Navman LA000605D, LA000267, LA000645, LA000268 User Manual

Jupiter 32
Miniature 20-channel GPS receiver module
Integrator’s Manual
Related documents
• Jupiter 32 Product Brief LA000268
• Jupiter 32 Data Sheet LA000267
• Low Power Operating Modes Application
Note LA000513
• Jupiter 32/30 Saving and retrieving conguration data to Flash and Selectable user proles Application Note LA000266
• Navman NMEA Reference Manual MN000315
• SiRF Binary Protocol Reference Manual, MN000314
LA0006 05D © 20 07 Navman New Zealand. All r ights reserved. Proprietary info rmation and specic ations subject to change w ithout notice.
Contents
1.0 Introduction ....................................................................................................... 1
2.0 Hardware application information................................................................... 1
2.1 Electrical connections (SMT pad interface) .................................................................. 2
2.2 Typical application circuit ............................................................................................. 3
2.2.1 Power for receiver and active antenna ................................................................. 3
2.2.2 Grounding ............................................................................................................ 3
2.2.3 Decoupling ........................................................................................................... 5
2.2.4 Serial RS232 data level shifter ............................................................................. 5
2.3 PCB design recommendations ..................................................................................... 5
2.3.1 Choice of PCB stack up ....................................................................................... 5
2.3.2 Ground plane design ............................................................................................ 5
2.3.3 Decoupling components ...................................................................................... 6
2.3.4 Antenna connection ............................................................................................. 6
2.3.5 Design of 50 ohm microstrip antenna connection ................................................ 7
2.4 Antenna system design choices ................................................................................... 8
2.4.1 Antenna types ...................................................................................................... 8
2.4.2 Active antenna ..................................................................................................... 9
2.4.3 Passive antenna ................................................................................................... 9
2.4.4 Jupiter module used as a GPS sensor ................................................................10
2.4.5 DC supply protection for an active antenna ........................................................10
2.5 Jupiter adapter printed circuit board ............................................................................11
3.0 Packaging and delivery .................................................................................. 13
4.0 Manufacturing process recommendations .................................................. 15
4.1 Solder methods............................................................................................................15
4.1.1 Solder paste type .................................................................................................15
4.1.2 Solder paste mask size ........................................................................................15
4.1.3 Solder paste stencils ............................................................................................15
4.1.4 Reow prole recommendations .........................................................................15
4.1.5 Coating ................................................................................................................16
4.1.6 Post reow washing .............................................................................................16
4.1.7 Pre-baking ...........................................................................................................16
4.1.8 Rework .................................................................................................................16
4.1.9 Site Redress and Cleaning ..................................................................................17
4.1.10 Application of Solder Paste ................................................................................17
4.1.11 Placement and Attachment of the New Component ..........................................17
5.0 Software application information .................................................................. 17
5.1 Normal mode operation ...............................................................................................17
5.2 Power management ....................................................................................................17
5.2.1 Adaptive TricklePower mode ...............................................................................17
5.2.2 Push-to-Fix mode ...............................................................................................18
5.3 Serial I/O .....................................................................................................................18
5.3.1 Default settings ....................................................................................................18
5.3.2 NMEA input commands ......................................................................................18
5.4 Navman proprietary NMEA low power mode messages ............................................19
5.4.1 Low power conguration ......................................................................................19
5.4.2 Low power acquisition conguration ...................................................................19
5.5 Save and Retrieve Conguration Data to Flash ........................................................ 20
5.5.1 Writing to Flash ................................................................................................... 20
5.5.2 Retrieving from Flash ......................................................................................... 20
5.5.3 Reverting to default settings............................................................................... 20
5.6 Selectable User Proles .............................................................................................21
5.7 GPS x output .............................................................................................................21
5.8 Custom application software .......................................................................................21
6.0 Glossary and acronyms ................................................................................. 22
LA0006 05D © 20 07 Navman New Zealand. All r ights reserved. Proprietary info rmation and specic ations subject to change w ithout notice.
I
Figures
Figure 2-1: Jupiter 32 mechanical layout ............................................................................ 3
Figure 2-2: Basic Jupiter 32 application circuit ................................................................... 4
Figure 2-3: Example PCB layout for external active antenna ............................................. 4
Figure 2-4: Decoupling Capacitor Placement .................................................................... 5
Figure 2-5: Arrangement of active antenna and application board .................................... 6
Figure 2-6: Cross section of application board with passive patch antenna ...................... 7
Figure 2-7: PCB microstrip dimensions .............................................................................. 7
Figure 2-8: Simple current limiter circuit ............................................................................11
Figure 2-9: External Active Antenna Control and Current Limit circuit ..............................11
Figure 2-10: Jupiter 32 adapter board ...............................................................................12
Figure 3-1: Moisture Barrier Bag Label .............................................................................13
Figure 3-2: Reel dimensions .............................................................................................13
Figure 3-3: Jupiter 32 Packaging ......................................................................................14
Figure 4-1: Sample Lead and Lead free reow prole ......................................................16
Tables
Table 2-1: Jupiter 32 Module pad functions ........................................................................ 2
Table 2-2: Decoupling recommendations ........................................................................... 6
Table 2-3: PCB substrate thicknesses v track width .......................................................... 7
Table 2-4: Passive and active Patch antenna features ...................................................... 9
Table 2-5: Recommended antenna characteristics ...........................................................10
Table 2-6: Connector conguration ...................................................................................12
Table 5-1: Low power modes message values .................................................................19
Table 5-2: Low power acquisition input values ..................................................................19
Table 5-3: Actions based on signal state ......................................................................... 20
LA0006 05D © 20 07 Navman New Zealand. All r ights reserved. Proprietary info rmation and specic ations subject to change w ithout notice.
