Most accidents that involve product operation, maintenance and repair are caused by failure to
observe basic safety rules or precautions. An accident can often be avoided by recognizing potentially
hazardous situations before an accident occurs. A person must be alert to potential hazards. This
person should also have the necessary training, skills and tools to perform these functions properly.
Improper operation, lubrication, maintenance or repair of this product can be dangerous and
could result in injury or death.
Do not operate or perform any lubrication, maintenance or repair on this product, until you have
read and understood the operation, lubrication, maintenance and repair information.
Safety precautions and warnings are provided in this manual and on the product. If these hazard
warnings are not heeded, bodily injury or death could occur to you or to other persons.
The hazards are identified by the “Safety Alert Symbol” and followed by a “Signal Word” such as
“DANGER”, “WARNING” or “CAUTION”. The Safety Alert “WARNING” label is shown below.
The meaning of this safety alert symbol is as follows:
Attention! Become Alert! Your Safety is Involved.
The message that appears under the warning explains the hazard and can be either written or
pictorially presented.
Operations that may cause product damage are identified by “NOTICE” labels on the product and in
this publication.
Perkins cannot anticipate every possible circumstance that might involve a potential hazard. The
warnings in this publication and on the product are, therefore, not all inclusive. If a tool, procedure,
work method or operating technique that is not specifically recommended by Perkins is used,
you must satisfy yourself that it is safe for you and for others. You should also ensure that the
product will not be damaged or be made unsafe by the operation, lubrication, maintenance or
repair procedures that you choose.
The information, specifications, and illustrations in this publication are on the basis of information that
was available at the time that the publication was written. The specifications, torques, pressures,
measurements, adjustments, illustrations, and other items can change at any time. These changes can
affect the service that is given to the product. Obtain the complete and most current information before
you start any job. Perkins dealers or Perkins distributors have the most current information available.
When replacement parts are required for this
product Perkins recommends using Perkins
replacement parts.
Failure to heed this warning can lead to premature failures, product damage, personal injury or
This manual contains safety, operation instructions,
lubrication and maintenance information. This manual
should be stored in or near the engine area in a
literature holder or literature storage area. Read,
study and keep it with the literature and engine
information.
English is the primary language for all Perkins
publications. The English used facilitates translation
and consistency.
Some photographs or illustrations in this manual
show details or attachments that may be different
from your engine. Guards and covers may have been
removed for illustrative purposes. Continuing
improvement and advancement of product design
may have caused changes to your engine which are
not included in this manual. Whenever a question
arises regarding your engine, or this manual, please
consult with your Perkins dealer or your Perkins
distributor for the latest available information.
Safety
This safety section lists basic safety precautions. In
addition, this section identifies hazardous, warning
situations. Read and understand the basic
precautions listed in the safety section before
operating or performing lubrication, maintenance and
repair on this product.
Operation
Operating techniques outlined in this manual are
basic. They assist with developing the skills and
techniques required to operate the engine more
efficiently and economically. Skill and techniques
develop as the operator gains knowledge of the
engine and its capabilities.
The operation section is a reference for operators.
Photographs and illustrations guide the operator
through procedures of inspecting, starting, operating
and stopping the engine. This section also includes a
discussion of electronic diagnostic information.
Maintenance
The maintenance section is a guide to engine care.
The illustrated, step-by-step instructions are grouped
by service hours and/or calendar time maintenance
intervals. Items in the maintenance schedule are
referenced to detailed instructions that follow.
Recommended service should be performed at the
appropriate intervals as indicated in the Maintenance
Interval Schedule. The actual operating environment
of the engine also governs the Maintenance Interval
Schedule. Therefore, under extremely severe, dusty,
wet or freezing cold operating conditions, more
frequent lubrication and maintenance than is
specified in the Maintenance Interval Schedule may
be necessary.
The maintenance schedule items are organized for a
preventive maintenance management program. If the
preventive maintenance program is followed, a
periodic tune-up is not required. The implementation
of a preventive maintenance management program
should minimize operating costs through cost
avoidances resulting from reductions in unscheduled
downtime and failures.
Maintenance Intervals
Perform maintenance on items at multiples of the
original requirement. We recommend that the
maintenance schedules be reproduced and displayed
near the engine as a convenient reminder. We also
recommend that a maintenance record be maintained
as part of the engine's permanent record.
Your authorized Perkins dealer or your Perkins
distributor can assist you in adjusting your
maintenance schedule to meet the needs of your
operating environment.
Overhaul
Major engine overhaul details are not covered in the
Operation and Maintenance Manual except for the
interval and the maintenance items in that interval.
Major repairs should only be carried out by Perkins
authorized personnel. Your Perkins dealer or your
Perkins distributor offers a variety of options
regarding overhaul programs. If you experience a
major engine failure, there are also numerous after
failure overhaul options available. Consult with your
Perkins dealer or your Perkins distributor for
information regarding these options.
California Proposition 65 Warning
Diesel engine exhaust and some of its constituents
are known to the State of California to cause cancer,
birth defects, and other reproductive harm. Battery
posts, terminals and related accessories contain lead
and lead compounds. Wash hands after handling.
SEBU9068
Safety Section
i05835940
Safety Messages
There may be several specific warning signs on your
engine. The exact location and a description of the
warning signs are reviewed in this section. Please
become familiar with all warning signs.
Ensure that all of the warning signs are legible. Clean
the warning signs or replace the warning signs if the
words cannot be read or if the illustrations are not
visible. Use a cloth, water, and soap to clean the
warning signs. Do not use solvents, gasoline, or other
harsh chemicals. Solvents, gasoline, or harsh
chemicals could loosen the adhesive that secures the
warning signs. The warning signs that are loosened
could drop off the engine.
Replace any warning sign that is damaged or
missing. If a warning sign is attached to a part of the
engine that is replaced, install a new warning sign on
the replacement part. Your Perkins distributor can
provide new warning signs.
5
Safety Section
Safety Messages
Illustration 2g03373747
Typical example
i06078546
Universal Warning
Do not operate or work on this equipment unless
you have read and understand the instructions
and warnings in the Operation and Maintenance
Manuals. Failure to follow the instructions or heed
the warnings could result in serious injury or
death.
General Hazard Information
Illustration 3g00104545
Attach a “Do Not Operate” warning tag or a similar
warning tag to the start switch or to the controls
before the engine is serviced or before the engine is
repaired. Attach the warning tags to the engine and to
each operator control station. When appropriate,
disconnect the starting controls.
Illustration 1g01154807
Typical example
The Universal Warning label (1) is located on the top
of the engine, on the engine interface connector
cover.
Do not allow unauthorized personnel on the engine,
or around the engine when the engine is being
serviced.
6SEBU9068
Safety Section
General Hazard Information
• Tampering with the engine installation or tampering
with the OEM supplied wiring can be dangerous.
