3.1 Serial Numbers......................................................................................................................16
3.2 Answer to SELECT command (ATS Code)..........................................................................16
MIFARE
M01040.doc/RMPage 2 of 18
is a registered trademark of Philips Electronics N.V.
Page 3
General DescriptionRev. 4.01998-07-24
1 General Description
The contactless MIFARE 1 S50 smart card IC has been especially tailored to meet the requirements
of a payment card which can be used for ticketing systems in public transport and comparable
applications. MIFARE 1 S50 IC is a true multi-application smart card IC with the functionality of a
processor realised with hardwired logic.
Special emphasis has been placed on user convenience, speed, reliability, security against fraud and
cost effectiveness.
User convenience and speed
A transaction between the card (card IC) and the reader defined by the system integrator or the
service provider takes place when the card holder approximates the card to the reader. The
permissible distance between antenna (target) and card is up to 100 mm free air. On the one hand,
this enables users to carry out the transaction fast and conveniently. On the other, card holders
decide in a distinct action whether they want a transaction to happen or not.
Philips has developed a high speed RF communication interface with 106 Kbaud data rate for
MIFARE®. Due to this high speed a complete ticketing transaction can be handled in less than 0.1
seconds. Thus, the MIFARE card user needs not to stop at the reader target (antenna) leading to a
high throughput at gates and reduced boarding times onto busses.
Additional user comfort is added, since MIFARE cards typically have the size of a credit card and
do not have to be taken out of the wallet during the transaction, even if there are coins in the wallet.
Anticollision
Basically, if more than one card enters the operating field, which is very likely to happen, the fast
anticollision algorithm prevents that data transmitted between the different cards and the target is
being confused. Cards can be selected individually. An ongoing transaction with a selected card is
not corrupted by cards remaining in the field or cards moved into or out of the field. Possible data
corruption caused by more than one card in the field or fraud are avoided.
For example, if MIFARE card users have more than one MIFARE card in their wallet, the
anticollision algorithm enables the system to select the appropriate card for the transaction.
Security
Mutual challenge and response authentication, data ciphering and message authentication checks
protect the system from any kind of fraud and make it attractive for electronic purse applications.
These mechanisms are carried out very fast and add only little to transaction time. Serial numbers
which can not be altered guarantee uniqueness of the cards.
Multi-functionality
The multifunctional memory structure of MIFARE 1 S50 cards IC allows the use of the card in
multi-application systems. The different applications are securely separated by user definable key sets
and access conditions.
Reliability
High reliability of the system is achieved by using solid state components without any moving
mechanical parts. The MIFARE cards are passive, i.e. they are working without battery. Further,
the extremely simple construction of a card which consist only of a coil with few turns and a chip
embedded in plastic does its share to accomplish this. In addition,
the contactless technology avoids that contacts become worn out and reduces risk and cost of
vandalism.
M01040.doc/RMPage 3 of 18
Page 4
General DescriptionRev. 4.01998-07-24
1.1 Features of the MIFARE
•Operating frequency:13.56 MHz
•High speed:Baudrate 106 kBaud
•Anticollision:The ability to handle more than one card in the field at the same
System
time.
•Operating distance: up to 100mm (depending on antenna geometry)
to allow convenient and fast transaction
•Half duplex communication protocol using handshake
•Data integrity via contactless communication link by
•Anticollision
•16 Bit CRC per block
•16 Bit Parity per block (one per Byte)
•Bit count checking
•Bit coding to distinguish between "1", "0", and no information
•Channel monitoring (Protocol sequence and bit stream analysis)
•Multi-Card-operation supporting:
•Anticollision: allows the handling of more than one card in the field at the same
time;
inhibits accidental read or write and data corruption due to more
than one card in the field
•Dynamic read + write:during communication with one card other cards may enter or
leave the RF field
•Fast anticollision protocol: an increase of only 1.0 ms of the total transaction time
for each additional card
1.2 MF1 IC S50 Card IC:
•State of the art chip technology: high speed CMOS EEPROM process
•Single chip construction with no external components besides a simple coil
is required for card.
•No batteryContactless energy and data transmission
Security
•Mutual three pass authentication (ISO/IEC DIS9798-2)
•Data encryption on RF-channel with replay attack protection
•Individual key set per sector (per application) to support
multi-application with key hierarchy
•Unique card serial number
•Transport key
M01040.doc/RMPage 4 of 18
Page 5
General DescriptionRev. 4.01998-07-24
Multi-application memory
•8 KBit EEPROM memory, no battery,
•Organised in securely separated 16 sectors supporting multi-application use.
•Each sector consists of 4 blocks.
•A block is the smallest part to be addressed and consists of 16 bytes.