II
1.0 Introduction
The Navman Jupiter 32 module is a complete GPS receiver designed for surface mount assembly integration. The Jupiter 32 provides a simple, cost effective GPS solution for
application designers. Application integration will vary primarily with respect to antenna system
design and EMI protective circuitry.
The Jupiter 32 is the successor to the established Jupiter 30, being electrically compatible and having a very small form factor. The provides an easy migration path for existing users requiring very small packaging, low cost, high volume, greater sensitivity, lower power consumption and a faster x.
Basic operation requires a power supply, GPS antenna system interface, relevant EMI protection, and the design and layout of a custom PCB. This document outlines the following design considerations and provides recommended solutions:
Hardware application information
This section introduces the system interface and provides the following physical specications:
a. electrical connections (SMT pad interface)
b. mounting (PCB pad layout dimensions)
c. manufacturing recommendations
d. application circuit interface
It also discusses fundamental considerations when designing for RF, and presents the antenna system design overview. This covers the following topics:
a. PCB layout
b. antenna system design choices
A sample solution is presented and discussed. Due to the nature and complexity of GPS signals,
it is recommended that application integrators adhere to the design considerations and criteria
described in this document.
Software application information
This section provides answers to some common questions that might not have been covered in the above topics.
2.0 Hardware application information
The Jupiter 32 module provide 34 Land Grid Array (LGA) pads for electrical connections. The sections that follow introduce the physical and relative functional specications for application
integration.
Note: The electrical connections can carry very low level GPS signals at 1.57542 GHz. The
layout must be designed appropriately with consideration of the frequencies involved.
LA0006 05D © 20 07 Navman New Zealand. All r ights reserved. Proprietary info rmation and specic ations subject to change w ithout notice.
1
2.1 Electrical connections (SMT pad interface)
The round hole on the front label side of the chip locates pad A1. The pads are designated A-F and 1-7. Details of the pad layout and numbering are shown in Figure 2-1.
Pad No Pad Names Type Description
A1 RF_IN I RF Input 50 ohm
A2 GND P RF signal ground return
A3 GND P ground A4 VANT P active antenna power input
A5 GPIO15 I/O reserved
A6 GPIO14 I/O reserved A7 RF_ON O output to indicate whether the RF section is
enabled (active high)
B1 GND P RF signal ground return
B3 VDD_BB P baseband power supply input for external
regulator build option - DO NOT CONNECT
B4 GPIO4 I/O reserved B5 GPIO13 I/O reserved
B6 VDD_RTC P RTC power supply input for external regulator
build option - DO NOT CONNECT
B7 GPIO1 I/O reserved C1 GND P ground C2 TCXO_IN I TCXO input for external TCXO build option
- DO NOT CONNECT
C4 BOOT I active high to download ash rmware C5 LNA _EN O external antenna enable, active high D2 FACTORY USE ONLY reserved D4 N_GPS_FIX O active low when 2D or 3D x data
available
D5 RXA I CMOS level asynchronous input for UART A
D7 TXA O CMOS level asynchronous output for UART A E1 GND P ground E2 GND P ground E4 GPIO2 I/O reserved
E5 N_RESET I master reset, active low E6 RXB I CMOS level asynchronous input for UART B E7 1PPS O 1 pulse per second output 1µs wide
F1 PWRIN P 3.0 - 3.6 V main power supply input F2 VBATT P 1.9 - 3.6 V backup battery input F3 VCC_RF P RF power supply output for external regulator
option. Connect as per application circuit.
- Figure 2-2
F4 WAKEUP I Push-to-Fix wake-up, active high
F5 N_WAKEUP O low output indicates baseband is powered up
- DO NOT CONNECT
F6 TXB O CMOS level asynchronous output for UART B F7 ECLK I external clock input, not used
Table 2-1: Jupiter 32 Module pad functions
LA0006 05D © 20 07 Navman New Zealand. All r ights reserved. Proprietary info rmation and specic ations subject to change w ithout notice.