Personal injury, death and/or engine damage
could result.
• Vent the engine exhaust to the outside when the
engine is operated in an enclosed area.
• If the engine is not running, do not release the
secondary brake or the parking brake systems
unless the vehicle is blocked or unless the vehicle
is restrained.
• Wear a hard hat, protective glasses, and other
protective equipment, as required.
• When work is performed around an engine that is
operating, wear protective devices for ears in order
to help prevent damage to hearing.
• Do not wear loose clothing or jewelry that can snag
on controls or on other parts of the engine.
• Ensure that all protective guards and all covers are
secured in place on the engine.
• Never put maintenance fluids into glass
containers. Glass containers can break.
• Use all cleaning solutions with care.
• Report all necessary repairs.
Unless other instructions are provided, perform the
maintenance under the following conditions:
• The engine is stopped. Ensure that the engine
cannot be started.
• The protective locks or the controls are in the
applied position.
• Engage the secondary brakes or parking brakes.
• Block the vehicle or restrain the vehicle before
maintenance or repairs are performed.
• Disconnect the batteries when maintenance is
performed or when the electrical system is
serviced. Disconnect the battery ground leads.
Tape the leads in order to help prevent sparks. If
equipped, allow the diesel exhaust fluid to be
purged before disconnecting the battery.
• If equipped, disconnect the connectors for the unit
injectors that are located on the valve cover base.
This action will help prevent personal injury from
the high voltage to the unit injectors. Do not come
in contact with the unit injector terminals while the
engine is operating.
• Do not attempt any repairs or any adjustments to
the engine while the engine is operating.
• Do not attempt any repairs that are not
understood. Use the proper tools. Replace any
equipment that is damaged or repair the
equipment.
• For initial start-up of a new engine or for starting an
engine that has been serviced, make provisions to
stop the engine if an overspeed occurs. The
stopping of the engine may be accomplished by
shutting off the fuel supply and/or the air supply to
the engine. Ensure that only the fuel supply line is
shut off. Ensure that the fuel return line is open.
• Start the engine from the operators station (cab).
Never short across the starting motor terminals or
the batteries. This action could bypass the engine
neutral start system and/or the electrical system
could be damaged.
Engine exhaust contains products of combustion
which may be harmful to your health. Always start the
engine and operate the engine in a well ventilated
area. If the engine is in an enclosed area, vent the
engine exhaust to the outside.
Cautiously remove the following parts. To help
prevent spraying or splashing of pressurized fluids,
hold a rag over the part that is being removed.
SEBU9068
7
Safety Section
General Hazard Information
• Filler caps
• Grease fittings
• Pressure taps
• Breathers
• Drain plugs
Use caution when cover plates are removed.
Gradually loosen, but do not remove the last two bolts
or nuts that are located at opposite ends of the cover
plate or the device. Before removing the last two bolts
or nuts, pry the cover loose in order to relieve any
spring pressure or other pressure.
• The engine is stopped. Ensure that the engine
cannot be started.
• Disconnect the batteries when maintenance is
performed or when the electrical system is
serviced. Disconnect the battery ground leads.
Tape the leads in order to help prevent sparks.
• Do not attempt any repairs that are not
understood. Use the proper tools. Replace any
equipment that is damaged or repair the
equipment.
Pressurized Air and Water
Pressurized air and/or water can cause debris and/or
hot water to be blown out. This action could result in
personal injury.
When pressurized air and/or pressurized water is
used for cleaning, wear protective clothing, protective
shoes, and eye protection. Eye protection includes
goggles or a protective face shield.
The maximum air pressure for cleaning purposes
must be below 205 kPa (30 psi). The maximum water
pressure for cleaning purposes must be below
275 kPa (40 psi).
Illustration 4g00702020
• Wear a hard hat, protective glasses, and other
protective equipment, as required.
• When work is performed around an engine that is
operating, wear protective devices for ears in order
to help prevent damage to hearing.
• Do not wear loose clothing or jewelry that can snag
on controls or on other parts of the engine.
• Ensure that all protective guards and all covers are
secured in place on the engine.
• Never put maintenance fluids into glass
containers. Glass containers can break.
• Use all cleaning solutions with care.
• Report all necessary repairs.
Unless other instructions are provided, perform
the maintenance under the following conditions:
Fluid Penetration
Pressure can be trapped in the hydraulic circuit long
after the engine has been stopped. The pressure can
cause hydraulic fluid or items such as pipe plugs to
escape rapidly if the pressure is not relieved correctly.
Do not remove any hydraulic components or parts
until pressure has been relieved or personal injury
may occur. Do not disassemble any hydraulic
components or parts until pressure has been relieved
or personal injury may occur. Refer to the OEM
information for any procedures that are required to
relieve the hydraulic pressure.
8SEBU9068
Safety Section
General Hazard Information
Avoid static electricity risk when fueling. Ultra-low
sulfur diesel fuel (ULSD fuel) poses a greater static ignition hazard than earlier diesel formulations
with a higher sulfur contents. Avoid death or serious injury from fire or explosion. Consult with
your fuel or fuel system supplier to ensure the delivery system is in compliance with fueling standards for proper grounding and bonding practices.
Inhalation
Illustration 5g00687600
Always use a board or cardboard when you check for
a leak. Leaking fluid that is under pressure can
penetrate body tissue. Fluid penetration can cause
serious injury and possible death. A pin hole leak can
cause severe injury. If fluid is injected into your skin,
you must get treatment immediately. Seek treatment
from a doctor that is familiar with this type of injury.
Containing Fluid Spillage
Care must be taken to ensure that fluids are
contained during performance of inspection,
maintenance, testing, adjusting, and repair of the
product. Be prepared to collect the fluid with suitable
containers before opening any compartment or
disassembling any component containing fluids.
Dispose of all fluids according to local regulations and
mandates.
Static Electricity Hazard when
Fueling with Ultra-low Sulfur Diesel
Fuel
The removal of sulfur and other compounds in ultralow sulfur diesel fuel (ULSD fuel) decreases the
conductivity of ULSD and increases the ability of
ULSD to store static charge. Refineries may have
treated the fuel with a static dissipating additive.
Many factors can reduce the effectiveness of the
additive over time. Static charges can build up in
ULSD fuel while the fuel is flowing through fuel
delivery systems. Static electricity discharge when
combustible vapors are present could result in a fire
or explosion. Ensure that the entire system used to
refuel your machine (fuel supply tank, transfer pump,
transfer hose, nozzle, and others) is properly
grounded and bonded. Consult with your fuel or fuel
system supplier to ensure that the delivery system
complies with fueling standards for proper grounding
and bonding.
Illustration 6g00702022
Exhaust
Use caution. Exhaust fumes can be hazardous to
health. If you operate the equipment in an enclosed
area, adequate ventilation is necessary.