•Each sector has its own secret file for a set of keys for systems using key hierarchies.
•Access to memory zones are flexible user definable by a variety of access conditions.
•Arithmetic capability: increase and decrease
•Data retention of 10 years.
•write endurance 100.000 cycles
Typical Transaction Time
•Identification of a card 3 ms (Start-up, Answer to Request, Anticollision, Select)
•Read Block (16 Bytes)2.5 ms (excl. Authentication)
4.5 ms (incl. Authentication)
•Write Block + Control Readmin 8.5 ms (excl. Authentication)
ADDENDUM MIFARE Standard Card IC MF1ICS50 03
Wafer Specification
Die on 6“ Wafer
ADDENDUM MIFARE Standard Card IC MF1ICS50 04
Wafer Specification
M01040.doc/RMPage 5 of 18
Page 6
Functional DescriptionRev. 4.01998-07-24
2 Functional Description
2.1 Block Description
MIFARE MF1ICS50 CARD IC
RF-Interface
Voltage
Regulator
Clock
Data
Modulator
Demodulator
POR
E²POR
Energy
ATR
Anti
Collision
Select
Application
Authentication
& Access Control
Digital Section
Control
&
Arithmetic
Unit
Crypto
Unit
E²
Inter
face
E²-Memory
The electronic unit of a card comprises just an antenna (coil) and the IC (MIFARE 1 MF1ICS50)
and no further external components.
2.2 Antenna:
The card antenna consists of a few windings and thus, it is very suitable for integration into an ISO
card. (refer to the document MIFARE Card IC Coil Design Guide).
M01040.doc/RMPage 6 of 18
Page 7
Functional DescriptionRev. 4.01998-07-24
2.3 Communication scheme RWD ↔↔ Card
Transaction Sequence
Typical Transaction
Time
Identification and Selection
Procedure
3 ms without collision
+ 1 ms for each collision
Authentication Procedure
2 ms
Memory Operations
2.5 ms read block
6.0 ms write block
2.5 ms dec/increment
4.5 ms transfer
Answer to Request :
With the Answer to Request sequence the MIFARE RWD (Read Write Device) requests all
MIFARE cards in the antenna field. When a card is in the operating range of a RWD, the
RWD continues communication with the appropriate protocol.
Anticollision loop:
In the Anticollision loop the serial number of the card is read. If there are several cards in the
operating range of a RWD they can be distinguished by their different serial numbers and one
can be selected (Select card) for further transactions. The unselected cards return to the
standby mode and wait for a new Answer to Request and Anticollision loop.
Select Card:
With the Select Card command the RWD selects one individual card for further authentication
and memory related operations. The card returns the Answer to Select (ATS) code, which
determines the individual type of the selected card.
M01040.doc/RMPage 7 of 18
Page 8
Functional DescriptionRev. 4.01998-07-24
Refer to the document MIFARE Standardised Card Type Identification Procedure for
further details.
Access Specification
After identification and selection of one card the RWD specifies the memory location of the
following access.
3 Pass Authentication
The appropriate access key for the previously specified access is used for 3 Pass
Authentication (see 2.5). Any communication after authentication is automatically encrypted at
the sender and decrypted by the receiver.
Read/Write
After authentication any of the following operations may be performed:
READreads one block
WRITEwrites one block
DECREMENTdecrements the contents of one block
and stores the result in the data-register
INCREMENTincrements the contents of one block
and stores the result in the data-register
TRANSFERwrites the contents of the data-register
to one block
RESTOREstores the contents of one block in the data-register
2.4 Data Integrity
Following mechanisms are implemented in the contactless communication link between RWD and
card to ensure very reliable data transmission:
•Anticollision
•16 Bit CRC per block
•16 Bit Parity per block (one per Byte)
•Bit count checking
•Bit coding to distinguish between "1", "0", and no information
•Channel monitoring (Protocol sequence and bit stream analysis)
M01040.doc/RMPage 8 of 18
Page 9
Functional DescriptionRev. 4.01998-07-24
2.5 Security
To provide a very high security level three pass authentication (according to ISO 9798-2) and
encryption based on a stream cipher algorithm with random generator, serial number and 48 Bit keys
are integrated in the RWD`s Interface ASIC and the cards. Keys in the cards are read protected but
can be altered, provided one knows the actual key. This gives the possibility to any system integrator
who knows the transport key of any card to program his own secret keys. Splitting the card's
memory into several sections with separate access keys makes the system open for multifunctionality (same cards for different applications).
Since there are two different keys (Key A and Key B) per sector available with corresponding access
conditions available MIFARE 1 S50 card IC provides the possibility of a system with key hierarchy.
