Navman LA000508 User Manual

Jupiter 20
GPS receiver module
Data Sheet
Related documents
• Jupiter 20 Integrator’s manual LA000508
• Jupiter 20 Product brief LA000509
• Jupiter Series development kit guide
• SiRF Binary protocol reference manual
• Navman NMEA reference manual
MN000315
• Jupiter 20 DR application note LA000433
• Low Power Operating Modes application note LA000513
LA000507G © 2006 N avman New Z ealand. All rig hts reserved. P ropri etar y inform ation an d speci cati ons subj ect to change wit hout not ice.
Contents
1.0 Introduction ....................................................................................................... 4
2.0 Technical description ....................................................................................... 4
2.1 Product applications ..................................................................................................... 4
2.2 Receiver architecture ................................................................................................... 4
2.3 Major components of the Jupiter 20 ............................................................................. 5
2.4 Physical characteristics ................................................................................................ 5
2.5 Mechanical specication .............................................................................................. 5
2.6 External antenna surface mount pads ......................................................................... 5
2.7 I/O and power connections........................................................................................... 5
2.8 Environmental .............................................................................................................. 6
2.9 Compliances ................................................................................................................ 6
2.10 Marking/Serialisation .................................................................................................. 6
3.0 Performance characteristics ...........................................................................6
3.1 TTFF (Time To First Fix) ............................................................................................... 6
3.1.1 Hot start ................................................................................................................ 6
3.1.2 Warm start ............................................................................................................ 6
3.1.3 Cold start .............................................................................................................. 6
3.2 Acquisition times .......................................................................................................... 7
3.3 Timing 1PPS output ..................................................................................................... 7
3.4 Battery backup (SRAM/RTC backup) .......................................................................... 7
3.5 TricklePower mode ....................................................................................................... 7
3.5.1 Adaptive TricklePower mode ................................................................................ 7
3.5.2 Push‑To‑Fix mode ................................................................................................ 7
3.6 Differential aiding ......................................................................................................... 8
3.6.1 Differential GPS (DGPS) ...................................................................................... 8
3.6.2 Satellite Based Augmentation Systems (SBAS) including WAAS and EGNOS .. 8
3.7 Navigation modes ......................................................................................................... 8
3.8 Core processor performance ....................................................................................... 8
3.9 Sensitivity ..................................................................................................................... 8
3.10 Dynamic constraints ................................................................................................... 9
3.11 Position and velocity accuracy .................................................................................... 9
4.0 Electrical requirements .................................................................................... 9
4.1 Power supply ................................................................................................................ 9
4.1.1 Primary power ....................................................................................................... 9
4.1.2 Low supply voltage detector ................................................................................. 9
4.1.3 VCC_RF power supply ......................................................................................... 9
4.1.4 External antenna voltage .....................................................................................10
4.1.5 RF (Radio Frequency) input .................................................................................10
4.1.6 Antenna gain ........................................................................................................10
4.1.7 Burnout protection ...............................................................................................10
4.1.8 Jamming performance .........................................................................................10
4.1.9 Flash upgradability ...............................................................................................10
4.1.10 Reset input .........................................................................................................10
4.2 Data input output specications .................................................................................11
4.2.1 Voltage levels ......................................................................................................11
4.2.2 I/O surface mount pads.......................................................................................11
LA000507G © 2006 N avman New Z ealand. All rig hts reserved. P ropri etar y inform ation an d speci cati ons subj ect to change wit hout not ice.
5.0 Software interface .......................................................................................... 13
5.1 NMEA output messages ..............................................................................................13
5.2 SiRF binary .................................................................................................................13
5.3 Software functions and capabilities .............................................................................13
6.0 Dead Reckoning input specications ........................................................... 14
6.1 Gyro input specication ...............................................................................................14
6.2 Wheel tick rate ............................................................................................................14
6.3 Fwd/Rev input sense ...................................................................................................14
7.0 Jupiter 20 development kit ............................................................................. 15
8.0 Jupiter 20 mechanical drawing...................................................................... 15
9.0 Product handling ............................................................................................. 16
9.1 Packaging and delivery ...............................................................................................16
9.2 Moisture sensitivity ......................................................................................................16
9.3 ESD sensitivity ............................................................................................................16
9.4 Safety ..........................................................................................................................16
9.5 RoHS compliance .......................................................................................................16
9.6 Disposal .......................................................................................................................16
10.0 Ordering information .................................................................................... 17
11.0 Glossary and acronyms ................................................................................ 17
Figures
Figure 2‑1: Jupiter 20 module architecture ......................................................................... 4
Figure 8‑1: Jupiter 20 mechanical layout ...........................................................................
15
Tables
Table 3‑1: TTFF acquisition times ...................................................................................... 7
Table 3‑2: Software processing performance .................................................................... 8
Table 3‑3: GPS receiver performance ............................................................................... 8
Table 3‑4: Position and velocity accuracy .......................................................................... 9
Table 4‑1: Operating power for the Jupiter 20 .................................................................... 9
Table 4‑2: Typical jamming performance ..........................................................................10
Table 4‑3: Interface voltage levels ....................................................................................11
Table 4‑4: J20D receiver pad functions ............................................................................11
Table 4‑5: J20/J20S receiver pad functions ......................................................................12
Table 5‑1: Jupiter 20 default baud rates ............................................................................13
Table 5‑2: Default NMEA messages .................................................................................13
Table 5‑3: Jupiter 20 software capability...........................................................................14
Table 6‑1: Gyro input specications ..................................................................................14
Table 10‑1: Jupiter 20 ordering information .......................................................................17
LA000507G © 2006 N avman New Z ealand. All rig hts reserved. P ropri etar y inform ation an d speci cati ons subj ect to change wit hout not ice.