Asbestos Information
Perkins equipment and replacement parts that are
shipped from Perkins engine company limited are
asbestos free. Perkins recommends the use of only
genuine Perkins replacement parts. Use the following
guidelines when you handle any replacement parts
that contain asbestos or when you handle asbestos
debris.
Use caution. Avoid inhaling dust that might be
generated when you handle components that contain
asbestos fibers. Inhaling this dust can be hazardous
to your health. The components that may contain
asbestos fibers are brake pads, brake bands, lining
material, clutch plates, and some gaskets. The
asbestos that is used in these components is usually
bound in a resin or sealed in some way. Normal
handling is not hazardous unless airborne dust that
contains asbestos is generated.
If dust that may contain asbestos is present, there are
several guidelines that should be followed:
SEBU90689
Safety Section
Burn Prevention
• Never use compressed air for cleaning.
• Avoid brushing materials that contain asbestos.
• Avoid grinding materials that contain asbestos.
• Use a wet method in order to clean up asbestos
materials.
• A vacuum cleaner that is equipped with a high
efficiency particulate air filter (HEPA) can also be
used.
• Use exhaust ventilation on permanent machining
jobs.
• Wear an approved respirator if there is no other
way to control the dust.
• Comply with applicable rules and regulations for
the work place. In the United States, use
Occupational Safety and Health Administration
(OSHA) requirements. These OSHA requirements
can be found in “29 CFR 1910.1001”.
• Obey environmental regulations for the disposal of
asbestos.
• Stay away from areas that might have asbestos
particles in the air.
Diesel Exhaust Fluid
Diesel Exhaust Fluid (DEF) may cause eye irritation
and can be moderately irritating to the skin. Exposure
to decomposition products may cause a health
hazard. Serious effects may be delayed following
exposure.
DEF is not expected to produce significant adverse
health effects when the recommended instructions for
use are followed.
• Do not breathe DEF vapor or mist.
• Do not eat, drink, or smoke when using DEF.
• Avoid DEF contact with eyes, skin, and clothing.
• Wash thoroughly after handling DEF.
i06078513
Burn Prevention
Do not touch any part of an operating engine system.
The engine, the exhaust, and the engine
aftertreatment system can reach temperatures as
high as 650° C (1202° F) under normal operating
conditions.
Dispose of Waste Properly
Illustration 7g00706404
Improperly disposing of waste can threaten the
environment. Potentially harmful fluids should be
disposed of according to local regulations.
Always use leakproof containers when you drain
fluids. Do not pour waste onto the ground, down a
drain, or into any source of water.
Allow the engine system to cool before any
maintenance is performed. Relieve all pressure in the
air system, hydraulic system, lubrication system, fuel
system, and the cooling system before the related
items are disconnected.
Contact with high pressure fuel may cause fluid
penetration and burn hazards. High pressure fuel
spray may cause a fire hazard. Failure to follow
these inspection, maintenance and service instructions may cause personal injury or death.
After the engine has stopped, wait for 10 minutes in
order to allow the fuel pressure to be purged from the
high-pressure fuel lines before any service or repair is
performed on the engine fuel lines. The 10 minute
wait will also allow static charge to dissipate from the
low-pressure fuel system.
Allow the pressure to be purged in the air system, in
the hydraulic system, in the lubrication system, or in
the cooling system before any lines, fittings, or related
items are disconnected.
10SEBU9068
Safety Section
Fire Prevention and Explosion Prevention
Induction System
Sulfuric Acid Burn Hazard may cause serious personal injury or death.
The exhaust gas cooler may contain a small
amount of sulfuric acid. The use of fuel with sulfur
levels greater than 15 ppm may increase the
amount of sulfuric acid formed. The sulfuric acid
may spill from the cooler during service of the engine. The sulfuric acid will burn the eyes, skin and
clothing on contact. Always wear the appropriate
personal protective equipment (PPE) that is noted
on a material safety data sheet (MSDS) for sulfuric
acid. Always follow the directions for first aid that
are noted on a material safety data sheet (MSDS)
for sulfuric acid.
Coolant
When the engine is at operating temperature, the
engine coolant is hot. The coolant is also under
pressure. The radiator and all lines to the heaters,
aftertreatment system or to the engine contain hot
coolant.
Any contact with hot coolant or with steam can cause
severe burns. Allow cooling system components to
cool before the cooling system is drained.
Batteries
Electrolyte is an acid. Electrolyte can cause personal
injury. Do not allow electrolyte to contact the skin or
the eyes. Always wear protective glasses for
servicing batteries. Wash hands after touching the
batteries and connectors. Use of gloves is
recommended.
Aftertreatment System
Allow the aftertreatment to cool down before any
maintenance or repair is performed.
Aftertreatment System and Diesel
Exhaust Fluid
Diesel Exhaust Fluid (DEF) temperatures can reach
65° to 70°C (149.° to 126°F) during normal engine
operation. Stop the engine. Wait for 15 minutes in
order to allow the DEF system to be purged and the
DEF to cool before service or repair is performed.
i05670934
Fire Prevention and Explosion
Prevention
Check that the coolant level after the engine has
stopped and the engine has been allowed to cool.
Ensure that the filler cap is cool before removing the
filler cap. The filler cap must be cool enough to touch
with a bare hand. Remove the filler cap slowly in
order to relieve pressure.
Cooling system conditioner contains alkali. Alkali can
cause personal injury. Do not allow alkali to contact
the skin, the eyes, or the mouth.
Oils
Skin may be irritated following repeated or prolonged
exposure to mineral and synthetic base oils. Refer to
your suppliers Material Safety Data Sheets for
detailed information. Hot oil and lubricating
components can cause personal injury. Do not allow
hot oil to contact the skin. Appropriate personal
protective equipment should be used.
Diesel Fuel
Diesel may be irritating to the eyes, respiratory
system, and skin. Prolonged exposure to diesel may
cause various skin conditions. Appropriate personal
protective equipment should be used. Refer to
supplier Material safety Data sheets for detailed
information.
Illustration 8g00704000
All fuels, most lubricants, and some coolant mixtures
are flammable.
Flammable fluids that are leaking or spilled onto hot
surfaces or onto electrical components can cause a
fire. Fire may cause personal injury and property
damage.
After the emergency stop button is operated, ensure
that you allow 15 minutes, before the engine covers
are removed.
SEBU906811
Safety Section
Fire Prevention and Explosion Prevention
Determine whether the engine will be operated in an
environment that allows combustible gases to be
drawn into the air inlet system. These gases could
cause the engine to overspeed. Personal injury,
property damage, or engine damage could result.
If the application involves the presence of
combustible gases, consult your Perkins dealer and/
or your Perkins distributor for additional information
about suitable protection devices.
Remove all flammable combustible materials or
conductive materials such as fuel, oil, and debris from
the engine. Do not allow any flammable combustible
materials or conductive materials to accumulate on
the engine.
