +WR
+1
UnitsNOTE
-
-
-
-
-
-
-2
-
-nCK9
-nCK10
-nCK9
-nCK10
- 39 -
Page 40
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
18.1 Jitter Notes
Specific Note aUnit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the
input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm,
another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.
Specific Note bThese parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition
edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e.
tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is,
these parameters should be met whether clock jitter is present or not.
Specific Note cThese parameters are measured from a data strobe signal (DQS, DQS) crossing to its respective clock signal (CK, CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the
clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
Specific Note dThese parameters are measured from a data signal (DM, DQ0, DQ1, etc.) transition edge to its respective data strobe signal
(DQS, DQS) crossing.
Specific Note eFor these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)},
which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the
device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter.
Specific Note fWhen the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input
clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = +
193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and
tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800
derates to tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution
on the min/max usage!)
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=
12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.
Specific Note gWhen the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input
clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has
tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min +
tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) =
tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/
max usage!)
- 40 -
Page 41
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
18.2 Timing Parameter Notes
1. Actual value dependant upon measurement level definitions see "Device Operation & Timing Diagram Datasheet".
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
3. The max values are system dependent.
4. WR as programmed in mode register
5. Value must be rounded-up to next higher integer value
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet"
8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet".
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles as programmed in MR0
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing
Diagram Datasheet.
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated
by 18.1-Jitter Notes on page 40
13. Value is only valid for RON34
14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.
15. tREFI depends on T
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,
V
(DC) = V
REF
See "Address/Command Setup, Hold and Derating" on component datasheet.
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS,
V
(DC)= V
REF
See "Data Setup, Hold and Slew Rate Derating" on component datasheet.
18. Start of internal write transaction is defined as follows ;
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram Data-
sheet"
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down
IDD spec will not be applied until finishing those operations.
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time
such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet".
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-
ject to in the application, is illustrated. The interval could be defined by the following formula:
OPER
DQ(DC). For input only pins except RESET, V
REF
DQ(DC). For input only pins except RESET, V
REF
REF
REF
(DC)=V
(DC)=V
REF
REF
CA(DC).
DQS differential slew rate. Note for DQ and DM signals,
CA(DC).
ZQCorrection
(TSens x Tdriftrate) + (VSens x Vdriftrate)
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.
For example, if TSens = 1.5% /C, VSens = 0.15% / mV, Tdriftrate = 1C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as:
0.5
(1.5 x 1) + (0.15 x 15)
= 0.133
~
~
128ms
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alter-
nate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].
28. Pulse width of a input signal is defined as the width between the first crossing of V
29. tDQSL describes the instantaneous differential input low pulse width on DQS-
30. tDQSH describes the instantaneous differential input high pulse width on DQS-
(DC) and the consecutive crossing of V
REF
REF
(DC)
DQS, as measured from one falling edge to the next consecutive rising edge.
DQS, as measured from one rising edge to the next consecutive falling edge.
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
- 41 -
Page 42
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
19. Physical Dimensions :
19.1
256Mbx16 based 256Mx64 Module (1 Rank) - M471B5674QH0
Units : Millimeters
67.60 ± 0.13
21.00
63.60
SPD
B
A
39.00
Max 2.2
30.00 ± 0.13
1.00 ± 0.10
1.65
4.00 ± 0.10
1.00 ± 0.10
Detail A
The used device is 256M x16 DDR3L SDRAM, BOC.
DDR3 SDRAM Part NO : K4B4G1646Q - HY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
0.60
0.45 ± 0.03
2.55
0.25 MAX
Detail B
- 42 -
Page 43
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
19.2 512Mbx8 based 512Mx64 Module (1 Rank) - M471B5173QH0
Units : Millimeters
67.60 ± 0.13
21.00
63.60
SPD
B
A
39.00
Max 3.8
30.00 ± 0.13
1.00 ± 0.10
1.65
4.00 ± 0.10
1.00 ± 0.10
Detail A
The used device is 512M x8 DDR3L SDRAM, BOC.
DDR3 SDRAM Part NO : K4B4G0846Q - HY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
0.60
0.45 ± 0.03
2.55
0.25 MAX
Detail B
- 43 -
Page 44
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
19.3 512Mbx8 based 1Gx64 Module (2 Ranks) - M471B1G73QH0
Units : Millimeters
67.60 ± 0.13
21.00
63.60
B
A
39.00
SPD
Max 3.8
30.00 ± 0.13
1.00 ± 0.10
1.65
4.00 ± 0.10
1.00 ± 0.10
Detail A
The used device is 512M x8 DDR3L SDRAM, BOC.
DDR3 SDRAM Part NO : K4B4G0846Q - HY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
0.60
0.45 ± 0.03
2.55
0.25 MAX
Detail B
- 44 -
Page 45
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
19.4 512Mbx8 based 512Mx72 Module (1 Rank) - M474B5173QH0
Units : Millimeters
67.60 ± 0.13
21.00
63.60
B
A
39.00
SPD
Max 3.8
30.00 ± 0.13
1.00 ± 0.10
1.65
4.00 ± 0.10
1.00 ± 0.10
Detail A
The used device is 512M x8 DDR3L SDRAM, BOC.
DDR3 SDRAM Part NO : K4B4G0846Q - HY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
0.60
0.45 ± 0.03
2.55
0.25 MAX
Detail B
- 45 -
Page 46
Rev. 1.21
Unbuffered SODIMMdatasheetDDR3L SDRAM
19.5 512Mbx8 based 1Gx72 Module (2 Ranks) - M474B1G73QH0
Units : Millimeters
67.60 ± 0.13
21.00
63.60
B
A
39.00
SPD
Max 3.8
30.00 ± 0.13
1.00 ± 0.10
1.65
4.00 ± 0.10
1.00 ± 0.10
Detail A
The used device is 512M x8 DDR3L SDRAM, BOC.
DDR3 SDRAM Part NO : K4B4G0846Q - HY**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
0.60
0.45 ± 0.03
2.55
0.25 MAX
Detail B
- 46 -
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.