1.0 Introduction

The Jupiter 20 GPS receiver module is a very small surface mount receiver that is intended as a component for OEM (Original Equipment Manufacturer) products. The module provides a 12‑channel receiver that continuously tracks all satellites in view and provides accurate
positioning data.

2.0 Technical description

The highly integrated digital receiver incorporates and enhances the established technology of the SiRFstarIIe/LP chipset. It is designed to meet the needs of the most demanding applications, such as vehicle tracking in dense urban environments. The interface conguration
allows incorporation into many existing devices and legacy designs.
The Jupiter 20 receiver decodes and processes signals from all visible GPS satellites. These satellites, in various orbits around the Earth, broadcast RF (radio frequency) ranging codes, timing information, and navigation data messages. The receiver uses all available signals to produce a highly accurate navigation solution. The 12‑channel architecture provides rapid TTFF (Time To First Fix) under all start‑up conditions. Acquisition is guaranteed under all initialisation conditions as long as visible satellites are not obscured.
The Jupiter 20 is available in three congurations:
• Jupiter 20 (standard) – GSW2.3 navigation software
• Jupiter 20S (high sensitivity) – with XTrac navigation software
• Jupiter 20D (Dead Reckoning) – with SiRFDRive software and gyro interface
Protocols supported are selected NMEA (National Marine Electronics Association) data messages and SiRF binary.

2.1 Product applications

The module is designed for high performance and maximum exibility in a wide range of OEM congurations including hand‑helds, sensors, and in‑vehicle automotive products.

2.2 Receiver architecture

The functional architecture of the Jupiter 20 receiver is shown in Figure 2‑1.
Module architecture
active or passive antenna
bias T
LNA
bandpass
lter
TCXO
RFIC
RFIN
controls/
GPIO
PWRIN
UART
ports
DR Modules only
baseband processor
GYRO IN
ADC
forward/
reverse
wheel
ticks
V_ANT
input
2.8 V
regulator
PWRIN
VBATT
RTC crystal
ORing
circuit
1.8 V
regulator
brown out
detector
PWRIN
AD [0‑18] D [0‑15]
Flash memor y

Figure 2-1: Jupiter 20 module architecture

LA000507G © 2006 N avman New Z ealand. All rig hts reserved. P ropri etar y inform ation an d speci cati ons subj ect to change wit hout not ice.
CTRL
4