Store fuels and lubricants in correctly marked
containers away from unauthorized persons. Store
oily rags and any flammable materials in protective
containers. Do not smoke in areas that are used for
storing flammable materials.
Do not expose the engine to any flame.
Exhaust shields (if equipped) protect hot exhaust
components from oil or fuel spray in case of a line, a
tube, or a seal failure. Exhaust shields must be
installed correctly.
After the engine has stopped, you must wait for 10
minutes in order to allow the fuel pressure to be
purged from the high-pressure fuel lines before any
service or repair is performed on the engine fuel lines.
The 10 minute wait will also allow static charge to
dissipate from the low-pressure fuel system.
Ensure that the engine is stopped. Inspect all lines
and hoses for wear or for deterioration. Ensure that
the hoses are correctly routed. The lines and hoses
must have adequate support and secure clamps.
Oil filters and fuel filters must be correctly installed.
The filter housings must be tightened to the correct
torque. Refer to the Disassembly and Assembly
manual for more information.
Do not weld on lines or tanks that contain flammable
fluids. Do not flame cut lines or tanks that contain
flammable fluid. Clean any such lines or tanks
thoroughly with a nonflammable solvent prior to
welding or flame cutting.
Wiring must be kept in good condition. Ensure that all
electrical wires are correctly installed and securely
attached. Check all electrical wires daily. Repair any
wires that are loose or frayed before you operate the
engine. Clean all electrical connections and tighten all
electrical connections.
Eliminate all wiring that is unattached or unnecessary.
Do not use any wires or cables that are smaller than
the recommended gauge. Do not bypass any fuses
and/or circuit breakers.
Arcing or sparking could cause a fire. Secure
connections, recommended wiring, and correctly
maintained battery cables will help to prevent arcing
or sparking.
Contact with high pressure fuel may cause fluid
penetration and burn hazards. High pressure fuel
spray may cause a fire hazard. Failure to follow
these inspection, maintenance and service instructions may cause personal injury or death.
Illustration 9g00704059
Use caution when you are refueling an engine. Do not
smoke while you are refueling an engine. Do not
refuel an engine near open flames or sparks. Always
stop the engine before refueling.
Avoid static electricity risk when fueling. Ultra-low
Sulfur Diesel fuel (ULSD fuel) poses a greater static
ignition hazard than earlier diesel formulations with a
higher sulfur content. Avoid death or serious injury
from fire or explosion. Consult your fuel or fuel system
supplier to ensure that the delivery system is in
compliance with fueling standards for proper
grounding and bonding practices.
12SEBU9068
Safety Section
Crushing Prevention and Cutting Prevention
Lines, Tubes, and Hoses
Do not bend high-pressure lines. Do not strike highpressure lines. Do not install any lines that are
damaged.
Leaks can cause fires. Consult your Perkins dealer or
your Perkins distributor for replacement parts.
Replace the parts if any of the following conditions
are present:
• High-pressure fuel line or lines are removed.
• End fittings are damaged or leaking.
• Outer coverings are chafed or cut.
• Wires are exposed.
• Outer coverings are ballooning.
• Flexible parts of the hoses are kinked.
Illustration 10g00704135
Gases from a battery can explode. Keep any open
flames or sparks away from the top of a battery. Do
not smoke in battery charging areas.
Never check the battery charge by placing a metal
object across the terminal posts. Use a voltmeter or a
hydrometer.
Incorrect jumper cable connections can cause an
explosion that can result in injury. Refer to the
Operation Section of this manual for specific
instructions.
Do not charge a frozen battery. A frozen battery may
cause an explosion.
The batteries must be kept clean. The covers (if
equipped) must be kept on the cells. Use the
recommended cables, connections, and battery box
covers when the engine is operated.
Fire Extinguisher
Make sure that a fire extinguisher is available. Be
familiar with the operation of the fire extinguisher.
Inspect the fire extinguisher and service the fire
extinguisher regularly. Obey the recommendations on
the instruction plate.
Ether
Ether is flammable and poisonous.
• Outer covers have embedded armoring.
• End fittings are displaced.
Make sure that all clamps, guards, and heat shields
are installed correctly. During engine operation,
correct installation will help to prevent vibration,
rubbing against other parts, and excessive heat.
i02143194
Crushing Prevention and
Cutting Prevention
Support the component correctly when work beneath
the component is performed.
Unless other maintenance instructions are provided,
never attempt adjustments while the engine is
running.
Stay clear of all rotating parts and of all moving parts.
Leave the guards in place until maintenance is
performed. After the maintenance is performed,
reinstall the guards.
Keep objects away from moving fan blades. The fan
blades will throw objects or cut objects.
When objects are struck, wear protective glasses in
order to avoid injury to the eyes.
Do not smoke while you are replacing an ether
cylinder or while you are using an ether spray.
Do not store ether cylinders in living areas or in the
engine compartment. Do not store ether cylinders in
direct sunlight or in temperatures above 49° C
(120° F). Keep ether cylinders away from open
flames or sparks.
Chips or other debris may fly off objects when objects
are struck. Before objects are struck, ensure that no
one will be injured by flying debris.
SEBU906813
Safety Section
Mounting and Dismounting
i05768982
Mounting and Dismounting
Do not climb on the engine or the engine
aftertreatment system. The engine and aftertreatment
system have not been designed with mounting or
dismounting locations.
Refer to the OEM for the location of foot and hand
holds for your specific application.
i05835985
High Pressure Fuel Lines
Contact with high pressure fuel may cause fluid
penetration and burn hazards. High pressure fuel
spray may cause a fire hazard. Failure to follow
these inspection, maintenance and service instructions may cause personal injury or death.
Illustration 11g03691673
(1) High-pressure line
(2) High-pressure line
(3) High-pressure line
(4) High-pressure line
(5) High-pressure fuel manifold (rail)
(6) Fuel transfer line that is high pressure
14SEBU9068
Safety Section
Before Starting Engine
The high-pressure fuel lines are the fuel lines that are
between the high-pressure fuel pump and the highpressure fuel manifold and the fuel lines that are
between the fuel manifold and cylinder head. These
fuel lines are different from fuel lines on other fuel
systems.
These differences are because of the following items:
• The high-pressure fuel lines are constantly
charged with high pressure.
• The internal pressures of the high-pressure fuel
lines are higher than other types of fuel system.
• The high-pressure fuel lines are formed to shape
and then strengthened by a special process.
Do not step on the high-pressure fuel lines. Do not
deflect the high-pressure fuel lines. Do not bend or
strike the high-pressure fuel lines. Deformation or
damage of the high-pressure fuel lines may cause a
point of weakness and potential failure.
Do not check the high-pressure fuel lines with the
engine or the starting motor in operation. After the
engine has stopped wait for 10 minutes in order to
allow the fuel pressure to be purged from the highpressure fuel lines before any service or repair is
performed.