Key A for example can be used for protecting the decrement function and Key B the usually more
sensible increment function.
Three pass authentication:
In this authentication mechanism uniqueness /timeliness is controlled by generating and checking
random numbers.
Illustration of the authentication mechanism:
The tokens are structured as follows:
TokenAB= eKAB(RA || RB || B || Text2).
TokenBA= eKAB(RB || RA || Text4).
NOTE - The inclusion of the parameter B in TokenAB is necessary to prevent a so called reflection
attack. Such an attack is characterised by the fact that an intruder "reflects" the challenge
RB to B pretending to be A.
(A) B sends a random number R
B
(B) A sends Token AB to B.
M01040.doc/RMPage 9 of 18
Page 10
Functional DescriptionRev. 4.01998-07-24
(C)On receipt of the message containing Token AB, B verifies Token AB by deciphering the
enciphered part and checking the correctness of the distinguishing identifier B and that the
random number RB, sent to A in step (A), agrees with the random number contained in
TokenAB.
(D)B sends TokenBA to A.
(E)On receipt of the message containing Token BA , A verifies TokenBA by deciphering the
enciphered part and checking that the random number RB, received from A in step (A) agrees
with the random number contained in TokenBA and that the random number RA, sent to B in
step (B), agrees with the random number contained in TokenBA.
M01040.doc/RMPage 10 of 18
Page 11
Functional DescriptionRev. 4.01998-07-24
2.6 Memory Organisation and Access Conditions
The MF1ICS50 IC has integrated a 8192 Bit EEPROM which is split into 16 sectors with 4 blocks.
One block consists of 16 bytes (1 Byte = 8 Bit).
Memory Organisation:
Sector No.Block
No.
0
01
2
3
0
11 ... Sector Trailer
2
3 ... Manufacturer Code = "Block 0"
0
21 ... Data Block
2
3
0
31
2
3
0
41
2
3
0
51
2
3
. . .
0
141
2
3
0
151
2
3
M01040.doc/RMPage 11 of 18
Page 12
Functional DescriptionRev. 4.01998-07-24
2.6.1 Sector Trailer (Block 3):
Bit No. 7 6 5 4 3 2 1 0X ... Sector No. (0 to 15)
Byte
No.
0
1
2KEYSECXA
3
4
5 bit# 7 6 5 4 3 2 1 0
6
7ACCESS
8CONDITIONS
9
10 _b stands for inversion; e.g. C1X0_b=INV(C1X0)
11
12KEYSECXB
13(optional)
14
15
The fourth block of any sector is the Sector Trailer. The Sector Trailer contains access Key A
(KEYSECXA) an optional Key B (KEYSECXB) and the access conditions for the four blocks of that
sector. If Key B is not needed, the last 6 Bytes of block 3 can be used as data bytes. The corresponding
access condition settings are marked grey below.
C1XY to C3XY which are stored twice for safety reasons define the access condition independently for
the sector's four blocks. The last byte of the access conditions may be used to store some specific
application data (e.g. location of the write backup block).
• Access condition for the Sector Trailer (Y = 3)
KEYSECXA ACCESS COND. KEYSECXB
C1X3 C2X3 C3X3 read write read write read write
0 0 0 never key A key A never key A key A
0 1 0 never never key A never key A never
1 0 0 never key B key A|B never never key B
1 1 0 never never key A|B never never never
0 0 1 never key A key A key A key A key A
0 1 1 never key B key A|B key B never key B
1 0 1 never never key A|B key B never never
1 1 1 never never key A|B never never never
incr, decr, transfer, restore : never
NOTE:Key A|B means key A or key B;
If key B may be read (all grey marked lines) the memory space for Key B is used for data
storage and it shall not be used for authentication because all further memory access
operations will fail.
M01040.doc/RMPage 12 of 18
Page 13
Functional DescriptionRev. 4.01998-07-24
Since the transport access conditions (after chip manufacturing) equal to 001, new cards
must not be authenticated with Key B !
The first block of the memory is reserved for manufacturer data like 32 bit serial number. This
is a read only block. In many documents it is named "Block 0".
2.6.3 Data Block (Block 0 to 3 except "Block 0")
Access conditions for the Data Blocks are defined in the Sector Trailers. According to these
conditions data can be read, written, incremented, decremented, transferred or restored either
with Key A, Key B or never.
1 if Key B may be read in the corresponding Sector Trailer it cannot serve for authentication (all grey marked lines in
previous table). Consequences: If the RWD tries to authenticate any block of a sector with key B using grey marked
access conditions, the card will refuse any subsequent memory access after authentication.