2.3 Major components of the Jupiter 20

LNA (Low Noise Amplier): This amplies the GPS signal and provides enough gain for the
receiver to use a passive antenna. A very low noise design is utilised to provide maximum
sensitivity.
Bandpass lter (1.575 GHz): This lters the GPS signal and removes unwanted signals caused by
external inuences that would corrupt the operation of the receiver.
RFIC (Radio Frequency Integrated Circuit): The RFIC (SiRFstarII GRF 2i/LP) and related
components convert the GPS signal into an intermediate frequency and then digitise it for use by the baseband processor.
TCXO (Temperature Compensated Crystal Oscillator): This highly stable 24.5535 MHz oscillator
controls the down conversion process for the RFIC block. Stability in this frequency is required
to achieve a fast TTFF.
Baseband processor: The SiRFstarII GSP 2e/LP processor is the main engine of the GPS
receiver. It runs all GPS signal measurement code, navigation code, and other ancillary routines, such as power saving modes. The normal I/O of this processor is via the two serial ports.
Flash memory: The Flash memory stores software and also some long term data.
RTC (Real Time Clock) crystal: The 32 kHz crystal operates in conjunction with the RTC inside
the baseband processor. It provides an accurate clock function when main power has been removed, if the battery backup is connected.
Reset generator: There are two voltage threshold reset generators in the Jupiter 20. The rst
provides a reset to the baseband block if the main power drops below a low limit threshold. The second shuts off the supply to the RTC in case the backup battery drops below a lower threshold. This is used to compensate for a slow SiRF rise‑time backup voltage.
Regulators: The regulators provide a clean and stable voltage supply to the components in the
receiver.
DR (Dead Reckoning) components: The Jupiter 20D has additional components allowing direct
connection to a turn rate gyro. The gyro input takes the form of a high resolution ADC (Analogue to Digital Converter), where the analogue signal is digitised and prepared for use by the SiRFDRive DR software running in the baseband processor.

2.4 Physical characteristics

The Jupiter 20 receiver is packaged on a miniature printed circuit board with a metallic RF enclosure on one side. The standard or DR conguration must be selected at the time of ordering and is not available for eld retrotting.
A lead‑free RoHS compliant product has been available since the end of 2005.
2.5 Mechanical specication
The physical dimensions of the Jupiter 20 are as follows:
length: 25.4 mm ± 0.1 mm width: 25.4 mm ± 0.1 mm thickness: 3.0 mm max weight: 4.0 g max
Refer to Figure 8‑1 for the Jupiter 20 mechanical drawing.

2.6 External antenna surface mount pads

The RF surface mount pad for the external antenna has a characteristic impedance of 50 ohms.

2.7 I/O and power connections

The I/O (Input Output) and power connections use surface mount pads with edge plating around the edge of the module.
LA000507G © 2006 N avman New Z ealand. All rig hts reserved. P ropri etar y inform ation an d speci cati ons subj ect to change wit hout not ice.
5

2.8 Environmental

The environmental operating conditions of the Jupiter 20 are as follows:
temperature: –40ºC to +85ºC
humidity: up to 95% non‑condensing or a wet bulb temperature of +35ºC
altitude: –304 m to 18 000 m
vibration: random vibration IEC 68‑2‑64
max. vehicle dynamics: 500 m/s
shock (non‑operating): 18 G peak, 5 ms

2.9 Compliances

The Jupiter 20 complies with the following:
Directive 2002/95/EC on the restriction of the use of certain hazardous substances in
electrical and electronic equipment (RoHS)
CISPR22 and FCC: Part 15, Class B for radiated emissions
Automotive standard TS 16949
Manufactured in an ISO 9000 : 2000 accredited facility

2.10 Marking/Serialisation

The Jupiter 20 supports a code 128 barcode indicating the unit serial number. The Navman 13‑character serial number convention is:
characters 1 and 2: year of manufacture (e.g. 06 = 2006, 07 = 2007)
characters 3 and 4: week of manufacture (1 to 52, starting rst week in January)
character 5: manufacturer code
characters 6 and 7: product and type
character 8: product revision
characters 9-13: sequential serial number

3.0 Performance characteristics

3.1 TTFF (Time To First Fix)

TTFF is the actual time required by a GPS receiver to achieve a position solution. This specication will vary with the operating state of the receiver, the length of time since the last position x, the location of the last x, and the specic receiver design.

3.1.1 Hot start

A hot start results from a software reset after a period of continuous navigation, or a return from a short idle period (i.e. a few minutes) that was preceded by a period of continuous navigation. In this state, all of the critical data (position, velocity, time, and satellite ephemeris) is valid to the specied accuracy and available in SRAM (Static Random Access Memory). Battery backup of the SRAM and RTC during loss of power is required to achieve a
hot start.

3.1.2 Warm start

A warm start typically results from user‑supplied position and time initialisation data or continuous RTC operation with an accurate last known position available in memory. In this state, position and time data are present and valid but ephemeris data validity has expired.

3.1.3 Cold start

A cold start acquisition results when either position or time data is unknown. Almanac information is used to identify previously healthy satellites.
LA000507G © 2006 N avman New Z ealand. All rig hts reserved. P ropri etar y inform ation an d speci cati ons subj ect to change wit hout not ice.
6
Loading...
+ 12 hidden pages