Do not loosen the high-pressure fuel lines in order to
remove air from the fuel system. This procedure is not
required.
Visually inspect the high-pressure fuel lines before
the engine is started. This inspection should be each
day.
If you inspect the engine in operation, always use the
proper inspection procedure in order to avoid a fluid
penetration hazard. Refer to Operation and
Maintenance Manual, “General hazard Information”.
• Inspect the high-pressure fuel lines for damage,
deformation, a nick, a cut, a crease, or a dent.
• Do not operate the engine with a fuel leak. If there
is a leak, do not tighten the connection in order to
stop the leak. The connection must only be
tightened to the recommended torque. Refer to
Disassembly and Assembly, “Fuel injection lines Remove and Fuel injection lines - Install”.
• If the high-pressure fuel lines are torqued correctly,
and the high-pressure fuel lines are leaking the
high-pressure fuel lines must be replaced.
• Ensure that all clips on the high-pressure fuel lines
are in place. Do not operate the engine with clips
that are damaged, missing, or loose.
• Do not attach any other item to the high-pressure
fuel lines.
• Loosened high-pressure fuel lines must be
replaced. Also removed high-pressure fuel lines
must be replaced. Refer to Disassembly and
Assembly, “Fuel Injection Lines - Install”.
i03560601
Before Starting Engine
NOTICE
For initial start-up of a new or rebuilt engine, and for
start-up of an engine that has been serviced, make
provision to shut the engine off should an overspeed
occur. This may be accomplished by shutting off the
air and/or fuel supply to the engine.
Engine exhaust contains products of combustion
which may be harmful to your health. Always start
and operate the engine in a well ventilated area
and, if in an enclosed area, vent the exhaust to the
outside.
Inspect the engine for potential hazards.
Do not start the engine or move any of the controls if
there is a “DO NOT OPERATE” warning tag or
similar warning tag attached to the start switch or to
the controls.
Before starting the engine, ensure that no one is on,
underneath, or close to the engine. Ensure that the
area is free of personnel.
If equipped, ensure that the lighting system for the
engine is suitable for the conditions. Ensure that all
lights work properly, if equipped.
SEBU906815
Safety Section
Engine Starting
All protective guards and all protective covers must
be installed if the engine must be started in order to
perform service procedures. To help prevent an
accident that is caused by parts in rotation, work
around the parts carefully.
Do not bypass the automatic shutoff circuits. Do not
disable the automatic shutoff circuits. The circuits are
provided in order to help prevent personal injury. The
circuits are also provided in order to help prevent
engine damage.
See the Service Manual for repairs and for
adjustments.
i03996487
Engine Starting
Do not use aerosol types of starting aids such as
ether. Such use could result in an explosion and
personal injury.
If a warning tag is attached to the engine start switch,
or to the controls DO NOT start the engine or move
the controls. Consult with the person that attached
the warning tag before the engine is started.
All protective guards and all protective covers must
be installed if the engine must be started in order to
perform service procedures. To help prevent an
accident that is caused by parts in rotation, work
around the parts carefully.
Start the engine from the operators compartment or
from the engine start switch.
Always start the engine according to the procedure
that is described in the Operation and Maintenance
Manual, “Engine Starting” topic in the Operation
Section. Knowing that the correct procedure will help
to prevent major damage to the engine components.
Knowing that the procedure will also help to prevent
personal injury.
To ensure that the jacket water heater (if equipped)
and/or the lube oil heater (if equipped) is working
correctly, check the water temperature gauge. Also,
check the oil temperature gauge during the heater
operation.
Engine exhaust contains products of combustion
which can be harmful to your health. Always start the
engine and operate the engine in a well ventilated
area. If the engine is started in an enclosed area, vent
the engine exhaust to the outside.
Note: The engine is equipped with a device for cold
starting. If the engine will be operated in very cold
conditions, then an extra cold starting aid may be
required. Normally, the engine will be equipped with
the correct type of starting aid for your region of
operation.
These engines are equipped with a glow plug starting
aid in each individual cylinder that heats the intake air
in order to improve starting. Some Perkins engines
may have a cold starting system that is controlled by
the ECM that allows a controlled flow of ether into the
engine. The ECM will disconnect the glow plugs
before the ether is introduced. This system would be
installed at the factory.
i02234873
Engine Stopping
Stop the engine according to the procedure in the
Operation and Maintenance Manual, “Engine
Stopping (Operation Section)” in order to avoid
overheating of the engine and accelerated wear of
the engine components.
Use the Emergency Stop Button (if equipped) ONLY
in an emergency situation. Do not use the Emergency
Stop Button for normal engine stopping. After an
emergency stop, DO NOT start the engine until the
problem that caused the emergency stop has been
corrected.
Stop the engine if an overspeed condition occurs
during the initial start-up of a new engine or an engine
that has been overhauled.
To stop an electronically controlled engine, cut the
power to the engine and/or shutting off the air supply
to the engine.
i04112409
Electrical System
Never disconnect any charging unit circuit or battery
circuit cable from the battery when the charging unit is
operating. A spark can cause the combustible gases
that are produced by some batteries to ignite.
To help prevent sparks from igniting combustible
gases that are produced by some batteries, the
negative “−” cable should be connected last from the
external power source to the negative “−” terminal of
the starting motor. If the starting motor is not
equipped with a negative “−” terminal, connect the
cable to the engine block.
16SEBU9068
Safety Section
Electrical System
Check the electrical wires daily for wires that are
loose or frayed. Tighten all loose electrical
connections before the engine is started. Repair all
frayed electrical wires before the engine is started.
See the Operation and Maintenance Manual for
specific starting instructions.
Grounding Practices
Illustration 12g02315896
Typical example
(1) Ground to battery
(2) Primary position for grounding
(3) Ground to engine block
(4) Ground to starting motor
Illustration 13g02315900
Typical example
(5) Ground to battery
(6) Ground to engine block
(7) Primary position for grounding
Correct grounding for the engine electrical system is
necessary for optimum engine performance and
reliability. Incorrect grounding will result in
uncontrolled electrical circuit paths and in unreliable
electrical circuit paths.
Uncontrolled electrical circuit paths can result in
damage to engine components.
Engines that are installed without engine-to-frame
ground straps can be damaged by electrical
discharge.
To ensure the engine and the engine electrical
systems function correctly, an engine-to-frame
ground strap with a direct path to the battery must be
used. This path may be provided by way of a direct
engine ground to the frame.
The connections for the grounds should be tight and
free of corrosion. The engine alternator must be
grounded to the negative “-” battery terminal with a
wire adequate to handle the full charging current of
the alternator.
The power supply connections and the ground
connections for the engine electronics should always
be from the isolator to the battery.