2
All dimensions in mm
Figure 2-1: Jupiter 32 mechanical layout
2.2 Typical application circuit
The schematic in Figure 2-2 (next page) represents a very basic application circuit, with simple interfaces to the module. It is subject to variations depending on application requirements.
2.2.1 Power for receiver and active antenna
The receiver power connection requires a clean 3.3 VDC. Noise on this line may affect the performance of the GPS receiver.
When an active antenna is used, the DC power is fed to it through the antenna coax. This requires the user to apply the antenna DC voltage to pad A4 of the module.
A 2.85 V 30 mA supply is made available on pad F3 if the chosen antenna can accept that voltage. This supply is under the command of the TricklePower energy control.
The source impedance of the power supply must be kept sufciently low. The capacitance of the power supply and PCB track width determine the overall source impedance. If a passive antenna is used, the supply must be able to provide a minimum of 100mA continuously with minimal ripple as measured at the power input pin. This ripple requirement must be adhered to for a larger current ow when an active antenna is used. In-rush current for some active antennas have been measured as high as 70mA and may cause a dip in voltage or ripple. Therefore, a low source impedance is important since the power to the Jupiter 32 must be able to accommodate instantaneous currents in excess of 200mA.
2.2.2 Grounding
Separate analogue and digital grounds are not used. However, the antenna signal ground uses a particular layout for optimum results. See Figure 2-3 (next page) and Section 2.3.5 for ground plane recommendations and for design considerations involving the antenna input
and the 50 ohm microstrip connection.
LA0006 05D © 20 07 Navman New Zealand. All r ights reserved. Proprietary info rmation and specic ations subject to change w ithout notice.
3
Jupiter 32 Reference Design
1 nF
3.0-3.6 V
F1 PWRIN
A4 VANT
1 uF
10 nF
10 nF
F2 VBATT
Battery
1 nF
F3 VCC_RF
1 uF
Coaxial Connector
50 ohm Microstrip
See Section 2.5
N_GPS_FIX D4
GND E2
TXA D7
RXA D5
1PPS E7
TXB F6
RXB E6
A2 GND
A1 RF_IN
B1 GND
C4 BOOT
E5 N_RESET
F4 WAKEUP
Jupiter 32
GND C1
GND A3
GND E1
Figure 2-2: Basic Jupiter 32 application circuit
TP
TP
10K
27 pF
10K
27 pF
1 PPS
27 pF
TP
TP
(Top)
(Bottom)
Figure 2-3: Example PCB layout for external active antenna
LA0006 05D © 20 07 Navman New Zealand. All r ights reserved. Proprietary info rmation and specic ations subject to change w ithout notice.
4
2.2.3 Decoupling
The schematic in Figure 2-2 illustrates a suggested method of decoupling that may be followed. Table 2-2 suggests decoupling values for all signals relative to the function required. This level of decoupling may not be required in a particular application, in which case these capacitors could be omitted. As shown in Figure 2-2, only the signal lines used in the application require decoupling.
All capacitors are highly recommended if the module will experience substantial electromagnetic interference (EMI). All low value capacitors should be as close as possible to the module pad with a short connection to the ground plane (see Figure 2-4). Any data lines that have not been properly shielded are susceptible to data corruption.
Figure 2-4: Decoupling Capacitor Placement
2.2.4 Serial RS232 data level shifter
To connect the module to a PC COM port, the serial data signals must be level shifted to RS232 levels. This has not been shown in the reference design, but many single chip RS232 level shifters are available, such as MAX3232.
Note: It is highly recommended to provide test points on the serial data lines and ‘BOOT’ signal (pad C4), even if the application circuit does not use these signals. This will allow the user to connect to these signals if a rmware upload or new conguration is required. These test points can take the form of an untted ‘through-hole’ connector. Refer to Figure 2-2.
2.3 PCB design recommendations
The modules are surface mounted devices, hence the layout of the application PCB plays an integral part in the overall performance of the nished system.
It is not difcult to design such a PCB, despite the presence of high frequency, low level radio signals. The following recommendations have been offered to allow the designer to create a design that will meet the requirements of this product.
Figure 2-1 shows the copper pad dimensions and layout.
2.3.1 Choice of PCB stack up
In general, a two layer PCB substrate can be used, with all the RF signals on one side. Multi­layer boards can also be used. The design recommendations here only address the microstrip style of RF connection. Stripline designs can also be accommodated, however, long lengths of stripline can cause excessive signal loss and vias in the signal track should be avoided.
2.3.2 Ground plane design
A complete ground plane should be used under the PCB with signal tracks on the same layer as the module. The ground return for any signal should ideally have a clear path back to its source and should not mix with other signal’s ground return paths. For this reason, RF signal ground, underneath the microstrip antenna connection, should not be shared with any digital signal or power supply return paths. Pads A2 and B1 are the RF signal ground return
connections.
LA0006 05D © 20 07 Navman New Zealand. All r ights reserved. Proprietary info rmation and specic ations subject to change w ithout notice.
5
Loading...
+ 18 hidden pages