M01040.doc/RMPage 13 of 18
Page 14
Functional DescriptionRev. 4.01998-07-24
In the MF1ICS50 IC two types of Data Blocks are used:
a) read/write blocks
are used to read and write general 16 bytes of data.
b) value blocks
are used for electronic purse functions (read, increment, decrement, transfer, restore). The
maximum size of a value is 4 byte including sign bit, even when a complete 16 byte block has
to be reserved. To provide error detection and correction capability, any value is stored 3
times into one value block. The remaining 4 bytes are reserved to some extent for check bits.
value:32 bit signed 2th complement format stored 3 times
(the consistency of the 3 occurrences of the value is internally checked
before the chip can perform any calculation)
address:8 bit arbitrary address byte stored 4 times
(this byte is not internally interpreted)
A value blocks is first time generated by a WRITE instruction to the desired address. The
value may be used for subsequent DECREMENT / INCREMENT / RESTORE instructions.
mif_restore,
mif_increment,
mif_decrement
(SOURCE_ADR,
DECR_VALUE)
MIF ARE MF1ICS50
chip memory
ALU
mif_transfer
(DEST_ADR)
The result of a calculation instruction is temporally stored in a buffer register. For updating the
memory with the calculation result the TRANSFER instruction has to be issued. The chip
refuses calculations if any error in the block format could be detected.
M01040.doc/RMPage 14 of 18
Page 15
Functional DescriptionRev. 4.01998-07-24
2.6.4 Key management and Multi-functionality
The described memory organization makes it possible to appoint different sectors to different
applications and to prevent data corruption by using application specific secret keys. Keys can
only be altered by a RWD which has stored the actual Key A or Key B if this is allowed
according to access conditions. Otherwise the actual key cannot be changed anymore.
Note:
Before the execution of a command the correct format of the Access Conditions is checked by
the Card-IC. Thus, when programming the Sector Trailer the card needs to be fixed within the
operating range of a RWD's antenna to prevent interruption of the write operation because any
unsuccessful write operation may lead to blocking the whole sector.
Note: The initial state of sector trailers after IC test can be modified depending on the
personalisation done e.g. at the card manufacturer.
default coding:
bytebyte
0123456789101112131415
transport key AFF0780xxtransport key B
(blocks 3 / 7 / 11 / 15 / 19 / 23 / 27 / 31 / 35 / 39 / 43 / 47 / 51 / 55 / 59 / 63)
Byte 9 of all sector trailers is not defined. Its memory contents after IC test can vary.
M01040.doc/RMPage 15 of 18
Page 16
Release NotesRev. 4.01998-07-24
3 Release Notes
This document refers to MIFARE 1 MF1ICS50 03 / 04 silicon (revision 03 and 04).
It comprises all MIFARE 1 S50 silicon delivered by PHILIPS Semiconductors since 1998.
For previous revisions of MIFARE 1 silicon the dedicated documents are available on request.
3.1 Serial Numbers
Unique serial number (4 Byte)
MF1 ICS50 03/04
xx xx xx x2 hex
3.2 Answer to SELECT command (ATS Code)
Answer to Select (ATS Code )
MF1 ICS50 03/04
0x08
Note: The ATS code may be used to identify the card IC type (for details refer to the document:
MIFARE Standardised Card IC Type Identification Procedure).
M01040.doc/RMPage 16 of 18
Page 17
Definitions
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development.
Preliminary specification This data sheet contains preliminary data; supplementary data may be
published later.
Product specificationThis data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress
above one or more of the limiting values may cause permanent damage to the device. These are
stress ratings only and operation of the device at these or at any other conditions above those given
in the Characteristics section of the specification is not implied. Exposure to limiting values for
extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Life support applications
These products are not designed for use in life support appliances, devices, or systems where
malfunction of these products can reasonably be expected to result in personal injury. Philips
customers using or selling these products for use in such applications do so on their own risk
and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
51 James Bourchier Blvd., 1407 SOFIATel. +4822 612 2831, Fax. +4822 612 2327
Tel. +3592 689 211, Fax. +3592 689 102Portugal: see Spain
Canada: Philips Semiconductors/Components,Romania: see Italy
Tel. +1800 234 7381Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,Tel. +7095 247 9145, Fax. +7095 247 9144
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +85223 19 7888, Fax. +85223 19 7700Tel. +65350 2538, Fax. +65251 6500
Colombia: see South AmericaSlovakia: see Austria
Czech Republic: see AustriaSlovenia: see Italy
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,South Africa: S.A. Philips Pty Ltd., 195-215 Main Road Martindale,
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Internet: http://www.semiconductors.philips.com
Building BE-p, P.O.Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax: +3140 27 24825
notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other
industrial or intellectual property rights.
Semiconductors
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.