SEBU906817
Safety Section
Engine Electronics
i04346349
Engine Electronics
Tampering with the electronic system installation
or the OEM wiring installation can be dangerous
and could result in personal injury or death and/or
engine damage.
Electrical Shock Hazard. The electronic unit injectors use DC voltage. The ECM sends this voltage
to the electronic unit injectors. Do not come in
contact with the harness connector for the electronic unit injectors while the engine is operating.
Failure to follow this instruction could result in
personal injury or death.
This engine has a comprehensive, programmable
Engine Monitoring System. The Electronic Control
Module (ECM) has the ability to monitor the engine
operating conditions. If any of the engine parameters
extend outside an allowable range, the ECM will
initiate an immediate action.
The Engine Monitoring package can vary for different
engine models and different engine applications.
However, the monitoring system and the engine
monitoring control will be similar for all engines.
The following actions are available for engine
monitoring control:
• Warning
• Derate
• Shutdown
The following monitored engine operating conditions
and components have the ability to limit engine speed
and/or the engine power :
• Engine Coolant Temperature
• Engine Oil Pressure
• Engine Speed
• Intake Manifold Air Temperature
• Engine Intake Throttle Valve Fault
• Wastegate Regulator
• Supply Voltage to Sensors
• Fuel Pressure in Manifold (Rail)
• NOxReduction System
• Engine Aftertreatment System
18SEBU9068
Product Information Section
Model View Illustrations
Product Information
Section
General Information
i05837601
Model View Illustrations
The following model views show typical features of
the engine. Due to individual applications, your
engine may appear different from the illustrations.
(11) Ammonia sensor and controller
(12) Temperature sensors for Doc and SCR
(13) DEF pump module with DEF filter
flywheel end of the engine. The left and the right
sides of the engine are determined from the flywheel
The Perkins 854F-E34TA industrial engine have the
end. The number 1 cylinder is the front cylinder.
following characteristics
• In-line 4 cylinder
• Four valves per cylinder
• Four stroke cycle
• Turbocharged charge cooled
• Aftertreatment system
22SEBU9068
General Information
Product Description
• Engine monitoring
• Engine speed governing
• Control of the injection pressure
• Cold start strategy
• Automatic air/fuel ratio control
• Torque rise shaping
• Injection timing control
• System diagnostics
Illustration 18g03692044
Cylinder and valve location
(A) Exhaust valves
(B) Inlet valves
Table 1
854F-E34TA Engine Specifications
Operating Range (rpm)
Number of Cylinders
Bore99 mm (3.89763 inch)
Stroke110 mm (4.33070 inch)
Power
AspirationTurbocharged charge cooled
Compression Ratio
Displacement3.4 L (207.48 cubic inch)
Firing Order
Rotation (flywheel end)
(1)
The operating rpm is dependent on the engine rating, the application, and the configuration of the throttle.
800 to 2750
4 In-Line
Turbocharged Charge Cooled
63 to 90 kW
(84.48 to 120.69 hp)
Counterclockwise
(1)
17: 1
1-3-4-2
Electronic Engine Features
The engine operating conditions are monitored. The
Electronic Control Module (ECM) controls the
response of the engine to these conditions and to the
demands of the operator. These conditions and
operator demands determine the precise control of
fuel injection by the ECM. The electronic engine
control system provides the following features:
• Aftertreatment Regeneration
For more information on electronic engine features,
refer to the Operation and Maintenance Manual,
“Features and Controls” topic (Operation Section).
Engine Diagnostics
The engine has built-in diagnostics in order to ensure
that the engine systems are functioning correctly. The
operator will be alerted to the condition by a “Stop or
Warning” lamp. Under certain conditions, the engine
horsepower and the vehicle speed may be limited.
The electronic service tool may be used to display the
diagnostic codes.
There are three types of diagnostic codes: active,
logged and event.
Most of the diagnostic codes are logged and stored in
the ECM. For additional information, refer to the
Operation and Maintenance Manual, “Engine
Diagnostics” topic (Operation Section).
The ECM provides an electronic governor that
controls the injector output in order to maintain the
desired engine rpm.
Engine Cooling and Lubrication
The cooling system and lubrication system consists
of the following components:
• Belt driven centrifugal water pump
• Water temperature regulator which regulates the
engine coolant temperature
• Gear-driven rotor type oil pump
• Multi plate oil cooler
The engine lubricating oil is cooled and the engine
lubricating oil is filtered.
SEBU906823
General Information
Product Description
Engine Service Life
Engine efficiency and maximum utilization of engine
performance depend on the adherence to proper
operation and maintenance recommendations. In
addition, use recommended fuels, coolants, and
lubricants. Use the Operation and Maintenance
Manual as a guide for required engine maintenance.
Aftertreatment System
The aftertreatment system is approved for use by
Perkins . In order to be emission-compliant only the
approved Perkins aftertreatment system must be
used on a Perkins engine.
The aftertreatment system is Diesel Oxidation
Catalyst (DOC) and Selective Catalytic Reduction
(SCR), with Diesel Exhaust Fluid (DEF) injection.
The engine is connected by a flexible pipe to the
aftertreatment. The exhaust gases pass through the
DOC and then the mixer where the gases are mixed
with the injected urea. The mixture then enters the
SCR catalyst. Here the NOx in the exhaust reacts
with the ammonia from the injected urea to split the
gases into nitrogen and oxygen constituents. The
SCR catalyst includes an ammonia oxidation section
to clean up any remaining ammonia before the gases
exit the system.
Aftertreatment Configuration
The engine can be configured with a top mounted
aftertreatment or an aftertreatment mounted across
the rear of the engine.
Aftermarket Products and Perkins
Engines
Perkins does not warrant the quality or performance
of non-Perkins fluids and filters.
When auxiliary devices, accessories, or consumables
(filters, additives, catalysts,) which are made by other
manufacturers are used on Perkins products, the
Perkins warranty is not affected simply because of
such use.
However, failures that result from the installation
or use of other manufacturers devices,
accessories, or consumables are NOT Perkins
defects. Therefore, the defects are NOT covered
under the Perkins warranty.
24SEBU9068
Product Identification Information
Plate Locations and Film Locations
Product Identification
Information
i05857940
Plate Locations and Film
Locations
(Aftertreatment)
S
Ensure that all numbers on the aftertreatment are
recorded
Your Perkins distributor or your dealer will require all
the numbers in order to identify the components for
your aftertreatment
i05857938
Plate Locations and Film
Locations
Perkins engines are identified by an engine serial
number.
An example of an engine number is
JU*****L000001V.
Serial Number location
Illustration 19g03733236
Typical example of a non-stressed cylinder block
The engine serial number can be installed in three
different positions.
All engines will have the serial number install in
location (1) on the front face of the engine.
*****The list number for the engine
JUThe type of engine
LBuilt in the Italy
000001Engine Serial Number
VYear of Manufacture
Perkins dealers or Perkins distributors need all of
these numbers in order to determine the components
that were included with the engine. This information
permits accurate identification of replacement part
numbers.
The numbers for fuel setting information for electronic
engines are stored within the flash file. These
numbers can be read by using the electronic service
tool.
On a non-stressed cylinder block the serial number is
located in position (2). On the left-hand side on the
cylinder block.
Illustration 20g02826736
Typical example
On a stressed cylinder block the serial number is
located in position (3).
SEBU906825
Product Identification Information
Emissions Certification Film
The engine serial number is stamped on the
emissions plate.
i05847996
Emissions Certification Film
The emission label will be installed on the left side of
the non-stressed cylinder block. The emission label
will be installed on the left side of the engine oil pan
for stressed cylinder blocks
Illustration 21g03708641
Typical example
i05837789
Reference Information
Information for the following items may be needed to
order parts. Locate the information for your engine.
Record the information in the appropriate space.
Make a copy of this list for a record. Keep the
information for future reference.
Record for Reference
Engine Model
Engine Serial number
Engine Low Idle rpm
Engine Full Load rpm
Primary Fuel Filter
Secondary Fuel Filter Element
Auxiliary Oil Filter Element
Total Lubrication System Capacity
Total Cooling System Capacity
Air Cleaner Element
Drive Belt
Aftertreatment System
Part Number
Serial Number
Lubrication Oil Filter Element
26SEBU9068
Operation Section
Product Lifting
Operation Section
Lifting and Storage
i05858019
Product Lifting
Illustration 22g03779921
Typical example
Illustration 23g03796087
Typical example of lifting eyes with top mounted
aftertreatment
(1) Front lifting eye
(2) Rear lifting eyes
NOTICE
Never bend the eyebolts and the brackets. Only load
the eyebolts and the brackets under tension. Remember that the capacity of an eyebolt is less as the angle
between the supporting members and the object becomes less than 90 degrees.
Use a hoist to remove heavy components. Use an
adjustable lifting beam to lift the engine. All
supporting members (chains and cables) should be
parallel to each other. The chains and cables should
be perpendicular to the top of the object that is being
lifted.
Some removals require lifting the fixtures in order to
obtain correct balance and safety.
The lifting eyes should be used to lift only the engine
as supplied by Perkins , including engine mounted
aftertreatment equipment.
Other Original Equipment Manufacturer (OEM)
equipment, including transmissions, should be
removed from the engine prior to lifting. For more
information, refer to the OEM.
Lifting eyes are designed and installed for specific
engine arrangements. Alterations to the lifting eyes
and/or the engine make the lifting eyes and the lifting
fixtures obsolete. If alterations are made, ensure that
correct lifting devices are provided. Consult your
Perkins distributor for information regarding fixtures
for correct engine lifting.
SEBU906827
Lifting and Storage
Product Storage
Note: The engine is equipped with three lifting eyes.
All the lifting eyes must be used in order to lift the
engine and the aftertreatment.
The aftertreatment system has not been designed
with lifting eyes for removal from the engine or
application. In order to remove aftertreatment, the
aftertreatment must be lifted using two lifting slings.
When installing the aftertreatment, use two lifting
slings in order to install the aftertreatment.
i05858063
Product Storage
(Engine and Aftertreatment)
Perkins are not responsible for damage which may
occur when an engine is in storage after a period in
service.
Your Perkins dealer or your Perkins distributor can
assist in preparing the engine for extended storage
periods.
Condition for Storage
The engine must be stored in a water proof building.
The building must be kept at a constant temperature.
Engines that are filled with Perkins ELC will have
coolant protection to an ambient temperature of
−36° C (−32.8° F). The engine must not be subjected
to extreme variations in temperature and humidity.
2. Drain any water from the primary filter water
separator. Ensure that the fuel tank is full.
3. The engine oil will not need to be drained in order
to store the engine. Provided the correct
specification of engine oil is used the engine can
be stored for up to 6 months. For the correct
specification of engine oil refer to this Operation
and Maintenance Manual, “Fluid
recommendations”.
4. Remove the drive belt from the engine.
Sealed Coolant System
Ensure that the cooling system is filled with Perkins
ELC, or an antifreeze that meets “ASTM D6210”
specification.
Open Cooling System
Ensure that all cooling drain plugs have been
opened. Allow the coolant to drain. Install the drain
plugs. Place a vapor phase inhibitor into the system.
The coolant system must be sealed once the vapor
phase inhibitor has been introduced. The effect of the
vapor phase inhibitor will be lost if the cooling system
is open to the atmosphere.
For maintenance procedures ref to this Operation and
Maintenance Manual.
Monthly Checks
Storage Period
An engine can be stored for up to 6 months provided
all the recommendation are adhered to.
Storage Procedure
Keep a record of the procedure that has been
completed on the engine.
Note: Do not store an engine that has biodiesel in the
fuel system.
1. Ensure that the engine is clean and dry.
a. If the engine has been operated using
biodiesel, the system must be drained and
new filters installed. The fuel tank will require
flushing.
b. Fill the fuel system with an ultra low sulfur fuel.
For more information on acceptable fuels refer
to this Operation and Maintenance Manual,
“Fluid recommendations”. Operate the engine
for 15 minutes in order to remove all biodiesel
from the system.
The crankshaft must be rotated in order to change the
spring loading on the valve train. Rotate the
crankshaft more than 180 degrees. Visibly check for
damage or corrosion to the engine and
aftertreatment.
Ensure that the engine and aftertreatment are
covered completely before storage. Log the
procedure in the record for the engine.
Aftertreatment
The engine must be allowed to perform a DEF purge
before the battery disconnect switch is turned off.
Allow 2 minutes after the engine has stopped before
disconnecting the battery disconnect switch.
The exhaust outlet of the aftertreatment must be
capped. In order to prevent damage to the exhaust
outlet connection during storage.
DEF Tank Storage
1. Ensure normal engine shutdown, allow the DEF to
be purged. Do not disconnect the battery
disconnect switch, allow 2 minutes after key off
before disconnection.
28SEBU9068
Lifting and Storage
Product Storage
2. Fill the tank with DEF that meet all the requirement
defined in ISO 22241-1.
3. Ensure that all DEF lines and electrical connection
are connected prior to prevent crystal from
forming.
4. Ensure that the DEF filler cap is correctly installed.
Removal from Storage
DEF has a limited life, refer to table 2 for the time and
temperature range. DEF that is outside this range
MUST be replaced.
On removal from storage the DEF quality in the tank
must be tested with a refractometer. The DEF in the
tank must meet the requirements defined in ISO
22241-1 and comply with table 2 .
1. If necessary, drain the tank and fill with DEF that
meet ISO 22241-1.
2. Replace the DEF filter, refer to this Operation and
Maintenance Manual, “Diesel Exhaust Fluid FilterClean/Replace”.
3. Ensure that the drive belt is correctly installed.
Ensure that all engine coolant and engine oil has
the correct specification and grade. Ensure that the
coolant and the engine oil are at the correct level.
Start the engine. If a fault becomes active turn off
the engine, allow 2 minutes for the DEF system to
purge, then restart the engine.
4. If the fault continues to stay active, refer to
Troubleshooting for more information.
Table 2
TemperatureDuration
10° C (50° F)36 months
25° C (77° F)18 months
30° C (86° F)12 months
35° C (95° F)
(1)
At 35° C, significant degradation can occur. Check every batch
before use.
(1)
6 months
SEBU906829
Features and Controls
Alarms and Shutoffs
Features and Controls
i05951738
Alarms and Shutoffs
Shutoffs
The shutoffs are electrically operated or mechanically
operated. The electrically operated shutoffs are
controlled by the Electronic Control Module (ECM).
Shutoffs are set at critical levels for the following
items:
• Operating temperature
• Operating pressure
• Operating level
• Operating rpm
• Hydrocarbon build-up
The particular shutoff may need to be reset before the
engine will start.
NOTICE
Always determine the cause of the engine shutdown.
Make necessary repairs before attempting to restart
the engine.
Intake manifold pressure – The intake manifold
pressure sensor checks the rated pressure in the
engine manifold.
Fuel rail pressure – The fuel rail pressure sensor
measures the high pressure or low pressure in the
fuel rail. The ECM will Check the pressure.
Engine oil pressure – The engine oil pressure
sensor indicates when oil pressure drops below rated
system pressure, at a set engine speed.
Engine overspeed – If, the engine rpm exceeds the
overspeed setting the alarm will be activated.
Air filter restriction – The switch checks the air filter
when the engine is operating.
User-defined switch – This switch can shut down
the engine remotely. There will be no alarm or
warning lamp to show that the switch has been
operated.
Water in fuel switch – This switch checks for water
in the primary fuel filter when the engine is operating.
Fuel temperature – The fuel temperature sensor
monitors the pressurized fuel in the high-pressure fuel
pump.
Coolant temperature – The coolant temperature
sensor indicates high jacket water coolant
temperature.
Note: The sensing element of the coolant
temperature sensor must be submerged in coolant in
order to operate.
Be familiar with the following items:
• Types and locations of shutoff
• Conditions which cause each shutoff to function
• The resetting procedure that is required to restart
the engine
Alarms
The alarms are electrically operated. The operations
of the alarms are controlled by the ECM.
The alarm is operated by a sensor or by a switch.
When the sensor or the switch is activated, a signal is
sent to the ECM. An event code is created by the
ECM. The ECM will send a signal in order to
illuminate the lamp.
Your engine may be equipped with the following
sensors or switches:
Intake manifold air temperature – The intake
manifold air temperature sensor indicates high intake
air temperature.
Engines may be equipped with alarms in order to
alert the operator when undesirable operating
conditions occur.
NOTICE
When an alarm is activated, corrective measures
must be taken before the situation becomes an emergency in order to avoid possible engine damage.
If corrective measures are not taken within a
reasonable time, engine damage could result. The
alarm will continue until the condition is corrected.
The alarm may need to be reset.
Aftertreatment System
• Temperature Sensor before DOC
• Two NOx Sensors
• Two SCR Temperature Sensors
• Ammonia Sensor
Temperature Sensor before DOC – This sensor
monitors the gas temperature that is entering the
DOC
30SEBU9068
Features and Controls
Selective Catalytic Reduction Warning System
NOx Sensor – Two NOx sensors monitor the NOx
concentration within the exhaust gas. One sensor
before the DOC and one after the SCR module.
SCR Temperature Sensors – The sensor monitors
the gas temperature entering the SCR. Also, a
second temperature sensor is located down stream of
the SCR. This sensor checks the temperature of the
gas that is leaving the SCR.
Ammonia Sensor – The sensor monitors the
concentration of ammonia within the exhaust system
after the CEM.
Quality Sensor – The quality sensor provides the
ECM with confirmation that the correct concentration
of DEF is present in the tank. If the tank is filled with a
different fluid which is not DEF, such as water or fuel
the sensor will detect this change in quality and raise
a fault. This fault will lead to an inducement and
engine derate.
The temperature sensor before DOC, NOx sensor,
SCR temperature sensors, and ammonia sensor all
connect with the engine ECM. If the signal from these
sensors is out of the set range, the ECM will trigger
an alarm for the operator.
Diesel Exhaust Fluid (DEF) System
Control
DEF Level Sensor – The DEF level sensor signals
the ECM. The ECM determines the signal in order to
give a level reading of the volume of fluid in the tank.
DEF Temperature Sensor – The sensor signals the
ECM. The ECM will determine the temperature of the
DEF within the tank from the signals sent. The
temperature of the DEF is important in order to keep
the DEF injector operation correctly.
Dosing Control Unit (DCU) – The DCU controls the
injection of the DEF and will signal the ECM if the
injection has been interrupted.
The DEF level sensor, DEF temperature sensor, and
the Dosing control unit all connect with the engine
ECM. If the ECM determines that any of the signals
are out of the specified range, an alarm will be
triggered.
i05858075
Selective Catalytic Reduction
Warning System
The Selective Catalytic Reduction (SCR) system is a
system used to reduce NOx emissions from the
engine. Diesel Exhaust Fluid (DEF) is pumped from
the DEF tank and is sprayed into the exhaust stream.
The DEF reacts with the SCR catalyst to reduce NOx
and leaves a nitrogen and water vapor.
NOTICE
Stopping the engine immediately after the engine has
been working under load can result in overheating of
DEF system components.
Refer to the Operation and Maintenance Manual, “Engine Stopping” procedure to allow the engine to cool
and to prevent excessive temperatures in the turbocharger housing and the DEF injector.
NOTICE
Allow at least 2 minutes after the engine has stopped
before you turn the battery disconnect switch to OFF.
Disconnecting the battery power too soon will prevent
purging of the DEF lines after the engine is shut
down.
Warning Strategy
The engine ECM will have software enabled in order
to warn, derate, and only operate a low idle. This
software is in order to keep the engine emissions
complaint.
Warning Indicators
The warning indicators consist of a level gauge for
the DEF, a low-level lamp for the DEF, an emission
malfunction lamp, a warning lamp, a DEF quality
lamp, and the application stop lamp.
The DEF level gauge will only give an accurate
reading with the application on level ground.
Testing
Turning the keyswitch to the ON position will check
the indicator lights on the control panel. All the
indicator lights will be illuminated for 2 seconds after
the keyswitch is operated. Replace suspect bulbs
immediately.
Refer to Troubleshooting for more information.
Loading...
+ 90 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.